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Abstract. Multiparty signature protocols need protection against rogue-
key attacks, made possible whenever an adversary can choose its public
key(s) arbitrarily. For many schemes, provable security has only been es-
tablished under the knowledge of secret key (KOSK) assumption where
the adversary is required to reveal the secret keys it utilizes. In practice,
certifying authorities rarely require the strong proofs of knowledge of se-
cret keys required to substantiate the KOSK assumption. Instead, proofs
of possession (POPs) are required and can be as simple as just a signa-
ture over the certificate request message. We propose a general registered
key model, within which we can model both the KOSK assumption and
in-use POP protocols. We show that simple POP protocols yield provable
security of Boldyreva’s multisignature scheme [11], the LOSSW multisig-
nature scheme [28], and a 2-user ring signature scheme due to Bender,
Katz, and Morselli [10]. Our results are the first to provide formal evi-
dence that POPs can stop rogue-key attacks.
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1 Introduction

We refer to any scheme that generates signatures bound to a group of parties
as a multiparty signature scheme. We focus on schemes that are both adaptive
and decentralized: the set of potential signers is dynamic and no group manager
is directly involved in establishing eligibility of participants. Examples include
multisignatures, ring signatures, designated-verifier signatures, and aggregate
signatures. These schemes require special care against rogue-key attacks, which
can be mounted whenever adversaries are allowed to choose their public keys
arbitrarily. Typical attacks have the adversary use a public key that is a function
of an honest user’s key, allowing him to produce forgeries easily. Rogue-key
attacks have plagued the development of multiparty signature schemes [26, 20,
22, 30, 32, 33, 25, 11, 28, 38, 31].



One method for preventing rogue-key attacks is to require, during public key
registration with a certificate authority (CA), that a party proves knowledge of its
secret key. This setting has typically been formalized as the knowledge of secret
key (KOSK) assumption [11]: schemes are analyzed in a setting where adver-
saries must reveal their secret keys directly. This abstraction has lead to simple
schemes and straightforward proofs of security. To name a few: Boldyreva’s mul-
tisignature scheme [11] (we call it BMS), the LOSSW multisignature scheme [28]
(we call it WMS for brevity and its basis on Waters signatures [40]), the LOSSW
sequential aggregate signature scheme [28], and many designated-verifier signa-
ture schemes [23, 39, 27, 24]. Since simple rogue-key attacks against these schemes
are known, it might appear that the security of these schemes actually depends
on parties performing proofs of knowledge during registration.

Drawbacks of the KOSK assumption. Unfortunately, there are substantial
drawbacks to using the KOSK assumption. Bellare and Neven discuss this in de-
tail [7]; we briefly recall some of their discussion. First and foremost, the KOSK
assumption is not realized by existing public key infrastructures (PKI). Registra-
tion protocols specified by the most widely used standards (RSA PKCS#10 [36],
RFC 4210 [1], RFC 4211 [37]) do not specify that CA’s should require proofs of
knowledge. Thus, to use schemes proven secure under the KOSK assumption,
one would be faced with the daunting task of upgrading existing (and already
complex) PKI. This would likely require implementing clients and CA’s that sup-
port zero-knowledge (ZK) proofs of knowledge that have extraction guarantees
in fully concurrent settings [4]. Non-interactive ZK proofs of knowledge [17, 16,
19] could also be utilized, but these are more computationally expensive.

The plain setting. In the context of multisignatures, Bellare and Neven [7]
show that it is possible to dispense with the KOSK assumption. They provide
a multisignature scheme which is secure, even against rogue-key attacks, in the
plain public-key setting, where registration with a CA ensures nothing about a
party’s possession or knowledge of a secret key. Here we are interested in some-
thing different, namely investigating the security of schemes (that are not secure
in the plain setting) under more realistic key registration protocols, discussed
next.

Proofs of possession. Although existing PKIs do not require proofs of knowl-
edge, standards mandate the inclusion of a proof of possession (POP) during
registration. A POP attests that a party has access to the secret key associated
with his/her public key, which is typically accomplished using the functionality
of the key pair’s intended scheme. For signature schemes, the simplest POP has
a party sign its certificate request message and send both the message and sig-
nature to the CA. The CA checks that the signature verifies under the public
key being registered. In general, such proofs of possession (POPs) are clearly
not sufficient for substantiating the KOSK assumption. In fact, POPs have not
(previously) lead to any formal guarantees of security against rogue key attacks,
even though intuitively they might appear to stop adversaries from picking ar-
bitrary public keys. This logical gap has contributed to contention regarding the
need for POPs in PKI standards [2].



Our contributions. We suggest analyzing the security of multiparty signa-
ture schemes in a registered key model, which allows modeling a variety of key
registration assumptions including those based on POPs. Using the new model,
we analyze the security of the BMS and WMS multisignature schemes under
POP protocols. We show that, interestingly, requiring the in-use and standard-
ized POP protocol described above still admits rogue-key attacks. This implies
the intuition mentioned above is flawed. On the positive side, we show how a
slight change to the standardized POP protocol admits proofs of security for
these schemes. We also investigate the setting of ring signatures. We describe
how the key registration model can be utilized to result in improved unforge-
ability guarantees. In particular we show that the Bender, Katz, and Morselli
2-user ring signature scheme based on Waters signatures [10] is secure against
rogue-key attacks under a simple POP protocol. We now look at each of these
contributions in more detail.

The registered key model. A key registration protocol is a pair of interac-
tive algorithms (RegP,RegV), the former executed by a registrant and the latter
executed by a certifying authority (CA). We lift security definitions to the reg-
istered key model by giving adversaries an additional key registration oracle,
which, when invoked, executes a new instance of RegV. The security game can
then restrict adversarial behavior based on whether successful registration has
occurred. Security definitions in the registered key model are thus parameterized
by a registration protocol. This approach allows us to straightforwardly model a
variety of registration assumptions, including the KOSK assumption, the plain
setting and POP-based protocols.

Multisignatures under POP. A multisignature scheme allows a set of par-
ties to jointly generate a compact signature for some message. These schemes
have numerous applications, e.g. contract signing, distribution of a certificate
authority, or co-signing. The BMS and WMS schemes are simple multisigna-
ture schemes that are based directly on the short signature schemes of Boneh,
Lynn, and Shacham (BLS) [14] and Waters [40]. (That is, a multisignature with
group of size one is simply a BLS or Waters signature.) These schemes give
short multisignatures (just 160 bits for BMS). Moreover, multisignature genera-
tion is straightforward: each party produces its BLS or Waters signature on the
message, and the multisignature is just the (component-wise) product of these
signatures. Both schemes fall prey to straightforward rogue-key attacks, but have
proofs of security under the KOSK assumption [11, 28].

We analyze these schemes when key registration requires POPs. We show
that the standardized POP mechanism described above, when applied to these
schemes, does not lead to secure multisignatures. Both schemes fall to rogue-key
attacks despite the use of the standardized POPs. We present a straightforward
and natural fix for this problem: simply use separate hash functions for POPs and
multisignatures. We prove the security of BMS and WMS multisignatures under
such POP mechanisms, giving the first formal justification that these desirable
schemes can be used in practice. Both proofs reduce to the same computational
assumptions used in previous KOSK proofs and the reductions are just as tight.



Ring signatures under POP. Ring signatures allow a signer to choose a
group of public keys and sign a message so that it is verifiable that some party
in the group signed it, but no adversary can determine which party it was. The
canonical application of ring signatures is leaking secrets [35]. Bender, Katz,
and Morselli (BKM) have given a hierarchy of anonymity and unforgeability
definitions for ring signature schemes [10]. For κ-user schemes, where only rings
of size κ are allowed, we point out that the ability to mount rogue-key attacks
(as opposed to the ability to corrupt honest parties) is a crucial distinguisher of
the strength of unforgeability definitions. We introduce new security definitions
that facilitate a formal analysis of this fact. BKM also propose two 2-user ring
signature schemes that do not rely on random oracles, and prove them to meet
the weaker unforgeability guarantee. As pointed out by Shacham and Waters,
these schemes do not meet the stronger definition due to rogue-key attacks [38].

We show that the KOSK assumption provably protects against rogue-key
attacks for a natural class of ring signature schemes (both the BKM 2-user
schemes fall into this class). We go on to prove the security of the BKM 2-
user scheme based on Waters signatures under a simple POP-based registration
protocol.

Schemes in the plain setting. We briefly overview some schemes built for
the plain setting. The Micali, Ohta, and Reyzin multisignature scheme [31] was
the first to be proven secure in the plain setting, but it requires a dedicated
key setup phase after which the set of potential signers is necessarily static. The
multisignature scheme of Bellare and Neven [7] does not require a key setup
phase, and is proven secure in the plain setting. While computationally efficient,
it requires several rounds of communication between all co-signers, which is more
than the “non-interactive” BMS and WMS schemes.

Bender, Katz, and Morselli introduced the first ad-hoc ring signature scheme
that provably resists rogue-key attacks [10]. Their scheme is not efficient, requir-
ing semantically-secure encryption for each bit of a message. The ring signature
scheme of Shacham and Waters [38] is more efficient but still not as efficient as
the BKM schemes for rings of size two. Particularly, their ring signatures are
at least three times as long as those given by the BKM scheme based on Wa-
ters signatures and they require more computational overhead. Of course, their
solution works on rings with size greater than two.

Finally, aggregate signature schemes due to Boneh et al. [13] and Lysyanskaya
et al. [29] are secure in the plain setting.

Related work and open problems. Boldyreva et al. [12] investigate certified
encryption and signature schemes. They utilize a POP-based protocol to show
the security of traditional certified signatures. They do not consider multiparty
signatures. Many schemes beyond those treated here rely on the KOSK assump-
tion and finding POP-based protocols for such schemes, if possible, constitutes
an important set of open problems. A few examples are the LOSSW sequential
aggregate signature scheme [28], the StKD encryption scheme due to Bellare,
Kohno, and Shoup [5], and various designated-verifier signature schemes [23, 39,
27, 24].



2 Preliminaries

Basic notation. We denote string concatenation by || . Let S be any set.
Then we define S ∪← s for any appropriate value s as S ← S∪{s}. For a multiset
S, let S − {s} denote the multiset S with one instance of element s removed.
For multisets S and R, let S\R be the multiset formed by repeatedly executing
S ← S−{r} for each r ∈ R (including duplicates). We define s $← S as sampling
uniformly from S and s $←A(x1, x2, . . .) assigns to s the result of running A on
fresh random coins and the inputs x1, x2, . . .. For any string M , let M [i] denote
the ith bit of M . For a table H, let H[s] denote the element associated with s. We
write Time(A) = max{t1, t2, . . .} where A = (A1, A2, . . .) is a tuple of algorithms
and t1, t2, . . . are their worst case running times.

Bilinear maps and co-CDH. The schemes we consider use bilinear maps. Let
G1, G2, and GT be groups, each of prime order p. Then G∗

1, G∗
2, and G∗

T represent
the set of all generators of the groups (respectively). Let e: G1×G2 → GT be an
efficiently computable bilinear map (also called a pairing). For the multisignature
schemes we consider, we use the asymmetric setting [14, 13] where G1 6= G2 and
there exists an efficiently computable isomorphism ψ: G2 → G1. The asymmetry
allows for short signatures, while ψ is needed in the proofs. For the ring signature
schemes we consider, we instead use the symmetric setting [10, 38] where G1 =
G2. Let n represent the number of bits needed to encode an element of G1; for the
asymmetric setting n is typically 160. Finally let g be a generator in G2. For the
rest of the paper we treat G1,G2,GT , p, g, e as fixed, globally known parameters.
Then we define the advantage of an algorithm A in solving the Computational
co-Diffie-Hellman (co-CDH) problem in the groups (G1,G2) as

Advco-cdh
(G1,G2)(A) = Pr

[
A(g, gx, h) = hx : x $← Zp;h

$←G1

]
where the probability is over the random choices of x and h and the coins used
by A. Here Zp is the set of integers modulo p. Note that in the symmetric setting
this is just the CDH problem.

For a group element g, we write 〈g〉 to mean some canonical encoding of g as a
bit string of the appropriate length. We write 〈g〉n to mean the first n bits of 〈g〉.
We use the shorthand ~u (resp. ~w) to mean a list of group elements u1, . . . , un
(resp. w1, . . . , wn). Let tE , tψ, and te be the maximum times to compute an
exponentiation in G1, compute ψ on an element in G2, and compute the pairing.

Signature schemes. A signature scheme S = (Kg,Sign,Ver) consists of a key
generation algorithm, a signing algorithm that outputs a signature given a secret
key and a message, and a verification algorithm that outputs a bit given a public
key, message, and signature. We require that Ver(pk,M,Sign(sk,M)) = 1 for
all allowed M and valid pk, sk. Following [18], we define the advantage of an
adversary A in forging against S in a chosen message attack as

Advuf
S (A) = Pr

[
Ver(pk,M, σ) = 1 : (pk, sk) $← Kg; (M,σ) $←ASign(sk,·)(pk)

]
where the probability is over the coins used by Kg, Sign, and A.



3 The Registered Key Model

Key registration protocols. Let P and S be sets and K ⊆ P × S be
a relation on the sets (representing public keys, secret keys, and valid key
pairs, respectively). A key registration protocol is a pair of interactive algorithms
(RegP,RegV). A party registering a key runs RegP with inputs pk ∈ P and
sk ∈ S. A certifying authority (CA) runs RegV. We restrict our attention (with-
out loss of generality) to protocols in which the last message is from RegV to RegP
and contains either a pk ∈ P or a distinguished symbol ⊥. We require that run-
ning RegP(pk, sk) with RegV results in RegV’s final message being pk whenever
(pk, sk) ∈ K.

We give several examples of key registration protocols. The plain registration
protocol Plain = (PlainP,PlainV) has the registrant running PlainP(pk, sk) send
pk to the CA. The CA running PlainV, upon receiving a public key pk, simply
replies with pk. This protocol will be used to capture the plain model, where no
checks on public keys are performed by a CA. To model the KOSK assumption,
we specify the registration protocol Kosk = (KoskP,KoskV). Here KoskP(pk, sk)
sends (pk, sk) to the CA. Upon receiving (pk, sk), the KoskV algorithm checks
that (pk, sk) ∈ K. (We assume that such a check is efficiently computable; this is
the case for key pairs we consider.) If so, it replies with pk and otherwise with ⊥.

We refer to registration protocols that utilize the key’s intended functionality
as proof-of-possession based. For example, let S = (Kg,Sign,Ver) be a signature
scheme. Define the registration protocol S-Pop = (PopP,PopV) as follows. Run-
ning PopP on inputs pk, sk results in sending the message pk || Sign(sk, 〈pk〉) to
the CA. Upon receiving message pk || σ, a CA running PopV replies with pk if
Ver(pk, 〈pk〉, σ) = 1 and otherwise replies with ⊥. This corresponds to the sim-
plest POPs for signature schemes specified in PKCS#10 and RFCs 4210/4211.

The registered key model. We consider security definitions that are cap-
tured by a game between an adversary and an environment. To lift such se-
curity definitions to the registered key model, we use the following general ap-
proach. Adversaries are given an additional key registration oracle OKReg that,
once invoked, runs a new instance of RegV for some key registration proto-
col (RegP,RegV). If the last message from RegV is a public key pk, then pk is
added to a table R. This table can now be used to modify winning conditions or
restrict which public keys are utilized by the adversary in interactions with the
environment. Security of schemes under the new definition is therefore always
with respect to some registration protocol.

The key registration protocols mentioned so far are two round protocols: the
registrant sends a first message to the CA, which replies with a second message
being either pk or ⊥. For any two round protocol Reg = (RegP,RegV), the OKReg
oracle can be simplified as follows. An adversary queries with a first message, at
which point RegP is immediately run and supplied with the message. The oracle
halts RegP before it sends its reply message. The message is added to R if it is
not ⊥. The oracle finally returns pk or ⊥ appropriately.



Experiment Expmsuf-kr
MS,Reg (A)

par
$←MPg; (pk∗, sk∗)

$←MKg(par); Q ← ∅; R← ∅

Run A(par, pk∗) handling oracle queries as follows

OMSign(V,M), where pk∗ ∈ V: Q ∪←M ; Simulate a new instance of
MSign(sk∗,V,M), forwarding messages to and from A appropriately.

OKReg: Simulate a new instance of algorithm RegV, forwarding messages to

and from A. If the instance’s final message is pk 6= ⊥, then R ∪← pk.

A halts with output (V,M, σ)
If ( pk∗ ∈ V ) ∧ (M /∈ Q ) ∧ (MVf(V,M, σ) = 1 ) ∧ ( (V−{pk∗})\R = ∅ ) then

Return 1
Return 0

Fig. 1. Multisignature security experiment in the registered key model.

4 Multisignatures using POPs

The goal of a multisignature scheme is for a group of parties, each with its own
public and secret keys, to jointly create a compact signature on some message.
Following the formulation in [7], a multisignature scheme is a tuple of algorithms
MS = (MPg,MKg,MSign,MVf). A central authority runs the (randomized) pa-
rameter generation algorithm MPg to create a parameter string par that is given
to all parties and is an (usually implicit) input to the other three algorithms. The
(randomized) key generation algorithm MKg, independently run by each party,
outputs a key pair (pk, sk). The MSign interactive protocol is run by some group
of players. Each party locally runs MSign on input being a secret key sk, a multi-
set of public keys V, and a message M . It may consist of multiple rounds, though
the protocols we consider here only require two rounds: a request broadcast to all
parties and the response(s). Finally, the verification algorithm MVf takes as input
a tuple (V,M, σ), where V is a multiset of public keys, M is a message, and σ is
a signature, and returns a bit. We require that MVf(V,M,MSign(sk,V,M)) = 1
for any M and where every participant correctly follows the algorithms.

Multisignature security. Let MS = (MPg,MKg,MSign,MVf) be a multisig-
nature scheme, Reg = (RegP,RegV) be a key registration protocol, and A be
an adversary. Figure 1 displays the security game Expmsuf-kr

MS,Reg (A). The experi-
ment simulates one honest player with public key pk∗. The goal of the adver-
sary is to produce a multisignature forgery : a tuple (V,M, σ) that satisfies the
following four conditions. First, the honest public key pk∗ is in the multiset
V at least once. Second, the message M was not queried to the multisigna-
ture oracle. Third, the signature verifies. Fourth, each public key in V − {pk∗}
must be in R, where V − {pk∗} means the multiset V with one occurrence of
the honest key removed. We define the msuf-kr-advantage of an adversary A
against a multisignature scheme MS with respect to registration protocol Reg

as Advmsuf-kr
MS,Reg (A) = Pr

[
Expmsuf-kr

MS,Reg (A)⇒ 1
]
. The probability is taken over the



random coins used in the course of running the experiment, including those used
by A. The definitions can be lifted to the random oracle model [8] in the natural
way. It is easy to show that our definition is equivalent to the definition in [7]
when Reg = Plain and equivalent to the definition in [11] when Reg = Kosk.

In the case of two-round multisignature schemes, the multisignature oracle
can be simplified: it just computes the honest parties’ share of the multisignature
and outputs it. Furthermore, we assume without loss of generality that adver-
saries never output a forgery on a message previously queried to their signing
oracle and that they always output a forgery with V including the trusted party’s
public key.

We now prove the security of the BMS and WMS multisignature schemes
relative to POP-based protocols that differ from current standards only by use
of a distinct hash function. In Section 4.3 we discuss attacks against the schemes
when standardized registration protocols are utilized.

4.1 Multisignatures Based on BLS Signatures

BLS signatures and multisignatures. Let H: {0, 1}∗ → G1 be a ran-
dom oracle. Boneh, Lynn, and Shacham [14] specify a signature scheme BLS =
(B-Kg,B-Sign,B-Vf). The algorithms work as follows:

B-Kg:
sk

$← Zp; pk ← gsk

Return (pk, sk)

B-SignH(sk,M):
Return H(M)sk

B-VfH(pk,M, σ):
If e(H(M), pk) = e(σ, g) then

Return 1
Return 0

The BMS = (B-MPg,B-MKg,B-MSign,B-MVf) multisignature scheme [11] is a
simple extension of BLS signatures. Parameter generation just selects the groups,
generators, and pairings as described in Section 2. Key generation, using the
global parameters, creates a key pair as in B-Kg. Multisignature generation for
participants labeled 1, . . . , v, public keys V = {pk1, . . . , pkv}, and a message
M proceeds as follows. Each participant i computes σi

$← B-Sign(ski,M) and
broadcasts σi to all other participants. The multisignature is σ ←

∏v
i=1 σi. On

input V,M, σ the verification algorithm B-MVf computes PK =
∏v
i=1 pki and

then runs B-VfH(PK,M, σ), returning its output. Boldyreva proved the scheme
secure under the KOSK assumption [11].

The B-Pop protocol. We now specify a POP-based key registration protocol
under which we can prove BMS secure. Let Hpop: {0, 1}∗ → G1 be a random
oracle. Then we define the B-Pop = (B-PopP,B-PopV) protocol as follows. Al-
gorithm B-PopP(pk, sk) sends pk || B-SignHpop(sk, 〈pk〉) and algorithm B-PopV,
upon receiving (pk, π) computes B-VfHpop(pk, 〈pk〉, π) and if the result is 1 replies
with pk and otherwise with ⊥. We point out that one can use the same random
oracle (and underlying instantiating hash function) for both H and Hpop as long
as domain separation is enforced. The following theorem captures the security
of BMS with respect to this key registration protocol.



Theorem 1. Let H,Hpop: {0, 1}∗ → G1 be random oracles. Let A be an msuf-kr-
adversary, with respect to the B-Pop propocol, that runs in time t, makes qh, qpop,
qs, and qk queries to H, Hpop, the signing oracle, and the key registration oracle,
and outputs a multisignature forgery on a group of size at most v. Then there
exists an adversary B such that

Advmsuf-kr
BMS,B-Pop(A) ≤ e(qs + 1) ·Advco-cdh

(G1,G2)(B)

where B runs in time t′ ∈ O(t log t+ (qh + qpop + v)tE + (qk + 1)te).

Proof. We wish to construct a co-CDH adversary B, which on input g,X, h
utilizes an msuf-kr adversary A to help it compute hx where x = loggX. We
adapt a game-playing [9] approach due to Bellare for proving the security of
BLS signatures [3]. Without loss of generality, we assume that A always queries
H(M) before querying B-Sign(M). Likewise we assume that A always queries
Hpop(〈pk〉) before querying OKReg(pk, π) for any π. Figure 2 details a sequence
of four games. The game G0, which does not include the boxed statements,
represents the core of our adversary B.

The execution G0(A) proceeds as follows. First Initialize is executed, which
initializes several variables, including a co-CDH problem instance (g,X, h). Then
A is run with input X. Oracle queries by A are handled as shown. Game G0
programs H (lazily built using an initially empty table H[·]) to sometimes return
values that include h and sometimes not, depending on a δ-biased coin (we
notate flipping such a coin by δc

δ←{0, 1}). Intuitively, the δc values correspond
to guessing which H query will correspond to the forgery message. G0 programs
Hpop (lazily built using an initially empty table Hp[·]) to always include h. This
is so that the adversarially-supplied POPs can be used to help extract the co-
CDH solution from a forgery. Queries to OKReg invoke an execution of B-PopV,
utilizing the Hp table for the algorithm’s random oracle. Successful registrations
have the POP signature stored in the table P (which is initially set everywhere
to ⊥). Once A halts with output a potential forgery the Finalize procedure is
executed. We define the subroutine CheckForgery (not explicitly shown in the
games for brevity) as follows. It checks that all keys in the multiset have an
entry defined in P except the honest user’s key (though if there are multiple
copies of the honest user’s key, then P[pk∗] must not be ⊥). Then it checks if the
multisignature verifies under the multiset of public keys given. If either check
fails it returns zero, otherwise it returns one. Note that in the game x is not
used beyond defining the co-CDH problem instance.

The adversary B, when run on input (g,X, h), follows exactly the steps of
G0(A), except that it uses its co-CDH problem instance to supply the appropri-
ate values. We now must justify that Advco-cdh

(G1,G2)(B) = Pr [G0(A) ; ⊥] where
G0(A) ; ⊥ means that the output of G0’s Finalize procedure is not ⊥. By con-
struction the behavior of G0(A) and B are equivalent, and thus all that remains
to be shown is that if the variable G0(A) does not output ⊥, then it outputs
the co-CDH solution hx. Let us fix some more notation related to the variables
in the Finalize procedure of G0. Define ski = logg pki and πi = P[pki] for each
i ∈ [1 .. d]. Then ψ(pki) = gski

1 holds for each i. Define βi = α−γi = B[pki]. Now,



procedure Initialize

x
$← Zp; X ← gx; h

$←G1; c← 0
g1 ← ψ(g); X1 ← ψ(X)
Return X

On query H(M):
c← c+ 1; Mc ←M

αc
$← Zp; δc

δ←{0, 1}
If δc = 1 then H[M ]← gαc

1

Else H[M ]← hgαc
1

Return H[M ]

On query B-Sign(M):
Let k be such that M = Mk

Sk ← 1
If δk = 1 then Sk ← X

αk
1

Else bad← true ; Sk ← H[M ]x

Return Sk

On query Hpop(N): G0 G1

B[N ]
$← Zp; Return Hp[N ]← hg

B[N ]
1

On query OKReg(pk, π):
If B-VfHp(pk, 〈pk〉, π) = 1 then

P[pk]← π; Return pk
Return ⊥

procedure Finalize({X, pk1, . . . , pkd},M, σ)
f ← CheckForgery({X, pk1, . . . , pkd},M, σ)
If f = 0 then Return ⊥
Let k be such that M = Mk; α← αk

For each i ∈ [1 .. d] do γi ← α− B[〈pki〉]
w ← ⊥
If δk = 0 then
w ← σX−α

1

Qd
i=1 (P[pki]

−1 ψ(pki)
−γi)

Else bad← true ; w ← hx

Return w

procedure Initialize

x
$← Zp; X ← gx; h

$←G∗
1; c← 0

Return X

On query H(M):
c← c+ 1; Mc ←M

αc
$← Zp; δc

δ←{0, 1}
Return H[M ]

$←G1

On query B-Sign(M):
Let k be such that M = Mk

if δk = 1 then Sk ← H[M ]x

Else bad← true; Sk ← H[M ]x

Return Sk

On query Hpop(N): G2

Return Hp[N ]
$←G1

On query OKReg(pk, π):
If B-VfHp(pk, 〈pk〉, π) = 1 then

P[pk]← π; Return pk
Return ⊥

procedure Finalize({X, pk1, . . . , pkd},M, σ)
f ← CheckForgery({X, pk1, . . . , pkd},M, σ)
If f = 0 then Return ⊥
Let k be such that M = Mk; α← αk

If δk = 0 then w ← hx

Else bad← true; w ← hx

Return w

procedure Initialize

x
$← Zp; X ← gx; h

$←G∗
1; c← 0

Return X

On query H(M):

Return H[M ]
$←G1

On query B-Sign(M):
c← c+ 1; Return H[M ]x

On query Hpop(N):

Return Hp[N ]
$←G1

On query OKReg(pk, π): G3
If B-VfHp(pk, 〈pk〉, π) = 1 then

P[pk]← π; Return pk
Return ⊥

procedure Finalize({X, pk1, . . . , pkd},M, σ)
f ← CheckForgery({X, pk1, . . . , pkd},M, σ)
If f = 0 then Return ⊥
For each j ∈ [1 .. c] do

δj
δ←{0, 1}; If δj = 0 then bad← true

δj+1
δ←{0, 1}; If δj+1 = 1 then bad← true

Return hx

Fig. 2. Games used in proof that BMS is secure using POPs.



because CheckForgery returns one if G0(A) does not output ⊥, we necessarily
have that e(H[M ], PK) = e(σ, g) and that e(Hp[〈pki〉], pki) = e(πi, g) for each
i ∈ [1 .. d]. In turn this means that σ = (hgα1 )x+sk1+...+skd and πi = (hgβi

1 )ski for
each i ∈ [1 .. d]. Thus, we can see that w = hx:

w = σX−α
1

d∏
i=1

π−1
i ψ(pki)−γi =

(hgα1 )x+sk1+...+skd

Xα
1 ·

∏
(hgβi

1 )ski(gski
1 )α−βi

= hx .

Now we move through a sequence of games to lower bound the probability that
G0(A) actually succeeds in terms of A’s advantage. Let Good be the event that
bad is never set to true. What we show is that

Pr [G0(A) ; ⊥] ≥ Pr [G0(A) ; ⊥ ∧ Good] = Pr [G1(A) ; ⊥ ∧ Good] (1)
= Pr [G2(A) ; ⊥ ∧ Good] (2)
= Pr [G3(A) ; ⊥ ∧ Good] (3)
= Pr [G3(A) ; ⊥] · Pr [Good] (4)

≥ Advmsuf
BMS (A) · 1

e
· 1
qs + 1

(5)

which implies the theorem statement. Now to justify this sequence of equations.
� Game G0 and G1 are identical-until-bad. A variant [6] of the fundamental
lemma of game-playing [9] justifies Equation 1. � Game G2 simplifies game G1
by taking advantage of knowing x. Queries to H are always answered with values
uniformly chosen from G1. Signature queries are always answered with H[M ]x.
The value hx is always returned by Finalize. These changes mean we never need
g1 and X1, so they are omitted. The only distinction between G2 and G1 then
is how these values are computed; their distributions remain the same and we
therefore have justified Equation 2. � We now note that in game G2 the values
chosen for the δc variables have no impact on any of the values returned by
procedures in the game, and only affect the setting of bad. Furthermore, not all
of the δ values can actually set bad: only those that end up being referenced
during signing queries and the one extra for the forgery. With these facts in
mind, we modify G2 to get game G3, in which we defer all possible settings
of bad until the Finalize procedure. We only perform δ-biased coin tosses c + 1
times: one for each signature query and one for the forgery. Equation 3 is justified
by the fact that none of these changes affect the other variables in the game.
(We also make some other cosmetic changes to simplify the games, but these do
not modify distributions involved.) � It is clear in game G3 that the event Good
and “G3(A) ; ⊥” are independent, justifying Equation 4. � Lastly, we note
that G3 now exactly represents the environment of Expmsuf-pop

BMS (A) because if
G3(A) does not output ⊥ then A’s output is a valid forgery. The lower bound
Pr [Good] ≥ (e(qs + 1))−1 is standard (see, e.g. [6, 15]).

The adversary B runs A. Additionally B must perform an exponentiation
for each H and Hpop query and one for each key in the forgery set V. Finally B
must perform a pairing for each OKReg query and to verify the forgery. Thus B
runs in time t′ ∈ O(t log t+ (qh + qpop + v)tE + (qk + 1)te) where |V| = v. ut



4.2 Multisignatures Based on Waters Signatures

Waters signatures and multisignatures. Let H: {0, 1}n → G1 be a hash
function and define the signature scheme W = (W-Kg,W-Sign,W-Vf) as shown
below.

W-Kg:
α

$← Zp; sk ← hα

pk ← e(h, g)α

Return (pk, sk)

W-SignH(sk,M):
r

$← Zp; ρ← gr

σ ← sk ·H(M)r

Return (σ, ρ)

W-VfH(pk,M, (σ, ρ)):
If e(σ, g) · e(H(M), ρ)−1 = pk then

Return 1
Return 0

Although one could use a random oracle for H, we can avoid the random oracle
model by using the following hash function, as done in [28]. A trusted party, in
addition to picking h, chooses u, u1, . . . , un

$←G1 and publishes them globally.
Define Hu,~u: {0, 1}n → G1 by Hu,~u(M) = u ·

∏n
i=1 u

M [i]
i . For simplicity we

restrict ourselves to the message space {0, 1}n, but in practice we can use a
collision-resistant hash function to expand the domain.

The WMS = (W-Pg,W-MKg,W-MSign,W-MVf) multisignature scheme [28]
is a straightforward extension of the Waters’ signature scheme. Parameter gen-
eration chooses h, u, ~u as specified above in addition to fixing all the groups,
generators, and pairings as per Section 2. Key generation, using the generated
parameters, computes keys as in W-Kg. To generate a multisignature for mul-
tiset V = {pk1, . . . , pkv}, each participant i computes (σi, ρi)

$←W-Sign(ski,M)
and broadcasts (σi, ρi). The multisignature is (

∏v
i=1 σi,

∏v
i=1 ρi). To verify a

signature (σ, ρ) for a message M and public keys V = {pk1, . . . , pkv}, simply let
PK ←

∏v
i=1 pki and then return W-Vf(PK,M, (σ, ρ)). This scheme was proven

secure using the KOSK assumption in [28].

The WM-Pop protocol. Let w,w1, . . . , wn
$←G1 be global parameters with

associated hash function Hw,~w. These parameters require trusted setup, partic-
ularly because the CA should not know their discrete logs. (One might there-
fore have the trusted party that runs W-Pg also generate w, ~w.) We define the
following key registration protocol WM-Pop = (WM-PopP,WM-PopV): Algo-
rithm WM-PopP takes as input (pk, sk) and sends pk || (π,$) where (π,$) =
W-SignHw, ~w(sk, 〈pk〉n). Algorithm WM-PopV receives pk || (π,$) and then runs
W-VfHw, ~w(pk, 〈pk〉n, (π,$)) and if the result is 1, replies with pk and else replies
with ⊥. The following theorem, proof of which is given in the full version of the
paper [34], and Theorem 2 in [28] (security of WMS under the KOSK assump-
tion) establish the security of WMS under WM-Pop.

Theorem 2. Let A be an msuf-kr-adversary, with respect to the WM-Pop pro-
tocol, that runs in time t, makes qs signing queries, qk registration queries, and
outputs a forgery for a group of size at most v. Then there exists an adversary B
such that

Advmsuf-kr
WMS,WM-Pop(A) ≤ Advmsuf-kr

WMS,Kosk(B)

and where B runs in time t′ ∈ O(t log t+ ntE + (tE + tψ + te)qk) and makes qs
signature queries.



4.3 Attacks against Standardized Key Registration Protocols

We show how the standardized proof-of-possession based key registration pro-
tocols (as per PKCS#10 [36] and RFCs 4210/4211 [1, 37]) fail to prevent rogue
key attacks. Let BadPop = (BadP,BadV) be the standardized key registration
protocol for BMS and let the algorithms be as follows: Algorithm BadP, on in-
put (pk, sk) sends pk || B-SignH(sk, 〈pk〉) and algorithm BadV, upon receiving
(pk, π), runs B-VfH(pk, 〈pk〉, π) and replies with pk if the result is 1 and ⊥ oth-
erwise. Here H is the same hash function as used in B-MSign and B-MVf.

We define a simple msuf-kr adversary A that successfully mounts a rogue-key
attack against BMS with respect to the BadPop registration protocol. Adversary
A gets the honest party’s public key pk∗ which is equal to gsk

∗
. It then chooses

s
$← Zp. Its public key is set to pk = gs/pk∗ = gs−sk

∗
. The forgery on any

message M and multiset {pk∗, pk} is simply H(M)s, which clearly verifies under
the two public keys given. Now to register its key, the adversary makes the query
OMSign({pk∗}, 〈pk〉), receiving σ = H(〈pk〉)sk∗ . Then A sets π ← H(〈pk〉)s/σ
and registers with pk || π. It is easy to see that this verifies, and thus A can
always output a multisignature forgery: its msuf-kr advantage is one.

An analogous key registration protocol could be defined for WMS, and again
a simple attack shows its insecurity. Both approaches fall to attacks because the
signatures used for key registration and normal multisignatures are calculated
in the same manner. This motivated our simple deviations from standardized
registration protocols for the B-Pop and WM-Pop protocols.

4.4 Other POP Variants

Another class of POP-based registration protocols for signature schemes has
the CA send a random challenge to the registrant. The registrant must then sup-
ply a signature over the challenge message. Our results apply to such protocols,
also, see the full version for details.

5 Ring Signatures in the Registered Key Model

A ring signature scheme RS = (RPg,RKg,RSign,RVf) consists of four algorithms.
The parameter generation algorithm generates a string par given to all parties
and (often implicitly) input to the other three algorithms. The key generation
algorithm RKg outputs a key pair (pk, sk). The algorithm RSignsk(V,M) ≡
RSign(sk,V,M) generates a ring signature on input a secret key sk, a message
M, and a set of public keys V such that there exists pk ∈ V for which (pk, sk) is
a valid key pair. We further assume that |V| ≥ 2 and all keys in V are distinct. It
outputs a ring signature. Lastly the verification algorithm RVf(V,M, σ) outputs
a bit. We require that RVf(V,M,RSignsk(V,M)) = 1 for any message M , any
valid set of public keys, and for any valid sk with a pk ∈ V. Ring signatures that
only allow rings of size κ are called κ-user ring signatures.



New anonymity definition. We propose a stronger definition of anonymity
than those given by Bender et al. [10]. Intuitively, our definition requires that no
adversary should be able to tell what secret key was used to generate a ring sig-
nature, even if the adversary itself chooses the secret keys involved. Formally, let
A be an adversary and RS = (RPg,RKg,RSign,RVf) be a ring signature scheme.
Then the experiment Expr-anon-ind-b

RS (A) works as follows: it runs par $← RPg
and then runs A(par), giving it a left-or-right oracle ORSignLR(·, ·, ·). The or-
acle takes queries of the form ORSignLR(S,V,M) where S = (sk0, sk1) and
V = pk0, . . . , pkv−1 is a set of public keys such that (pk0, sk0) and (pk1, sk1) are
valid key pairs. The oracle returns RSignskb

(V,M). Finally A outputs a bit b′,
and wins if b = b′. The r-anon-ind advantage of A is

Advr-anon-ind
RS (A) = Pr

[
Expr-anon-ind-0

RS (A)⇒ 1
]
− Pr

[
Expr-anon-ind-1

RS (A)⇒ 1
]
.

We say a scheme is perfectly r-anon-ind anonymous if the advantage of any
adversary is zero.

The r-anon-ind definition is stronger than the strongest definition given in [10]
(see the full version for details). Even so, both of the BKM 2-user ring signature
schemes meet it, and are, in fact, perfectly r-anon-ind anonymous.

Unforgeability definitions. We expand the unforgeability definitions given
in [10], drawing a distinction between attacks where honest parties can be cor-
rupted and rogue-key attacks (where the adversary can choose public keys). We
also lift the strongest unforgeability definition to the registered key model. Fix
some number η, representing the number of trusted potential honest signers.
Figure 3 gives the security experiment for the strongest definition of security
lifted to the registered key model, r-uf3-kr, which represents resistance to rogue-
key attacks. A weaker definition, r-uf2, is obtained by defining an experiment
Expr-uf2

RS (A) that is the same as Expr-uf3-kr
RS,Reg (A) except we do not allow the ad-

versary to choose its own public keys. We also omit the key registration oracle
and remove the requirement in ORSign that all adversarily chosen keys must be
in R. Lastly, we weaken this definition one step further by defining Expr-uf1

RS (A),
which disallows corruption queries. We thus define the following advantages:

• Advr-uf3-kr
RS,Reg (A) = Pr[Expr-uf3-kr

RS,Reg (A)⇒ 1] (rogue-key attacks, equivalent to
Definition 7 in [10] when Reg = Plain)

• Advr-uf2
RS (A) = Pr[Expr-uf2

RS (A)⇒ 1] (corruption attacks, similar to a defi-
nition in [21])

• Advr-uf1
RS (A) = Pr[Expr-uf1

RS (A)⇒ 1] (chosen subring attacks, Definition 6
in [10])

For κ-user ring signatures that meet the strongest anonymity definition, we have
that security against corruption attacks is actually implied by security against
chosen subring attacks. The reduction is tighter for small κ. This stems from
having to guess a particular ring out of the η potential participants in the proof.
The proof is given in the full version.



Experiment Expr-uf3-kr
RS,Reg (A)

par
$← RPg; (pki, ski)

$← RKg(par) for i ∈ [1 .. η]; S ← {pk1, . . . , pkη}
Q ← C ← R ← ∅
Run A(par,S) handling oracle queries as follows
ORSign(s,V,M), where s ∈ [1 .. η] and pks ∈ V:

Q ∪← (V,M); If (V \ S ) \ R 6= ∅ then Return ⊥
Return RSignsks

(V,M)

OCorrupt(i), where i ∈ [1 .. η]: C ∪← pki; Return ski

OKReg: Simulate a new instance of algorithm RegV, forwarding messages to

and from A. If the instance’s last message is pk 6= ⊥, then R ∪← pk.

A outputs (V,M, σ)
If RVf(V,M, σ) = 1 ∧ ( (V,M) /∈ Q ) ∧ (V ⊆ S \ C ) then Return 1
Return 0

Fig. 3. Ring signature unforgeability experiment in the registered key model.

Theorem 3. Let RS be a κ-user ring signature scheme. Let η ≥ κ be some
number and let A be an r-uf2 adversary that makes at most qs signature queries,
qc corruption queries, and runs in time at most t. Then there exists adversaries
Ba and Bu such that

Advr-uf2
RS (A) ≤

(
η

κ

)
Advr-anon-ind

RS (Ba) +
(
η

κ

)
Advr-uf1

RS (Bu)

where Ba uses qs queries and runs in time ta ∈ O(t log t+(η+1)Time(RS)) and
Bu uses qs queries and runs in time tu ∈ O(t log t+ (η + 1 + qs)Time(RS)).

Using KOSK. Using the key registration protocol Kosk, any scheme that is
unforgeable with respect to corruption attacks (r-uf2) and meets our strong
definition of anonymity is also secure against rogue-key attacks (r-uf3-kr). Note
that this result (unlike the last) applies to any ring signature scheme, not just
κ-user ring signature schemes.

Theorem 4. Fix η and let RS be a ring signature scheme for which tK is the
maximal time needed to validate a key pair. Let A be an r-uf3-kosk adversary that
makes at most (qs, qc, qk) signature queries, corruption queries, and registration
queries, and runs in time at most t. Then there exists adversaries Ba and Bu
such that

Advr-uf3-kr
RS,Kosk(A) ≤ Advr-anon-ind

RS (Ba) + Advr-uf2
RS (Bu)

where Ba runs in time ta ∈ O(t log t+ (η + 1)Time(RS)), using at most qs sign
queries, and Bu runs in time tu ∈ O(t log t+qktK+(η+1+qs)Time(RS)), using
at most qs sign queries and qc corrupt queries.

The proof is given in the full version. We can apply Theorem 3 and then The-
orem 4 to the two 2-user ring signature schemes from Bender et al., rendering
them secure against rogue-key attacks when Kosk is used for key registration.



Using POPs. For all the reasons already described, we’d like to avoid the
KOSK assumption wherever possible. Thus, we give a proof-of-possession based
registration protocol for the 2-user scheme based on Waters signatures from
Bender et al. [10]. Let WRS = (W-RPg,W-RKg,W-RSign,W-RVf). The param-
eter generation selects groups, generators, and a pairing in the symmetric set-
ting as per Section 2. The key generation algorithm W-RKg chooses α $← Zq,
sets g1 ← gα, and chooses random elements u, u1, . . . , un

$←G∗
1. Finally it out-

puts pk ← g1, u, u1, . . . , un and sk ← α. Define W-RSignsk({pk, pk′},M) as
follows. (Without loss we assume sk corresponds to pk.) Parse pk as g1, u, ~u
and pk′ as g′1, u

′, ~u′ and let H ′(M) = Hu,~u(M) · Hu′,~u′(M). Finally, return
W-SignH

′
(g′sk1 ,M). The verification algorithm W-RVf({pk, pk′},M, (σ, ρ)) first

parses pk as g1, u, u1, . . . , un and pk′ as g′1, u
′, u′1, . . . , u

′
m and defines H ′ as in

signature generation. Then it outputs one if e(g1, g′1) · e(H ′(M), ρ) = e(σ, g).
In [10] the scheme is proven secure against r-uf1 adversaries, but as shown

in [38] the scheme is not secure against rogue-key attacks without key registra-
tion. We now show a simple proof-of-possession based registration protocol to
render the scheme secure. Choose global parameters h0, h1, w, w1, . . . , wn

$←G1

(this will require trusted setup, and could be accomplished with W-RPg). Then
we specify the registration protocol WR-Pop = (WR-PopP,WR-PopV). Algo-
rithm WR-PopP takes as input (sk, pk) and sends pk || (π0, $0, π1, $1) which
is simply computed by generating the two signatures W-SignHw, ~w(hsk0 , 〈pk〉n)
and W-SignHw, ~w(hsk1 , 〈pk〉n). Algorithm WR-PopV, upon receiving the message,
verifies the signatures in the natural way: get g1 from pk and check that both
e(g1, h0) · e(Hw,~w(〈pk〉n), $0) = e(π0, g) and e(g1, h1) · e(Hw,~w(〈pk〉n), $1) =
e(π1, g). If both signatures verify, the algorithm replies with pk and otherwise
⊥. The following theorem captures security of WRS with respect to the WR-Pop
registration protocol. The proof is given in the full version.

Theorem 5. Fix η. Let A be an r-uf3-kr adversary with respect to the WR-Pop
protocol that makes at most qs signature queries, qc corruption queries, qk key
registration queries, and runs in time at most t. Then there exists an adversary
B such that

Advr-uf3-kr
WRS,WR-Pop(A) ≤ η2Advuf

W(B)

where B makes at most qs signing queries and runs in time tB ∈ O(t log t +
ηtE + qstE + (qk + 1)te).
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