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2 IAKS, Arbeitsgruppe Systemsiherheit, Prof. Dr. Th. Beth, Universität Karlsruhe,{ u l e q u r h � r . k . em e l r , n u } i a u a dAbstrat. We onsider the ryptographi two-party protool task ofextending a given oin toss. The goal is to generate n ommon randomoins from a single use of an ideal funtionality whih gives m < nommon random oins to the parties. In the framework of UniversalComposability we show the impossibility of seurely extending a oin tossfor statistial and perfet seurity. On the other hand, for omputationalseurity the existene of a protool for oin toss extension depends onthe number m of random oins whih an be obtained �for free�.For the ase of stand-alone seurity, i.e., a simulation based seurity def-inition without an environment, we present a novel protool for unondi-tionally seure oin toss extension. The new protool works for superlog-arithmi m, whih is optimal as we show the impossibility of statistiallyseure oin toss extension for smaller m.Combining our results with already known results, we obtain a (nearly)omplete haraterization under whih irumstanes oin toss extensionis possible.Keywords: oin toss, universal omposability, reative simulatability,ryptographi protools.1 IntrodutionManuel Blum showed in [5℄ how to �ip a oin over the telephone line. His pro-tool guaranteed that even if one party does not follow the protool, the otherparty still gets a uniformly distributed oin toss result. This general oneptof generating ommon randomness in a way suh that no dishonest party anditate the result proved very useful in ryptography, e.g., in the onstrution ofprotools for general seure multi-party omputation.Here we are interested in the task of extending a given oin toss. That is,suppose that two parties already have the possibility of making a single m-bitoin-toss. Is it possible for them to get n > m bits of ommon randomness? Theanswer we ome up with is basially: �it depends.�The �rst thing the extensibility of a given oin toss depends on is the requiredseurity type. One type of seurity requirement (whih we all �stand-alone sim-ulatabiliy� here) an simply be that the protool imitates an ideal oin tossfuntionality in the sense of [13℄, where a simulator has to invent a realisti pro-tool run after learning the outome of the ideal oin-toss. A stronger type of



requirement is to demand universal omposability, whih basially means thatthe protool imitates an ideal oin toss funtionality even in arbitrary protoolenvironments. Seurity in the latter sense an onveniently be aptured in a sim-ulatability framework like the Universal Composability framework [6,8℄ or theReative Simulatability model [16,3℄.Orthogonal to this, one an vary the level of ful�lment of eah of these re-quirements. For example, one an demand stand-alone simulatability of the pro-tool with respet to polynomial-time adversaries in the sense that real protooland ideal funtionality are only omputationally indistinguishable. This spei�requirement is already ful�lled by the protool of Blum. Alternatively, one andemand, e.g., universal omposability of the protool with respet to unboundedadversaries. This would then yield statistial or even perfet seurity. We showthat whether suh a protool exists depends on the asymptoti behaviour of m.Our results are summarized in the table below. A �yes� or �no� indiateswhether a protool for oin toss extension exists in that setting. �Depends� meansthat the answer depends on the size of the seed (the m-bit oin toss available byassumption), and boldfae indiates novel results.Seurity type ↓ / level → Computational Statistial Perfetstand-alone simulatability yes depends3 nouniversal omposability depends4 no noKnown results in the perfet and statistial ase. A folklore theorem states, that(perfetly non-trivial) statistially seure oin-toss is impossible from srath(even in very lenient seurity models). By Kitaev, this result was extended evento protools using quantum ommuniation (f. [1℄). [4℄ �rst investigated theproblem of extending a oin-toss. They presented a statistially seure protoolfor extending a given oin-toss (pre-shared using a VSS), if less than 1
6 of theparties are orrupted. Note that their main attention was on the e�ieny of theprotool, sine in that senario arbitrary multi-party omputations and thereforein partiular oin-toss from srath are known to be possible. The result doesnot apply to the two-party ase.Our results in the perfet and statistial ase. Our results in the perfet aseare most easily explained. For the perfet ase, we show impossibility of anyoin toss extension, no matter how (in-)e�ient. We show this for stand-alonesimulatability (Coro. 7) and for universal omposability. Now for the statistialase. When demanding only stand-alone simulatability, the situation depends onthe number of the already available ommon oins. Namely, we give an e�ientprotool to extend m ommon oins to any polynomial number (in the seurityparameter), if m is superlogarithmi (Th. 10). Otherwise, we show that therean even be no protool that derives m + 1 ommon random oins (Coro. 7).3 Coin toss extension is possible if and only if the seed has superlogarithmi length.4 Coin toss extension is impossible if the seed does not have superlogarithmi length.The possibility result depends on the omplexity assumption we use, f. Setion 3.1.



In the universal omposability setting, the situation is more lear: we show thatthere simply is no protool that derives from m ommon oins m + 1 oins, nomatter how large m is (Th. 13). (However, here we restrit to protools that runin a polynomial number of rounds.)Known results in the omputational ase. The possibility of oin tossing (in anon-simulation based model) was �rst shown by [5℄ and this protool an beproven seure in a stand-alone seurity model. For the UC framework oin-tosswas proven to be impossible in [9℄, unless a helping funtionality like a CRS isgiven. In [12℄, the task of oin-toss is onsidered in a senario slightly di�erentfrom ours: in [12℄, protool partiipants may not abort protool exeution with-out generating output. In that setting, [12℄ show that oin-toss is generally notpossible even against omputationally limited adversaries. However, to the bestof our knowledge, an extension of a given oin toss has not been onsidered sofar in the omputational setting.Our results in the omputational ase. We answer the question onerning theminimal size neessary for a oin-toss to be extensible: If an m-bit oin-toss fun-tionality is given, and m is not superlogarithmi, then it is already impossible forthe parties to derive m + 1 ommon random oins (in a universally omposableway) from it (Th. 5). However, we also show that under strengthened omputa-tional assumptions, there are protools that extend m to any polynomial number(in the seurity parameter) of ommon random oins, if m is superlogarithmi(Th. 4). In that sense, we give the remaining parts for a omplete harateriza-tion of the omputational ase.Notation� A funtion f is negligible, if for any c > 0, f(k) ≤ k−c for su�iently large
k (i.e., f ∈ k−ω(1)).� f is polynomially bounded, if for some c > 0, f(k) ≤ kc for su�iently large
k (i.e., f ∈ kO(1)).� f is polynomially-large, if there is a c > 0 s.t. f(k)c ≥ k for su�iently large
k (i.e., f ∈ kΩ(1)).� f is superpolynomial, if for any c > 0, f(k) > kc for su�iently large k (i.e.,
f ∈ kω(1)).� f is superlogarithmi, if f/ log k → ∞ (i.e., f ∈ ω(log k)). It is easy to seethat f is superlogarithmi if and only if 2−f is negligible.� f is superpolylogarithmi, if for any c > 0, f(k) > (log k)c for su�ientlylarge k (i.e., f ∈ (log k)ω(1)).� f is exponentially-small, if there exists a c > 1, s.t. f(k) ≤ c−k for su�ientlylarge k (i.e., f ∈ Ω(1)−k = 2−Ω(k)).� f is subexponential, if for any c > 1, f(k) < ck for su�iently large k (i.e.,
f ∈ o(1)k = 2o(k)).



2 Seurity de�nitionsIn this setion we roughly sketh the seurity de�nitions used throughout thispaper. We distinguish between two notions: stand-alone simulatability as de�nedin [13℄,5 and Universal Composability (UC) as de�ned in [6℄.Stand-alone simulatability. In [13℄ a de�nition for the seurity of two-partyseure funtion evaluations is given (alled seurity in the maliious model). Wewill give a sketh, for more details we refer to [13℄.A protool onsists of two parties that alternatingly send messages to eahother. The parties may also invoke an ideal funtionality, whih is given as anorale (in our ases, they invoke a smaller oin-toss to realise a larger one).We say the protool π stand-alone simulatably realises a probabilisti fun-tion f , if for any e�ient adversary A that may replae none or a single party,there is an e�ient simulator S s.t. for all inputs the following random variablesare omputationally indistinguishable:� The real protool exeution. This onsists of the view of the orrupted partiesupon inputs x1 and x2 for the parties and the auxiliary input z for theadversary, together with the outputs I of the parties.� The ideal protool exeution. Here the simulator �rst learn the auxiliaryinput z and possibly the input for the orrupted party (the simulator mustorrupt the same party as the adversary). Then he an hoose the input ofthe orrupted party for the probabilisti funtion f , the other inputs arehosen honestly (i.e., the �rst input is x1 if the �rst party is unorrupted,and the seond input x2 if the seond party is).Then the simulator learns the output I of f (we assume the output to beequal for all parties). It may now generate a fake view v of the orruptedparties. The ideal protool exeution then onsists of v and I.Of ourse, in our ase the probabilisti funtion f (the oin-toss) has no input,so the above de�nition gets simpler.What we have skethed above is what we all omputational stand-alone sim-ulatability. We further de�ne statistial stand-alone simulatability and perfetstand-alone simulatability. In these ases we do not onsider e�ient adversariesand simulators, but unlimited ones. In the ase of statistial stand-alone sim-ulatability we require the real and ideal protool exeution to be statistiallyindistinguishable (and not only omputationally ), and in the perfet ase weeven require these distributions to be idential.Universal Composability. In ontrast to stand-alone simulatability, UniversalComposability [6℄ is a muh striter seurity notion. The main di�erene is theexistene of an environment, that may interat with protool and adversary (orwith ideal funtionality and simulator)5 In fat, [13℄ does not use the name stand-alone simulatability but simply speaksabout seurity in the malious model. We adopt the name stand-alone simulatabilityfor this paper to be able to better distinguish the di�erent notions.



and try to distinguish between real and ideal protool. This additional strit-ness brings the advantage of a versatile omposition theorem (the UniversalComposition Theorem [6℄).We only sketh the model here and refer to [6℄ for details.A protool onsists of several mahines that may (a) get input from theenvironment, (b) give output to the environment (both also during the exeutionof the protool), and () send messages to eah other.The real protool exeution onsists of a protool π, an adversary A and anenvironment Z. Here the environment may freely ommuniate with the adver-sary, and the latter has full ontrol over the network, i.e., it may deliver, delay ordrop messages sent between parties. We assume the authentiated model in thispaper, so the adversary learns the ontent of the messages but may not modifyit. When Z terminates, it gives a single bit of output. The adversary may hooseto orrupt parties at any point in time.6The ideal protool exeution is de�ned analogously, but instead of a protool
π there is an ideal funtionality F and instead of the adversary there is a sim-ulator S. The simulator an only learn and in�uene protool data, if (a) thefuntionality expliitly allows this, or (b) it orrupts a party (note that the simu-lator may only orrupt the same parties as the adversary). In the latter ase, thesimulator an hoose inputs into the funtionality in the name of that party andgets the outputs appartaining to that party. In the ase of unorrupted parties,the environment is in ontrol of the orresponding in- and output of the idealfuntionality.We say a protool π universally omposably (UC)-implements an ideal fun-tionality F (or short π is universally omposable if F is lear from the ontext),if for any e�ient adversary A, there is an e�ient simulator S, s.t. for all e�-ient environments Z and all auxiliary inputs z for Z, the distributions of theoutput-bit of Z in the real and the ideal protool exeution are indistinguishable.What has been skethed above we all omputational UC. We further de�nestatistial and perfet UC. In these notions, we allow adversary, simulator andenvironment to be unlimited mahines. Further, in the ase of perfet UC, werequire the distributions of the output-bit of Z to be idential in real and idealprotool exeution.The Ideal Funtionality for Coin Toss. To desribe the task of implementinga universally omposable oin-toss, we have to de�ne the ideal funtionality of
n-bit oin-toss.In the following, let n denote a positive integer-valued funtion.Below is an informal desription of our ideal funtionality for a n-bit ointoss. First, the funtionality waits for initialization inputs from both parties P1and P2. As soon as both parties have this way signalled their willingness to start,the funtionality selets n oins in form of an n-bit string κ uniformly and sends6 It is then alled an adaptive adversary. If the adversary an only orrupt partiesbefore the start of the protool, we speak of stati orruption. All results in thispaper hold for both variants of the seurity de�nition.



this κ to the adversary. (Note that a oin toss does not guarantee serey of anykind.)If the funtionality now sent κ diretly and without delay to the parties, thisbehaviour would not be implementable by any protool (this would basiallymean that the protool output is immediately available, even without intera-tion). So the funtionality lets the adversary deide when to deliver κ to eahparty. Note however, that the adversary may not in any way in�uene the κ thatis delivered.A more detailed desription follows:Ideal funtionality CTn (n-bit Coin Toss)1. Wait until there have been �init� inputs from P1 and P2. Ignore messagesfrom the adversary, but immediately inform the adversary about the init.2. Selet κ ∈ {0, 1}n uniformly and send κ to the adversary. From now on:� on the �rst (and only the �rst) �deliver to 1� message from the ad-versary, send κ to P1,� on the �rst (and only the �rst) �deliver to 2� message from the ad-versary, send κ to P2.Using CTn, we an also formally express what we mean by extending a ointoss. Namely:De�nition 1. Let n = n(k) and m = m(k) be positive, polynomially boundedand omputable funtions suh that m(k) < n(k) for all k. Then a protool is auniversally omposable (m → n)-oin toss extension protool if it seurely andnon-trivially implements CTn by having aess only to CTm. This seurity anbe omputational, statistial or perfet.By a �non-trivial� implementation we mean a protool that, with overwhelm-ing probability, guarantees outputs if no party is orrupted and all messages aredelivered. (Alternatively, one may also onsider protools that provide outputwith overwhelming probability.) This requirement is useful sine without it, atrivial protool that does not generate any output formally implements everyfuntionality. (Cf. [10℄ and [2, Setion 5.1℄ for more disussion and formal de�-nitions of �non-triviality.�)On unlimited simulators. Following [3℄, we have modelled statistial and per-fet stand-alone and UC seurity using unlimited simulators. Another approahis to require the simulators to be polynomial in the running-time of the adver-sary. All our results apply also to that ase: For the impossibility results, this isstraightforward, sine the seurity notion gets striter when the simulators be-ome more restrited. The only possibility result for statistial/perfet seurityis given in Theorem 10. There, the simulator we onstrut is in fat polynomialin the runtime of the adversary.In the following setions, we investigate the existene of suh oin toss ex-tension protools, depending on the desired seurity level (i.e., omputational /statistial / perfet seurity) and the parameters n and m.



3 The Computational Case3.1 Universal ComposabilityIn the following, we need the assumption of enhaned trapdoor permutationswith dense publi desriptions (alled ETD heneforth). Roughly, these are trap-door permutations with the additional properties that (i) one an hoose thepubli key in an oblivious fashion, i.e., even given the oin tosses we used itis infeasible to invert the funtion, and (ii) the publi keys are omputationallyindistinguishable from random strings. We also need the notion of exponentially-hard ETD, whih are seure even against subexponential-time adversaries. Fordetailed de�nitions, f. the full version [14℄.Lemma 2. There is a onstant d ∈ N s.t. the following holds:Assume that ETD exist, s.t. the size of the iruits desribing the ETD isbounded by s(k) for seurity parameter k.7Then there is a protool π using a uniform ommon referene string (CRS)of length s(k)d, s.t. π seurely UC-realises a bit ommitment that an be usedpolynomially many times.A protool for realising bit ommitment using a CRS has been given in [10℄.To show this lemma, we only need to review their onstrution to see, that aCRS of length sd is indeed su�ient. For details, see the full version [14℄.Lemma 3. Let s(k) be a polynomially bounded funtion, that is omputable intime polynomial in k.Assume one of the following holds:� ETD exist and s is a polynomially-large funtion.� Exponentially-hard ETD exist and s is a superlogarithmi funtion.Then there also exist a onstant e ∈ N independent of s and ETD, s.t. the sizeof the iruits desribing the ETD is bounded by s(k)e for seurity parameter k.This is shown by saling the seurity parameter of the original ETD. Theproof is given in the full version [14℄.Theorem 4. Let n = n(k) and m = m(k) be polynomially bounded and e�-iently omputable funtions. Assume one of the following onditions holds:� m is polynomially-large and ETD exist, or� m is superpolylogarithmi and exponentially-hard ETD exist.Then there is a polynomial-time omputationally universally omposable protool
π for (m→ n)-oin toss extension.7 By the size of the iruits we means the total size of the iruits desribing boththe key generation and the domain sampling algorithm. Note that then trivially alsothe size of the resulting keys and the amount of randomness used by the domainsampling algorithm are bounded by s(k).



Proof. Let d be as in Lemma 2. Let further e be as in Lemma 3. If m ispolynomially-large or superpolylogarithmi, then s := m1/(de) is polynomially-large or superlogarithmi, resp. So, by Lemma 3 there are ETD, s.t. the size ofthe iruits desribing the ETD is bounded by se = m1/e. Then, by Lemma 2there is a UC-seure protool for implementing n bit ommitments using an
(m1/d)d = m-bit CRS.It is straightforward to see that using n UC-bit-ommitments one an UC-seurely implement an n-bit oin-toss using the protool from [5℄. Furthermore,an m-bit CRS an be trivially implemented using an m-bit oin-toss. Using theComposition Theorem we an put the above onstrutions together and get aprotool that UC-realises an n-bit oin-toss using an m-bit oin-toss. ⊓⊔Note that given stronger, but possibly unrealisti assumptions, the lowerbound for m in Theorem 4 an be dereased. If we assume that for any super-logarithmi m, there are ETD s.t. the size of their iruits is bounded by m1/d(where d is the onstant from Lemma 2), we get oin-toss extension even forsuperlogarithmi m (using the same proof as for Theorem 4, exept that insteadof Lemma 3 we use the stronger assumption).However, we annot expet an even better lower bound for m, as the followingtheorem shows:Theorem 5. Let n = n(k) and m = m(k) be funtions with n(k) > m(k) ≥ 0for all k, and assume that m is not superlogarithmi (i.e., 2−m is non-negligible).Then there is no non-trivial polynomial-time omputationally universally om-posable protool for (m→ n)-oin toss extension.Proof (sketh). Assume for ontradition that protool π, with parties P1 and P2using CTm, implements CTn (with m, n as in the theorem statement). Let A1 bean adversary on π that, taking the role of a orrupted party P1, simply reroutesall ommuniation of P1 (with either P2 or CTm) to the protool environment
Z1 and thus lets Z1 take part as P1 in the real protool.Imagine a protool environment Z1, running with π and A1 as above, thatkeeps and internal simulation P1 of P1 and lets this simulation take part in theprotool (through A1). After a protool run, Z1 inspets the output κ1 of P1and ompares it to the output κ2 of the unorrupted P2.In a real protool run with π, A1, and Z1, we will have κ1 = κ2 with over-whelming probability sine π non-trivially implements CTn, and CTn guaranteesommon outputs. So a simulator S1, running in the ideal model with CTn and
Z1, must be able to ahieve that the ideal output κ2 (that is ideally hosen by
CTn and annot be in�uened by S1) is idential to what the simulation P1of P1 inside Z1 outputs. In that sense, S1 must be able to �onvine� P1 toalso output κ2. To this end, S1 may�and must�fake a omplete real protoolommuniation as A1 would deliver it to Z1 (and thus, to P1).However, then we an onstrut another protool environment Z2 that ex-pets to take the role of party P2 in a real protool run (just like Z1 expetedto take the role of P1). To this end, an adversary A2 on π with orrupted P2 isemployed that forwards all ommuniation of P2 with either P1 or CTn to Z2.



Internally, Z2 now simulates S1 (and not P2!) from above and an instane CTnof the trusted host CTn. Reall that S1, given a target string κ by CTn, mimisan unorrupted P2 along with an instane of CTm. In that situation, S1 anonvine an honest P1 with overwhelming probability to eventually output κ.Chanes are 2−m that the CTm-instane made up by S1 outputs the sameseed as the real CTm in a run of Z2 with π and A2. So with probability atleast 2−m − µ for negligible µ, in suh a run, Z2 observes a P1-output κ that isidential to the output of the internally simulated CTn. But then, by assumptionabout the seurity of π, there is also a simulator S2 for A2 and Z2 that provides
Z2 with an indistinguishable view. In partiular, in an ideal run with S2 and
CTn, Z2 observes equal outputs from CTn and CTn with probability at least
2−m−µ′ for negligible µ′. This is a ontradition, as both outputs are uniformlyand independently hosen n-bit strings, and n ≥ m + 1. ⊓⊔4 Statistial and Perfet Cases4.1 Stand-alone simulatabilityWe start o� with a negative result:Theorem 6. Let m < n be funtions in the seurity parameter k. If m is notsuperlogarithmi, there is no two-party n-bit oin-toss protool π (not even anine�ient one) that uses an m-bit oin-toss and has the following properties:� Non-triviality. If no party is orrupted, the probability that the parties givedi�erent, invalid or no output is negligible (by invalid output we mean outputnot in {0, 1}n).� Seurity. For any (possibly unbounded) adversary orrupting one of the par-ties there is a negligible funtion µ, s.t. for every seurity parameter k andevery c ∈ {0, 1}n, the probability for protool output c is at most 2−n +µ(k).If we require perfet non-triviality (the probability for di�erent or no outputs is
0) and perfet seurity (the probability for a given output c is at most 2−n), suha protool π does not exist, even if m is superlogarithmi.Proof (sketh). It is su�ient to onsider the ase n = m + 1.Without loss of generality, we an assume that the available m-bit oin tossis only used at the end of the protool. Similarly, we an assume that in thehonest ase, the parties never output distint values. A detailed proof for thesestatements an be found in the full proof.To show the theorem, we �rst onsider �omplete transripts� of the protool.By a omplete transript we mean all messages sent during the run of a protool,exluding the value of the m-bit oin-toss. We distinguish three sets of ompletetransripts: the set A of transripts having non-zero probability for the protooloutput 0

n, the set B of transripts having zero probability of output 0
n andzero probability that the protool gives no output, and the set C of transriptshaving non-zero probability of giving no output. Note that, sine for a omplete



transript, the protool output only depends on the m-bit oin-toss, any of theabove non-zero probabilities is at least 2−m.For any partial transript p (i.e., a situation during the run of the protool),we de�ne three values α, β, γ. The value α denotes the probability with whiha orrupted Alie an enfore a transript in A starting from p, the value βdenotes the probability with whih a orrupted Bob an enfore a transript in
B, and the value γ denotes the probability that the omplete protool transriptwill lie in C if no-one is orrupted. We show indutively that for any partialtransript p, (1 − α)(1 − β) ≤ γ. In partiular, this holds for the beginning ofthe protool. For simpliity, we assume that 2−m is not only non-negligible, butnotieable (in the full proof, the general ase is onsidered). Sine a transriptin C gives no output with probability at least 2−m, the probability that theprotool generates no output (in the unorrupted ase) is at least 2−mγ. By thenon-triviality ondition, this probability is negligible, so γ must be negligible,too. So (1 − α)(1 − β) is negligible, too. Therefore max {1− α, 1 − β} must benegligible. For now, we assume that 1−α is negligible or 1− β is negligible (forthe general ase, see the full proof).If 1 − α is negligible, the probability for output 0n is at least 2−mα. Sine
α is overwhelming and 2−m notieable, this is greater than 2−n = 1

22−m by anotieable amount whih ontradits the seurity property.If 1− β is negligible, we onsider the maximum probability a orrupted Boban ahieve that the protool output is not 0
n. By the seurity property, thisprobability should be at most (2n−1)2−n plus a negligible amount, whih is notoverwhelming. However, sine every transript in B gives suh an output withprobability 1, the probability of suh is β, whih is overwhelming, in ontradi-tion of the seurity property.The perfet ase is proven similarly. ⊓⊔The full proof is given in the full version [14℄.Corollary 7. By a non-trivial oin-toss protool we mean a protool s.t. (in theunorrupted ase) the probability that the parties give no or di�erent output isnegligible. By a perfetly non-trivial oin-toss protool where this probability iszero.Let m be not superlogarithmi and n > m. Then there is no non-trivial pro-tool realising n-bit oin-toss using an m-bit oin-toss in the sense of statistialstand-alone simulatability.Let m be any funtion (possibly superlogarithmi) and n > m. Then there isno perfetly non-trivial protool realising n-bit oin-toss using an m-bit oin-tossin the sense of perfet stand-alone simulatability.Proof. A statistially seure protool would have the seurity property fromTheorem 6 and thus, if non-trivial, ontradit Theorem 6. Analogously for perfetseurity. ⊓⊔However, not all is lost:



Now we will prove that there exists a protool for oin toss extension from mto n bit whih is statistially stand-alone simulatably seure. The basi idea isto have the parties P1 and P2 ontribute random strings to generate one stringwith su�iently large min-entropy (the min-entropy of a random variable Xis de�ned as minx− logPr[X = x]). The randomness from this string is thenextrated using a randomness extrator. Interestingly the amount of perfetrandomness (i.e., the size of the m-bit oin-toss) one needs to invest is smallerthan the amount extrated. This makes oin toss extension possible.To obtain the oin toss extension we need a result about randomness extra-tors able to extrat one bit of randomness while leaving the seed reusable like aatalyst.Lemma 8. For every m there exists a funtion hm : {0, 1}m × {0, 1}m−1 →
{0, 1}, (s, x) 7→ r suh that for a uniformly distributed s and for an x with amin-entropy of at least t the statistial distane of s‖hm(s, x) and the uniformdistribution on {0, 1}m+1 is at most 2−t/2/

√
2.Proof. Let hm(s, x) := 〈s1 . . . sm−1, x〉⊕sm. Here 〈·, ·〉 denotes the inner produtand ⊕ the addition over GF(2). It is easy to verify that hm(s, ·) onstitutesa family of universal hash funtions [11℄, where s is the index seleting fromthat family. Therefore the Leftover Hash Lemma [15,17℄ guarantees that thestatistial distane between s‖hm(s, x) and the uniform distribution on {0, 1}m+1is bounded by 1

2

√
2 · 2−t = 2−t/2/

√
2. ⊓⊔With this funtion hm a simple protool is possible whih extends m(k) ointosses to m(k) + 1 if the funtion m(k) is superlogarithmi.Theorem 9. Let m(k) be a superlogarithmi funtion, then there exists a on-stant round statistially stand-alone simulatable protool that realises an (m+1)-bit oin-toss using an m-bit oin-toss.Proof. Let hm be as in Lemma 8. Then the following protool realises a ointoss extension by one bit. Assume m := m(k) where k is the seurity parameter.1. P1 uniformly hooses a ∈ {0, 1}⌊m−1

2
⌋ and sends a to P22. P2 uniformly hooses b ∈ {0, 1}⌈m−1

2
⌉ and sends b to P13. If one party fails to send a string of appropriate length or aborts then thisstring is assumed by the other party to be an all-zero string of the appropriatelength4. P1 and P2 invoke the m-bit oin toss funtionality and obtain a uniformlydistributed s ∈ {0, 1}m. If one party Pi fails to invoke the oin toss funtion-ality or aborts, then the other party hooses s at random5. Both P1 and P2 ompute s‖hm(s, a‖b) and output this string.Similar to onstrution 7.4.7 in [13℄ the protool is onstruted in a way thatthe adversary is not able to abort the protool (not even by not terminating).Hene we an safely assume that the adversary will send some message of theorret length and will invoke the oin toss funtionality. We assume the adver-sary to orrupt P2, orruption of P1 is handled analogously. Further we assume



the random tape of A to be �xed in the following. Due to these assumptionsthere exists a funtion fA : {0, 1}⌊m/2⌋ → {0, 1}⌈m/2⌉ for eah real adversary Asuh that the message b sent in step 2 of the protool equals fA(a). There is noloss in generality if we assume the view of the parties to onsists of just a, b, sand the protool output to be s‖hm(s, a‖b).Now for a spei� adversaryA with �xed random tape the output distributionof the real protool (i.e., view and output) is ompletely desribed by the fol-lowing experiment: hoose a
R∈ {0, 1}⌊m/2⌋, let b← fA(a), hoose s

R∈ {0, 1}m(k),let r ← s‖hm(s, a‖b) and return ((a, b, s), r).We now desribe the simulator. To distinguish the the random variablesin the ideal model from their real ounterparts, we deorate them with a ∼,e.g., ã, b̃, s̃. The simulator in the ideal model obtains a string r̃
R∈ {0, 1}m+1 fromthe ideal n-bit oin-toss funtionality and sets s̃ = r1 . . . rm. Then the simulatorhooses ã

R∈ {0, 1}⌊m−1

2
⌋ and omputes b̃ = fA(ã) by giving ã to a simulatedopy of the real adversary. If hm(s̃, ã‖b̃) = r̃m+1 then the simulator gives s̃ tothe simulated real adversary expeting the oin toss. Then the simulator outputsthe view (ã, b̃, s̃). If however, hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds theadversary, i.e., the simulator hooses a fresh ã

R∈ {0, 1}⌊m−1

2
⌋ and again omputes

b̃ = fA(a). If now hm(s̃, ã‖b̃) = r̃m+1 the simulator outputs (ã, b̃, s̃). If again
hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds the adversary again. If after kinvoations of the adversary no triple (ã, b̃, s̃) was output, the simulator abortsand outputs fail .To show that the simulator is orret, we have to show that the following todistributions are statistially indistinguishable: ((a, b, s), r) as de�ned in the realmodel, and ((ã, b̃, s̃), r̃).By onstrution of the simulator, it is obvious that the two distributionsare idential under the ondition that rm = 0, r̃m = 0 and that the simulatordoes not fail. The same holds given rm = 1, r̃m = 1 and that the simulatordoes not fail. Therefore it is su�ient to show two things: (i) the statistialdistane between r and the uniform distribution on n bits is negligible, and(ii) the probability that that the simulator fails is negligible. Property (i) isshown using the properties of the randomness extrator hm. Sine a is hosenat random, the min-entropy of a is at least ⌊m−1

2 ⌋ ≥ m
2 − 1, so the min-entropyof a‖b is also at least m

2 − 1. Sine s is uniformly distributed, it follows byLemma 8 that the statistial distane between r = s‖hm(s, a‖b) is bounded by
2−m/4−1/2/

√
2 = (2−m)1/4/2. Sine for superlogarithmi m it is 2−m negligible,this statistial distane is negligible.Property (ii) is then easily shown: From (i) we see, that after eah invoationof the adversary the distribution of hm(s̃, ã‖b̃) is negligibly far from uniform. Sothe probability that hm(s̃, ã‖b̃) 6= r̃m is at most negligibly higher than 1

2 . Sinethe hm(s̃, ã‖b̃) in the di�erent invokations of the adversary are independent, theprobability that hm(s̃, ã‖b̃) 6= r̃m after eah ativation is neglibigly far from 2−k.So the simulator fails only with negligible probability.



It follows that the real and the ideal protool exeution are indistinguishable,and the protool stand-alone simulatably implements an (m+1)-bit oin-toss. �The idea of the one bit extension protool an be extended by using anextrator whih extrats a larger amount of randomness (while not neessarilytreating the seed like a atalyst). This yields onstant round oin toss extensionprotools. However, the simulator needed for suh a protool does not seemto be e�ient, even if the real adversary is. To get a protool that also ful�lsboth the property of omputational stand-alone simulatabiliy and of statistialstand-alone simulatabiliy, we need a simulator that is e�ient if the adversaryis. Below we give suh a oin toss extension protool for superlogarithmi m(k)whih is statistially seure and omputationaly seure, i.e., the simulator forpolynomial adversaries is polynomially bounded, too. The basi idea here is toextrat one bit at a time in polynomially many rounds.Theorem 10. Let m(k) be superlogarithmi, and p(k) be a positive polynomially-bounded funtion, then there exists a statistially and omputationally stand-alone simulatable protool that realises an (m + p)-bit oin-toss using an m-bitoin-toss.Proof. Let hm be as in Lemma 8. Then the following protool realises a ointoss extension by p(k) bits.1. for i = 1 to p(k) do(a) P1 uniformly hooses ai ∈ {0, 1}⌊m−1

2
⌋ and sends ai to P2(b) P2 uniformly hooses bi ∈ {0, 1}⌈m−1

2
⌉ and sends bi to P1() If one party fails to send a string of appropriate length or aborts thenthis string is assumed by the other party to be an all-zero string of theappropriate length2. P1 and P2 invoke the m-bit oin toss funtionality and obtain a uniformlydistributed s ∈ {0, 1}m. If one party Pi fails to invoke the oin toss funtion-ality or aborts, then the other party hooses s at random3. P1 and P2 ompute s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k)) and output thisstring.We only roughly sketh the di�erenes to the proof of Theorem 9. For eah proto-ol round the simulator follows the strategy desribed in the proof of Theorem 9(i.e., the simulator rewinds the adversary by one round, if the oin-toss produedis not the orret one.) Then using standard hybrid tehniques it an be shownthat this simulator indeed gives an indistinguishable ideal protool run. Here it isonly noteworthy that we use the fat that s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k))is statistially indistinguishable from the uniform distribution on m + p bits.However, this follows diretly from Lemma 8 and the fat that eah ai‖bi hasmin-entropy at least ⌊m−1

2 ⌋ even given the values of all aµ‖bµ for µ < i. ⊓⊔4.2 Universal Composability (statistial/perfet ase)In the ase of statistial seurity, adversary and protool environment are allowedto be omputationally unbounded. In that ase, we show that there is no simu-



latably seure oin toss extension protool that runs in a polynomial number ofrounds. This is fored by requiring the parties to halt after a polynomial num-ber of ativations. However, note that we do not impose any restritions on theamount of omputational work these parties perform in one of those ativations.The proof of this statement is done by ontradition. Furthermore, the proofis split up into an auxiliary lemma and the atual proof. In the auxiliary lemma,we show that without loss of generality, a protool for statistially universallyomposable oin toss extension has a ertain outer form. Then we show that anysuh protool (of this partiular outer form) is inseure.For the following statements, we always assume that m = m(k), n = n(k)are arbitrary funtions, only satisfying 0 ≤ m(k) < n(k) for all k. We alsorestrit to protools that proeed in a polynomial number of rounds. That is,by a �protool� we mean in the following one in whih eah party halts after atmost p(k) ativations, where p(k) is a polynomial whih depends only on theprotool. (As stated above, the parties are still unbounded in eah ativation.)We start with a helping lemma whose proof is available in the full version [14℄.Lemma 11. If there is a statistially universally omposable protool for (m→
n)-oin toss extension, then there is also one in whih eah party� has only one onnetion to the other party and one onnetion to CTm,� in eah ativation sends either an �init� message to CTm or some messageto the other party,� sends in eah protool run at most one message to CTm, and this is alwaysan �init� message,� the internal state of eah of the two parties onsists only of the view that thisparty has experiened so far, and� after Pi sends �init� to CTm, it does not further ommuniate with P3−i(for i = 1, 2 and in ase of no orruptions).We proeed withLemma 12. There is no statistially universally omposable protool for (m→
n)-oin toss extension whih meets the requirements from Lemma 11.Proof. Assume for ontradition that π, using CTm, is a statistially universallyomposable implementation of CTn, and also satis�es the requirements fromLemma 11.Assume a �xed environment Z0 that gives both parties �init� input andthen waits for both parties to output a oin toss result. Consider an adversary
A0 that delivers all messages between the parties immediately. The resultingsetting D0 is depited in Figure 1.Denote the protool ommuniation in a run of D0, i.e., the ordered list ofmessages sent between P1 and P2, by com. Denote by κ1 and κ2 the �nal outputsof the parties. For M ⊆ {0, 1}n and a possible protool ommuniation pre�x c,let E(M, c) be the probability that the protool outputs are idential and in M ,provided that the protool ommuniation starts with c, i.e.,

E(M, c) := Pr[κ1 = κ2 ∈M | c ≤ com ] ,
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Fig. 1. Left: The initial setting D0 for the statistial ase. (Some onnetionswhih are not important for our proof have been omitted.) Right: Setting D1with a orrupted P1. Setting D2 (with P2 orrupted instead of P1) is de�nedanalogously.where x ≤ y means that x is a pre�x of y.Note that the parties have, apart from their ommuniation com , only theseed ω ∈ {0, 1}m provided by CTm for omputing their �nal output κ. So we mayassume that there is a deterministi funtion f for whih κ1 = κ2 = f(com, ω)with overwhelming probability.For a �xed protool ommuniation com = c, onsider the set
Mc := {0, 1}n \ { f(c, s) | s ∈ {0, 1}m }of �improbable outputs� after ommuniation c. Then obviously |Mc| ≥ 2n −

2m ≥ 2n−1. By de�nition of the ideal output (i.e., the output of CTn in theideal model), this implies that for su�iently large seurity parameters k, theprobability that κ1 = κ2 ∈Mc is at least 2/5. (Here, any number stritly between
0 and 1/2 would have done as well.) Otherwise, an environment ould distinguishreal and ideal model by testing for κ1 = κ2 ∈Mc. Sine E(Mc, ε) is exatly thatprobability, we have E(Mc, ε) ≥ 2/5 for su�iently large k. Also, E(Mc, c) isnegligible by de�nition, so Mc satis�es

E(Mc, ε)− E(Mc, c) ≥
1

3
(1)for su�iently large k.Sine the protool onsists by assumption only of polynomially many rounds,

c is a list of size at most p(k) for a �xed polynomial p. This means that there isa pre�x c of c and a single message m (either sent from P1 to P2 or vie versa)suh that cm ≤ c and
E(Mc, c)− E(Mc, cm) ≥ 1

3p(k)
(2)



for su�iently large k. Intuitively, this means that at a ertain point during theprotool run, a single message m had a signi�ant impat on the probability thatthe protool output is in Mc.Note that suh an m must be either sent by P1 or P2. So there is a j ∈ {1, 2},suh that for in�nitely many k, party Pj sends suh an m with probability atleast 1/2. We desribe a modi�ation Dj of setting D0. In setting Dj, party Pj isorrupted and simulated (honestly) inside Zj . Furthermore, adversaryAj simplyrelays all ommuniation between this simulation inside Zj and the unorruptedparty P3−j . For supplying inputs to the simulation of Pj and to the unorrupted
P3−j , a simulation of Z0 is employed inside Zj . The situation (for j = 1) isdepited in Figure 1.Sine Dj is basially only a re-grouping of D0, the random variables com , ω,and κi are distributed exatly as in D0, so we simply identify them. In partiular,in Dj , for in�nitely many k, there is with probability at least 1/2 a pre�x c anda message m sent by Pj of com that satisfy (2).Now we slightly hange the environment Zj into an environment Z ′

j . Eahtime the simulated Pj sends a message m to P3−j , Z ′
j heks for all subsets Mof {0, 1}n whether

∃M ⊆ {0, 1}n : E(M, c)− E(M, cm) ≥ 1

3p(k)
, (3)where c denotes the ommuniation between Pj and P3−j so far.If (3) holds at some point for the �rst time, then Z ′

j tosses a oin b uniformlyat random, and proeeds as follows: if b = 0, then Z ′
j keeps going just as Zjwould have. In partiular, Z ′

j then lets Pj send m to P3−j . However, if b = 1,then Z ′
j rewinds the simulation of Pj to the point before that ativation, andativates Pj again with fresh randomness, thereby letting Pj send a possiblydi�erent message m′. In the further proof, c, m, and M refer to these values forwhih (3) holds.In any ase, after having tossed the oin b one, Z ′

j remembers the set Mfrom (3), and does not hek (3) again. After the protool �nishes, Zj outputseither (⊥,⊥) (if (3) was never ful�lled), or (b, β) for the evaluation β of theprediate [κ1 = κ2 ∈ M ] (i.e., β = 1 i� the protool gives output, the protooloutputs math and lie in M).Now by our hoie of j, Pr[b 6= ⊥] ≥ 1/2 for in�nitely many k.Also, Lemma 11 guarantees that the internal state of the parties at the timeof tossing b onsists only of c. So, when Z ′
j has hosen b = 1, and rewound thesimulated Pj , the probability that at the end of the protool κ1 = κ2 ∈M is thesame as the probability of that event in the setting Dj under the ondition thatthe ommuniation com begins with c̄. This probability again is exatly E(M, c̄)by de�nition.Similarly, when Z ′

j has hosen b = 0, the probability that at the end ofthe protool κ1 = κ2 ∈ M is the same as the probability of that event in thesetting Dj under the ondition that the ommuniation com begins with c̄m,i.e. E(M, c̄m).



Therefore just before Z ′
j hooses b (i.e., when c̄ and M are already deter-mined), the probability that at the end we will have β = 1 ∧ b = 1 is 1

2E(M, c̄)and the probability of β = 1 ∧ b = 0 is 1
2E(M, c̄m). Therefore the di�erenebetween these probabilities is at least 1

2

(

E(M, c̄)− E(M, c̄m)
)

≥ 1
3p(k) .Sine this bound on the di�erene of the probabilities always holds when

b 6= ⊥, by averaging we get
Pr[β = 1 ∧ b = 1 | b 6= ⊥]− Pr[β = 1 ∧ b = 0 | b 6= ⊥] ≥ 1

3p(k)and using the fat that Pr[b 6= ⊥] ≥ 1
2 for in�nitely many k we then have that

Pr[β = 1 ∧ b = 1]− Pr[β = 1 ∧ b = 0] ≥ 1

6p(k)
(4)for in�nitely many k when Z ′

j runs with the real protool as desribed above.We show that no simulator Sj an ahieve property (4) in the ideal model,where Z ′
j runs with CTn and Sj . To distinguish random variables during a runof Z ′

j in the ideal model from those in the real model, we add a tilde to a randomvariable in a run of Z ′
j in the ideal model, e.g., b̃, β̃.For any Sj ahieving indistinguishability of real and ideal model, this anhappen only with negligible probability, so we an assume without losing gener-ality that Sj always delivers outputs.By onstrution of b̃ and κ, the variable b̃ and the tuple (M̃, κ) are indepen-dent given b̃ 6= ⊥. Hene, sine β̃ is a funtion of M̃ and κ,

Pr

[

(b̃, β̃) = (0, 1)
]

= Pr

[

(b̃, β̃) = (1, 1)
]

. (5)So omparing (4) and and (5), Z ′
j 's output distribution di�ers non-negligibly inreal and ideal model. So no simulator Sj an simulate attaks arried out by Z ′
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