
Perfect Non-Interactive Zero Knowledge for NP

Jens Groth?, Rafail Ostrovsky??, and Amit Sahai? ? ?

UCLA, Computer Science Department
4732 Boelter Hall

Los Angeles, CA 90095, USA
{jg,rafail,sahai}@cs.ucla.edu

Abstract. Non-interactive zero-knowledge (NIZK) proof systems are
fundamental cryptographic primitives used in many constructions, in-
cluding CCA2-secure cryptosystems, digital signatures, and various cryp-
tographic protocols. What makes them especially attractive, is that they
work equally well in a concurrent setting, which is notoriously hard for
interactive zero-knowledge protocols. However, while for interactive zero-
knowledge we know how to construct statistical zero-knowledge argu-
ment systems for all NP languages, for non-interactive zero-knowledge,
this problem remained open since the inception of NIZK in the late
1980’s. Here we resolve two problems regarding NIZK:
– We construct the first perfect NIZK argument system for any NP

language.
– We construct the first UC-secure NIZK argument for any NP lan-

guage in the presence of a dynamic/adaptive adversary.
While it is already known how to construct efficient prover computa-
tional NIZK proofs for any NP language, the known techniques yield
large common reference strings and large proofs. Another contribution
of this paper is NIZK proofs with much shorter common reference string
and proofs than previous constructions.

Keywords: Non-interactive zero-knowledge, universal composability,
non-malleability.

1 Introduction

In this paper, we resolve a central open problem concerning Non-Interactive
Zero-Knowledge (NIZK) protocols: how to construct statistical NIZK arguments
for any NP language. While for interactive zero knowledge (ZK), it has long been
known how to construct statistical zero-knowledge argument systems for all NP
languages [5], for NIZK this question has remained open for nearly two decades.

? Supported by NSF Cybertrust ITR grant No. 0456717.
?? Supported in part by a gift from Teradata, Intel equipment grant, NSF Cybertrust

grant No. 0430254, OKAWA research award, B. John Garrick Foundation and Xerox
Innovation group Award.

? ? ? Supported by NSF Cybertrust ITR grant No. 0456717, an equipment grant from
Intel, and an Alfred P. Sloan Foundation Research Fellowship.

Perfect Non-Interactive Zero Knowledge for NP 343

In context with previous work – statistical zero knowledge: Blum,
Feldman, and Micali [3] introduced the notion of NIZK in the common random
string model and showed how to construct computational NIZK proof systems
for proving a single statement about any NP language. The first computational
NIZK proof system for multiple theorems was constructed by Blum, De Santis,
Micali, and Persiano [2]. Both [3] and [2] based their NIZK systems on certain
number-theoretic assumptions (specifically, the hardness of deciding quadratic
residues modulo a composite number). Feige, Lapidot, and Shamir [18] showed
how to construct computational NIZK proofs based on any trapdoor permuta-
tion.

The above work, and the plethora of research on NIZK that followed, mainly
considered NIZK where the zero-knowledge property was only true computation-

ally; that is, a computationally bounded party cannot extract any information
beyond the correctness of the theorem being proven. In the case of interactive

zero knowledge, it has long been known that all NP statements can in fact be
proven using statistical (in fact, perfect) zero knowledge arguments [6, 5]; that
is, even a computationally unbounded party would not learn anything beyond
the correctness of the theorem being proven, though we must assume that the
prover, only during the execution of the protocol, is computationally bounded to
ensure soundness1.

Achieving statistical NIZK has been an elusive goal. The original work of [3]
showed how a computationally unbounded prover can prove to a polynomially
bounded verifier that a number is a quadratic-residue, where the zero-knowledge
property is perfect. Statistical ZK (including statistical NIZK2) for any non-
trivial language for both proofs and arguments were shown to imply the existence
of a one-way function by Ostrovsky [29]. Statistical NIZK proof systems were
further explored by De Santis, Di Crescenzo, Persiano, and Yung [14] and Gol-
dreich, Sahai, and Vadhan [23], who gave complete problems for the complexity
class associated with statistical NIZK proofs. However, these works came far
short of working for all NP languages, and in fact NP-complete languages can-
not have (even interactive) statistical zero-knowledge proof systems unless the
polynomial hierarchy collapses [19, 1]3. Unless our computational complexity be-
liefs are wrong, this leaves open only the possibility of argument systems.

Do there exist statistical NIZK arguments for all NP languages? Despite
nearly two decades of research on NIZK, the answer to this question was not
known. In this paper, we answer this question in the affirmative, based on a
number-theoretic complexity assumption introduced in [4].

1 Such systems where the soundness holds computationally have come to be known as
argument systems, as opposed to proof systems where the soundness condition must
hold unconditionally.

2 We note that the result of [29] is for honest-verifier SZK, and does not require the
simulator to produce Verifier’s random tape, and therefore it includes NIZK, even
for the common reference string which is not uniform. See also [31] for an alternative
proof.

3 See also [22] appendix regarding subtleties of this proof, and [33] for an alternative
proof.

344 Jens Groth, Rafail Ostrovsky, and Amit Sahai

Our results. Our main results, which we describe in more detail below, are:

- Significantly more efficient NIZK proofs for circuit satisfiability.
- Perfect NIZK arguments for any NP language.
- UC-secure perfect NIZK arguments for any NP language, secure against

adaptive/dynamic adversaries.

In our second result, we prove that our perfect NIZK argument has non-adaptive
soundness, i.e., it is infeasible to forge a proof for a false statement that is chosen
independently of the common reference string. In our third result, however, we
construct a UC-secure perfect NIZK argument (i.e., in which the adversary sees
the common reference string first, and can adaptively choose theorems and try
to forge arguments afterwards)4.

NIZK proofs. As a building block we start by constructing a simple and effi-
cient computational NIZK proof of knowledge for circuit satisfiability, based on
the subgroup decision problem introduced in [4]. To the best of our knowledge,
our techniques are completely different from all previous constructions of NIZK
proofs, which use the hidden bits model. In this NIZK proof system, the size
of the common reference string is O(k), where k is the security parameter; thus
it is independent of the size of the NP statements. The NIZK proofs have size
O(k|C|), where |C| is the size of the circuit. This is a significant result in its own
right; the most efficient NIZK proof systems for an NP-complete problem with
efficient provers previously known [27] required a reference string of size at least
O(k3) and the NIZK proofs of size at least O(|C|k2). For comparison with the
most efficient previous work, please see Table 1.

Reference CRS size Proof Size Assumption

Damg̊ard [9] O(|C|k2 + k3) O(|C|k2 + k3) Quadratic Residuosity
Kilian-Petrank [27] O(|C|k2) O(|C|k2) Trapdoor Permutations
Kilian-Petrank [27] O(k3) O(|C|k3) Trapdoor Permutations

De Santis et al. [12, 13] O(k + |C|ε) poly(|C|k) NIZK & One-Way Functions

This paper O(k) O(|C|k) Subgroup Decision [4]

Table 1. Comparison of CRS size and NIZK proof size for efficient-prover NIZK proof
systems for circuit satisfiability.

Perfect NIZK arguments. The NIZK proofs we construct are built using
encryptions of the bits in the circuit. However, by a slight modification to only

4 In general, there is an interesting and subtle technical point regarding the UC frame-
work that should be pointed out here: while the UC framework does rule out proofs
of false theorems in the ideal model, it does not explicitly rule out the possibility
of proofs of false theorems in the real world. Instead, since the ideal and real world
executions are indistinguishable, the UC framework rules out the possibility that
the adversary (or the environement) can gain any advantage from proofs of false
theorems that it manages to generate in the real world.

Perfect Non-Interactive Zero Knowledge for NP 345

the reference string, we effectively transform the cryptosystem into a perfectly
hiding commitment scheme. With this transformation, we obtain a perfect NIZK
argument for circuit satisfiability.

UC-secure perfect NIZK argument. We generalize our techniques to con-
struct perfect NIZK arguments that satisfy Canetti’s UC definition of security.
Canetti introduced the universal composability (UC) framework [7] as a general
method to argue security of protocols in an arbitrary environment. It is a strong
security definition; in particular it implies non-malleability [17], and security
when arbitrary protocols are executed concurrently.

We define NIZK arguments in the UC framework and construct a NIZK
argument that satisfies the UC security definition. From the theory behind the
UC framework, this means that we can plug in our NIZK argument in arbitrary
settings and maintain soundness and privacy. At the same time, we can prove
that our UC NIZK argument enjoys a perfect zero-knowledge property.

We stress that our result of prefect NIZK in the UC framework holds even in
the setting of dynamic/adaptive adversaries without erasures: where the adver-
sary can corrupt parties adaptively, and upon corruption of a party, it learns the
entire history of the internal state of this party. Prior to our result, no NIZK pro-
tocol was known to be UC-secure against dynamic/adaptive adversaries. In [8],
it was observed that De Santis et al. [11] achieve UC-security, but only for the
setting with static adversaries (in the non-erasure model).

2 Non-interactive Zero-Knowledge

Let R be an efficiently computable binary relation. For pairs (x, w) ∈ R we call x
the statement and w the witness. Let L be the language consisting of statements
in R.

An argument system for a relation R consists of a key generation algorithm
K, a prover P and a verifier V . The key generation algorithm produces a com-
mon reference string σ. The prover takes as input (σ, x, w) and checks whether
(x, w) ∈ R. In that case, it produces a proof or argument π, otherwise it out-
puts failure. The verifier takes as input (σ, x, π) and outputs 1 if the proof is
acceptable and 0 if rejecting the proof. We call (K, P, V) an argument system
for R if it has the completeness and soundness properties described below.

(Perfect) Completeness. For all (x, w) ∈ R, we have

Pr
[

σ ← K(1k); π ← P (σ, x, w) : V (σ, x, π) = 1 if (x, w) ∈ R
]

= 1.

(Non-adaptive Computational) Soundness. For all non-uniform polyno-
mial time adversaries A and x /∈ L, we have

Pr
[

σ ← K(1k); π ← A(x, σ) : V (σ, x, π) = 0
]

≈ 1.

We call (K, P, V) a proof system for R if soundness also holds for computa-
tionally unbounded adversaries.

346 Jens Groth, Rafail Ostrovsky, and Amit Sahai

(Perfect) Knowledge Extraction. We call (K, P, V) a proof of knowledge
for R if there exists a knowledge extractor E = (E1, E2) with the properties
described below.

For all non-uniform polynomial time adversaries A we have

Pr
[

σ ← K(1k) : A(σ) = 1
]

= Pr
[

(σ, τ) ← E1(1
k) : A(σ) = 1

]

For all non-uniform polynomial time adversaries A we have

Pr
[

(σ, τ) ← E1(1
k); (x, π)← A(σ); w ← E2(σ, τ, x, π) :

V (σ, x, π) = 0 or (x, w) ∈ R
]

= 1.

Since perfect knowledge extraction implies the existence of a witness for the
statement being proven, it implies perfect adaptive soundness.

(Adaptive Multi-theorem) Zero-Knowledge. We call (K, P, V) a NIZK
argument or NIZK proof for R if there exists a simulator S = (S1, S2) with the
following zero-knowledge property. For all non-uniform polynomial time adver-
saries A we have

Pr
[

σ ← K(1k) : AP (σ,·,·)(σ) = 1
]

≈ Pr
[

(σ, τ) ← S1(1
k) : AS′(σ,τ,·,·)(σ) = 1

]

,

where S′(σ, τ, x, w) = S2(σ, τ, x) for (x, w) ∈ R and outputs failure if (x, w) /∈
R.

Honest prover state reconstruction. In modeling adaptive UC security
without erasures, an honest prover may be corrupted at some time. To handle
such cases, we want to extend the zero-knowledge property such that not only can
we simulate an honest party making a proof, we also want to be able to simulate
how it constructed the proof. In other words, once the party is corrupted, the
adversary will learn the witness and the randomness used; we want to create
convincing randomness so that it looks like the simulated proof was constructed
by an honest prover using this randomness.

We say a NIZK argument or proof for R has honest prover state reconstruc-
tion if there exists a simulator S = (S1, S2, S3) so for all A we have

Pr
[

σ ← K(1k) : APR(σ,·,·)(σ) = 1
]

≈ Pr
[

(σ, τ) ← S1(1
k) : ASR(σ,τ,·,·)(σ) = 1

]

,

where PR(σ, x, w) runs r ← {0, 1}`P (k); π ← P (σ, x, w; r) and returns π, r, and
where SR runs ρ ← {0, 1}`S(k); π ← S2(σ, τ, x; ρ); r ← S3(σ, τ, x, w, ρ) and re-
turns π, r, both of the oracles outputting failure if (x, w) /∈ R.

Perfect completeness, soundness, knowledge extraction and zero-
knowledge. We speak of perfect completeness, perfect soundness, perfect
knowledge extraction, perfect zero-knowledge and perfect honest prover state
reconstruction if for sufficiently large security parameters we have equalities in
the respective definitions.

Perfect Non-Interactive Zero Knowledge for NP 347

3 The Boneh-Goh-Nissim Cryptosystem

Boneh, Goh and Nissim [4] suggest a cryptosystem with interesting homomorphic
properties. The BGN-cryptosystem is the main building block in the paper.

Bilinear groups. We use two cyclic groups G, G1 of order n, where n = pq
and p, q are primes. We make use of a bilinear map e : G×G→ G1. I.e., for all
u, v ∈ G and a, b ∈ Z we have e(ua, vb) = e(u, v)ab. We require that e(g, g) is a
generator of G1 if g is a generator of G. We also require that group operations,
group membership, sampling of a random generator for G and the bilinear map
be efficiently computable.

[4] suggest the following example. Pick large primes p, q and let n = pq. Find
the smallest ` so P = `n − 1 is prime and equal to 2 modulo 3. Consider the
points on the elliptic curve y2 = x3 + 1 over FP . This curve has P + 1 = `n
points, so it has a subgroup G of order n. We let G1 be the order n subgroup of
F∗

P 2 and e : G×G→ G1 be the modified Weil-pairing.

The subgroup decision problem. Let G be an algorithm that takes a security
parameter as input and outputs (p, q, G, G1, e) such that p, q are primes, n = pq
and G, G1 are descriptions of groups of order n and e : G×G→ G1 is a bilinear
map.

Let Gq be the subgroup of G of order q. The subgroup decision problem is
to distinguish elements of G from elements of Gq. Let Ggen be the generators of
G.

Definition 1. The subgroup decision assumption holds for generator G if there

exists a negligible function νSD : N → [0; 1] so for any non-uniform polynomial

time adversary A we have

Pr
[

(p, q, G, G1, e)← G(1
k); n = pq; g, h← Ggen : A(n, G, G1, e, g, h) = 1

]

− Pr
[

(p, q, G, G1, e)← G(1
k); n = pq; g ← Ggen, h← Gq \ {1} :

A(n, G, G1, e, g, h) = 1
]

< νSD(k).

We remark that we have changed the wording of the subgroup decision problem
slightly in comparison with [4], but the definitions are equivalent.

The BGN-cryptosystem. We generate a public key by running
(p, q, G, G1, e) ← G(1

k), setting n = pq, selecting g as a random generator of
G and h as a random generator of Gq. The public key is (n, G, G1, e, g, h) while
the decryption key is p, q.

To encrypt a message m of length O(log k) using randomness r ← Z∗
n we

compute the ciphertext c = gmhr. To decrypt we compute cq = gmqhmq = (gq)m

and exhaustively search for m.
By the subgroup decision assumption, we could indistinguishably select h to

be a random generator of G as well. In this case, we do not have a cryptosystem
but rather a perfectly hiding trapdoor commitment scheme.

348 Jens Groth, Rafail Ostrovsky, and Amit Sahai

4 Non-interactive Zero-Knowledge Proof

4.1 NIZK Proof that c Encrypts 0 or 1

We will construct a NIZK proof of knowledge for circuit satisfiability in Section
4.2. As a building block in this NIZK proof, we will encrypt the truth-values of
the wires in the circuit. We need to convince the verifier that these ciphertexts
have been correctly formed. We therefore start by constructing a NIZK proof
that a BGN-ciphertext has either 0 or 1 as plaintext.

We observe that a ciphertext c contains 0 or 1, if and only if c ∈ Gq or
cg−1 ∈ Gq . Our strategy is therefore to show that e(c, cg−1) has order q. If
we know m, w so c = gmhw then m = 0 implies e(c, cg−1) = e(hw, g−1hw) =
e(h, (g−1hw)w) and m = 1 means e(c, cg−1) = e(ghw, hw) = e(h, (ghw)w). In
both cases we get e(c, cg−1) = e(h, (g2m−1hw)w). Since h has order q, revealing
the two components will immediately convince the verifier that e(c, cg−1) has
order q, however may not be zero-knowledge.

Instead, we make a NIZK proof for e(c, cg−1) having order q as follows. We

choose a random exponent r and compute e(c, cg−1) = e(hr, (g2m−1hw)wr−1

).
We reveal these two components, and must convince the verifier that the first
element π1 = hr has order q. For this purpose, we show him the element gr.
Since e(π1, g) = e(hr, g) = e(h, gr) the verifier can now tell that π1 has order q.

To argue zero-knowledge we change the public key. Instead of having h of
order q, we use h of order n and select g so we know the discrete logarithm. Now
all ciphertexts are perfectly hiding commitments so we can create all of them
as encryptions of 0. We can simulate the revelation of gr because we know the
discrete logarithm.

Common reference string:

1. (p, q, G, G1, e)← G(1
k)

2. n = pq
3. g random generator of G

4. h random generator of Gq

5. Return σ = (n, G, G1, e, g, h).
Statement: The statement is an element c ∈ G. The claim is that there exists a

pair (m, w) ∈ Z
2 so m ∈ {0, 1} and c = gmhw .

Proof: Input (σ, c, (m,w)).
1. Check m ∈ {0, 1} and c = gmhw . Return failure if check fails.
2. r← Z

∗

n

3. π1 = hr, π2 = (g2m−1hw)wr−1

, π3 = gr

4. Return π = (π1, π2, π3)
Verification: Input (σ, c, π = (π1, π2, π3)).

1. Check c ∈ G and π ∈ G
3

2. Check e(c, cg−1) = e(π1, π2) and e(π1, g) = e(h, π3)
3. Return 1 if both checks pass, else return 0

Fig. 1. NIZK proof of plaintext being zero or one.

Perfect Non-Interactive Zero Knowledge for NP 349

Theorem 1. The protocol in Figure 1 is a NIZK proof that c ∈ G has plaintext

m ∈ {0, 1}. The NIZK proof has perfect completeness, perfect soundness and

computational zero-knowledge and honest prover state reconstruction.

Proof. Perfect completeness. We know that c = gmhw, where m ∈

{0, 1}. This gives us e(c, cg−1) = e(h, (g2m−1hw)w) = e(hr, (g2m−1hw)wr−1

) =
e(π1, π2). Furthermore, e(π1, g) = e(hr, g) = e(h, gr) = e(h, π3).

Perfect soundness. We have e(πq
1, g) = e(π1, g)q = e(h, π3)

q = e(hq, π3) =
e(1, π3) = 1. Therefore, π1 must have order 1 or q. This means e(c, cg−1)q =
e(π1, π2)

q = e(πq
1 , π2) = 1, implying that c or cg−1 has order 1 or q.

Computational zero-knowledge and honest prover state recon-
struction. First, we describe the simulator S = (S1, S2, S3). S1 runs the algo-
rithm for generating the common reference string with the following modifica-
tion. It selects h to be a random generator for G and sets g = hγ , where γ ← Z∗

n.
During the generation of the common reference string the simulator also learns
p, q. S1 outputs (σ, τ) = ((n, G, G1, e, g, h), (p, q, γ)).

S2 on input (σ, τ, c) simulates a proof as follows. Either c, cg−1, or both
are generators for G. The simulator picks r ← Z∗

n. If c is a generator it sets

π1 = cr, π2 = (cg−1)r−1

and π3 = πγ
1 . If c is not a generator for the group, then

the simulator sets π1 = (cg−1)r, π2 = cr−1

, π3 = πγ
1 .

S3 is given the witness (m, w) so c = gmhw and m ∈ {0, 1} and wishes to
reconstruct how the prover could have come up with the proof π. Since it knows γ
it can write c = hγm+w. Consider first the case where c is a generator for G, then
we have gcd(n, γm + w) = 1. So we can write the proof as π1 = hr(γm+w), π2 =

(g2m−1hw)w(r(γm+w))−1

, π3 = gr(γm+w). We return r(γm + w) mod n as the
prover’s simulated randomness that would cause it to produce π. In case c is
not a generator, we know that cg−1 is a generator and we write the proof as
π1 = hr(γ(m−1)+w), π2 = (g2m−1hw)w(r(γ(m−1)+w))−1

, π3 = gr(γ(m−1)+w) and
return r(γ(m− 1) + w) mod n as the prover’s simulated randomness.

To argue computational zero-knowledge we consider a hybrid experiment,
where we use S1 to generate the common reference string σ, but implement the
simulation oracle using the real prover P . We first show that for all non-uniform
polynomial time adversaries A we have

∣

∣

∣
Pr

[

σ ← K(1k) : APR(σ,·,·)(σ) = 1
]

−Pr
[

(σ, τ) ← S1(1
k) : APR(σ,·,·)(σ) = 1

] ∣

∣

∣
< νSD(k),

where PR(σ, (σ, c), (m, w)) runs r ← Z∗
n; π ← P (σ, (σ, c), (m, w); r) and returns

π, r, and outputs failure if m /∈ {0, 1} or c 6= gmhw.
The only difference between the two experiments is the choice of h. In one

case, h is a random generator of G in the other case it is a generator of Gq.
We do not use the knowledge of p, q or the discrete logarithm of g with respect
to h in either experiment. Consider now a subgroup decision problem challenge
(n, G, G1, e, g, h). The challenges correspond exactly to common reference strings

350 Jens Groth, Rafail Ostrovsky, and Amit Sahai

produced by respectively K and S1. The advantage of A is therefore bounded
by νSD(k).

Next, we go from the hybrid experiment to the simulation. For all A we have

Pr
[

(σ, τ) ← S1(1
k) : APR(σ,·,·)(σ) = 1

]

= Pr
[

(σ, τ) ← S1(1
k) : ASR(σ,τ,·,·)(σ) = 1

]

,

where SR runs ρ ← Z
∗
n; π ← S2(σ, τ, (σ, c); ρ); r ← S3(σ, τ, (σ, c), (m, w), ρ) and

returns π, r, or failure if m /∈ {0, 1} or c 6= gmhw.
A simulated proof π = (π1, π2, π3) uniquely defines the randomness r ∈ Z∗

n

so π1 = hr, and it is indeed this randomness S3 outputs. We therefore just need
to argue that simulated proofs have the same distribution as real proofs in the
hybrid experiment. In case c is a generator for G, S2 selects r ← Z∗

n at random
and set π1 = cr, which gives us a random generator of G. In a real prover’s proof
π1 is also a random generator of G when h has order n. Since π1 uniquely defines
π2 and π3, we see that the two distributions are identical. If c is not a generator
for G, then cg−1 and since a simulated π1 = (cg−1)r for r ← Z∗

n is a random
generator of G, we can use a similar argument to show that also in this case we
get a perfect simulation. �

4.2 NIZK Proof of Knowledge for Circuit Satisfiability

Suppose we have a circuit C and want to prove that there exists w so C(w) = 1.
Since any circuit can be linearly reduced to a circuit built only from NAND-
gates, we will without loss of generality focus on this simpler case.

To prove satisfiability of C we encrypt the bit value of each wire, when the
circuit is evaluated on the input bits in w. Using the NIZK proof in Figure 1 it
is straightforward to prove that all ciphertexts contain a plaintext in {0, 1}. We
form the output ciphertext with randomness 0 so it is straightforward for the
verifier to check that the output of the circuit is 1.

The only thing left is to prove that all the encrypted output wires do indeed
evaluate the NAND-gates correctly. We make the following observation, leaving
the proof to the reader.

Lemma 1. Let b0, b1, b2 ∈ {0, 1}.

b0 + b1 + 2b2 − 2 ∈ {0, 1} if and only if b2 = ¬(b0 ∧ b1).

Given ciphertexts c0, c1, c2 containing plaintexts b0, b1, b2 we can use the homo-
morphic property to form the ciphertext c0c1c

2
2g

−2. A NIZK proof that c0c1c
2
2g

−2

contains a plaintext in {0, 1} implies b2 = ¬(b0 ∧ b1), as required. We make such
a NIZK proof for each NAND-gate in the circuit.

Theorem 2. The protocol in Figure 2 is a NIZK proof of knowledge of circuit

satisfiability. It has perfect completeness, perfect soundness, perfect knowledge

extraction and computational zero-knowledge and honest prover state reconstruc-

tion.

Perfect Non-Interactive Zero Knowledge for NP 351

Common reference string:

1. (p, q, G, G1, e)← G(1
k)

2. n = pq
3. g random generator of G

4. h random generator of Gq

5. Return σ = (n, G, G1, e, g, h).
Statement: The statement is a circuit C built from NAND-gates. The claim is

that there exist input bits w so C(w) = 1.
Proof: The prover has a witness w consisting of input bits so C(w) = 1.

1. Extend w to contain the bits of all wires in the circuit.
2. Encrypt each bit wi as ci = gwihri , with ri ← Z

∗

n.
3. For all ci make a NIZK proof of existence of wi, ri so wi = {0, 1} and

ci = gwihri .
4. For the output of the circuit we let the ciphertext be coutput = g, i.e., an

easily verifiable encryption of 1.
5. For all NAND-gates, we do the following. We have input ciphertexts

ci0 , ci1 and output ciphertexts ci2 . We wish to prove the existence of
wi0 , wi1 , wi2 ∈ {0, 1} and ri0 , ri1 , ri2 so w2 = ¬(w0 ∧ w1) and
cij

= g
wij h

rij . To do so we make a NIZK proof that there exist m, r with
m ∈ {0, 1} so ci0ci1c2

i2
g−2 = gmhr.

6. Return π consisting of all the ciphertexts and NIZK proofs.
Verification: The verifier given a circuit C and a proof π.

1. Check that all wires have a corresponding ciphertext and that the output
wire’s ciphertext is g.

2. Check that all ciphertexts have a NIZK proof of the plaintext being 0 or 1.
3. Check that all NAND-gates have a valid NIZK proof of compliance.
4. Return 1 if all checks pass, else return 0.

Fig. 2. NIZK proof for circuit satisfiability.

Proof. Perfect completeness. Knowing a satisfying assignment w for C, we

can compute truth-values for all wires that are consistent with the NAND-gates
and make the circuit have 1 as output. Perfect completeness follows from the
perfect completeness of the NIZK proofs of plaintexts being either 0 or 1.

Perfect soundness. Since we prove for each wire that the encrypted plaintext
is either 0 or 1, we have made a perfectly binding commitment to a bit for each
wire. By Lemma 1, the NIZK proofs for the gates imply that all encrypted wire-
bits respect the NAND-gates. Finally, we know that the output ciphertext is g,
so the output bit is 1.

Perfect knowledge extraction. The extractor sets up the common refer-
ence string by running the key generator for the NIZK proof. In the process it
learns p, q. This allows it to decrypt the ciphertexts containing the input-bits.
Since the NIZK proof has perfect soundness, these input bits must correspond
to a witness w so C(w) = 1.

Computational zero-knowledge and honest prover state recon-
struction. Let S1 be the simulator of the NIZK proof for a ciphertext having

352 Jens Groth, Rafail Ostrovsky, and Amit Sahai

0 or 1 as plaintext. We use the same algorithm to create the common reference
string for simulation of circuit satisfiability NIZK proofs. In other words, both
g, h are random generators of G and the simulator knows γ ∈ Z

∗
n so g = hγ .

S2 starts by choosing the ciphertexts for the wires: The output wire gets the
ciphertext g. For all other wires, it selects a ciphertext ci = hri with ri ← Z∗

n.
Later, when S3 learns a witness w, it can compute the corresponding messages
mi ∈ {0, 1} for all these ciphertexts, and open them as ci = gmihri−miγ

−1

.
For all these ciphertexts S2 simulates a NIZK proof that they contain 0 or 1

as the plaintext. Also for all NAND-gates with input wires i0, i1 and output wire
i2 it simulates a NIZK proof that ci0ci1c

2
i2

g−2 contains a plaintext that is 0 or
1. Later, upon learning the witness w, S3 knows the plaintexts wij

∈ {0, 1} and
randomizers rij

− wij
γ−1 that constitute a satisfactory encryption of the wires

of a satisfied circuit. For each NIZK proof of a plaintext being 0 or 1, S3 can run
the honest prover state reconstructor to get convincing randomness that would
make the prover produce this proof.

To prove that this is a good simulation, we first consider a hybrid experiment
where we use the simulator to create the common reference string, but use the
real prover to create the NIZK proofs. As in the proof of Theorem 1, we can
argue that for all non-uniform polynomial time adversaries A we have

∣

∣

∣
Pr

[

σ ← K(1k) : APR(σ,·,·)(σ) = 1
]

−Pr
[

(σ, τ) ← S1(1
k) : APR(σ,·,·)(σ) = 1

] ∣

∣

∣
< νSD(k),

where PR(σ, C, w) runs π ← P (σ, C, w; r) and returns π, r.
Next, we modify the way we create proofs. Instead of running the real prover,

we create the encryptions of the wires ci as the real prover, but simulate the
NIZK proofs of 0 or 1 being the plaintext and simulate the NIZK proofs for the
NAND-gates as well. From the proof of Theorem 1 we get that this modification
does not increase A’s probability of outputting 1. We have

Pr
[

(σ, τ) ← S1(1
k) : APR(σ,·,·)(σ) = 1

]

= Pr
[

(σ, τ) ← S1(1
k) : APSR(σ,τ,·,·)(σ) = 1

]

,

where PSR(σ, τ, C, w) creates ciphertexts ci correctly but simulates NIZK proofs
for 0- or 1-plaintexts and the randomness involved, and outputs failure if
C(w) 6= 1.

Finally, we go to the full simulation. For all A we have

Pr
[

(σ, τ) ← S1(1
k) : APSR(σ,τ,·,·)(σ) = 1

]

= Pr
[

(σ, τ) ← S1(1
k) : ASR(σ,τ,·,·)(σ) = 1

]

,

where SR runs π ← S2(σ, τ, C; ρ); r ← S3(σ, τ, C, w, ρ) and returns π, r, and
outputs failure if C(w) 6= 1. The only difference here is in the way we create
the ciphertexts, but since they are perfectly hiding, we cannot distinguish the
two experiments. �

Perfect Non-Interactive Zero Knowledge for NP 353

5 Non-interactive Statistical Zero-Knowledge Argument

In this section, we construct a NIZK argument of circuit satisfiability with perfect
zero-knowledge. The main idea is a simple modification of the NIZK proof for
circuit satisfiability in Figure 2. Instead of choosing h of order q, we let h be a
random generator of G. This way gmhr is no longer an encryption of m, but a
perfectly hiding commitment to m. It corresponds to using S1 restricted to the
first half of its outputs as key generator. Completeness is obvious and the proof
of Theorem 2 reveals that the argument is perfect zero-knowledge.

Soundness is also simple enough. Suppose we have circuit C /∈ L generated
independently of the common reference string. We can argue that no adversary
can distinguish an h of order n from an h of order q, and therefore by Theorem
2 has negligible probability of making an acceptable NIZK argument.

Let Sσ be the simulator S1 from the proof of Theorem 2 restricted to its first
output. We have the following theorem

Theorem 3. (Sσ , P, V) is a NIZK argument for circuit satisfiability.

Proof. As in the proof of Theorem 2, we can show that the protocol has perfect
completeness. Perfect zero-knowledge and honest prover state reconstruction fol-
lows from the proof of Theorem 2. This leaves us with the question of soundness.

Soundness. We first demonstrate that the NIZK argument is sound, i.e., for any
fixed false statement, all adversaries have negligible probability of generating a
valid proof of this statement.

Consider any unsatisfiable circuit C and a polynomial time adversary A that
with probability So-AdvA(1k) breaks the soundness property. In other words, A
is given a common reference string and proceeds to output a valid argument π.
We will construct an adversary B that decides the subgroup decision problem
with probability SD-AdvB(1k) =So-AdvA(1k).
B gets a challenge (n, G, G1, e, g, h) and has to decide whether h has order n

or not. This corresponds to a common reference string generated by either K or
Sσ . So we can give it to A and output 1 if and only if A forms a valid argument
for C being true.

In case h has order n, the common reference string produced by B is dis-
tributed exactly as in a real argument. The adversary therefore has probability
So-AdvA(1k) of generating an acceptable argument.

On the other hand, in case h has order q the common reference string pro-
duced by B is distributed as the reference string in the previously described
NIZK proof. Since the NIZK proof has perfect soundness, the probability of A
producing a valid argument is 0. �

6 Universally Composable Non-interactive

Zero-Knowledge

6.1 Modeling Non-interactive Zero-Knowledge Arguments

The universal composability (UC) framework (see [7] for a detailed description)
is a strong security model capturing security of a protocol under concurrent

354 Jens Groth, Rafail Ostrovsky, and Amit Sahai

execution of arbitrary protocols. We model all other things not directly related
to the protocol through a polynomial time environment. The environment can at
its own choosing give inputs to the parties running the protocol, and according
to the protocol specification, the parties can give outputs to the environment. In
addition, there is a non-uniform polynomial time adversary A that attacks the
protocol. A can communicate freely with the environment. It can also corrupt
parties, in which case it learns the entire history of that party and gains complete
control over the actions of this party.

To model security we use a simulation paradigm. We specify the functionality
F that the protocol should realize. The functionality F can be seen as a trusted
party that handles the entire protocol execution and tells the parties what they
would output if they executed the protocol correctly. In the ideal process, the
parties simply pass on inputs from environment to F and whenever receiving
a message from F they output it to the environment. In the ideal process, we
have an ideal process adversary S. S does not learn the content of messages
sent from F to the parties, but is in control of when, if ever, a message from
F is delivered to the designated party. S can corrupt parties, at the time of
corruption it will learn all inputs the party has received and all outputs it has
sent to the environment. As the real world adversary, S can freely communicate
with the environment.

We now compare these two models and say that it is secure if no environment
can distinguish between the two worlds. This means, the protocol is secure, if for
any A running in the real world, there exists an S running in the ideal process
with F so no environment can distinguish between the two worlds.

The standard zero-knowledge functionality FZK as defined in [7] goes as fol-
lows: On input (prove,P, V, sid, ssid, x, w) from P the functionality FZK checks
that (x, w) ∈ R and in that case sends (proof,P, V, sid, ssid, x) to V . It is thus
part of the model that the prover will send the proof to a particular receiver and
that this receiver will learn who the prover is. This is a very reasonable model
when we talk about interactive zero-knowledge proofs of knowledge. We remark
that with only small modifications in the UC NIZK argument that we are about
to suggest we could securely realize this functionality.

However, when we talk about NIZK arguments we do not always know who
is going to receive the NIZK argument. We simply create a string π, which is the
NIZK argument. We may create this string in advance and later decide to whom
to send it. Furthermore, anybody who intercepts the string π can verify the truth
of the statement and can use the string to convince others about the truth of
the statement. The NIZK argument is not deniable; quite on the contrary, it is
transferable [30]. For this reason, and because the protocol and the security proof
becomes a little simpler, we suggest a different functionality FNIZK to capture
the essence of NIZK arguments.

6.2 Tools

We will need a few cryptographic tools to securely realize FNIZK.

Perfect Non-Interactive Zero Knowledge for NP 355

Parameterized with relation R and running with parties P1, . . . , Pn and
adversary S.

Proof: On input (prove,sid, ssid, x, w) from party P ignore if (x, w) /∈ R. Send
(prove,x) to S and wait for answer (proof , π). Upon receiving the answer
store (x, π) and send (proof , sid, ssid, π) to P .

Verification: On input (verify, sid, ssid, x, π) from V check whether (x, π) is
stored. If not send (verify,x,π) to S and wait for an answer (witness,w).
Upon receiving the answer, check whether (x, w) ∈ R and in that case, store
(x, π). If (x, π) has been stored return (verification,sid, ssid,1) to V , else
return (verification,sid, ssid,0).

Fig. 3. NIZK argument functionality FNIZK.

Perfectly hiding commitment scheme with extraction. A perfectly hid-
ing commitment scheme with extraction (first used in [16] in the setting of per-
fectly hiding non-malleable commitment) has the following property. We can run
a key generation algorithm hk ← Khiding(1

k) to get a hiding key hk, or we can al-
ternatively run a key generation algorithm (hk, xk)← Kextract(1

k) in which case
we get both a hiding key hk and an extraction key xk. (Khiding, com) constitute
a perfectly hiding commitment scheme. On the other hand, (Kextract, com, dec)
constitute a public key cryptosystem with errorless decryption, i.e.,

Pr
[

(hk, xk)← Kextract(1
k) : ∀(m, r) : decxk(comhk(m; r)) = m

]

≈ 1.

We demand that no non-uniform polynomial time adversary A can distinguish
between the two key generation algorithms. This implies that the cryptosystem
is semantically secure against chosen plaintext attack since the perfectly hiding
commitment does not reveal what the message is.

We have already seen one example of a perfectly hiding commitment scheme
with extraction. We can set up the BGN-cryptosystem with a public key, where h
has full order n. In this case, the cryptosystem is a perfectly hiding commitment
scheme. We can also set it up with h having order q, in this case, the cryptosystem
has errorless decryption. The subgroup decisional assumption implies that no
non-uniform polynomial time adversary can distinguish commitment keys from
cryptosystem keys.

Pseudorandom cryptosystem. A cryptosystem (Kpseudo, E, D) has pseudo-
random ciphertexts of length `E(k) if for all non-uniform polynomial time ad-
versaries A we have

Pr
[

(pk, dk)← Kpseudo(1
k) : AEpk(·)(pk) = 1

]

≈ Pr
[

(pk, dk)← Kpseudo(1
k) : ARpk(·)(pk) = 1

]

,

where Rpk(m) runs c← {0, 1}`E(k) and returns c. We require that the cryptosys-
tem have errorless decryption as defined earlier.

Trapdoor permutations imply pseudorandom cryptosystems, we can use the
Goldreich-Levin hard-core bit [21] of a trapdoor permutation to make a one-time

356 Jens Groth, Rafail Ostrovsky, and Amit Sahai

pad. In the concrete case of the BGN cryptosystem, we observe that it implies
hardness of factorization and it is possible to transform Rabin-encryption into a
pseudorandom cryptosystem. When working over elliptic curves, there are also
more direct constructions of pseudorandom cryptosystems based on the subgroup
decision assumption.

Tag-based simulation-sound trapdoor commitment A tag-based com-
mitment scheme has four algorithms. The key generation algorithm Ktag−com

produces a commitment key ck as well as a trapdoor key tk. There is a com-
mitment algorithm that takes as input the commitment key ck, a message m
and any tag tag and outputs a commitment c = commitck(m, tag; r). To open
a commitment c with tag tag we reveal m and the randomness r. Anybody can
now verify whether indeed c = commitck(m, tag; r). As usual, the commitment
scheme must be both hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor al-
gorithms Tcom, Topen that allow us to create an equivocal commitment and
later open this commitment to any value we prefer. We create an equivo-
cal commitment and an equivocation key as (c, ek) ← Tcomck,tk(tag). Later
we can open it to any message m as r ← Topenck,ek(c, m, tag), such that
c = commitck(m, tag; r). We require that equivocal commitments and openings
are indistinguishable from real openings. For all non-uniform polynomial time
adversaries A we have

Pr
[

(ck, tk)← Ktag−com(1k) : AR(·,·)(ck) = 1
]

≈ Pr
[

(ck, tk)← Ktag−com(1k) : AO(·,·)(ck) = 1
]

,

where R(m, tag) returns a randomly selected randomizer and O(m, tag) com-
putes (c, ek) ← Tcomck,tk(m, tag); r ← Topenck,ek(c, m, tag) and returns r and
A does not submit the same tag twice to the oracle.

Tag-based simulation-sound trapdoor commitments were first implicitly con-
structed in [15], and explicitly in [16, 28]. The tag-based simulation soundness
property is based on the notion of simulation soundness introduced by Sahai [32]
for NIZK proofs. Aside from [15, 16, 28], other constructions of tag-based simu-
lation sound commitments or schemes that can easily be transformed into tag-
based simulation-sound commitments have appeared in [11, 8, 20, 10, 24, 25]. The
tag-based simulation-soundness property means that a commitment using tag
remains binding even if we have made equivocations for commitments using
different tags. For all non-uniform polynomial time adversaries A we have

Pr
[

(ck, tk)← K(1k); (c, tag, m0, r0, m1, r1)← A
O(·)(ck) : tag /∈ Q and

c = commitck(m0, tag; r0) = commitck(m1, tag; r1) and m0 6= m1

]

≈ 0,

where O(commit, tag) computes (c, ek) ← Tcomck,tk(tag), returns c and
stores (c, tag, ek), and O(open, c, m, tag) returns r ← Topenck,ek(c, m, tag) if
(c, tag, ek) has been stored, and where Q is the list of tags for which equivocal
commitments have been made by O.

Perfect Non-Interactive Zero Knowledge for NP 357

Strong one-time signatures. We remind the reader that strong one-time
signatures allow a non-uniform polynomial time adversary to ask an oracle for
a signature on one arbitrary message. Then it must be infeasible to forge a
signature on any different message and infeasible to come up with a different
signature on the same message. Strong one-time signatures can be constructed
from one-way functions.

6.3 UC NIZK

The standard technique to prove that a protocol securely realizes a functionality
in the UC framework is to show that the ideal model adversary S can simulate
everything that happens on top of the ideal functionality. In our case, there are
two tricky parts. First, S may learn that a statement C has been proved and has
to simulate a UC NIZK argument π without knowing the witness. Furthermore,
if this honest prover is corrupted later then we learn the witness but must now
simulate the randomness of the prover that would lead it to produce π. The
second problem is that whenever S sees an acceptable UC NIZK argument π for
a statement C, then an honest verifier V will accept. We must therefore, input
a witness w to FNIZK so it can instruct V to accept.

The main idea in overcoming these hurdles is to commit to the witness w and
make a NIZK proof that indeed we have committed to a witness w so C(w) = 1.
If the NIZK proof has the honest prover state reconstruction property, then we
can simulate NIZK proofs and the prover’s random coins.

This leaves us with the commitment scheme. On one hand, when we simulate
UC NIZK arguments we want to make equivocal commitments that can be
opened to anything since we do not know the witness yet. On the other hand,
when we see a UC NIZK argument that we did not construct ourselves we want
to be able to extract the witness, since we have to give it to FNIZK.

We will construct such a commitment scheme from the tools specified in the
previous section. We use a tag-based simulation-sound trapdoor commitment
scheme to commit to each bit of w. If w has length ` this gives us commitments
c1, . . . , c`. For honest provers we can use the trapdoor key tk to create equivocal
commitments that can be opened to any bit we like. This enables us to simulate
the commitments of the honest provers, and when we learn w upon corruption,
we can simulate the randomness they could have used to commit to the witness
w.

We still have an extraction problem, it is not clear that we can extract a
witness from tag-based commitments created by a malicious adversary. To solve
this problem we choose to encrypt the openings of the commitments. Now we
can extract witnesses, but we have reintroduced the problem of equivocation. In
a simulated commitment we may know two different openings of a commitment
ci to respectively 0 and 1, however, if we encrypt the opening then we are stuck
with one possible opening. This is where the pseudorandomness property of the
cryptosystem comes in handy. We can simply make two encryptions, one of an
opening to 0 and one of an opening to 1. Since the ciphertexts are pseudorandom,
we can open the ciphertext containing the opening we want and claim that the

358 Jens Groth, Rafail Ostrovsky, and Amit Sahai

other ciphertext was chosen as a random string. To recap, the idea so far to
commit to a bit b is to make a commitment ci to this bit, and create a ciphertext
ci,b containing an opening of ci to b, while choosing ci,1−b as a random string.

The commitment scheme is equivocable, however, again we must be careful
that we can extract a message from an adversarial commitment. The problem is
that since we equivocate commitments for honest provers it may be the case that
the adversary can produce equivocable commitments. This means, the adversary
can produce some simulation sound commitment ci and encryptions ci,0, ci,1 of
openings to respectively 0 and 1. To resolve this issue we will select the tags
for the commitments in a way so the adversary is forced to use a tag that has
not been used to make an equivocable commitment. When an honest prover is
making a commitment, we will select keys for a strong one-time signature scheme
(vk, sk) ← Ksign(1k). We will use tag = (vk, C) when making the commitment
ci. The verification key vk will be published together with the commitment, and
we will sign the commitment (as well as something else) using this key. Since the
adversary cannot forge signatures, it must use a different tag, and therefore the
commitment is binding and only one of the ciphertexts can contain an opening
of ci. This allows us to establish simulation soundness.

If the adversary corrupts a party that has used vk earlier, then it may indeed
sign messages using vk and can therefore use vk in the tag for commitments.
However, since we also include the statement C in the tag for the commitment
using vk, the adversary can only create an equivocable commitment in a UC
NIZK argument for the same statement C. We will observe that in this particular
case we do not need to extract the witness w, because we can get it during the
corruption of the prover.

Finally, in order to make the UC NIZK argument perfect zero-knowledge we
wrap all the commitments ci and the ciphertexts ci,b inside a perfectly hiding
commitment c. In the simulation, however, we generate the key for this com-
mitment scheme in a way such that it is instead a cryptosystem and we can
extract the plaintext. This last step is only added to make the UC NIZK argu-
ment perfect zero-knowledge, it can be omitted if perfect zero-knowledge is not
needed.

The resulting protocol can be seen in Figure 4. We use the notation from
Section 6.2.

We prove the following theorems in the full paper [26].

Theorem 4. The protocol in Figure 6 securely realizes FNIZK in the FCRS-

hybrid model.

Theorem 5. The UC NIZK argument in Figure 4 is perfect zero-knowledge.

Corollary 1. Bilinear groups as described in Section 3 for which the decisional

subgroup assumption holds imply the existence of a non-interactive perfect zero-

knowledge protocol that securely realizes FNIZK.

Perfect Non-Interactive Zero Knowledge for NP 359

CRS generation:

1. hk ← Khiding(1
k)

2. (ck, tk)← Ktag−com(1k)
3. (pk, dk)← Kpseudo(1

k)
4. (σ, τ)← S1(1

k)
5. Return Σ = (hk, ck, pk, σ)

Statement: A circuit C and a claim that there exists input wires w so C(w) = 1.
Proof: On input (Σ, C, w).

1. Check C(w) = 1 and return failure if not
2. (vk, sk)← Ksign(1k)
3. For i = 1 to ` select ri at random and let ci = commitck(wi, (vk, C); ri)
4. For i = 1 to ` select Rwi

at random and set ci,wi
= Epk(ri; Rwi

) and
choose ci,1−wi

as a random string.
5. Choose r at random and let c = comhk(c1, c1,0, c1,1, . . . , c`, c`,0, c`,1; r)
6. Create a NIZK argument π for the statement that there exists w such

that C(w) = 1 and there exists randomness so c has been produced as
described in steps 3,4 and 5.

7. s← signsk(C, vk, c, π)
8. Return Π = (vk, c, π, s)

Verification: On input (Σ, C, Π)
1. Parse Π = (vk, c, π, s)
2. Verify that s is a signature on (C, vk, c, π) under vk.
3. Verify the NIZK argument π
4. Return 1 if all checks work out, else return 0

Fig. 4. UC NIZK argument.

Common reference string: On input (start,sid) run Σ ← K(1k).
Send (crs,sid, Σ) to all parties and halt.

Fig. 5. Protocol for UC NIZK common reference string generation.

Proof: Party P waits until receiving (crs,sid, Σ) from FCRS .
On input (prove,sid, ssid, C, w) run Π ← P (Σ, C, w). Output
(proof,sid, ssid,Π).

Verification: Party V waits until receiving (crs,sid, Σ) from FCRS .
On input (verify,sid, ssid, C, Π) run b← V (Σ, C, Π). Output
(verification,sid, ssid, b).

Fig. 6. Protocol for UC NIZK argument.

References

1. William Aiello and Johan H̊astad. Perfect zero-knowledge languages can be rec-
ognized in two rounds. In Proceedings of FOCS ’87, pages 439–448, 1987.

2. Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninter-
active zero-knowledge. SIAM Jornal of Computation, 20(6):1084–1118, 1991.

360 Jens Groth, Rafail Ostrovsky, and Amit Sahai

3. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications. In proceedings of STOC ’88, pages 103–112, 1988.

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ci-
phertexts. In proceedings of TCC ’05, LNCS series, volume 3378, pages 325–341,
2005.

5. Gilles Brassard, David Chaum, and Claude Crèpeau. Minimum disclosure proofs
of knowledge. JCSS, 37(2):156–189, 1988.

6. Gilles Brassard and Claude Crèpeau. Non-transitive transfer of confidence: A
perfect zero-knowledge interactive protocol for sat and beyond. In Proceedings of

FOCS ’86, pages 188–195, 1986.
7. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In proceedings of FOCS ’01, pages 136–145, 2001. Full paper available
at http://eprint.iacr.org/2000/067.

8. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In pro-

ceedings of STOC ’02, pages 494–503, 2002. Full paper available at
http://eprint.iacr.org/2002/140.

9. Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with proprocessing. In proceedings of EUROCRYPT ’92, LNCS

series, volume 658, pages 341–355, 1992.
10. Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable com-

mitment schemes. In proceedings of STOC ’03, pages 426–437, 2003.
11. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,

and Amit Sahai. Robust non-interactive zero knowledge. In proceedings of

CRYPTO ’01, LNCS series, volume 2139, pages 566–598, 2002.
12. Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Non-interactive

zero-knowledge: A low-randomness characterization of np. In proceedings of ICALP

’99, LNCS series, volume 1644, pages 271–280, 1999.
13. Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-

optimal characterization of two np proof systems. In proceedings of RANDOM ’02,

LNCS series, volume 2483, pages 179–193, 2002.
14. Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung.

Image density is complete for non-interactive-szk. In proceedings of ICALP ’98,

LNCS series, volume 1443, pages 784–795, 1998.
15. Giovanni Di Crescenzo, Yvail Ishai, and Rafail Ostrovsky. Non-interactive and

non-malleable commitment. In proceedings of STOC ’98, pages 141–150, 1998.
16. Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Ef-

ficient and non-interactive non-malleable commitment. In proceedings of EURO-

CRYPT ’01, pages 40–59, 2001.
17. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM

J. of Computing, 30(2):391–437, 2000. Earlier version at STOC ’91.
18. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowl-

edge proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999. Ear-
lier version entitled Multiple Non-Interactive Zero Knowledge Proofs Based on a
Single Random String appeared at FOCS ’90.

19. Lance Fortnow. The complexity of perfect zero-knowledge. In Proceedings of STOC

’87, pages 204–209, 1987.
20. Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-

knowledge protocols using signatures. In proceedings of EUROCRYPT ’03,

LNCS series, volume 2656, pages 177–194, 2003. Full paper available at
http://eprint.iacr.org/2003/037.

Perfect Non-Interactive Zero Knowledge for NP 361

21. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In proceedings of STOC ’89, pages 25–32, 1989.

22. Oded Goldreich, Rafail Ostrovsky, and Erez Petrank. Computational complexity
and knowledge complexity. SIAM J. Comput., 27:1116–1141, 1998.

23. Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge
be made non-interactive? or on the relationship of szk and niszk. In CRYPTO ’99,

LNCS series, volume 1666, pages 467–484, 1999.
24. Jens Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series

DS-04-3, BRICS, 2004. PhD thesis. xii+119 pp.
25. Jens Groth. Cryptography in subgroups of Z

∗

n. In proceedings of TCC ’05, LNCS

series, volume 3378, pages 50–65, 2005.
26. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-

interactive zero-knowledge for np. ECCC Report TR05-097,
http://eccc.uni-trier.de/eccc-reports/2005/TR05-097/index.html, 2005.

27. Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof
system for np with general assumptions. Journal of Cryptology, 11(1):1–27, 1998.

28. Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor commitments.
In proceedings of EUROCRYPT ’04, LNCS series, volume 3027, pages 382–400,
2004. Full paper available at http://eprint.iacr.org/2003/252.

29. Rafail Ostrovsky. One-way functions, hard on average problems, and statistical
zero-knowledge proofs. In Proceedings of Structure in Complexity Theory Confer-

ence, pages 133–138, 1991.
30. Rafael Pass. On deniability in the common reference string and random oracle

model. In proceedings of CRYPTO ’03, LNCS series, volume 2729, pages 316–337,
2003.

31. Rafael Pass and Abhi Shelat. Characterizing non-interactive zero-knowledge in the
public and secret parameter models. In proceedings of CRYPTO ’05, LNCS series,
2005.

32. Amit Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In proceedings of FOCS ’01, pages 543–553, 2001.

33. Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge.
J. ACM, 50(2):196–249, 2003.

