
The Function Field Sieve

in the Medium Prime Case

Antoine Joux1,3 and Reynald Lercier1,2

1 DGA
2 CELAR

Route de Laillé
35170 Bruz, France

Reynald.Lercier@m4x.org
3 Université de Versailles St-Quentin-en-Yvelines

PRISM
45, avenue des Etats-Unis

78035 Versailles Cedex, France
Antoine.Joux@m4x.org

Abstract. In this paper, we study the application of the function field
sieve algorithm for computing discrete logarithms over finite fields of the
form Fqn when q is a medium-sized prime power. This approach is an
alternative to a recent paper of Granger and Vercauteren for comput-
ing discrete logarithms in tori, using efficient torus representations. We
show that when q is not too large, a very efficient L(1/3) variation of
the function field sieve can be used. Surprisingly, using this algorithm,
discrete logarithms computations over some of these fields are even easier
than computations in the prime field and characteristic two field cases.
We also show that this new algorithm has security implications on some
existing cryptosystems, such as torus based cryptography in T30, short
signature schemes in characteristic 3 and cryptosystems based on super-
singular abelian varieties. On the other hand, cryptosystems involving
larger basefields and smaller extension degrees, typically of degree at
most 6, such as LUC, XTR or T6 torus cryptography, are not affected.

1 Introduction

Computing discrete logarithms is, with integer factorization, one of the two
number-theoretical hard problems upon which public-key cryptography is usu-
ally based. Two kind of groups are often considered, elliptic curves and multi-
plicative groups of finite fields. The latter case is further partitioned into several
sub-cases, prime fields Fp, characteristic two fields F2n , where n is usually prime
and extensions of medium-sized fields Fqn , where q is a medium-sized prime
power4 pk. Until recently, the last case was rarely considered in cryptography.

4 Remark that we use the notation Fqn to emphasize the fact that for composite
extension degrees, viewing the field as Fpkn is not necessarily optimal.



256 Antoine Joux and Reynald Lercier

However, two recent developments make use of such fields, pairing-based cryp-
tography [13, 5–7] and torus-based cryptography [19, 8, 21, 27]. For this reason,
practical evaluation of the hardness of discrete logarithms in such fields is be-
coming an important issue. Recently, an approach based on rational torus repre-
sentation was proposed by Granger and Vercauteren [12], it was applied in [22].
In this paper, we revisit a much older approach, the function field sieve. This
algorithm was originally introduced by Adleman [3] as an extension of Copper-
smith’s algorithm [9]. Its complexity was subsequently improved by Adleman
and Huang in [4]. This algorithm is known to be efficient when the base field
is fixed and the extension degree grows. Moreover, it was shown to be practical
and applied to characteristic 2 in [14]. Later on, it was also used in characteristic
3 in [11]. However, when both p and the total extension degree nk grow, the ref-
erence is the approach of Adleman and Demarrais in [2, 1], which makes use of a
variation of Coppersmith’s algorithm, involving function fields, when p ≤ nk. As
soon as this bound is exceeded they use a different algorithm based on number
fields. This approach gives an L(1/2) complexity for medium-sized base fields.
In this paper, we describe a new variation of the function field sieve which is
dedicated to medium-sized values of q and allows for fast computation of dis-
crete logarithms in Fqn , even when q is much larger than n. For such fields, we
show that our approach is faster, both from a theoretical complexity viewpoint
with an L(1/3) complexity and as a practical tool. More precisely, this variation
of the function field sieve is applicable with L(1/3) complexity whenever log q
remains smaller than O(

√
n log n).

The paper is organized as follows, in section 2 we describe the function field
sieve variation we are considering, in section 3 we show that the asymptotic com-
plexity is the same as the complexity of the function field sieve with small base
fields, in section 4 we describe real sized experimentations with this algorithm,
finally in section 5 we discuss the impact of our algorithm on the security of
some cryptosystems.

2 A medium sized variation on the function field sieve

The function field sieve algorithm for computing discrete logarithms over Fpn is
quite similar to the number field sieve for computing discrete logarithms over
Fp (see [10, 28]). Both algorithms consider multiplicative identities using smooth
objects over well-chosen smoothness bases. With the number field sieve, the
objects are numbers in number fields and the smoothness bases contain ideals of
small norm. With the function field sieve, the objects are polynomials in function
fields and the smoothness bases contain ideals whose norms are polynomials of
small degree. The complexity of such algorithms, is usually expressed using a
notation, initially introduced for fast integer factorization algorithms [20]. This
now classical notation is defined as follows:

LQ(α, c) = exp((c + o(1))(log Q)α(log log Q)1−α).

For the two extreme cases, prime fields Fp and extension fields Fpn with fixed
characteristic p, the number field sieve and the function field sieve respectively



The Function Field Sieve in the Medium Prime Case 257

yield L(1/3, (64/9)1/3) and L(1/3, (32/9)1/3) algorithms. In the intermediate
cases, the best available complexity is L(1/2) as described by Adleman and
Demarrais in [1, 2]. We would like to further remark, that using the function
field sieve with fixed p, we have a smaller constant in the L(1/3) expression
than with the number field sieve. This is due to the fact that Fpn has a large
number of different representations, one for each irreducible polynomial of degree
n over Fp. This was discovered in [4] and a practical variant was presented
in [14]. Surprisingly, even with medium-sized base fields, a similar construction
that makes use of well chosen representations is possible, as shown below. The
most important question is how to choose a good smoothness basis. With a
medium sized base field Fqn , when q has just the right size, this is in fact very
simple. It suffices to choose as the smoothness bases the sets of ideals whose
norms are degree one polynomials, no more, no less. When log q and

√
n log n are

correctly balanced, this choice yields a very efficient algorithm with complexity
L(1/3, 31/3). In section 2.2, we discuss different choices of smoothness bases that
should be used instead of this simple choice, when the balance between q and n
varies.

More precisely, let q be the cardinality of the base field and n the degree
of the extension. In order to define Fqn , we proceed as follows. First, choose a
minimal pair (d1, d2), with d2 = d1 or d1 +1, and with d1d2 ≥ n. Then, find two
polynomials f1 and f2, in two unknowns, X and t, of the form:

f1(X, t) = X − g1(t), f2(X, t) = g2(X) + t,

where g1 and g2 are univariate polynomials of degree d1 and d2, such that,
g2(g1(t)) + t has an irreducible factor F (t) of degree n over Fq . We claim that
such polynomials are easy to find (see section 4 for examples). We use F (t) as our
definition polynomial for Fqn . Clearly, f1 and f2 have a common root X = g1(t)
in Fqn . As a consequence, f1 and f2 define good function fields for the function
field sieve algorithm. Using standard vocabulary, we say that f1 defines the linear
side of the sieve.

The next step of the algorithm is to send objects of the form a(t)X − b(t) in
the two function fields. At this point, we slightly differ from standard practice
and consider only a subset of such objects, by fixing a(t) = wt + 1 and choosing
b(t) = ut + v, where u, v and w are elements of the base field Fq . As usual, we
then compute the norm of a(t)X−b(t) in the two function fields. This restriction
on a(t) comes from the fact that, since we are working with polynomials, all
factorizations are defined up to a constant in the base field. This choice of a(t)
avoids multiple sieving of the same objects. Note that from a practical point
of view, when q is large enough, it is even better to reduce the sieving space
and fix a(t) = 1 only. Then, on the linear side, we find b(t) − g1(t) a degree
d1 polynomial. On the other side, we find g2(b(t)) + t a degree d2 polynomial.
This contrasts with the general case, where the respective degrees are d1 +1 and
d2 + 1. It is a well-known fact that among polynomials of degree d over Fq , the
proportion of degree d polynomials having d roots quickly tends towards 1/d!
as q grows. We say that b(t) generates a relation when both sides completely



258 Antoine Joux and Reynald Lercier

split into degree 1 factors. Using the traditional heuristic and assuming that
the sieving process generates random looking polynomials, this occurs with a
probability which is very close to either 1/(d1! · d2!) or 1/((d1 + 1)! · (d2 + 1)!).
It remains to see whether we obtain enough relations. On the linear side, our
chosen smoothness basis contains the q possible unitary polynomials of degree
1, namely the polynomials t + u, with u in Fq. On the other side, due to our
particular choice of f2, the smoothness basis also contains q elements, which are
ideals of norm t + g2(u), with u in Fq . As a consequence, we need 2q equations.
Since we are sieving over either q2 or q3 elements, this particular choice works
when either q ≥ 2 d1! ·d2! with reduced sieving space or q2 ≥ 2 (d1 +1)! ·(d2 +1)!
with full sieving space.

After generating the multiplicative identities as above, we transform them
into linear equations involving logarithms of polynomials on the linear side and
“logarithms of ideals”on the other side5. The resulting system of equations is then
solved using a sparse linear algebra algorithm such as Lanczos or Wiedeman [18,
23, 30, 17]. This linear algebra step is performed modulo (qn−1)/(q−1). Indeed,
the multiplicative identities are defined up to a multiplicative constant in Fq and
the logarithms are computed in the quotient group of F

∗
qn by F

∗
q . It is interesting

to note that due to the very specific form of the equations we use, with exactly
d1 (or d1 + 1) unknowns (potentially counting multiplicities) on the left-hand
side and d2 (or d2 + 1) unknowns on the right-hand side, our system does not
have full rank over the rationals. There is a “parasitic” solution with all the left-
hand side unknowns set to d2 and all right-hand side unknowns set to d1. This
means that after the linear algebra, the resulting solution does not contain pure
discrete logarithms, the result is masked by some additive constant. However,
by considering fractions such as (t+u)/(t+ v), the contribution of this constant
can be cancelled. Moreover, if we can find even a single equation with a different
structure, the masking constant can easily be found. The simplest way to proceed
is to find a linear polynomial which completely splits in the function field defined
by f2. This yields a specific kind of equation6 which nicely breaks the above
symmetry and allows us to find and remove the unwanted constant. An example
of this technique is given in section 4.

2.1 Individual discrete logarithms

Once the two steps described above, sieving and linear algebra, have been per-
formed, we obtained the logarithms of the elements of the smoothness bases.
This is well and good, but does not fully solve the discrete logarithm problem.
An additional step is required to compute the logarithms of large elements in the
finite field. We propose a classical approach based on “special-q” descent, which

5 This notion of logarithms of ideals is described and used in [15, 14]. With the specific
choice of f2 we have given, there is a simpler description, because the function field
is principal and all ideals can be represented by a single element in the finite field.

6 These equations are often used in function field sieve algorithms and are called
systematic equations.



The Function Field Sieve in the Medium Prime Case 259

is similar to the approach proposed in [9, 14] for the case of logarithms over an
extension of a small base field. The idea is the following. Given an element y in
the finite field, whose logarithm is wanted, we first build many elements of the
form yi · tj . Each of these elements can be represented as a polynomial in t of de-
gree n. Alternatively, using continued fractions, we can also find representations
by rational fractions, whose numerators and denominators have degrees near
n/2. From an asymptotic viewpoint, both approaches are equivalent. However,
in practice, the latter is more efficient. Once we obtain such a representation, we
test whether it can be factored in polynomials of degree µ

√
n for a constant µ to

be determined in the sequel. After testing sufficiently many representations, we
find an adequate one and are left with the problem of computing logarithms of
polynomials of degree at most µ

√
n. Let q be such a low degree polynomial. We

can now find its logarithm by sieving again on elements of the form a(t)X−b(t),
where a(t) and b(t) are polynomials of degree at most µ

√
n chosen to ensure

that q divides the linear side (in the function field defined by f1) of the resulting
equations. After finding an element a(t)X − b(t) that factor in both function
fields into polynomials of degree smaller than the degree of q, we iterate the
descent down to degree one, where all logarithms are known. This descent alter-
nates between special-q on the linear and the high degree function fields. Once
the descent reaches degree one, we backtrack and compute the logarithms of
each special-q and finally the logarithms of yi · tj and y. If the special-q values
occurring at the first level are small enough, then the total degree of the objects
to be factored in the next levels are strictly smaller and the bottleneck of this
step is the search for a good representation of yi · tj . In fact, this can be ensured
by choosing µ such that µ

√
n · (d2 +1)+d1 < n. We show that in the complexity

analysis of section 3 and prove that choosing a value of µ between 1/2 and 1
ensures a good behavior of the individual logarithm phase.

2.2 Extension to smaller base fields

From a practical point of view, the above case is probably the most interesting.
However, it is nice to know whether the approach can be extended to different
choices of q and n. We now briefly describe a family of algorithm which neatly
cover all the cases where q is smaller than above. Each algorithm depends on
a main parameter D, which bounds the degree of norms of elements in the
smoothness bases. The previous algorithm corresponds to D = 1. The general
case of D is very similar to the restricted case D = 1. We construct the function
fields in the same manner as above, only changing the choices of d1 and d2. More
precisely, we take d1 ≈

√
Dn and d2 ≈

√

n/D. We sieve over a(t)X−b(t), where
a(t) and b(t) are also degree D polynomials and a(t) is unitary. The total size
of the sieving space is q2D+1. On the linear side, we need to factor a polynomial
of degree at most d1 + D over the smoothness basis. On the other side, we need
to factor a polynomial of degree at most d2D + 1. Dismissing constants and
low order terms, both degrees are near

√
nD. In this context, we need to know

the asymptotic smoothness probability of a degree n polynomial into factors
of degree at most m. This problem has been widely studied and very precise



260 Antoine Joux and Reynald Lercier

estimates are given in [24]. However, results are usually given for fixed q, when
both n and m grow. Here, m is fixed and both q and n grow. Yet, the logarithm
of the probability of smoothness is still equivalent to n/m log(m/n). Moreover,
in order to prove our complexity result, a lower bound on the probability is
sufficient. For the sake of completeness, we prove this lower bound in appendix A.
For simplicity of exposition, in the rest of this section, we work with equivalent
expressions, however, the argument can easily be rewritten to accommodate a
lower bound only.

From these estimates, we deduce that the logarithm of the probability of
smoothness on each side is approximately −

√

n/D log
√

n/D. Adding the two,

we obtain a total logarithm of heuristic probability of −
√

n/D log(n/D). More-
over, the total size of the two smoothness bases is about 2qD. As with the case
D = 1, we should make sure that we obtain enough equations, this approximately
requires:

(D + 1) log(q) ≥
√

n/D log(n/D).

With this algorithm, the individual logarithms phase remains almost identical.
The only needed change is to use polynomials of degree µ

√
Dn to represent

the element under consideration. We analyze the heuristic complexity of this
extension in section 3 and show that, as in the case D = 1, the right choice is to
take µ between 1/2 and 1.

2.3 Practical improvements

Large primes variation In the asymptotic analysis below (section 3), we observe
that when q decreases below some point, we need to increase the parameter D
to successfully compute discrete logarithms. However, this change of algorithm
greatly increases the overall complexity. This happens when the sieving space is
not large enough to get enough equations. However, right at the boundary, the
number of missing equations is quite small. In that case, it is a good idea to use
a large prime variation by allowing a small number of higher degree polynomials
in each decomposition when splitting polynomials over the smoothness bases.
This does not improve the asymptotic complexity, however, in practice, it can
make the difference between a feasible and an infeasible computation. We do not
further discuss this idea, which is classical in implementations of number field
and function field sieves.

Use of Galois action In some specific cases, it is possible to use additional
structure of the field Fqn to improve the practicality of our algorithm. The basic
idea is to use the Galois group in order to reduce the size of the smoothness
bases. Assume that there exists an element φ of the Galois group which acts on
both smoothness bases by sending any element to a conjugate also belonging
to the smoothness basis. If we further express φ as a Frobenius power, we can
reduce the number of unknowns in the linear algebra by a factor which is equal
to the order of the action of φ on Fqn . We can also speed up the sieving process



The Function Field Sieve in the Medium Prime Case 261

by the same factor, since less equations are needed. However, we should take
care and avoid sieving on values for a(t)X − b(t) yielding conjugate equations.

To make this idea more precise, let us discuss the specific case of F2nk , where
q = 2k and n and k are coprime. In that case, we can view F2nk as a tower of
extensions or alternatively as a compositum. With the latter representation, we
independently define F2n and F2k and put the two representations together to
get Fqn . This means that f1 and f2 can both have their coefficients in F2. In
that case, we take for φ the n-th Frobenius power, i.e., the mapping which sends
x to x2n

in Fqn . Clearly, if t is a root of the irreducible polynomial F (t) defined
by f1 and f2, it is an element of F2n and thus fixed by φ. However, the action
of φ on a(t) and b(t) is not trivial. Indeed, assume that we work with parameter
D = 1, then b(t) = ut+ v with u and v in F2k . Unless u and v are both in F2 the
image of b(t) by φ is a different polynomial. Repeating the application of φ, we
find yet another polynomial, and so on . . . Since k and n are coprime, the order
of the action of φ on F2k is k. As a consequence, the sieving process can be sped
up by a factor7 of k. Moreover, choose t + u an element of the smoothness basis
on the linear side. Clearly, (t + u)2

n

= t + φ(u) is another element of the same
smoothness basis and the logarithms of the two elements say lu and lφ(u) are
related by lφ(u) = 2nlu. This implies that the number of unknowns on the linear
side can be divided by k. A similar argument also applies on the other side. As
a consequence, we gain a speed-up by k on the sieving process and a speed-up
by k2 on the linear algebra.

Clearly, the same construction works for any small characteristic. Use of
Galois action to speed-up the computation is also possible in other cases. In
particular, for all fields of the form Fq2 , it is possible to gain a constant speed-up
of two. In some cases, it is also possible to have a larger speed-up. However, the
details are much more technical and in particular may require to construct f1

and f2 in a different manner than the construction given at the beginning of the
present section. We only illustrate this by giving an example in section 4.

3 Asymptotic heuristic complexity

In this section, given the respective values of q and n, we give the asymptotic
complexity of our algorithm both for D = 1, for other fixed values of D and,
finally, in the general case. It is convenient to let Q denote qn and to assume,
when the parameter D is fixed, that there exists a parameter α such that:

n =
1

α
·
(

log Q

log log Q

)2/3

, q = exp

(

α · 3

√

log Q · log2 log Q

)

.

Using this notation, we can analyze the complexity of each algorithm in the fam-
ily, determined by the parameter D. Since there are two main phases, sieving
and linear algebra, the total complexity expressed by L(1/3, c) is determined

7 Disregarding the rare cases where both a(t) and b(t) have all their coefficients in F2



262 Antoine Joux and Reynald Lercier

by the maximum of the complexities of each phase. Let L(1/3, c1) be the com-
plexity of the sieving and L(1/3, c2) be the complexity of linear algebra. Then,
recalling from the analysis of section 2 that the smoothness basis has O(qD)
elements and that the logarithm of the heuristic probability of finding a relation
is −

√

n/D log(n/D), we find:

c1 =
2

3
√

αD
+ αD and c2 = 2αD.

Moreover, we need to check that we obtain enough equations. We recall that this
approximately requires:

(D + 1) log(q) ≥
√

n/D log(n/D) or (D + 1)α ≥ 2

3
√

αD
.

Whenever this condition is satisfied, we say that the algorithm with param-
eter D is applicable. Putting all these conditions together, we find that for each
value of α we should use the lowest possible parameter D yielding an applica-
ble algorithm. Moreover, in the range of applicability the complexity of each
algorithm decreases with α. The optimal case for each algorithm happens when:

(D + 1)α =
2

3
√

αD
.

Just below this threshold, we need to use the next algorithm in the family and
the complexity jumps up to L(1/3, c2(D + 1)) = L(1/3, 2α(D + 1)). Thus at
each threshold, a discontinuity occurs in the complexity . The largest such gap
is between D = 1 and D = 2, at α = 3−2/3. On both sides of the gap, the
respective complexities are L(1/3, 3

√
3) for D = 1 and L(1/3, 3

√

64/9) for D = 2.
All the other gaps are smaller and the gap size decreases with D and tends to 0 as
D grows. Moreover, the complexity tends to L(1/3, 3

√

32/9). Thus, up to a single
exception, the complexity of our family of algorithms is at worst the complexity of
the number field sieve, is at best even better than the complexity of the function
field sieve with fixed prime and tends to this latter complexity when D grows.
The exception happens when α becomes too large even for D = 1, more precisely
when α > 3

√

8/9. Indeed, in that case, the complexity L(1/3, 2α) is larger than
the complexity of the number field sieve. We summarize this complexity analysis
in figure 1. The three horizontal lines on this graph represents the constants 3

√
3,

3

√

32/9 and 3

√

64/9.

General values of q. Another interesting question is to study the complexity
of the algorithm when q grows more slowly than LQ(1/3, ε) for all ε. In that
case, we no longer use a fixed parameter D, but let it grow slowly with Q. More
precisely, we choose for D the nearest integer to the solution d of the following
equation:

qd = LQ(1/3, 3

√

4/9).

This choice yields complexity L(1/3, 3

√

32/9) in all the considered cases. Note
that this includes the usual function field sieve, for fixed q, as a special case.



The Function Field Sieve in the Medium Prime Case 263

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.2 0.4 0.6 0.8 1

c

α

Fig. 1. Complexity LQ(1/3, c) as a function of q = LQ(1/3, α)

We also remark, that as announced in introduction the L(1/3) boundary on q
corresponds to the range where log q remains smaller than O(

√
n log n).

Individual logarithms. Concerning individual logarithms, we should choose a
constant µ, both small enough to guarantee that the degrees of polynomials
occurring during the descent are strictly decreasing and large enough to ensure
that the initial good representation is found efficiently. Let m = µ

√
Dn be the

maximal degree of the polynomials appearing in a good representation. Once
again, we need to use the fact that the logarithm of the probability of smoothness
is still equivalent to n/m log(m/n), even when m, n and q all grow. Moreover, as
before, the argument could be rewritten using only the lower bound given in A.

Replacing n by its expression in term of Q we find that the probability is
equivalent to

1/LQ

(

1/3,
1

3µ
√

αD

)

.

We would like to ensure that the constant in this expression is smaller than the
constant in the complexity of the main phase of the algorithm. This implies:

1

3µ
√

αD
< max(c1, c2), with c1 =

2

3
√

αD
+ αD and c2 = 2αD.

It clearly suffices to have: 1
3µ

√
αD

< 2
3
√

αD
, where the right hand side is the first

summand in c1. This is true whenever µ > 1/2.



264 Antoine Joux and Reynald Lercier

Moreover, we need to make sure the special-q descent involves polynomials
of decreasing degree. Since the degrees of a(t) and b(t) during the descent are
at most the degree of the special-q itself, substituting in f1 and f2, we require:
(d2µ

√
Dn + 1) + (d1 + µ

√
Dn) < n. Replacing d1 and d2 by their values and

disregarding low order terms, we get: µn < n. This can be ensured by choosing
µ < 1. As a consequence, we can choose any value of µ in the range ]1/2; 1[.

Finally, we need to check that at each step of the special-q descent, there are
sufficiently many pairs (a(t), b(t)) to obtain at least one relation. Potentially, we
might expect to encounter problems for a special-q of degree two, when trying to
relate it to polynomials of degree one. In that case, the natural choice would be
to select linear polynomials for a(t) and b(t). Since a(t) has the restricted form
wt + 1, there are only q3/q2 = q possible pairs involving the special-q value. As
a consequence, with such a choice for a(t) and b(t), we cannot guarantee that a
relation can be found for this special-q value. Thus, we need to use polynomials
of degree two for a(t) and b(t). Of course, this lowers the smoothness probability
which becomes:

1

((d1 + 2)! · (2d2 + 1)!)

instead of 1/((d1+1)!·(d2+1)!) in the main phase. However, since a single relation
is needed, we keep the good asymptotic complexity. Indeed, in the least favorable
case with respect to this issue, which happens to be the extreme case of the basic
(D = 1) algorithm, the main phase probability is almost equal to 1/q2 and the
main sieving costs q3. Using the same parameters, the smoothness probability
of the individual logarithm phase is asymptocally equivalent to 1/q3. Thus, in
this worst case, the individual logarithm phase has the same asymptotic cost as
the main phase. In all other cases, the main phase dominates the complexity.

4 Numerical examples

4.1 Basic example

Our first example is the computation of discrete logarithms over F6553725 . The
cardinality Q of this field is a number of about 400 bits or 120 decimal digits. It
can be factored as:

Q = 65536 · 3571 · 37693451 · 137055701 · 10853705894563968937051 · P247

Since the largest prime factor has 247 bits, Pollard’s rho [25] is not practical for
this example. As far as we know, this sets a new record for the computation over
medium characteristic fields.

We first choose our function fields, fixing the two definition polynomials f1

and f2 as follows:

f1(X, t) = X − t5 − t − 3, f2(X, t) = X5 + X + 1 + t.

Taking the resultant of f1 and f2, thus eliminating X , we find an irreducible
polynomial F (t) over F65537. We let α denote a root of F (t) in the extension
field. We also let β denote α5 + α + 3.



The Function Field Sieve in the Medium Prime Case 265

Once this is done, we start the sieving process, using the reduced sieving
space X − (a t + b), with a and b in F65537. When we find a good pair (a, b) we
obtain an equality between smooth objects. Indeed, the two function fields we
are using are principal, thus whenever both norms are smooth, we can write an
explicit identity between generators. For example, replacing X by −2 t + 20496
in f1 and f2 yields smooth polynomials. Writing down explicit generators for the
corresponding ideals, this yields the following equality:

(α + 2445) · (α + 9593) · (α + 31166) · (α + 39260) · (α + 48610) =

λ(β + 43449) · (β + 18727) · (β + 17129) · (β + 1946) · (β + 49823),

where λ = −2 is an element of F65537.

The sieving process itself is extremely fast, we give in appendix B the source
C code of the program we used. This program finds all good (a, b) pairs in two
minutes on a Pentium laptop at 1.6 GHz. Once the sieving is complete, each
good pair yields a linear equation between 5 logarithms of elements α + u and
5 logarithms of β + v. We converted the output of the C program into linear
equations using a short interpreted PARI/GP script. This conversion took an
additional two minutes. It was as long as the sieve itself, however, it did not
seem necessary to write a faster program for this task.

Solving the linear algebra system was the bottleneck of the algorithm. After
some structured gaussian elimination, we had to solve a sparse system of 79 466
equations in 78 465 unknowns and 3.8 million entries. This was done using the
Lanczos algorithm. In order to avoid divisions by non-invertible elements, we
worked modulo q0 = Q/(65536 · 3571). This took a little more than two days on
the same laptop. The resulting solution gave logarithms, up to an additive con-
stant. As explained in section 2, we determined the constant using the following
systematic equation:

β · (β + 16) · (β − 16) · (β + 4096) · (β − 4096) = −(α + 1).

After removing this additive constant and renormalizing the result, we had all
the logarithms of elements α + u and β + v modulo q0. For example,

l = 9580541088009323484229889821453339382943430459454536234824

840375483524017353229706334323184929723853320944439485,

m = 4649571275692520918560124050338108397005057301288170051718

556686238431642289730613529631676496393555258546887691

are the respective logarithms modulo q0 of α + 1 and β in base α. This can be
checked by testing that (α + 1)3571·l/α3571 belongs to F65537, and similarly for
β3571·m/α3571.

The final step was to choose a random looking element of F6553725 and to
compute its complete logarithm. Since, α itself does not generate the full mul-
tiplicative group, we decided to express the logarithm in basis 3α, which is a



266 Antoine Joux and Reynald Lercier

generator. We took as challenge the element:

λ =
24
∑

i=0

(bπ · 65537i+1c mod 65537)αi = 41667α24 + · · · + 9279.

After finding a good representation of λ using polynomials of degree at most
3 and completing the special-q descent, we added the contribution of the loga-
rithm modulo the powers of 2 and modulo 3571. Finally, we concluded that the
logarithm of λ in basis 3α is:

4053736945052440744587988507271545773377910517074639935754736

348185260902857777282008537164926838353644893694741284146999.

4.2 Galois action example

We consider here a discrete logarithm challenge that is defined in Fp30 where
p = 370801: such a finite field has got a 556-bit cardinality and it contains
a 114-bit multiplicative subgroup. A smaller extension Fp18 has been recently
performed by Vercauteren and Lercier [22] at the expense of one week over a
network of 10 AMD’s Athlon(TM) XP 2000+ for the sieving step and 12 hours
for the linear algebra step, using the algorithm of [12]. To solve our T30(Fp)
challenge, we first experimented with the algorithm defined in section 2. It turns
out that, with f1(X, t) = X− (t6 + t+30) and f2(X, t) = X5 +X +1+ t, a three
hours computation for the sieving step and a two days computation for the linear
step8 would have been necessary on a 1.15 GHz 16-processors HP AlphaServer
GS1280.

Thus, it was preferable to make use of the Galois action idea and define

f1(X, t) = X − t5 and f2(X, t) = X6 + X − 17 − t5.

This yields a definition polynomial for Fp30 equal to F (t) = t30 − 17, the Galois
group of which is generated by φ : t 7→ tp = 172960 × t. With such a choice,
f1 and f2 have a common root X = t5, which is fixed by φ6 and thus lies in
the subfield Fp6 . As a result, the conjugates by φ6 of places (in both algebraic
function fields) in the smoothness basis reduced modulo p are still elements of
the smoothness basis. Since discrete logarithms of conjugates differ from each
other by a power of p6, we clearly divide by five the size of the smoothness basis:
only 74161 places in the linear side9 and only 74114 places in the other side.

With a sieving program similar to the one given in appendix B, we found
329082 useful divisors of functions X−(at+b) with a and b in Fp, in 45 minutes.

8 This matrix is twice as big as the one used by Vercauteren and Lercier in Fp18 . It is
also twice as heavy.

9 In truth, only 12361 places in the linear side are really necessary because conjugates
by φ itself are again elements of the smoothness basis. Due to the additional coding
work that would have been required, we did not take advantage of this speed-up in
our experiment.



The Function Field Sieve in the Medium Prime Case 267

The supports of these divisors contain only degree one places and we restricted
the values of a to avoid conjugate equations. Since, the reduction modulo p of
these degree one places is equal to a suitable power of p6 of one element of the
smoothness basis, we clearly have enough equations.

We skipped the structured Gaussian elimination step, since at this time our
code is not able to handle matrices with so many large coefficients. Of course, we
had to modify our implementation of the Lanczos algorithm to handle this case.
Finally, we were able to solve this sparse system of 150270 equations in 148270
variables (with 11 entries by row equal to powers p6i, i = 0, . . . 4) at the cost of
a 10 hours computation on 8 processors of a 1.15 GHz HP AlphaServer GS1280.
We worked modulo

q0 = 129717983265199170691× 3780896193379818021601×
27084969683231313608318791573698901.

Let us note that the kernel of this matrix has got only one vector (its coeffi-
cients are not all equal to one and thus, we do not have any “parasitic”solution).
After this step, using the Galois action of φ6, we have the logarithms, modulo
q0, of elements t + u ∈ Fp30 for any u ∈ Fp.

In the final step, we took as challenge the element

λ =

29
∑

i=0

(bπ × pi+1c mod p)ti = 162147t29 + · · · + 52502.

We first write this element as a product of elements of degree at most four and
using a special-q descent, we finally found that the logarithm of λ in basis t− 6
is:

83493475831866903958473832166988064644596198972030791927

23664325744787878765540875000760439341325398846364432518

4051550980392237533812685076653542562214928407573371226.

5 Security implications

In this section, we discuss the applicability of our variation of the function field
sieve to cryptosystems that make use of extension fields. First of all, we remark
that for some systems, our approach is slower than generic algorithms and does
not improve upon known attacks. Let us start by giving examples of such cryp-
tosystems which are immune to our attack. The relevant property is that the
systems make use of extensions of quite small degree over prime fields. Typically,
the security of systems which use extension degree 6 over prime fields are not
affected by this algorithm. In particular, this includes LUC [19], XTR [8, 21],
CEILIDH [27], some pairing-based schemes as the complex multiplication varia-
tion of the short signature scheme of [6, 7] and also torus-based cryptography in
T6. When the extension degree is larger than that, it is important to reassess the



268 Antoine Joux and Reynald Lercier

security on a case by case basis. In the rest of this section, we do so for torus-
based cryptography in T30, the short signature scheme of [6, 7] in characteristic
three and some of the supersingular abelian varieties proposed in [26].

For the case T30, the base field is quite large and the bottleneck of the al-
gorithm is the linear algebra whose complexity is (d1 + d2)p

2 additions modulo
some factor of p30 − 1. In typical instantiation the relevant factor is a prime q0

between 160 and 256 bits, according to the expected security level. We should
compare our algorithm to a generic algorithm such as Pollard’s rho [25], whose
complexity is

√
q0 operations in the finite field. Since additions modulo q0 are

less expensive than operations in the finite field and since d1 + d2 is small, it
seems fair to proceed by comparing p2 with

√
q0. We conclude that for 80-bit

security, it is necessary to choose for p a prime of 40 bits or more. For 32-bit
primes and 160-bit subgroup, as proposed in [29], the expected security level is
not reached and the effective security level is around 264. On the other hand, the
security of the 64-bit primes examples with 200-bit subgroups proposed in the
same paper is unaffected.

The short signature scheme of [6, 7] can be instantiated in two different ways.
Either by using complex multiplication technique to build elliptic curves over Fp

with a pairing that outputs numbers in Fp6 . Or by using special supersingular
curves over F3` with a pairing having values in F36` . Note that since the journal
version [7], the characteristic three instantiation is no longer recommended. As
said above, our algorithm does not change the security of the first case. In the
second case, we can restate the problem as discrete logarithm in Fq` , where
q = 36 = 729. From a practical point of view, this opens the possibility to use
our algorithm with a parameter D equal to 2 or 3. With luck, and depending on
the exact value of `, we may fall in a zone where our algorithm is more efficient
than the regular function field sieve in characteristic 3. Let us consider some
of the usual possibilities. The easiest case is ` = 121, since the extension field
can even be viewed as a degree 33 extension of F322 , which can be adressed with
parameter D = 1, yielding a complexity near 270, which might be improved using
Galois action. The expected Pollard rho complexity is 278. Similarly for ` = 97
using D = 2, we find a complexity around 271 instead of the expected 276 and
for ` = 149, using D = 3 we find a complexity around 2105 instead of 2110.

In fact, when looking at fields of characteristic three, our attack applies even
better with the proposal of [26] which is to work with supersingular abelian
varieties. Indeed, in the most extreme case, this proposal relies on the security
of discrete logarithms in 330`, which due to large choice of possible subfields is
extremely likely to fall in a good case of our algorithm. In the same paper, the
use of fields of the form 212` is also considered. Our algorithm can again be used
here, especially when ` is composite (the cases ` = 121 and ` = 87 for example).

6 Conclusion

In this paper, we have presented a new variation of the function field sieve
algorithm, which unexpectedly applies to finite field of the form Fqn when both



The Function Field Sieve in the Medium Prime Case 269

q and n are of medium sized. This allows us to compute discrete logarithms in
Fqn faster than for discrete logarithms problems in field of a comparable size of
the form Fp (with p prime) or even F2n (with n prime). This shows that despite
former belief, discrete logarithms in some fields Fqn are easier than in Fp or
F2n . As a consequence, we show that the security of some recent cryptosystems
needs to be reassessed to account for this fact. We leave as an open question the
problem of finding an efficient L(1/3) algorithm for solving discrete logarithms
in Fqn when q is larger than Lqn(1/3). Up to q of the form L(1/2), our algorithm
with parameter D = 1 is the fastest known technique and has complexity q2,
beyond that one should turn to the number field based algorithm described in [1,
2] with complexity L(1/2).

Last minute news. A recent preprint [16] describes a generalization of the number
field sieve that is applicable to finite finite fields of size Q = qn, whenever q grows
faster than LQ(1/3). Put together with the present paper, this gives asymptotic
complexity LQ(1/3) for discrete logarithms in all finite fields.

References

1. L. Adleman and J. DeMarrais. A subexponential algorithm for discrete logarithms
over all finite fields. In D. Stinson, editor, Proceedings of CRYPTO’93, volume 773
of Lecture Notes in Comput. Sci., pages 147–158. Springer, 1993.

2. L. Adleman and J. DeMarrais. A subexponential algorithm for discrete logarithms
over all finite fields. Math. Comp., 61(203):1–15, 2003.

3. L. M. Adleman. The function field sieve. In Algorithmic Number Theory, Pro-
ceedings of the ANTS-I conference, volume 877 of Lecture Notes in Comput. Sci.,
pages 108–121, 1994.

4. L. M. Adleman and M. A. Huang. Function field sieve method for discrete loga-
rithms over finite fields. In Information and Computation, volume 151, pages 5–16.
Academic Press, 1999.

5. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In
Crypto ’2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229,
2001.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
C. Boyd, editor, Proceedings of ASIACRYPT’2001, volume 2248 of Lecture Notes
in Comput. Sci., pages 514–532. Springer, 2001.

7. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J.
of Cryptology, 17(4):297–319, 2004.

8. A.E. Brouwer, R. Pellikaan, and E.R. Verheul. Doing More with Fewer Bits. In
Advances in Cryptology — ASIACRYPT ’99, volume 1716 of Lecture Notes in
Computer Science, pages 321–332. Springer, 1999.

9. D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE
transactions on information theory, IT-30(4):587–594, July 1984.

10. D. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J.
Discrete Math, 6:124–138, 1993.

11. R. Granger, A. Holt, D. Page, N. Smart, and F. Vercauteren. Function field sieve in
characteristic three. In D. Buell, editor, Algorithmic Number Theory, Proceedings
of the ANTS-VI conference, volume 3076 of Lecture Notes in Comput. Sci., pages
223–234. Springer, 2004.



270 Antoine Joux and Reynald Lercier

12. R. Granger and F. Vercauteren. On the discrete logarithm problem on algebraic
tori. In V. Shoup, editor, Proceedings of CRYPTO’2005, volume 3621 of Lecture
Notes in Comput. Sci., pages 66–85. Springer, 2005.

13. A. Joux. A one round protocol for tripartite diffie-hellman. In Fourth Algorithmic
Number Theory Symposium, volume 1838 of Lecture Notes in Computer Science,
pages 385–394, 2000.

14. A. Joux and R. Lercier. The function field sieve is quite special. In C. Fieker
and D. Kohel, editors, Algorithmic Number Theory, Proceedings of the ANTS-V
conference, volume 2369 of Lecture Notes in Comput. Sci., pages 431–445. Springer,
2002.

15. A. Joux and R. Lercier. Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer method. Math.
Comp., 72:953–967, 2003.

16. A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The number field sieve in the
medium prime case. Preprint.

17. B.A. LaMacchia and A.M. Odlyzko. Solving Large Sparse Linear Systems Over
Finite Fields. In Advances in Cryptology — CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 109–133. Springer-Verlag, 1991.

18. C. Lanczos. Solutions of systems of linear equations by minimized iterations. In
J. Res. Nat., volume 49, pages 33–53. Bureau of Standards, 1952.

19. M.J.J. Lennon and P.J. Smith. LUC: A New Public Key System. In IFIP TC11
Ninth International Conference on Information Security IFIP/Sec, pages 103–117,
1993.

20. A. K. Lenstra and H. W. Lenstra, Jr., editors. The development of the number
field sieve, volume 1554 of Lecture Notes in Mathematics. Springer–Verlag, 1993.

21. A.K. Lenstra and E.R. Verheul. The XTR Public Key System. In Advances in
Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 1–19. Springer, 2000.

22. R. Lercier and F. Vercauteren. Discrete logarithms in Fp18 - 101 digits. NM-
BRTHRY mailing list, June 2005.

23. A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic signif-
icance. In T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in Cryptology
— EUROCRYPT ’84, volume 209 of Lecture Notes in Computer Science, pages
224–314. Springer–Verlag, 1985.

24. D. Panario, X. Gourdon, and P. Flajolet. An analytic approach to smooth poly-
nomials over finite fields. In J. Buhler, editor, Algorithmic Number Theory, Pro-
ceedings of the ANTS-III conference, volume 1423, pages 226–236. Springer, 1998.

25. J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp.,
32:918–924, 1978.

26. K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In
M. Yung, editor, Proceedings of CRYPTO’2002, volume 2442 of Lecture Notes in
Comput. Sci., pages 336–353. Springer, 2002.

27. K. Rubin and A. Silverberg. Torus-Based Cryptography. In Advances in Cryptology
— CRYPTO 2003, volume 2442 of Lecture Notes in Computer Science, pages 349–
365. Springer, 2003.

28. O. Schirokauer. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A
345, pages 409–423, 1993.

29. M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam, and
D. Woodruff. Practical cryptography in high dimensional tori. In R. Cramer,
editor, Proceedings of EUROCRYPT’2005, volume 3494 of Lecture Notes in Com-
put. Sci., pages 234–250. Springer, 2005.



The Function Field Sieve in the Medium Prime Case 271

30. D.H. Wiedemann. Solving Sparse Linear Equations Over Finite Fields. IEEE
Trans. Information Theory, 32:54–62, 1986.

A Lower bound on the smoothness probability

In this appendix, we prove the lower bound of the probability of smoothness of
polynomials of degree n over the basis of monic irreducible polynomials of degree
at most m. As usual, it suffices to work with unitary polynomials of degree
n and we denote by Nq(n, m) the number of m-smooth unitary polynomials.
Before giving our lower bound on Nq(n, m), we recall that the number of monic
irreducible polynomials of degree t is:

Iq(t) =
1

t

∑

d|t
µ(t/d)qt ≥ 1

t

(

qt − dlog2 teqt/2
)

,

where µ denotes the Möbius function. We first show the expected lower bound
when n is a multiple of m, n = `m. In that case, the number of smooth polyno-
mials is greater than the number of possible products of ` distinct polynomials of
degree m. This number is: 1

`!

∏`−1
i=0 Iq(m) − i. Replacing Iq by its values, letting

` and q grow and dividing by qn to get a probability, we obtain a lower bound
of: 1

`!(m+ε)` for any value of ε > 0. Taking the logarithm we find `(log ` + m + ε)

which is asymptotically equivalent to ` log ` as expected.
In the general case, we write n = `m + r with r < m and proceed similarly

with a product of one irreducible of degree r and ` distinct irreducibles of degree
m. The lower bounds immediately follows.



272 Antoine Joux and Reynald Lercier

B Listing of sieving C code for 6553725

#include <stdio.h>

#include <stdlib.h>

#define PRIME 65537

int RootTab[2*PRIME]; int AlphaTab[2*PRIME]; char Count[PRIME];

AddSieveElement(int root, int alpha) { static int count=0;

RootTab[count]=root; AlphaTab[count]=alpha; count++;

}

InitLinearSide() { /* Polynomial X-(t^5+t+3) */

int alpha,root; long long tmp;

for (alpha=0;alpha<PRIME;alpha++) {

tmp=alpha; tmp*=tmp; tmp%=PRIME; tmp*=tmp; tmp%=PRIME;

tmp*=alpha; tmp%=PRIME; tmp+=alpha+3; tmp%=PRIME;

root=tmp; AddSieveElement(root,alpha);

}}

InitOtherSide() { /* Polynomial X^5+X+1+t */

int alpha,root; long long tmp;

for (root=0;root<PRIME;root++) {

tmp=root; tmp*=tmp; tmp%=PRIME; tmp*=tmp; tmp%=PRIME;

tmp*=root; tmp%=PRIME; tmp+=root+1; tmp%=PRIME;

alpha=tmp; if (alpha) alpha=PRIME-alpha;

AddSieveElement(root,alpha);

}}

FindMultiCollisions(int line) { int i,root;

for (i=0;i<PRIME;i++) Count[i]=0;

for (i=0;i<2*PRIME;i++) {root=RootTab[i]; Count[root]++;}

for (i=0;i<PRIME;i++)

if (Count[i]>=9) printf("b(t)=%d*t+%d;\n",-line,i);

}

UpdateTables() { int i,root;

for (i=0;i<2*PRIME;i++) { root=RootTab[i]+AlphaTab[i];

if (root>=PRIME) root-=PRIME;

RootTab[i]=root;

}}

main() { int line; InitLinearSide(); InitOtherSide();

for(line=0;line<PRIME;line++) {

FindMultiCollisions(line); UpdateTables();

}}


