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suh a way that the esrow ageny an open the data pertaining to some userwithin the time period for whih a subpoena or searh warrant has been issued,or mine the olleted data without a warrant for evidene of suspiious ativity.Existing tehniques. Information stored in the esrow ageny's database mustbe proteted both from abuse by the esrow ageny's employees and from exter-nal attaks. Unfortunately, existing esrow shemes sari�e either user privay,or eÆieny of the esrow operation. Moreover, existing tehniques allow miningof the esrowed data for evidene of suspiious ativity only by letting the esrowageny de-esrow any entry at will.Key esrow tehniques [Mi92,KL95℄ impliitly assume that esrowed dataare tagged by the key owner's identity or address. This enables eÆient de-esrowof a subset of reords pertaining to some user (e.g., in response to a subpoena),but fails to protet anonymity of reords against maliious employees of theesrow ageny who an learn the number and timing of transations performedby a given person, �nd orrelations between transations of di�erent people, andso on. On the other hand, if esrows are not tagged, then there is no eÆientproedure for opening the relevant esrows in response to a subpoena. Eah entryin the esrow database must be derypted to determine whether it involves thesubpoenaed user. This is prohibitively ineÆient, espeially if the deryption keyof the esrow ageny is shared, as it should be, among a group of trustees.Our ontribution. We propose a veri�able transation esrow (VTE) shemewhih o�ers strong privay protetion and enables eÆient operation of the es-row agent. Our sheme furnishes transation partiipants with a provably seureprivay guarantee whih we all ategory-preserving anonymity. We say that twotransations belong to the same ategory if and only if they were performed bythe same user and are of the same type (e.g., both are money transfers). Anesrow sheme is ategory-preserving anonymous if the only information aboutany two transations that the (maliious) esrow agent an learn from the orre-sponding esrow entries is whether the transations fall into the same ategoryor not. The agent annot learn whih ategory either transation belongs to.Of ourse, a maliious partiipant may reveal the transation to the esrowagent. However, regardless of the user's transations with dishonest parties wholeak information to the esrow agent, all of his transations with honest partiesremain private in the sense of ategory-preserving anonymity | even if theybelong to the same ategory as ompromised transations. While it does notprovide perfet anonymity, ategory-preserving anonymity seems to give out nouseful information, espeially if transation volume is high. (If volume is low,there may be undesirable information leaks, e.g., the esrow agent may observethat only one ategory is ever used, and dedue that only one user is ative.)We present a VTE sheme with two variants. The �rst variant has an inexpen-sive esrow protool, but does not ahieve full ategory-preserving anonymity.The privay guarantees it does o�er might be aeptable in pratie, however.The seond variant ahieves ategory-preserving anonymity at the ost of addingan expensive ut-and-hoose zero-knowledge proof to the esrow protool.



Our VTE sheme supports both (1) eÆient identi�ation and opening ofesrows in response to a subpoena, and (2) eÆient automati opening of esrowsthat fall into the same ategory one their number reahes some pre-spei�edthreshold. The sheme is also tamper-resistant in the sense that a maliiousesrow agent annot add any valid-looking esrows to the database. Finally, oursheme ensures orretness of the esrow entry as long as at least one partiipantin the esrowed transation is honest. Note that there is no way to ensure esrowof transations between parties who ooperate in onealing the transation.Our sheme employs Veri�able Random Funtions. We show that by taggingentries in the esrow database using VRFs indexed by users' private keys, we en-able eÆient and, if neessary, automati de-esrow (dislosure) of these entries,while providing ategory-preserving anonymity for the users. We instantiate oursheme with a pratial onstrution based on a simple and eÆient (shareable)VRF family seure under the DDH assumption in the Random Orale Model.Appliations. A VTE sheme an be used in any senario where transationdata must be esrowed but should remain private and anonymous. For example,a �nanial regulatory ageny may ollet esrows of all money transfers to ensureavailability of evidene for future investigations of money laundering. Unless aourt warrant is obtained, the ageny should not be able to extrat any usefulinformation from the esrows, not even partiipants' identities. At the sametime, the automati opening apability of our VTE sheme an also support asenario where the ageny needs to identify all transfers whih are made fromthe same aount and share the same type, e.g., all involve a ertain organizationor ountry, or more than a ertain amount. These transations should be seretand anonymous until their number reahes a pre-spei�ed threshold, in whihase the authority gains the ability to extrat all orresponding plaintexts.Related work. The problem of eÆient lassi�ation and opening of esrowsis related to the problem of searh on enrypted data [SWP00,BCOP03℄. In thelatter problem, however, there is no notion of a maliious user who submits in-orret iphertexts or interferes with reord retrieval. Moreover, their tehniquesrequire the user to generate searh-spei� trapdoors, while we are also inter-ested in senarios where the esrow agent is able to open all esrows in a givenategory not beause he reeived some ategory-spei� trapdoor but beausethe number of esrows within a ategory reahed a pre-spei� threshold.Paper organization. In setion 2, we de�ne veri�able transation esrow anddesribe its seurity properties. In setion 3, we present the simpler variantof our VTE onstrution, whih is pratial but does not ahieve full ategory-preserving anonymity. In setion 4, we present another variant whih does ahieveategory-preserving anonymity, but employs an expensive ut-and-hoose zero-knowledge protool. In setion 5, we show how to extend either onstrution tosupport automati de-esrow apability. For lak of spae, we omit all proofsfrom these proeedings. The full version of the paper, inluding all proofs, willbe made available on eprint [JS04℄.



2 De�nition of a Veri�able Transation Esrow ShemeA Veri�able Transation Esrow (VTE) system involves an esrow Agent andany number of users. We assume that eah transation ours between a Userand a Counterparty. The two roles are naturally symmetri (users may at asounterparties for eah other), but in some appliations the esrow agent mayonly be interested in monitoring users (e.g., bank lients), but not the ounter-parties (banks).We assume that eah transation is adequately desribed by some bitstringm,and that there is a publi and easily omputable funtion Type, where Type(m)of transation m is appliation-spei�, e.g., \this transation is a money trans-fer," or \this transation is a money transfer between $1,000 and $10,000." Theategory of a transation is the huser identity,typei pair.2.1 Basi properties of a Veri�able Transation Esrow shemeA VTE sheme is a tuple (AKG;UKG;U1; A; U2; C; U3; J) of the following prob-abilisti polynomial-time (PPT) algorithms:� AKG and UKG are key generation algorithms, whih on input of a seurityparameter � generate, respetively, Agent's key pair (kA; pkA) and, for eah User,key pair (kU ; pkU ).� (U1; A) are interative algorithms whih de�ne an esrow protool. Its aim is toadd an esrow of a transation to the Agent's database in exhange for a reeiptwhih will be later veri�ed by the transation Counterparty. The protool runsbetween User (U1) and Agent (A), on publi input of Agent's publi key pkA.User's private input is (kU ;m), where m is the transation desription. Agent'sprivate input is (kA; D) where D is the state of Agent's esrow database. User'soutput is a reeipt rpt, and Agent's output is an esrow item e, whih de�nesa new state of Agent's database as D0 = D [ feg.� (U2; C) are interative algorithms whih de�ne a veri�ation protool. Its aimis for the Counterparty to verify the reeipt ertifying that the transation wasproperly esrowed with the Agent. The protool runs between User (U2) andCounterparty (C), on publi input (pkU ;m; pkA). User's private input is kU ; rpt.Counterparty outputs deision d = aept=rejet.� (U3; J) is a pair of interative algorithms whih de�nes a subpoena protool. Itsaim is to identify all transations of a given type in whih the user partiipated,and only those transations. The protool runs between User (U3) and a publiJudge (J), on publi inputs (pkU ; T;D), where pkU ; T identify the huser,typeiategory to be subpoenaed, and D is Agent's database. User's private inputis kU . Judge has no private inputs. Algorithm J outputs M , whih is eithera symbol ontempt if the User refuses to ooperate, or a (possibly empty) list(m1;m2; :::) of transations of type T involving user pkU .Completeness. If parties follow the protool, then every esrowed transationan be de-esrowed in the subpoena. In other words, for all keys (kA; pkA) and



(kU ; pkU ) generated by AKG and UKG, and for every m;D;D0, if hU1(kU ,m); A(kA; D)i(pkA) outputs (rpt; e) then hU2(kU ; rpt); Ci(pkU ;m; pkA) out-puts d = aept and hU3(kU ); Ji(pkU ; T ype(m); D0[feg) outputsM s.t. m 2M .For notational onveniene, we de�ne prediate Prop(e;m; pkU ) to be true ifand only if hU3(kU ); Ji(pkU ; T ype(m); D0 [ feg) outputs M s.t. m 2M .Veri�ability. The esrow agent reeives a orret esrow of the transation aslong as at least one party in the transation is honest. In partiular, a maliiousUser has only negligible probability3 of getting an honest Counterparty to a-ept in an esrow protool unless the User gives to the Agent a proper esrow.Formally, for every PPT algorithms U�1 ; U�2 , for every D;m,Pr[ Prop(e;m; pkU ) j (kA; pkA) AKG(1� ); (kU ; pkU ) UKG(1� );(rpt�; e) hU�1 (kU ;m); A(kA; D)i(pkA);aept hU�2 (rpt�); Ci(pkU ;m; pkA) ℄ � 1� negl(�)EÆient and unavoidable subpoena. The subpoena proedure is unavoid-able in the sense that the user is either publily identi�ed as refusing to ooperate,or all entries in the esrow database whih involve the user and the spei�ed typeare publily revealed. Namely, for every PPT algorithm U�3 , for every D0, m, e,for T = Type(m),Pr[M = ontempt _m 2M j (kA; pkA) AKG(1� ); (kU ; pkU ) UKG(1�);M  hU�3 (kU ); Ji(pkU ; T;D0 [ feg); Prop(e;m; pkU )℄ � 1� negl(�)Moreover, the subpoena protool is eÆient in the sense that its running timeis linear in the number of esrows of the subpoenaed huser,typei ategory in thedatabase D, rather than in the size of the whole esrow database D.Tamper resistane.Amaliious Agent an't add entries to the esrow databasewhih would be identi�ed as transations involving some user during the publisubpoena proess, unless that user reated these esrows himself. Namely, forevery PPT algorithm A�, for random keys kU ; pkU generated by UKG, if A�has aess to user orales OU1(�; �), OU2(�; �; �), and OU3(�; �), where OU1(m; pkA)follows the U1 protool on (kU ;m) and pkA, OU2(m; rpt; pkA) follows the U2 pro-tool on (kU ;m; rpt) and pkA, and OU3(T;D) follows the U3 protool on kU and(pkU ; T;D), then there is only negligible probability that A�OU1;U2;U3 (�;�;�)(pkU )produes T �; D� s.t. M  hU3(kU ); Ji(pkU ; T �; D�) where M ontains somemessage m� s.t. A� did not run orale OU1(�; �) on m� and some pkA.Category-preserving anonymity. By default, the only information learnedby a maliious Agent about any two instanes of the esrow protool is whetherthe two transations fall into the same ategory, i.e., orrespond to the same3 We say that a funtion f(�) is negligible if for any polynomial p(�), there exists �0s.t. for every � � �0, f(�) < 1=p(�). We denote a negligible funtion by negl(�).



huser,typei pair or not. Moreover, neither the transations opened in the sub-poena protool, nor transations reported to the Agent by some maliious Coun-terparties, should help the maliious Agent to rak the privay of transationsdone with honest Counterparties and whih were not subpoenaed.Formally, onsider the following game between any PPT algorithms A�; C�and the VTE system. First, polynomially many user keys f(ki; pki)g are gen-erated by the UKG algorithm. Then, if A� has aess to exible user oralesOU1(�; �; �), OU2 (�; �; �; �), and OU3 (�; �; �), where OU1(i;m; pkA) follows the U1 pro-tool on (ki;m) and pkA, OU2(i;m; rpt; pkA) follows the U2 protool on (ki; rpt)and (pki;m; pkA), and OU3 (i; T;D) follows the U3 protool on ki and (pki; T;D),the following holds:Pr[ b = b0 j (i0; i1;m0;m1; st; pkA) A�OU1;U2;U3 (�;�;�;�)(pk1; :::; pkp(�));b f0; 1g; (rptb; st0) hU1(kib ;mb); A�(st)i(pkA);b = :b; (rptb; st00) hU1(kib ;mb); A�(st0)i(pkA);(st000) hU2(ki0 ; rpt0); C�(st00)i(pki0 ;m0; pkA);(st0000) hU2(ki1 ; rpt1); C�(st000)i(pki1 ;m1; pkA);b0  A�OU1;U2;U3 (�;�;�;�)(st0000); ℄ � 12 + negl(�)where the test transations (i0;m0) and (i1;m1) and the queries of A� to OU1and OU3 orales are restrited as follows:(1) The test transations are not subpoenaed, i.e., OU3 is not queried on either(i0; T ype(m0)) or (i1; T ype(m1)).(2) If any of the huser,typei pairs involved in the test transations are seen bythe Agent in some query to OU1 or OU3 , then the two test transations musthave the same huser,typei pairs, i.e., if for any � = 0; 1, either OU3 was queriedon (i�; T ype(m�)) or OU1 was queried on (i�;m0�) s.t. Type(m0�) = Type(m�),then i0 = i1 and Type(m0) = Type(m1).2.2 Additional desirable properties of a VTE shemeAutomati threshold dislosure. A VTE sheme may support automatiopening of esrows involving transations with the same huser,typei one theirnumber reahes some threshold value, pre-set for transations of this type. Weshow an example of suh extension in Setion 5.Key management. In pratie, a VTE sheme requires a Key Certi�ationAuthority serving as strong PKI. If a user's key is lost or ompromised, the CAmust not only revoke that key and ertify a new one, but also reonstrut theold key to failitate the subpoena of transations whih were esrowed underit. To avoid a single point of failure, the CA should implement this key esrowfuntionality via a group of trustees using standard threshold tehniques. Westress that although majority of the CA trustees must be trusted, this is nota severe limitation of the proposed sheme beause CA is invoked only when



a new user enrolls in the system, or when the key of some user is subpoenaedand he refuses to ooperate. Moreover, the seret keys of the CA trustees needonly be used during reonstrution of some user's key in the ase of key lossand/or user's refusal to ooperate with a subpoena, both of whih should berelatively infrequent events. Interestingly, while PKI is often viewed as a threatto privay, in our sheme it atually helps privay. Without PKI, esrow anonly be implemented via a publi-key sheme that annot guarantee both useranonymity and eÆient operation of the esrow sheme.3 Basi Constrution of a VTE ShemeWe present the simpler variant of our VTE sheme. As we explain in setion 3.1,this sheme does not ahieve full ategory-preserving anonymity, but its privayprotetion an be good enough in pratie. In setion 4, we show a variant ofthe same VTE sheme whih does ahieve full ategory-preserving anonymity.Both variants use ryptographi primitives of veri�able anonymous enryption,veri�able anonymous tagging, and anonymous signatures, whih we de�ne andimplement in setion 3.2. In setion 3.3, we disuss key management issues.VTE onstrution overview. In our VTE onstrution, an esrow onsistsof (1) an enryption of the transation plaintext, (2) a signature, and (3) adeterministially omputed tag whih is an output of a pseudorandom funtionindexed by the user's private key and applied to the type of the transation.The tags enable the Agent to group entries in the esrow database into \bins"orresponding to tag values. Beause a pseudorandom funtion assigns outputs toinputs deterministially, esrows orresponding to the same huser,typei ategoryare always plaed in the same bin, enabling eÆient identi�ation of the esrowedentries of a given ategory during the subpoena. However, the pseudorandomnesshelps to ensure that the tags reveal no more information than permitted byategory-preserving anonymity, i.e., the only information learned by the esrowagent about any two esrows is whether they belong to the same ategory.The signature is inluded to disable Agent's tampering with the esrowedentries. The enryption and the tag must preserve serey of the transationplaintext against hosen-plaintext attak, beause a maliious Agent an ausea user to partiipate in transations of Agent's hoie and see the orrespondingesrow entries (see the de�nition of ategory-preserving anonymity). The wholeesrow must also protet user's key privay against the same hosen-plaintextattak. To enable veri�ation that an esrow is orretly formed, both the tag, theiphertext, and the signature must be veri�able by the transation ounterparty,i.e., given the transation plaintext and the user's publi key.Initialization: Every user is initialized with a publi/private key pair imple-mented as in setion 3.2. The esrow agent is initialized with a key pair of anyCMA-seure signature sheme.Esrow protool: We assume that before the esrow protool starts, the userand the ounterparty agree on transation desription m of type T = Type(m).



1. The user sends to the esrow agent an esrow e = (; t; s) s.t.:(a)  = Enkfmg is a veri�able anonymous symmetri enryption of m.(b) t = TagkfTg is an output of a veri�able anonymous tagging funtion.() s = sigkf; tg is an anonymous signature on the (iphertext,tag) pair.2. The agent plaes esrow e in the esrow database in the bin indexed by thetag t, and sends his signature rpt on e to the user.Veri�ation protool:1. The user forwards the esrow e and the agent's signature rpt to the oun-terparty, together with a proof that:(a)  is a iphertext of m under a key k orresponding to the publi key pk.(b) t is a tag omputed on type T under key k orresponding to pk.() s is an anonymous signature omputed on (; t) under the publi key pk.2. The transation ounterparty aepts if he veri�es the agent's signature one and the orretness of the above three proofs.Subpoena protool: The protool proeeds on a publi input of any subsetD of the esrow database, the type T of the subpoenaed transations, and theidentity pk of the subpoenaed user:1. The user omputes tag t = TagkfTg and proves its orretness under pk.2. Entries (e1; e2; :::) in D whih are indexed by tag t are publily identi�ed,and for eah ei = (i; t; si), the user veri�es the signature si on (i; t).(a) If the signature does not math, the user provably denies that the signa-ture is valid under pk, and if the proof is orret the entry is skipped.(b) If the signature mathes, the user publishes the transation plaintext miby derypting the iphertext i under k, and proving orretness of thederyption under key k orresponding to pk.3. If the user ooperates, the output inludes all (and only) transations of thesubpoenaed type for that user. If any of the above proofs fails, the publioutput is the speial symbol ontempt.From the properties of the ryptographi primitives used in this VTE on-strution, the following theorem follows:Theorem 1. The basi VTE sheme satis�es (1) veri�ability, (2) eÆient andunavoidable subpoena, and (3) tamper resistane.3.1 Privay leakage of the basi VTE shemeIn the above sheme, the user presents the (iphertext, tag, signature) tuple toboth the agent and the ounterparty. This allows a maliious ounterparty anda maliious agent to link their views of the esrow and veri�ation protools,and sine the ounterparty knows the user identity and the message plaintext, amaliious agent an learn an assoiation between a tag and a huser,typei pair.This would violate ategory-preserving anonymity, beause with this knowledgethe esrow agent an learn the type and user identity of all transations withthe same tag, even those onduted with other, honest ounterparties.



In pratie, privay protetion an be inreased by allowing the type of thetransation to range over some small set, for example of a hundred onstants.If the index of the onstant used for a given transation is hosen by hash-ing the ounterparty's identity, then there is only 1% hane that a dishonestounterparty an endanger the anonymity of transations of the same type withany other honest ounterparty. On the other hand, when a user is subpoenaedon a given type, he has to identify a hundred ategories instead of one. Suhprivay/eÆieny trade-o� may be aeptable in some appliations.3.2 De�nitions and onstrutions for ryptographi primitivesLet p; q be large primes s.t. p = 2q+1, and let g be a generator of Z�p. The seu-rity of our onstrutions relies on the hardness of the Deisional DiÆe-Hellman(DDH) problem in subgroup QRp of quadrati residues in Z�p, whih says thattuples (h; ha; hb; hab) are indistinguishable from tuples (h; ha; hb; h) for h 2 QRpand random a; b;  in Zq (see, e.g., [Bon98℄). Our seurity arguments follow theso-alled \Random Orale Model" methodology of [BR93℄. Namely, we assumean \ideal hash funtion" H : f0; 1g� ! Z�p whih an be treated as a randomfuntion in the ontext of our onstrutions.Veri�able random funtions. A VRF family [MRV99℄ is de�ned by threealgorithms: a key generation algorithm KGen outputing private key k and publikey pk, an evaluation algorithm Eval(k; x) = (y; �) whih on input x outputs thevalue of the funtion y = fk(x) and a proof � that the value is omputed or-retly, and a veri�ation algorithm Ver whih an verify � on inputs (pk; x; y; �).The VRF is seure if it is infeasible to distinguish an interation with funtionfk, for a randomly hosen key k, from an interation with a purely random fun-tion whih outputs uniformly distributed values in the same range. Moreover,the VRF needs to be veri�able, in the sense that any proof will be rejetedunless the returned value y is indeed fk(x). The VRF onept and onstru-tions were originally proposed for the standard model [MRV99,Lys02,Dod03℄,i.e., without assuming ideal hash funtions, but evaluation/veri�ation ost forthese onstrutions involves 
(�) ryptographi operations. In ontrast, in theRandom Orale Model, a simple VRF family an be onstruted based on theDDH assumption, with evaluation and veri�ation ost of 1-3 exponentiations.Similar or idential onstrutions were used before [CP92,NPR99,CKS00℄, with-out expliitly noting that the result is a VRF family.We relax (slightly) the standard de�nition of VRF [MRV99℄ by replaing theuniqueness requirement with a omputational soundness requirement.De�nition 1. A VRF family (for a group family fGigi=1;2;:::) is given by atuple of polynomial-time algorithms (KGen, Eval, Ver) where KGen(1� ) outputs apair of keys (k; pk), Eval is a deterministi algorithm whih, on any x, outputs(y; �) Eval(k; x) s.t. y 2 Gn, and Ver(pk; x; y; �) outputs 0 or 1, whih satisfythe following requirements:1. Completeness: For every � and x, if (k; pk)  KGen(1� ) and (y; �) =Eval(k; x) then Ver(pk; x; y; �) = 1.



2. Soundness: For any probabilisti polynomial-time algorithm A, for any valuespk and x, the following probability is negligible:Pr[Ver(pk; x; y; �) = Ver(pk; x; y0; �0) = 1 ^ y 6= y0 j (y; y0; �; �0) A(pk; x)℄3. Pseudorandomness: For all probabilisti polynomial-time algorithms A1; A2,Pr[ b = b0 j (k; pk) KGen(1� ); (x; st) AOEval(k;�)1 (pk); y0  Eval(k; x);y1  Gn; b f0; 1g; b0  AOEval(k;�)2 (st; yb) ℄ � 12 + negl(�)where A1 and A2 are restrited from querying orale OEval(k; �) on the hal-lenge input x hosen by A1.Constrution: Let H : f0; 1g� ! Z�p be an ideal hash funtion (modeled asa random orale). Formally, the key generation piks a triple (p; q; g) as aboves.t. the hardness of the DDH problem in QRp is good enough for the seurityparameter. For ease of disussion, we treat (p; q; g) as hosen one and for all.We will onstrut a V RF funtion family indexed by suh triples, whose rangeis the group of quadrati residues QRp. The key generation algorithm piks aseret key k 2 Z�q and the publi key pk = g2k mod p. The evaluation algorithmEval(k; x) returns y = h2k mod p where h = H(x), and a non-interative zero-knowledge proof � of equality of disrete logarithm x = DLh(y) = DLg(pk).This is a standard ZKPK proof of disrete-log equality whih an be made non-interative in the ROM model, e.g., [CS97℄.Theorem 2. Algorithms (KGen;Eval;Ver) de�ne a Veri�able Random Funtionfamily, under the DDH assumption in the Random Orale Model.Veri�able anonymous tagging funtion. We de�ne a veri�able anonymoustagging funtion simply as a VRF, and we implement it as Tagkfxg = fk(x).It is easy to see that tags TagkfTg give no information about the ategorythey represent, i.e., user's identity pk and the transation type T , exept that,whatever ategory this is, it is identi�ed with tag TagkfTg. It is also easy to seethat a VRF has good enough ollision-resistane so that esrows of two ategoriesgo to di�erent bins. In fat, a muh stronger property holds:Theorem 3. Under the disrete log assumption, in the Random Orale Model,the VRF family (KGen;Eval;Ver) has a strong ollision resistane property in thesense that it is infeasible to �nd pair (k; x) 6= (k0; x0) s.t. Eval(k; x) = Eval(k0; x0).Veri�able anonymous symmetri enryption. For esrows to be anony-mous, the symmetri enryption En used by the user must be not only hosen-plaintext seure, but also key-hiding. Following [Fis99,BBDP01℄, we ombinethese in one de�nition that implies several natural anonymity properties. Evenan adversary who deides who enrypts what, annot tell, for iphertexts re-ated outside of his ontrol, whether the messages and keys satisfy any non-trivialrelation this adversary is interested in. For example, the adversary annot tell if



a iphertext is an enryption under any given key, if two iphertexts are enryp-tions under the same key, if two iphertexts enrypt related messages, et.Let (KGen;En;De) be a symmetri enryption sheme. In our experiment,�rst the key generation algorithm is exeuted p(�) times where p(�) is somepolynomial and � is the seurity parameter. Denote the keys as ki, for i 2f1; p(�)g. Adversary an query the following exible enryption orale OEn(�; �):on input (i;m), i 2 f1; p(�)g and m 2 f0; 1g�, OEn(i;m) outputs En(ki;m).De�nition 2. We say that a symmetri enryption sheme (KGen;En;De) is(hosen-plaintext-seure) anonymous if, for any polynomial p(�) and probabilistipolynomial-time adversary A1; A2,Pr[ b = b0 j (k1; :::; kp(�)) (KGen(1� ))p(�); (i0; i1;m0;m1; st) AOEn(�;�)1 (1� );b f0; 1g;  En(kb;mb); b0  AOEn(�;�)2 (st; )℄ � 12 + negl(�)We also extend the notion of (CPA-seure and anonymous) symmetri en-ryption by a veri�ability property. We stress that this property is di�erent fromwhat is referred to as veri�able enryption in the ontext of asymmetri enryp-tion shemes [ASW98,CD00℄. We require that the seret key k of an anonymousenryption be generated together with a ommitment to this seret key, whihwe will all a publi key pk. This publi key, however, is used not to enrypt butto enable eÆient veri�ation that a given iphertext is a orret enryption ofa given plaintext. In fat, our veri�ability property for symmetri enryption isvery similar to the veri�ability property of VRFs. Namely, we require that theenryption proedure En is augmented so that along with output  = Enkfmgit produes a proof � of orret enryption evaluation. We also require an eÆ-ient proedure Ver whih takes as inputs messagem, iphertext , and a proof �.The algorithms (KGen;En;De;Ver) must then satisfy an obvious ompletenessproperty, i.e., that a orretly omputed proof always veri�es, and a sound-ness property, whih says that it is intratable, for any (k; pk), to �nd a tuple(m;m0; ; �; �0) s.t. m 6= m0 but Ver(pk;m; ; �) = Ver(pk;m0; ; �0) = 1.Constrution: Instead of using our VRF family to enrypt diretly, we replaethe hash funtion in our VRF onstrution with a Feistel-like padding shemepadH(mjr) similar to the OAEP padding [BR94,Sho01℄. Assume message lengthis jmj = �1 = jpj�2��2 where � is the seurity parameter. We de�ne our paddingsheme as padH(mjr) = (h1jh2) for h1 = H1(r)� m and h2 = H2(h1)� r, wherehash funtions H1; H2 output bit strings of length �1 and 2� , respetively, and ris a random string of length 2� . Note that (mjr) an be reovered from (h1jh2).This padding is simpler than the OAEP padding and its variants beause our(symmetri, anonymous) enryption needs only hosen plaintext seurity ratherthan hosen iphertext seurity.Using suh padding we an enrypt as follows. KGen is the same as in the VRFsheme. Enk(m) = o2k mod p where o = padH(mjr) is treated as an element inZ�p. The deryption Dek() omputes andidates o0 and �o0 mod p for o, whereo0 = k0 mod p, and k0 = � � k�1 mod q where � = (q + 1)=2 (in integers). To



derypt we take as o either o0 or �o0 mod p, depending on whih one is smallerthan 2jpj�2. We then reover mjr by inverting the padding sheme padH on o.The proof of orret enryption onsists of the randomness r and a proof � ofdisrete-log equality DLo() = DLg(pk).Theorem 4. The above sheme is a veri�able anonymous symmetri enryptionsheme seure under the DDH assumption in ROM.Anonymous signatures. An anonymous signature is an undeniable signaturesheme [CP92℄ with an additional property of key-privay. Reall that an un-deniable signature sheme requires that the reipient of a signature s produedunder publi key pk on message m annot prove to a third party that this isa valid signature under pk. Instead, the third party must ask U to verify thesignature validity or invalidity via an interative proof protool. Here we addi-tionally require key privay in the sense orresponding to the CPA-seurity ofthe anonymous symmetri enryption, i.e., that it is infeasible to tell from a(message,signature) pair what publi key was used in omputing it.Constrution: Any VRF family immediately yields an anonymous signaturesheme. In fat, the undeniable signature onstrution of [CP92℄ already hasthe required properties, beause it is impliitly onstruted from the same VRFonstrution as here. For better onrete seurity, we slightly modify the [CP92℄onstrution. The signature on m is a pair s = (r; ~s) where r is a random stringof length 2� , and ~s = fk(mjr) = H(mjr)2k mod p. The proof of (in)orretnessof a signature under publi key pk is a zero-knowledge proof of (in)equality ofdisrete logarithm (e.g., [CS03℄) between tuples (g; pk) and (H(mjr); ~s).3.3 Key management for disrete-log based VTE shemesThe disrete-log based keys used in our sheme an be eÆiently seret-sharedby the user with the CA trustees using Feldman's veri�able seret sharing (see,e.g., [GJKR99℄ for an exposition). Using reent tehniques of [CS03℄, the user andeliver a seret-share to eah trustee enrypted under the trustee's publi key,and the trustee an verify the share's orretness without the use of the trustee'sprivate key. The resulting shares an then be eÆiently used by the trustees in thesubpoena proess. For example, if the user refuses to ooperate, the CA trusteesan eÆiently ompute the tag t = (H(Type))2k mod p for the subpoenaed userand type via threshold exponentiation protool suh as [GJKR99℄. The trusteesan also use the same protool to verify signatures on and derypt the esrows.4 VTE Sheme with Unlinkable ReeiptsAs explained in setion 3.1, ategory-preserving anonymity is hard to ahieve un-less the esrow agent and the transation ounterparty are somehow preventedfrom linking their views of the esrow and the veri�ation protools. We showhow to ahieve suh separation of agent's and ounterparty's views by replaing



the standard signature sheme used by our basi VTE sheme with the CL sig-nature sheme of [CL01,CL02℄, whih enables the user to prove his possession ofthe agent's reeipt to the ounterparty in zero-knowledge. To integrate CL signa-tures into our VTE sheme, in setion 4.1 we introdue a novel zero-knowledgeproof of knowledge of ommitted key and plaintext (CKP-ZKPK).Diophantine ommitments.To use the CL signature sheme, we need a om-mitment sheme of [FO98,DF01℄ whih allows a ommitment to integers ratherthan to elements in a �nite �eld. Consider a speial RSA modulus n = p0q0,where p0; q0; (p0 � 1)=2; (q0 � 1)=2 are all prime and jp0j; jq0j are polynomial inthe seurity parameter � . Consider also a random element b of group QRn ofquadrati residues modulo n, and a random element a of the subgroup generatedby b in Z�n. The ommitment to an integer value m is C = ambm0 mod n wherem0 is hosen uniformly in Zn. This ommitment sheme is statistially hiding,and it is binding if strong RSA assumption holds for n [FO98,DF01℄.CL signatures. The publi key in CL signature onsists of a speial RSA mod-ulus n as above, and three uniformly hosen elements a; b; d in QRn. Let lm bea parameter upper-bounding the length of messages that need to be signed.The publi key is (n; a; b; d). The signature on m is a triple (v; e; s) whereve = ambsd mod n and 2le > e > 2le+1 where le � lm + 2. This signaturesheme is CMA-seure under the strong RSA assumption [CL02℄.The CL signature omes with two protools: (1) the CL signing protool,in whih the signer an issue signature (v; e; s) on m 2 f0; 1glm given only aommitment Cm to m; and (2) the CL veri�ation protool whih is a zero-knowledge proof in whih the prover an prove the knowledge of a signature onm to the veri�er who knows only a ommitment to m.The ommitments to m used in protools (1) and (2) an be independentof the CL signature publi key. However, for simpliity, in our appliation theinstane of the Diophantine ommitment sheme used in the CL signing protoolwill be formed by values (n; a; b) whih are parts of the CL signature publi key.Before we show how to use them, we need to make two modi�ations to theCL signatures as shown above. First, we use the [CL02℄ extension of the abovesheme to signing a blok of three messages (m1;m2;m3). This is done simplyby inluding three random elements a1; a2; a3 in QRn instead of one a in thepubli key of the CL signature sheme. The signature is a triple (v; e; s) whereve = am11 am22 am33 bsd mod n. In the CL signing and veri�ation protools adaptedto a blok of three messages, both the signer and the veri�er know three separateommitments on these messages.Seond, we note that if in the CL signature veri�ation protool the veri�erknows the messagem itself instead of a ommitment to it, the protool still worksand even gets easier. Similarly, if the veri�er knows not the above Diophantineommitment to m, but gm mod p (also a ommitment to m), the protool stillworks, but the prover only shows knowledge of a signature on some integerm0 s.t.m0 = m mod 2q (reall that p = 2q+1, p; q are primes, and g is a generator of Z�p).The same holds for the CL veri�ation protool extended to a blok of messages(m1;m2;m3). In our ase, the veri�er will know messages m1 and m2, and a



ommitment gm3 mod p to message m3, and the prover will show possession ofCL signature on blok of messages (m1;m2;m03) s.t. m03 = m3 mod q.VTE sheme with unlinkable reeipts. We reall the VTE onstrution ofsetion 3, where k is the user's seret key, pk = g2k mod p is the publi key,and m is the transation plaintext. The esrow is a triple e = (; t; s) where  =o2k mod p, t = h2k mod p, s = (r; ~s), ~s = H((; t)jr)2k mod p, h = H(Type(m)),o = padH(mjr0), and r; r0 are random strings of length 2� .Let lm, the maximum message length, be jpj, enough to represent elements ineither Z�p or Z�q. The publi key of the esrow agent is the publi key (n; a; b; ) ofthe CL signature sheme, exept that a is hosen at random from the subgroupgenerated by b in Z�n. If the esrow agent generates his key himself, he mustprove knowledge of i s.t. a = bi mod n.The user sends e = (; t; s) = (; t; (r; ~s)) to the esrow agent as in thebasi VTE sheme, but here he also inludes three diophantine ommitmentsCo; Ch; Ck on integer values o; h; k using (n; a; b) as the instane of the ommit-ment sheme. Using the zero-knowledge proof CKP-ZKPK of ommitted key andplaintext (see setion 4.1), the user then proves his knowledge of integer values(o0; h0; k0) s.t. o0; h0; k0 are ommitted to in Co; Ch; Ck, and  = (o0)2k0 mod p,t = (h0)2k0 mod p, and ~s = H((; t)jr)2k0 mod p. If the proof sueeds, the userand the esrow agent run the CL signing protool on the ommitments Co; Ch; Ckat the end of whih the user holds a CL signature on the blok (o0; h0; k0) of theommitted messages.In the veri�ation phase, the user sends to the transation ounterpartyvalues (o; r0), together with the transation plaintext m and his publi keypk = g2k mod p. The ounterparty omputes h = H(Type(m)) and veri�es ifo = padH(mjr0). The user and the ounterparty then run the CL veri�ationprotool in whih the user proves possession of a CL signature on integer valueso; h; k0 where the veri�er knows o and h and pk = g2k0 mod p.If the user passes both proofs, the �rst with the esrow agent as the veri�erand the seond with the transation ounterparty as the veri�er, then under thestrong RSA assumption needed for the diophantine ommitment to be binding,o0 = o, h0 = h, and k0 = k mod q, thus the esrow entry e = (; t; s) is om-puted orretly. Furthermore, the esrow agent learns only the (iphertext,tag)pair (; t) = (o2k mod p; h2k mod p) and the signature s, while the ounterpartylearns only the values o; h assoiated with the plaintext m and the publi keypk = g2k mod p.From the properties of the basi VTE sheme and the CKP-ZKPK proofsystem (see setion 4.1), the following theorem follows:Theorem 5. The VTE sheme with unlinkable reeipts satis�es (1) veri�ability,(2) eÆient and unavoidable subpoena, (3) tamper resistane, and (4) ategory-preserving anonymity, under the DDH and strong RSA assumptions in ROM.4.1 Zero-knowledge proof of ommitted key and plaintextWe present the ZK proof protool required by the unlinkable-reeipt VTE on-strution of the previous setion. Reall that the user needs to prove in zero-



knowledge to the esrow agent his knowledge of integer values o; h; k s.t. o; h; kare ommitted to in Co; Ch; Ck, and  = o2k mod p, t = h2k mod p, and ~s =H((; t)jr)2k mod p. The publi inputs in this proof are values (p; q; g), (n; a; b),(Co; Ch; Ck), and (; t; r; ~s). The prover's inputs are o; h 2 Z�p, k 2 Z�q, and thedeommitment values o0; h0; k0 in Zn.ZKPK of Committed Key and PlaintextProver's Input: k 2 Z�q, the seret keyo 2 Z�p, the \plaintext"o0; k0 2 Zn, the deommitment valuesCommon Input: (p; q; g), the disrete-log group setting(n; a; b), the instane of a diophantine ommitment shemeCk = akbk0 mod n, ommitment to kCo = aobo0 mod n, ommitment to o = o2k mod p, the iphertext1. Prover P piks ~o  Z�p and ~o0  Zn, and sends C~o = a~ob~o0 mod n, and~ = (~o)2k mod p to the Veri�er V2. Veri�er V sends to P a random binary hallenge b = 0 or 13. P responds as follows:b = 0: (a) P sends (s; s0) = (~o; ~o0) to V(b) P performs a standard ZKPK proof of knowledge (e.g., [CM99℄)of (k; k0) s.t. akbk0 = Ck mod n and s2k = ~ mod pb = 1: (a) P sends s = o � ~o mod p to V(b) P performs a standard ZKPK proof of knowledge (e.g., [CM99℄)of (k; k0) s.t. akbk0 = Ck mod n and s2k =  � ~ mod p() P performs a ZKPK given by [CM99℄, of knowledge of values(o; o0; ~o; ~o0) s.t. aobo0 = Co mod n, a~ob~o0 = C~o mod n, and o � ~o =s mod p4. In both ases V aepts only if the appropriate ZKPK proofs verify. Addi-tionally, if b = 0, V heks also if asbs0 = C~o mod n.Fig. 1. Binary hallenge proof system CKP-ZKPKTo simplify the presentation, we will show a ZKPK system for a slightly sim-pler problem, namely the ZK proof of knowledge of ommitted key and plaintext(CKP-ZKPK). Namely, the publi values are (p; q; g); (n; a; b); (Co; Ck; ) and theprover proves knowledge of integer values o; k s.t. (1) they are ommitted to inCo; Ck under ommitment instane (n; a; b), and (2)  = o2k mod p. One ansee that the required ZKPK system is reated by running three proofs in paral-lel: (i) one CKP-ZKPK proof for serets o; k and publi (Co; Ck; ), (ii) anotherCKP-ZKPK proof for serets h; k and publi (Ch; Ck; t), and (iii) a standardZKPK proof of knowledge (e.g. [CM99℄) of k s.t. H((; t)jr)2k = ~s mod p and kis ommitted to in Ck, where the publi inputs are (Ck; ; t; r; ~s).



We present the CKP-ZKPK proof protool in Figure 1. We note that this is abinary hallenge protool with 1=2 soundness error, so to get seurity parameter� this proof should be repeated � times, or in the Random Orale Model it anbe made non-interative by preparing the � instanes of it in independently inparallel, exept that the hallenge bits are omputed by hashing together the�rst prover's messages of all these � instanes. The resulting protool involvesO(�) exponentiations for both the prover and the veri�er, whih unfortunatelymakes this protool quite expensive in pratie.Note that both ZKPK proofs referred to in the CKP-ZKPK protool anbe non-interative in the Random Orale Model onsidered here, and that theyinvolve a small onstant amount of exponentiations. We remark that the protoolproof system of [CM99℄ used in step () of ase b = 1 for proving modularmultipliation on ommitted values, an be simpli�ed in our ase, beause herethe multipliative fator s = o � ~o and the modulus p are publily known, inontrast to the general ase onsidered by [CM99℄, where the veri�er knows sand p only in a ommitted form.Theorem 6. CKP-ZKPK proof system is omputational zero-knowledge if theDDH problem for group QRp is hard.Theorem 7. CKP-ZKPK proof system is a proof of knowledge with soundnesserror 1=2 if the strong RSA problem in group Zn is hard.5 VTE Sheme with Automati Threshold DislosureWe desribe an extension of the VTE sheme whih enables the esrow agent toautomatially open esrows that (1) fall into the same bin, i.e., share the samehuser,typei ategory, and (2) their number is no less than some �xed thresh-old, pre-spei�ed for transations of this type. This an be used, for example,to implement oversight of �nanial transations whih the following dislosureondition: if some user requests more than 10 transfers, via any set of banks, tosome pre-spei�ed \o�shore haven," the plaintexts of the orresponding esrowsmust be automatially dislosed to the overseeing authority.Using Feldman's non-interative veri�able seret sharing sheme [Fel87℄, wemodify the VTE sheme of setion 3 as follows. To reate an esrow of plaintextm under key k, the user omputes the tag t = TagkfTg where T = Type(m)as in setion 3, but the iphertext is omputed di�erently. Let d be the publilypre-spei�ed threshold dislosure value that orresponds to this T . The userpiks a unique d-degree seret-sharing polynomial f(�) by applying d + 1 timesa pseudorandom funtion indexed by the seret k, i.e., ki = H(k; T; i) for i =0; : : : ; d, where H : f0; 1g� ! Zq, and setting f(x) = k0 + k1x+ : : : kdxd mod q.A set of values fC0; : : : ; Cdg where Ci = g2ki mod p serves as publi veri�-ation information for this seret-sharing polynomial, The iphertext is now0 = (; fCigi=0::d; x; f(x); d), where  = Enk0fmg, � is the proof that  is a or-ret enryption of m under the \quasi-one-time" private key k0 (and its publiounterpart C0 = g2k0 mod p), and x is some unique value orresponding to this



transation, e.g., x = H(). The user omputes the private signature s = (r; ~s)on (0; t), and hands the esrow e = (0; t; s) to the esrow agent.The esrow agent heks that (x; f(x)) is a true data point on the polynomialommitted to in set fCigi=0::d by verifying that g2f(x) = (C0) � (C1)x � : : : �(Cd)xd mod p. Moreover, if the bin tagged with tag t in the esrow database hasother entries, the agent heks that the argument x has not been used beforewith the tag t, and the values fC0; : : : ; Cdg are the same for this t as before. Theagent then releases his signature on the esrow e to the user. The user presentsit to the ounterparty, who veri�es it as before, exept that orretness of theiphertext  = Enk0fmg is veri�ed on (C0;m; ; �) instead of (pk;m; ; �), andit is heked that d is the threshold value orresponding to type T .To prevent the ounterparty and the esrow agent from linking their views,the same mehanism as in setion 4 may be deployed. The user sends om-mitments Co; Ch; Ck on values o; h; k to the esrow agent (note the di�erenebetween Co and C0), proving his knowledge of o; h; k; k0 s.t.  = o2k0 mod p,C0 = g2k0 mod p, t = h2k mod p, and ~s = H((0; t)jr)2k mod p. The same zero-knowledge protool as in setion 4 may be used, and is even slightly simplersine C0 is a simpler ommitment to k0 than the Diophantine ommitment. Af-ter heking the proofs, the user and the esrow agent perform the CL signingprotool to give the user a CL signature on the blok of messages (o; h; k; d).The user then sends to the ounterparty values (o; r0) as in setion 4, togetherwith d. The ounterparty heks that o is properly formed and d is the properthreshold value for the given transation type, and they run the CL veri�ationprotool to prove the user's knowledge of a CL signature on values (o; h; k; d)where the veri�er knows o; h; d and pk = g2k mod p.Aknowledgments. We want to thank Dan Boneh, Pat Linoln, and AnnaLysyanskaya for helpful disussions and for proposing extensions and improve-ments. We also thank the anonymous referees for their suggestions.Referenes[ASW98℄ N. Asokan, V. Shoup, and M. Waidner. Asynhronous protools for opti-misti fair exhange. In Pro. IEEE Symposium on Seurity and Privay,pages 86{99, 1998.[BBDP01℄ M. Bellare, A. Boldyreva, A. Desai, and D. Pointheval. Key-privay inpubli-key enryption. In Pro. Asiarypt '01, pages 566{582, 2001.[BCOP03℄ D. Boneh, G. Di Cresenzo, R. Ostrovsky, and G. Persiano. Searhablepubli key enryption. IACR 2003/195, 2003.[Bon98℄ D. Boneh. The deisional DiÆe-Hellman problem. In Pro. 3rd AlgorithmiNumber Theory Symposium, pages 48{63, 1998.[BR93℄ M. Bellare and P. Rogaway. Random orales are pratial: a paradigm fordesigning eÆient protools. In Pro. ACM Conferene on Computer andCommuniations Seurity, pages 62{73, 1993.[BR94℄ M. Bellare and P. Rogaway. Optimal asymmetri enryption. In Pro.Eurorypt '94, pages 92{111, 1994.
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