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Abstract. Informally, a public-key steganography protocol allows two
parties, who have never met or exchanged a secret, to send hidden mes-
sages over a public channel so that an adversary cannot even detect
that these hidden messages are being sent. Unlike previous settings in
which provable security has been applied to steganography, public-key
steganography is information-theoretically impossible. In this work we
introduce computational security conditions for public-key steganogra-
phy similar to those introduced by Hopper, Langford and von Ahn [7]
for the private-key setting. We also give the first protocols for public-
key steganography and steganographic key exchange that are provably
secure under standard cryptographic assumptions. Additionally, in the
random oracle model, we present a protocol that is secure against adver-
saries that have access to a decoding oracle (a steganographic analogue
of Rackoff and Simon’s attacker-specific adaptive chosen-ciphertext ad-
versaries from CRYPTO 91 [10]).

1 Introduction

Steganography refers to the problem of sending messages hidden in “innocent-
looking” communications over a public channel so that an adversary eavesdrop-
ping on the channel cannot even detect the presence of the hidden messages.
Simmons [11] gave the most popular formulation of the problem: two prisoners,
Alice and Bob, wish to plan an escape from jail. However, the prison warden,
Ward, can monitor any communication between Alice and Bob, and if he detects
any hint of “unusual” communications, he throws them both in solitary confine-
ment. Alice and Bob must then transmit their secret plans so that nothing in
their communication seems “unusual” to Ward.

There have been many proposed solutions to this problem, ranging from
rudimentary schemes using invisible ink to a protocol which is provably secure
assuming that one-way functions exist [7]. However, the majority of these proto-
cols have focused on the case where Alice and Bob share a secret or private key. If
Alice and Bob were incarcerated before the need for steganography arose, these
protocols would not help them. In contrast, public-key steganography allows
parties to communicate steganographically with no prior exchange of secrets. As
with public-key encryption, the sender of a message still needs to know the re-
cipient’s public key or otherwise participate in a key exchange protocol. While it
is true that if there is no global PKI, the use of public keys might raise suspicion,
in many cases it is the sender of a message who is interested in concealing his
communication and there is no need for him to publish any keys.



In this paper we consider the notion of public-key steganography against
adversaries that do not attempt to disrupt the communication between Alice
and Bob (i.e., the goal of the adversary is only to detect whether steganography
is being used and not to disrupt the communication between the participants).
We show that secure public-key steganography exists if any of several standard
cryptographic assumptions hold (each of these assumptions implies semantically
secure public-key cryptography). We also show that secure steganographic key
exchange is possible under the Integer Decisional Diffie-Hellman (DDH) assump-
tion. Furthermore, we introduce a protocol that is secure in the random oracle
model against adversaries that have access to a decoding oracle (a steganographic
analogue of attacker-specific adaptive chosen-ciphertext adversaries [10]).

Related Work. There has been very little work work on provably secure
steganography (either in the private or the public key settings). A critical first
step in this field was the introduction of an information-theoretic model for
steganography by Cachin [4], and several papers have since given similar models
[8, 9, 14]. Unfortunately, these works are limited in the same way that infor-
mation theoretic cryptography is limited. In particular, in any of these frame-
works, secure steganography between two parties with no shared secret is impos-
sible. Hopper, Langford, and von Ahn [7] have given a theoretical framework for
steganography based on computational security. Our model will be substantially
similar to theirs, but their work addresses only the shared-key setting, which is
already possible information-theoretically. Although one of their protocols can
be extended to the public-key setting, they do not consider formal security re-
quirements for public-key steganography, nor do they consider the notions of
steganographic-key exchange or adversaries that have access to both encoding
and decoding oracles.

Anderson and Petitcolas [1], and Craver [5], have both previously described
ideas for public-key steganography with only heuristic arguments for security.
Since our work has been distributed, others have presented ideas for improving
the efficiency of our basic scheme [12] and proposing a modification which makes
the scheme secure against a more powerful active adversary [2].

To the best of our knowledge, we are the first to provide a formal frame-
work for public-key steganography and to prove that public-key steganography
is possible (given that standard cryptographic assumptions hold). We are also
the first to consider adversaries that have access to decoding oracles (in a man-
ner analogous to attacker-specific adaptive chosen-ciphertext adversaries [10]);
we show that security against such adversaries can be achieved in the random
oracle model. We stress, however, that our protocols are not robust against ad-
versaries wishing to render the steganographic communication channel useless.
Throughout the paper, the goal of the adversary is detection, not disruption.

2 Definitions

Preliminaries. A function µ : N → [0, 1] is said to be negligible if for every
c > 0, for all sufficiently large n, µ(n) < 1/nc. We denote the length (in bits)



of a string or integer s by |s|. The concatenation of string s1 and string s2 will
be denoted by s1||s2. We also assume the existence of efficient, unambiguous
pairing and un-pairing operations, so (s1, s2) is not the same as s1||s2. We let
Uk denote the uniform distribution on k bit strings. If X is a finite set, we let
U(X) denote the uniform distribution on X.

If C is a distribution with finite support X, we define the minimum entropy
of C, H∞(C), as H∞(C) = minx∈X{log2(1/PrC [x])}. We say that a function
f : X → {0, 1} is ε-biased if |Prx←C [f(x) = 0]− 1/2| < ε. We say f is unbiased
if f is ε-biased for ε a negligible function of the appropriate security parameter.
We say f is perfectly unbiased if Prx←C [f(x) = 0] = 1/2.

Integer Decisional Diffie-Hellman. Let P and Q be primes such that Q
divides P − 1, let Z∗P be the multiplicative group of integers modulo P , and let
g ∈ Z∗P have order Q. Let A be an adversary that takes as input three elements
of Z∗P and outputs a single bit. Define the DDH advantage of A over (g, P,Q)
as:

Advddh
g,P,Q(A) =

∣∣∣∣ Pr
a,b,r

[Ar(ga, gb, gab) = 1]− Pr
a,b,c,r

[Ar(ga, gb, gc) = 1]
∣∣∣∣ ,

where Ar denotes the adversary A running with random tape r, a, b, c are chosen
uniformly at random from ZQ and all the multiplications are over Z∗P . Define

the DDH insecurity of (g, P,Q) as InSecddh
g,P,Q(t) = maxA∈A(t)

{
Advddh

g,P,Q(A)
}
,

where A(t) denotes the set of adversaries A that run for at most t time steps.

Trapdoor One-way Permutations. A trapdoor one-way permutation family
Π is a sequence of sets {Πk}k, where each Πk is a set of bijective functions π :
{0, 1}k → {0, 1}k, along with a triple of algorithms (G,E, I). G(1k) samples an
element π ∈ Πk along with a trapdoor τ ; E(π, x) evaluates π(x) for x ∈ {0, 1}k;
and I(τ, y) evaluates π−1(y). For a PPT A running in time t(k), denote the
advantage of A against Π by

Advow
Π (A, k) = Pr

(π,τ)←G(1k),x←Uk
[A(π(x)) = x] .

Define the insecurity of Π by InSecow
Π (t, k) = maxA∈A(t) {Advow

Π (A, k)}, where
A(t) denotes the set of all adversaries running in time t(k). We say that Π is a
trapdoor one-way permutation family if for every probabilistic polynomial-time
(PPT) A, Advow

Π (A, k) is negligible in k.

3 Channels

We seek to define steganography in terms of indistinguishability from a “usual”
or innocent-looking distribution on communications. In order to do so, we must
characterize this innocent-looking distribution. We follow [7] in using the no-
tion of a channel, which models a prior distribution on the entire sequence of
communication from one party to another:



Definition. Let D be an efficiently recognizable, prefix-free set of strings, or
documents. A channel is a distribution on sequences s ∈ D∗.

Any particular sequence in the support of a channel describes one possible out-
come of all communications from Alice to Bob. The process of drawing from the
channel, which results in a sequence of documents, is equivalent to a process that
repeatedly draws a single “next” document from a distribution consistent with
the history of already drawn documents. Therefore, we can think of communica-
tion as a series of these partial draws from the channel distribution, conditioned
on what has been drawn so far. Notice that this notion of a channel is more
general than the typical setting in which every symbol is drawn independently
according to some fixed distribution: our channel explicitly models the depen-
dence between symbols common in typical real-world communications.

Let C be a channel. We let Ch denote the marginal channel distribution on
a single document from D conditioned on the history h of already drawn docu-
ments; we let Clh denote the marginal distribution on sequences of l documents
conditioned on h. When we write “sample x← Ch” we mean that a single docu-
ment should be returned according to the distribution conditioned on h. We use
CA→B,h to denote the distribution on the communication from party A to party
B.

We will require that a channel satisfy a minimum entropy constraint for all
histories. Specifically, we require that there exist constants L > 0, b > 0, α > 0
such that for all h ∈ DL, either PrC [h] = 0 or H∞(Cbh) ≥ α. If a channel does
not satisfy this property, then it is possible for Alice to drive the information
content of her communications to 0, so this is a reasonable requirement. We
say that a channel satisfying this condition is L-informative, and if a channel
is L-informative for all L > 0, we say it is always informative. Note that this
definition implies an additive-like property of minimum entropy for marginal
distributions, specifically, H∞(Clbh ) ≥ lα . For ease of exposition, we will assume
channels are always informative in the remainder of this paper; however, our
theorems easily extend to situations in which a channel is L-informative.

In our setting, each ordered pair of parties (P,Q) will have their own channel
distribution CP→Q. In these cases, we assume that among the legitimate parties,
only party A has oracle access to marginal channel distributions CA→B,h for every
other party B and history h. On the other hand, we will allow the adversary
oracle access to marginal channel distributions CP→Q,h for every pair P,Q and
every history h. This allows the adversary to learn as much as possible about
any channel distribution but does not require any legitimate participant to know
the distribution on communications from any other participant. We will assume
that each party knows the history of communications it has sent and received
from every other participant. We will also assume that cryptographic primitives
remain secure with respect to oracles which draw from the marginal channel
distributions CA→B,h.



4 Pseudorandom Public-Key Encryption

We will require public-key encryption schemes that are secure in a slightly non-
standard model, which we will denote by IND$-CPA in contrast to the more stan-
dard IND-CPA. The main difference is that security against IND$-CPA requires
the output of the encryption algorithm to be indistinguishable from uniformly
chosen random bits. Let E = (G,E,D) be a probabilistic public-key encryption
scheme, where E : PK × R × P → C. Consider a game in which an adversary
A is given a public key drawn from G(1k) and chooses a message mA. Then A
is given either EPK(mA) or a uniformly chosen string of the same length. Let
A(t, l) be the set of adversaries A which produce a message of length at most
l(k) bits and run for at most t(k) time steps. Define the IND$-CPA advantage of
A against E as

Advcpa
E (A, k) =

∣∣∣Pr
PK

[A(PK,EPK(mA)) = 1]− Pr
PK

[A(PK,U|EPK(mA)|) = 1]
∣∣∣

Define the insecurity of E as InSeccpa
E (t, l, k) = maxA∈A(t,l) {Advcpa

E (A, k)} . E
is (t, l, k, ε)-indistinguishable from random bits under chosen plaintext attack if
InSeccpa

E (t, l, k) ≤ ε(k). E is called indistinguishable from random bits under cho-
sen plaintext attack (IND$-CPA) if for every probabilistic polnyomial-time (PPT)
A, Advcpa

E (A, k) is negligible in k. For completeness, we show how to construct
IND$-CPA public-key encryption schemes from the RSA and Decisional Diffie-
Hellman assumptions. We omit detailed proofs of security for the constructions
below, as they are standard modifications to existing schemes. In the full version
of this paper, we show that much more general assumptions suffice for IND$-CPA
security.

4.1 RSA-based construction

The RSA function EN,e(x) = xe mod N is believed to be a trapdoor one-way
permutation family. The following construction uses Young and Yung’s Prob-
abilistic Bias Removal Method (PBRM) [13] to remove the bias incurred by
selecting an element from Z

∗
N rather than Uk.

Construction 1. (RSA-based Pseudorandom Encryption Scheme)

Procedure Encrypt:
Input: plaintext m; public key N, e
let k = |N |, l = |m|
repeat:

Sample x0 ← Z
∗
N

for i = 1 . . . l do
set bi = xi−1 mod 2
set xi = xei−1 mod N

sample c← U1

until (xl ≤ 2k −N) OR c = 1
if (x1 ≤ 2k −N) and c = 0 set x′ = x
if (x1 ≤ 2k −N) and c = 1 set x′ = 2k − x
Output: x′, b⊕m

Procedure Decrypt:
Input: x′, c; (N, d)
let l = |c|, k = |N |
if (x′ > N) set xl = x′

else set xl = 2k − x′
for i = l . . . 1 do

set xi−1 = xdi mod N
set bi = xi−1 mod 2

Output: c⊕ b



The IND$-CPA security of the scheme follows from the correctness of PBRM and
the fact that the least-significant bit is a hardcore bit for RSA. Notice that the
expected number of repeats in the encryption routine is at most 2.

4.2 DDH-based construction

Let E(·)(·), D(·)(·) denote the encryption and decryption functions of a private-
key encryption scheme satisfying IND$-CPA, keyed by κ-bit keys, and let κ ≤ k/3
(private-key IND$-CPA encryption schemes have appeared in the literature; see,
for instance, [7]). Let Hk be a family of pairwise-independent hash functions
H : {0, 1}k → {0, 1}κ. We let P be a k-bit prime (so 2k−1 < P < 2k), and
let P = rQ + 1 where (r,Q) = 1 and Q is also a prime. Let g generate Z∗P
and ĝ = gr mod P generate the unique subgroup of order Q. The security of
the following scheme follows from the Decisional Diffie-Hellman assumption, the
leftover-hash lemma, and the security of (E,D):

Construction 2. (ElGamal-based random-bits encryption)

Procedure Encrypt:
Input: m ∈ {0, 1}∗; (g, ĝa, P )
Sample H ← Hk
repeat:

Sample b← ZP−1

until (gb mod P ) ≤ 2k−1

set K = H((ĝa)b mod P )
Output: H, gb, EK(m)

Procedure Decrypt:
Input: (H, s, c); private key (a, P,Q)
let r = (P − 1)/Q
set K = H(sra mod P )
Output: DK(c)

The security proof considers two hybrid encryption schemes: H1 replaces the
value (ĝa)b by a random element of the subgroup of order Q, ĝc, and H2 re-
places K by a random draw from {0, 1}κ. Clearly distinguishing H2 from random
bits requires distinguishing some EK(m) from random bits. The Leftover Hash
Lemma gives that the statistical distance between H2 and H1 is at most 2−κ.
Finally, any distinguisher A for H1 from the output of Encrypt with advantage
ε can be used to solve the DDH problem with advantage at least ε/2, by trans-
forming ĝb to B = (ĝb)r̂gβQ, where r̂ is the least integer such that rr̂ = 1 mod Q
and β ← Zr, outputting 0 if B > 2k−1, and otherwise drawing H ← Hk and
running A on ĝa,H||B||EH(ĝc)(m).

5 Public-key Steganography

Definition 1. (Stegosystem) A public-key stegosystem is a triple of probabilis-
tic algorithms S = (SG, SE, SD). SG(1k) generates a key pair (PK,SK) ∈
PK × SK. SE takes a (public) key PK ∈ PK, a string m ∈ {0, 1}∗ (the hid-
dentext), and a message history h. SE also has access to a channel oracle for
some channel C, which can sample from Ch for any h. SE(PK,m, h) returns a
sequence of documents s1, s2, . . . , sl (the stegotext) from the support of Clh. SD



takes a (secret) key SK ∈ SK, a sequence of documents s1, s2, . . . , sl, and a mes-
sage history h, and returns a hiddentext m. Additionally, for every polynomial
p there must exist a negligible µ such that

∀m ∈ {0, 1}p(k) : Pr
(PK,SK)←SG(1k)

[SD(SK,SE(PK,m, h), h) = m] ≥ 1− µ(k)

where the randomization is also over any coin tosses of SE, SD, SG and the
oracle to Ch.

Remarks. We emphasize the terminology: the secret message that Alice wants
to send to Bob is called the hiddentext; documents from the channel are called
covertexts, and documents that are output by SE are called stegotexts. We also
stress that SE need not know the exact probabilities of documents in Ch. This is
important to mention, as it is unreasonable to assume that the probabilities in
Ch are known, whereas anybody communicating can be thought of as an oracle
for the channel distribution Ch.

5.1 Steganographic Secrecy against Chosen Hiddentext Attack

In a chosen hiddentext attack, W is allowed to supply hiddentexts to Alice, in
hopes of detecting whether or not she is using steganography in her communi-
cations with Bob. (Note that a chosen hiddentext attack is the steganographic
equivalent of a chosen plaintext attack against an encryption scheme.)

We will model a warden attacking a stegosystem as an efficient oracle machine
which plays the following game. First, a pair (PK,SK) is drawn from SG(1k)
and W is allowed to access PK and Ch for any history h, to produce a message
mW and a history hW . Then W is given access to a sequence s ∈ D∗, which
is drawn either from SE(PK,mW , hW ) or C|s|h , and continues to access Ch for
any history h (This oracle allows W to learn the covertext distribution on all
communications). Finally W outputs a bit which is a “guess” about whether s
is a stegotext or a covertext.

We define the CHA advantage of W against stegosystem S over channel C
by

Advcha
S,C(W,k) =

∣∣∣Pr[W C(PK, s) = 1]− Pr[W C(PK, C|s|hW ) = 1]
∣∣∣ ,

where the probabilities are taken over (PK,SK) ← SG(1k), (mW , hW ) ←
W C(PK), s ← SE(PK,mW , hW ), the random bits of W and the responses
of the oracle C. Define the insecurity of S over channel C by InSeccha

S,C(t, l, k) =

maxW∈W(t,l)

{
Advcha

S,C(W,k)
}
, where W(t, l) denotes the set of all adversaries

which choose a message of length at most l(k) bits, and run in time at most t(k).
For ease of notation, we will denote W C by W for the remainder of the paper.

Thus, S is secure against chosen-hiddentext attacks if the warden, even given
Bob’s public key, cannot tell whether Alice’s message to Bob encodes any hid-
dentext at all, even one of his choice.



5.2 Chosen-Stegotext Attacks

In a Chosen-Stegotext Attack, Ward is monitoring the communications from
Alice to Bob, trying to detect any hint that the pair are using steganography. In
particular, he not only has some partial knowledge of the messages Alice might
be encoding, he can pretend to be Alice, sending messages (presumably encoding
hiddentexts) to Bob and observing Bob’s reaction to see if Bob is trying to decode
them. Ward can even make small changes to Alice’s messages to see how Bob
reacts to them. If Bob is decoding Alice’s messages, he will output hiddentexts,
whereas otherwise he will have no special reaction, which we signify by the output
⊥. In order to protect against this attack, there must be something Alice knows
that Ward doesn’t. So we extend the definition of a stegosystem to include a
fourth algorithm SSG(1k) which outputs a pair (KV,KS). If Alice wants to
send messages that are protected in this way, she chooses (KV,KS)← SSG(1k)
and publishes KV in the same way that Bob would publish PK. We modify the
encoding algorithm to take KS as an additional argument, and the decoding
algorithm to require KV . (So in a system designed to resist this attack, Bob
must know Alice’s public value KV to decode her messages.)

We formally model a chosen-stegotext attacker as an oracle PPT W which
plays the following game. First, draw (PK,SK) ← SG(1k), and (KV,KS) ←
SSG(1k). Then W is given (PK,KV ) and accesses an oracle, which is either
ST (for StegoText) or CT (for CoverText), and which respond to queries using
these programs: (where φ = {} initially):

ST (b ∈ {enc, dec},m, h)
if(b = enc) then:

Sample s← SE(PK,KS,m, h)
Set φ = φ ∪ {(s, h)}; return s

else if (m,h) ∈ φ return “”
else return SD(SK,KV,m, h)

CT (b ∈ {enc, dec},m, h)
if(b = enc) then:

Sample s← C|SE(PK,KS,m,h)|
h

Set φ = φ ∪ {(s, h)}; return s
else if (m,h) ∈ φ return “”
else return ⊥

Suppose W runs in time t, and makes qe queries of the form (enc, ∗, ∗), totalling
l bits, and qd queries of the form (dec, ∗, ∗). We define W ’s CSA advantage
against S for channel C by

Advcsa
S,C(W,k) =

∣∣Pr[WST (PK,KV ) = 1]− Pr[WCT (PK,KV ) = 1]
∣∣ ,

and the insecurity by InSeccsa
S,C(t, qe, qd, l, k) = maxw∈W(t,qe,qd,l)

{
Advcsa

S,C(W,k)
}

.
Thus, in a chosen-stegotext attack, Ward may ask Alice to encode any (mes-

sage, history) pair of his choosing, as often as he likes, and may query Bob on
any pair (s, h) where s was not a result of an encoding query for history h. Notice
that if Ward can ask Bob to decode any message output by Alice for the same
history it was encoded with, he can detect the use of steganography between Al-
ice and Bob; this is why we do not allow Ward to query Bob on such stegotexts.
This restriction is roughly analogous to the standard restriction that an adaptive
chosen-ciphertext attacker may not query his decryption oracle on the challenge
ciphertext. The use of a secret by the encryptor makes this security condition



roughly analogous to the notion of “attacker-specific” adaptive chosen-ciphertext
attack from [10], in which an attacker who tries to access the decryption of a
message he didn’t send is given the response ⊥. This “attacker-specific” notion
of security is stronger than CCA-1 security but weaker than the now-standard
CCA-2 security [10]. Note, however, that chosen-stegotext security protects both
the sender and the receiver.

5.3 Relationships among notions

We formalize the notions of steganographic secrecy as follows.

Definition 2. A stegosystem S is called steganographically secret for channel
C against attack model atk (SS-ATK) if for every PPT A, Advatk

S,C(A, k) is neg-
ligible in k.

A natural question is: what are the relationships between these security notions
and the standard notions from public-key cryptography? In this section we give
the key relationships between these notions.

SS-CHA is strictly stronger than IND-CPA. By a standard argument based
on the triangle inequality, if A can distinguish SE(m0) from SE(m1) with ad-
vantage ε, he must be able to distinguish one of these from Ch with advantage at
least ε/2. Thus every SS-CHA secure stegosystem must also be IND-CPA secure.
On the other hand, let S be any IND-CPA secure cryptosystem. Then S′ which
prepends a known, fixed sequence of documents m ∈ Dk to the output of S is
still IND-CPA secure but has an SS-CHA distinguisher with advantage 1 − o(1)
for any L-informative channel.
SS-CSA is strictly stronger than SS-CHA. Suppose that we take a SS-CSA-
secure stegosystem S = (SG, SSG, SE, SD) and define SE′(PK,m, h) to draw a
random (KV,KS) ← SSG(1k) and return SE(PK,KS,m, h). Then any CHA
warden against SE′ is also a single-query CSA warden against S. (However,
whether there is a corresponding modification SD′ so that S′ is sound may
be dependent on the construction; such modification is possible for our con-
struction.) On the other hand, SS-CSA is strictly stronger than SS-CHA: if
(SG, SE, SD) is SS-CHA secure, then so is S′ = (SG, SE′, SD′) where SE′(m,h)
draws s ← SE(m,h) and s′ ← C(h,s), and returns (s, s′), while SD′((s, s′), h)
returns SD(s, h). But S′ is trivially vulnerable to a chosen-stegotext attack
with advantage 1: query (enc,m, h) to get (s, s′), draw s′′ ← C(h,s) and query
(dec, (s, s′′), h). If the result is not ⊥, return 1, otherwise return 0.

6 Constructions

Most of our protocols build on the following construction, a generalization of
Construction 2 in [7] and similar to a protocol given by Cachin [4]. Let f : D →
{0, 1} be a public function (recall that C is a distribution on sequences of elements
of D). If f is is perfectly unbiased on Ch for all h, then the following encoding



procedure, on uniformly distributed l-bit input c, produces output distributed
exactly according to Clh:

Construction 3. (Basic encoding/decoding routines)

Procedure Basic Encode:
Input: c1, . . . , cl ∈ {0, 1}l, h ∈ D∗, k
for i = 1 . . . l do

Let j = 0
repeat:

sample si ← Ch, increment j
until f(si) = ci OR (j > k)
set h = h||si

Output: s1, s2, . . . , sl

Procedure Basic Decode:
Input: Stegotext s1, s2, . . . , sl
for i = 1 . . . l do

set ci = f(si)
set c = c1||c2|| · · · ||cl.
Output: c

Note that for infinitely many Ch there is no perfectly unbiased function f . In
appendix B, we prove Proposition 1, which together with Proposition 2, justifies
our use of unbiased functions. The proof for Proposition 2 is straightforward and
is omitted from the paper.

Proposition 1. Any channel C which is always informative can be compiled
into a channel C(k) which admits an efficiently computable function f such that
for any polynomial-length sequence h1, . . . , hn all satisfying PrC [hi] 6= 0, the bias∣∣∣Pr[f(C(k)

hi
) = 1]− 1

2

∣∣∣ is negligible in k for all 1 ≤ i ≤ n.

Proposition 2. If f is ε-biased on Ch for all h, then for any k and s1, s2, . . . , sl:

| Pr
c←Ul

[Basic Encode(c, h, k) = s1, s2, . . . , sl]− Pr
s←Clh

[s = s1, s2, . . . , sl]| ≤ εl .

Using the previous two propositions, we will show that public-key steganography
is possible in any channel that is always informative. We note that procedure
Basic Encode has a small probability of failure: it is possible to have f(si) 6= ci.
This probability of failure, however, is negligible in k.

6.1 Chosen Hiddentext security

Let EPK(·) and DSK(·) denote the encryption and decryption algorithms for a
public-key cryptosystem E which is indistinguishable from random bits under
chosen plaintext attack (IND$-CPA). Let ` be the expansion function of E , i.e.,
|EPK(m)| = `(|m|). The following procedures allow encoding and decoding of
messages in a manner which is steganographically secret under chosen hiddentext
attack for the channel distribution C:

Construction 4. (Chosen Hiddentext Security)

Procedure CHA Encode:
Input: key PK, m ∈ {0, 1}∗, h ∈ D∗
Let c = EPK(m)
Output: Basic Encode(c, h, k)

Procedure CHA Decode:
Input: secret key SK, s ∈ Dl

Let c = Basic Decode(s)
Output: DSK(c)



Lemma 1. Assume f is ε-biased on Ch for all h. For any warden W ∈ W(t, l),
there is an IND$-CPA adversary A with Advcha

CHA,C(W,k) ≤ Advcpa
E (A, k) + `(l)ε.

The running time of A is at most t + O(kl) (k is the security parameter of
(PK,SK) and is used as a bound for Basic Encode), and A submits a plaintext
of length at most l.

Proof. We are given a program W for distinguishing between the output of Con-
struction 4 and the ordinary traffic of the channel, and an oracle for sampling
blocks from that channel. We construct a program A which plays the IND$-CPA
game: distinguishing EPK(mW ) from U`(l). A(PK) simply runs W (PK), to get
(mW , hW ) and returns mW for mA. Then A(PK, c) uses the oracle Ch to com-
pute s = Basic Encode(c, hW , k), and returns the output of W (PK, s). Consider
the cases for A’s input. If c← EPK(mW ), then s← CHA Encode(PK,mW , hW );
so we have Pr[A(PK,EPK(mA)) = 1] = Pr[W (PK,SE(PK,mW , hW )) = 1].
If c ← U`, then s is distributed identically to Basic Encode(U`, hW , k); thus
|Pr[A(PK,U`) = 1]− Pr[W (PK,C`hW ) = 1]| ≤ `ε by Proposition 2.

Combining the cases, we have Advcha
CHA,C(W,k) ≤ |Pr[A(PK,EPK(mA)) =

1]− Pr[A(PK,U`) = 1]|+ `ε = Advcpa
E (A, k) + `(l)ε, as claimed.

Theorem 1. If f is ε-biased on Ch for all h, then

InSeccha
CHA,C(t, l, k) ≤ InSeccpa

E (t+O(kl), l, k) + `(l)ε .

6.2 Chosen-Stegotext Security

We will construct a stegosystem which is SS-CSA-secure in the Random Oracle
model, for any channel which is efficiently sampleable: that is, for which there
exists a PPT C such that for all h, C(h;Uk) and Ch are indistinguishable. We
assume that πA, πB are elements of trapdoor one-way permutation family Πk,
where Alice knows π−1

A and Bob knows π−1
B . In addition, we assume all parties

have access to random oracles F : {0, 1}∗ → {0, 1}k, G : {0, 1}∗ → {0, 1}k,
H1 : {0, 1}k → {0, 1}∗, and H2 : {0, 1}∗ → {0, 1}k. The following construction
slightly modifies techniques from [3], using the random oracles H1 and H2 with
πB to construct a pseudorandom non-malleable encryption scheme and the oracle
F in conjunction with πA to construct a strongly unforgeable signature scheme.

Construction 5. (Chosen Stegotext Security)

Procedure UEncode:

Input: c ∈ {0, 1}l, r, h
for i = 1 . . . l do

Let j = 0
repeat:

set rj = G(h, r, c, j)
set si = C(h; rj)
increment j

until f(si) = ci ∨ (j > k)
set h = (h, si)

Output: s1, s2, . . . , sl

Procedure CSA Encode:
Input: m, h, π−1

A , πB
Choose r ← Uk
Let σ = π−1

A (F (r,m, h))
Let e = H1(r)⊕ (m,σ)
Let τ = H2(r,m, h)
Let y = πB(r)
Let c = y||e||τ
Output: UEncodeG(c, r, h)

Procedure CSA Decode:
Input: s, h, πA, π−1

B

Let c = Basic Decode(s)
Parse c as y||e||τ .
Set r = π−1

B (y).
Let (m,σ) = e⊕H1(r)
If s 6= UEncodeG(c, r, h)∨
τ 6= H2(r,m, h)∨
πA(σ) 6= F (r,m, h)
return ⊥

Output: m



Theorem 2. If f is ε-biased for C, then

InSeccsa
CSA,C(t, q, l, k) ≤ (2qe + qF )InSecow

π (t′, k) + (l + 3qek)ε+ (q2
e + 2qd)/2k ,

where t′ ≤ t + (qG + qF + qH)(qe + qd)Tπ + k(l + 3qek)TC, Tπ is the time to
evaluate members of π, and TC is the running time of C.

Intuitively, this stegosystem is secure because the encryption scheme em-
ployed is non-malleable, the signature scheme is strongly unforgeable, and each
triple of hiddentext, history, and random-bits has a unique valid stegotext, which
contains a signature on (m,h, r). Thus any adversary making a valid decoding
query which was not the result of an encoding query can be used to forge a
signature for Alice — that is, invert the one-way permutation πA. The full proof
is omitted for space considerations; see Appendix A for details.

7 Steganographic Key Exchange

Consider the original motivating scenario: Alice and Bob are prisoners, in an
environment controlled by Ward, who wishes to prevent them from exchanging
messages he can’t read. Then the best strategy for Ward, once he has read
the preceding sections, is to ban Alice and Bob from publishing public keys.
In this case, a natural alternative to public-key steganography is steganographic
key exchange: Alice and Bob exchange a sequence of messages, indistinguishable
from normal communication traffic, and at the end of this sequence they are
able to compute a shared key. So long as this key is indistinguishable from a
random key to the warden, Alice and Bob can proceed to use their shared key
in a secret-key stegosystem. In this section, we will formalize this notion.

Definition 3. (Steganographic Key Exchange Protocol) A steganographic key
exchange protocol, or SKEP, is a quadruple of efficient probabilistic algorithms
SKE = (SEA, SEB , SDA, SDB). SEA and SEB take as input a security pa-
rameter 1k and a string of random bits, and output a sequence of documents
of length l(k); SDA and SDB take as input a security parameter, a string of
random bits, and a sequence of documents of length l(k), and output an element
of the key space K. Additionally, these algorithms satisfy the property that there
exists a negligible function µ(k) satisfying:

Pr
rA,rB

[SDA(1k, rA, SEB(1k, rB)) = SDB(1k, rB , SEA(1k, rA))] ≥ 1− µ(k) .

We call the output of SDA(1k, rA, SEB(1k, rB)) the result of the protocol, we
denote this result by SKE(rA, rB), and we denote by TrA,rB (for transcript) the
pair (SEA(1k, rA), SEB(1k, rB)).

Alice and Bob perform a key exchange using SKE by sampling private ran-
domness rA, rB , asynchronously sending SEA(1k, rA) and SEB(1k, rB) to each
other, and using the result of the protocol as a key. Notice that in this definition



a SKEP must be an asynchronous single-round scheme, ruling out multi-round
key exchange protocols. This is for ease of exposition only.

Let W be a warden running in time t. We define W ’s SKE advantage against
SKE on channels C = (CA→B , CB→A) with security parameter k by:

Advske
SKE ,C(W,k) = |Pr[W (TrA,rB , SKE(rA, rB)) = 1]− Pr[W ((σA, σB),K) = 1]|

where σA ← Cl(k)
A→B,hA , σB ← C

l(k)
B→A,hB , and K ← K. We remark that, as in

our other definitions, W also has access to channel oracles CA→B,h and CB→A,h.
Let W(t) denote the set of all wardens running in time t. The SKE insecu-
rity of SKE on C with security parameter k is given by InSecske

SKE ,C(t, k) =

maxW∈W(t)

{
Advske

SKE ,C(W,k)
}
.

Definition 4. (Secure Steganographic Key Exchange) A SKEP SKE is said to
be (t, ε)-secure for channels CA→B and CB→A if InSecske

SKE (t, k) ≤ ε(k). SKE
is said to be secure if for all polynomials p, SKE is (p(k), ε(k))-secure for some
negligible function ε.

Construction. The idea behind behind the construction for steganographic key
exchange is simple: let g generate Z∗P , let Q be a large prime with P = rQ + 1
and r coprime to Q, and let ĝ = gr generate the subgroup of order Q. Alice
picks random values a ∈ ZP−1 uniformly at random until she finds one such
that ga mod P has its most significant bit (MSB) set to 0 (so that ga mod P
is uniformly distributed in the set of bit strings of length |P | − 1). She then uses
Basic Encode to send all the bits of ga mod P except for the MSB (which is
zero anyway). Bob does the same and sends all the bits of gb mod P except the
most significant one (which is zero anyway) using Basic Encode. Bob and Alice
then perform Basic Decode and agree on the key value ĝab:

Construction 6. (Steganographic Key Exchange)

Procedure SKE EncodeA:
Input: (P,Q, h, g)
repeat:

sample a← U(ZP−1)
until ga mod P < 2k−1

Let ca = ga mod 2k−1

Output: Basic Encode(ca, h, k)

Procedure SKE DecodeA:
Input: s ∈ Dl, exponent a
Let cb = Basic Decode(s)
Output: crab mod P = ĝab

(SKE EncodeB and SKE DecodeB are analogous)

Lemma 2. Let f be ε-biased on CA→B,hA and CB→A,hB for all hA, hB. Then for
any warden W ∈ W(t), we can construct a DDH adversary A where Advddh

ĝ,P,Q(A)
≥ 1

4Advske
SKE(W,k)− ε|P |. The running time of A is at most t+O(k|P |).

Proof. (Sketch) Define r̂ to be the least element such that rr̂ = 1 mod Q. The
algorithm A works as follows. Given elements (ĝa, ĝb, ĝc) of the subgroup of



order Q, we uniformly choose elements ka, kb ← Zr, and set ca = (ĝa)r̂gkaQ, and
cb = (ĝb)r̂gkbQ. If MSB(ca) = MSB(cb) = 0, we then return
W (Basic Encode(ca, hA, k), Basic Encode(cb, hB , k), ĝc), otherwise we return 0.
Notice that the key computed by SKE Decode would be crba =

(
(ĝa)r̂gkaQ

)rb =
(ĝab)rr̂grQkab = ĝab.

The decrease in W ’s advantage comes from the fact that A excludes some
elements of Z∗P by sampling to get the MSB = 0, but we never exclude more than
1/2 of the cases for either ca or cb. The ε|P | difference follows from Proposition 2
and the fact that ca,cb are uniformly distributed on U|P |−1.

Theorem 3. If f is ε-biased on CA→B,hA and CB→A,hB for all hA, hB, then

InSecske
SKE,C(t, k) ≤ 4ε|P |+ 4InSecddh

ĝ,P,Q(t+O(k|P |))) .

8 Discussion and Open Problems

Need for a PKI. A potential stumbling block for public-key steganography
is the need for a system which allows Alice and Bob to publish public keys for
encryption and signatures without raising suspicion. The most likely source of
a resolution to this issue is the existence of a global public-key infrastructure
which publishes such public keys for every party in any case. In many cases
(those modeled by the chosen hiddentext attack), however, it may be Alice who
is trying to avoid suspicion while it is Bob who publishes the public key. For
example Alice may be a government employee who wishes to leak a story and
Bob a newspaper reporter, who may publish his public key daily.

In case Alice and Bob are both trying to avoid suspicion, it may be necessary
to perform SKE instead. Even in this case, there is a need for a one-bit “secret
channel” which alerts Bob to the fact that Alice is attempting key exchange.
However, as long as Bob and Alice assume key exchange is occurring, it is easy
to check at completion that it has indeed occurred by using Basic Encode to
exchange the messages FK(A, hA), FK(B, hB) for F a pseudorandom function.

Stegosystems with backdoors. Suppose we wish to design steganography
software which will be used as a black box by many users. Then as long as there
is some entropy in the stegosystem of choice, we can use public-key steganog-
raphy to implement a backdoor into the stegosystem which is provably unde-
tectable via input/output behavior, by using the encoding routine as an oracle
for Construction 4, with a fixed hiddentext (1k, for instance). This will make it
possible, with enough intercepted messages, to detect the use of the steganogra-
phy software. If a total break is desired and the software implements private-key
steganography, we can replace 1k by the user’s private key.

Relationship to PKC: Complexity-theoretic implications. In contrast
to the private-key results of [7], we are not aware of a general result showing
that the existence of any semantically secure public-key cryptosystem implies



the existence of secure public-key steganography. However, our results allow
construction of provably secure public-key steganography based on the security
of any popular public-key cryptosystem.
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A Proof of Chosen-Stegotext Security

We define the following sequence of hybrid oracle distributions:

1. P0(b,m, h) = CTcsa, the covertext oracle.
2. P1(b,m, h) responds to dec queries as in P0, and responds to enc queries us-

ing CSA Encode but with calls to UEncodeG replaced by calls to Basic Encode.
3. P2(b,m, h) responds to dec queries as in P1, and responds to enc queries

using CSA Encode.
4. P3(b,m, h) = STcsa, the stegotext oracle.

We are given a CSA attacker W ∈ W(t, qe, qd, qF , qH , qH1 , qH2 , l) and wish to
bound his advantage. Notice that Advcsa

CSA,C(W,k) ≤ |Pr[WP0 = 1]−Pr[WP1 =
1]| + |Pr[WP1 = 1] − Pr[WP2 = 1]| + |Pr[WP2 = 1] − Pr[WP3 = 1]| (for ease
of notation, we omit the arguments πA, πB to W ). Hence, we can bound the
advantage of W by the sum of its advantages in distinguishing the successive
hybrids. For hybrids P,Q we let AdvP,Q(W,k) = |Pr[WP = 1]− Pr[WQ = 1]|.

Lemma 3. AdvP0,P1(W,k) ≤ qeInSecow
Π (t′, k) + 2−k(q2

e/2− qe/2) + (l+ 3qek)ε

Proof. Assume WLOG that Pr[WP1 = 1] > Pr[WP0 = 1]. Let Er denote the
event that, when W queries P1, the random value r never repeats, and let Eq
denote the event that W never makes random oracle queries of the form H1(r)
or H2(r, ∗, ∗) for an r used by CSA Encode, and let E ≡ Er ∧ Eq.

Pr[WP1 = 1]− Pr[WP0 = 1] = Pr[WP1 = 1|E](1− Pr[E]) + Pr[WP1 = 1|E] Pr[E]

− Pr[WP0 = 1]

= Pr[E]
(

Pr[WP1 = 1|E]− Pr[WP1 = 1|E]
)

+
(

Pr[WP1 = 1|E]− Pr[WP0 = 1]
)

≤ Pr[E] + (l + 3qek)ε

≤ Pr[Er] + Pr[Eq] + (l + 3qek)ε

≤ 2−k
qe(qe − 1)

2
+ Pr[Eq] + (l + 3qek)ε

because if r never repeats and W never queries H1(r) or H2(r, ∗, ∗) for some r
used by CSA Encode, then W cannot distinguish between the ciphertexts passed
to Basic Encode and random bit strings.

It remains to bound Pr[Eq]. Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we
construct a one-way permutation adversary A against πB which is given a value
πB(x) and uses W in an attempt to find x, so that A succeeds with probability at
least (1/qe) Pr[Eq]. A picks (πA, π−1

A ) from Πk and i uniformly from {1, . . . , qe},
and then runs W answering all its oracle queries as follows:



– enc queries are answered as follows: on query j 6= i, respond using CSA Encode
but with calls to UEncodeG replaced by calls to Basic Encode. On the
i-th query respond with s = Basic Encode(πB(x)||e1||τ1, h) where e1 =
h1 ⊕ (m,σ1) and h1, σ1, τ1 are chosen uniformly at random from the set of
all strings of the appropriate length (|e1| = |m| + k and |τ1| = k), and set
φ = φ ∪ {(s, h)}.

– dec queries are answered using CTcsa.
– Queries to G,F,H1 and H2 are answered in the standard manner: if the

query has been made before, answer with the same answer, and if the query
has not been made before, answer with a uniformly chosen string of the
appropriate length. If a query contains a value r for which πB(r) = πB(x),
halt the simulation and output r.

It should be clear that Pr[A(πB(x)) = x] ≥ 1
qe

(Pr[Eq]).

Lemma 4. AdvP1,P2(W,k) ≤ qeInSecow
Π (t′, k) + 2−k(q2

e/2− qe/2)

Proof. Assume WLOG that Pr[WP2 = 1] > Pr[WP1 = 1]. Denote by Er the
event that, when answering queries for W , the random value r of CSA Encode
never repeats, and by Eq the event that W never queries G(∗, r, πB(r)||∗, ∗) for
some r used by CSA Encode, and let E ≡ Er ∧ Eq. Then:

Pr[WP2 = 1]− Pr[WP1 = 1] =
(
Pr[WP2 = 1|E] Pr[E] + Pr[WP2 = 1|E] Pr[E]

)
− Pr[WP1 = 1|E] Pr[E]− Pr[WP1 = 1|E] Pr[E]

= Pr[E]
(
Pr[WP2 = 1|E]− Pr[WP1 = 1|E]

)
≤ Pr[E]

≤2−k
qe(qe − 1)

2
+ Pr[Eq]

Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we construct a one-way permutation
adversary A against πB which is given a value πB(x) and uses W in an attempt
to find x. A picks (πA, π−1

A ) from Πk and i uniformly from {1, . . . , qE}, and then
runs W answering all its oracle queries as follows:

– enc queries are answered as follows: on query j 6= i, respond using CSA Encode.
On the i-th query respond with s = UEncodeG(πB(x)||e1||τ1, r1, h) where
e1 = h1⊕ (m,σ1) and h1, σ1, τ1, r1 are chosen uniformly at random from the
set of all strings of the appropriate length (|e1| = |m|+ k and |τ1| = k), and
set φ = φ ∪ {(s, h)}.

– dec queries are answered using CTcsa.
– Queries to G,F,H1 and H2 are answered in the standard manner: if the

query has been made before, answer with the same answer, and if the query
has not been made before, answer with a uniformly chosen string of the
appropriate length. If a query contains a value r for which πB(r) = πB(x),
halt the simulation and output r.

It should be clear that Pr[A(πB(x)) = x] ≥ 1
qe

(Pr[Eq]).



Lemma 5. AdvP2,P3(W,k) ≤ qF InSecow
Π (t′, k) + qd/2k−1 + qe/2k

Proof. Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we construct a one-way per-
mutation adversary A against πA which is given a value πA(x) and uses W
in an attempt to find x. A chooses (πB , π−1

B ) from Πk and i uniformly from
{1, . . . , qF }, and then runs W answering all its oracle queries as follows:

– enc queries are answered using CSA Encode except that σ is chosen at random
and F (r,m, h) is set to be πA(σ). If F (r,m, h) was already set, fail the
simulation.

– dec queries are answered using CSA Decode, with the additional constraint
that we reject any stegotext for which there hasn’t been an oracle query of
the form H2(r,m, h) or F (r,m, h).

– Queries to G,F,H1 and H2 are answered in the standard manner (if the
query has been made before, answer with the same answer, and if the query
has not been made before, answer with a uniformly chosen string of the
appropriate length) except that the i-th query to F is answered using πA(x).

A then searches all the queries that W made to the decryption oracle for a value
σ such that πA(σ) = πA(x). This completes the description of A.
Notice that the simulation has a small chance of failure: at most qe/2k. For
the rest of the proof, we assume that the simulation doesn’t fail. Let E be the
event that W makes a decryption query that is rejected in the simulation, but
would not have been rejected by the standard CSA Decode. It is easy to see
that Pr[E] ≤ qd/2k−1. Since the only way to differentiate P3 from P2 is by
making a decryption query that P3 accepts but P2 rejects, and, conditioned
on E, this can only happen by inverting πA on some F (r,m, h), we have that:
AdvP2,P3(W,k) ≤ qF InSecow

Π (t′, k) + qd/2k−1 + qe/2k.

B Negligibly biased functions for any channel

Let l(k) = ω(log k). Then the channel C(k) is simply a distribution on sequences
of documents which are elements of Dl(k) and the marginal distributions C(k)

h

are simply Cl(k)
h . The minimum entropy requirement from Section 3 then gives

us that for any h which has non-zero probability, H∞(C(k)
h ) = ω(log k).

Let h1, h2, ..., hm be any sequence of histories which all have non-zero proba-
bility under C(k) and let f : {0, 1}m(k)×D×{0, 1} be a universal hash function.
Let Y, Z ← Um(k), B ← Um, and Di ← C(k)

hi
. Let L(k) = miniH∞(Di), and note

that L(k) = ω(log k). Then the “Leftover Hash Lemma” (see, e.g., [6]) implies
that

∆(〈Y, fY (D1), ..., fY (Dm)〉, 〈Y,B〉) ≤ m2−L(k)/2+1 ,

where ∆(X,Y ) = 1
2

∑
x |Pr[X = x]−Pr[Y = x]| is the statistical distance, from

which it is immediate that if we choose Y ← Um(k) once and publicly, then for all
1 ≤ i ≤ m, fY will have negligible bias for Chi except with negligible probability.


