
Optimal Communication Complexity of Generic

Multicast Key Distribution?

Daniele Micciancio1 and Saurabh Panjwani1

University of California, San Diego
9500 Gilman Drive, Mail Code 0114,

La Jolla, CA 92093, USA
{daniele, panjwani}@cs.ucsd.edu

Abstract. We prove a tight lower bound for generic protocols for secure
multicast key distribution where the messages sent by the group manager
for rekeying the group are obtained by arbitrarily nested application
of a symmetric-key encryption scheme, with random or pseudorandom
keys. Our lower bound shows that the amortized cost of updating the
group key for a secure multicast protocol (measured as the number of
messages transmitted per membership change) is log2(n) + o(1). This
lower bound matches (up to a small additive constant) the upper bound
of Canetti, Garay, Itkis, Micciancio, Naor and Pinkas (Infocomm 1999),
and is essentially optimal.

Keywords: Multicast, Key Distribution, Lower Bounds.

1 Introduction

Broadcast and multicast are communication primitives of fundamental impor-
tance for many emerging internet (or more generally, network) applications, like
teleconferencing, pay TV, on-line gaming, electronic news delivery, etc. Roughly
speaking, broadcast allows data to be (simultaneously) delivered to all nodes in a
network at a much smaller cost (in terms of network resources) than transmitting
it individually to each intended recipient, and it is essential for the scalability of
the applications to groups of medium and large size. Multicast achieves a similar
goal, but with an arbitrary (and, often, dynamically changing) set of recipients
that does not necessarily include all the nodes in the network. From a security
point of view, broadcast and multicast raise many new and challenging issues
that are not directly addressed by conventional (point-to-point) cryptographic
techniques. (See [3] for a survey.)

? This material is based upon work supported by the National Science Foundation
under Grant CCR-0313241 and a Sloan Research Fellowship. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

Security properties. As in point-to-point communication (unicast), the two main
security concerns are secrecy and authenticity. In this paper we concentrate on
the secrecy property, i.e., making sure that only group members can receive
the transmitted data (See Sect. 3 for a precise definition of our communica-
tion and security model). Two distinct models have been considered within the
cryptographic community to study secrecy properties in broadcast and multicast
scenarios. One, called broadcast encryption, is motivated mostly by pay TV and
similar applications where an information provider communicates with a large
(and highly dynamic) set of low-end receivers (e.g., set-top boxes). The other,
usually called multicast encryption or multicast key distribution, is more closely
related to internet applications, where a dynamically changing, but relatively
stable, group of users wants to broadcast messages within the group, while keep-
ing the content of the messages hidden from users that do not currently belong
to the group. This is the model we study in this paper, and we refer the reader
to Sect. 2 for a brief discussion of related work, including broadcast encryption
as well as other security properties like authenticity.

In unicast, secrecy is easily achieved by establishing a secret key between
the two communicating parties, who, in turn, use the key to encrypt all com-
munication using a conventional (symmetric-key) encryption scheme. A similar
approach may be used for multicast as well: once a secret key (common to all
group members) is established, secrecy can be achieved by encrypting all com-
munication under the common key. However, in the presence of a dynamically
changing group, establishing a common secret key can be quite an onerous task:
each time a user leaves the group (voluntarily or not), a new group key needs to
be established in order to protect future communication. We consider a setting
where a single (physical or logical) entity (called the group center) has authority
over deciding group membership and is in charge of group key distribution. The
problem is how the group center can securely communicate a new key to all the
remaining group members, after one of them leaves the group, in such a way
that the evicted user cannot recover the new key. Since the old group key can
no longer be used to secure communication, communicating a new key seem-
ingly requires unicasting the new key individually to all group members (e.g., as
advocated in [10, 9]), but this is clearly not a scalable solution as it would lose
essentially all the potential efficiency benefits of using a multicast channel. The
now standard approach to this problem, suggested in [16, 15], is to maintain not
only a group key, known to all group members, but also a collection of auxil-
iary keys known to selected subsets of members that can be used to efficiently
communicate to subsets of the group when the group membership changes. The
solution described in [16, 15] requires the transmission of 2 log2 n messages1 each
time a user leaves and another one joins the group, where n is the size of the

1 We measure the communication complexity in basic messages, where each message
is a fixed size packet of sufficiently large size to allow for the transmission of a single
(possibly encrypted) key.

group2. Although this is exponentially more efficient than the trivial solution
requiring n (unicast) transmissions, it would be desirable to have even more
efficient solutions with smaller communication complexity. In [3] an improved
solution is given, where the number of transmissions is reduced by a factor of 2,
but remains logarithmic in the number of group members.

Previous lower bounds. Our inability to find even better solutions to the multi-
cast key distribution problem has prompted many researchers to explore lower
bounds, showing that no such improvement is indeed possible, under reason-
able assumptions about the protocol. The first non-trivial communication lower
bound for multicast security was proved in [4] for a restricted class of protocols,
namely protocols where the group members have a bounded amount of memory,
or the key distribution scheme has some special “structure preserving” property.
A different, and seemingly optimal, lower bound, for a more general class of pro-
tocols without memory or structure restrictions was subsequently proved in [14],
where it was shown that any secure multicast key distribution protocol (within
a certain class) can be forced to transmit at least 3 log3 n messages for every
group update operation (averaged over a long sequence of update operations).
[14] also suggested a simple variant of the protocol of [16, 15] (basically, replac-
ing binary trees with ternary ones) meeting their lower bound. This apparently
closed the gap between upper and lower bounds for multicast key distribution
protocols, putting a final word to our search of an optimal solution. The class
of protocols considered in [14] restricts the group center to transmit messages of
the form Ek1

(k2) consisting of a key k2 encrypted with another key k1. Although
not explicitly stated in [14], it is important to note that more general protocols
are indeed possible and have also been considered in practice. For example, two
relatively standard, and eminently practical, techniques very common in cryp-
tography are the following:

– The use of a pseudorandom generator, say G, to expand a single key k0 into
two or more (seemingly random and independent) keys (k1, k2, . . . , km) =
G(k0). In principle, this allows to transmit multiple keys at the price of
one, by sending the seed k0, instead of transmitting the pseudorandom keys
individually.

– The use of double (or multiply iterated) encryption, where more encryption
functions are applied in a sequence to the same message before transmission.
For example, consider a group of four users u1, u2, u3, u4, where each user
ui knows a private key ki. Assume two auxiliary keys k and k′ are known
to groups u1, u2, u3 and u2, u3, u4 respectively. Then a new key k′′ can be
sent to users u2 and u3 by transmitting a single (doubly encrypted) message
Ek(Ek′ (k′′)). Notice that using single encryption, as in the model considered

2 For simplicity, we consider groups of fixed size in analyzing multicast key distribution
i.e. we assume that each time a user leaves, another one is immediately added. So
the size of the group is always equal to n. We refer to each leave/join operation as a
“group update operation”. See Sect. 6 for a discussion on variable-sized groups with
separate leave and join operations.

in [4, 14], communicating to the same group of users requires the transmission
of two messages Ek2

(k′′) and Ek3
(k′′).

The inadequacy of the model used by previous lower bounds [4, 14] is clearly
demonstrated by known (and practical) protocols that “beat” the lower bound
proved in [14]. For example, [3] uses pseudorandom generators to improve the
communication complexity of [16, 15] by a factor of 2, resulting in a secure key
distribution protocol where all update operations can be performed by transmit-
ting log2(n) messages, which is strictly smaller than the 3 log3(n) ≈ 1.89 log2(n)
lower bound proved in [14]. This observation opens up again the possibility of
further improving the communication complexity of multicast key distribution,
or proving more satisfactory lower bounds for more general classes of protocols.

Our contribution. In this paper, we consider generic protocols for multicast key
distribution that make arbitrary use of pseudorandom generators and encryption
algorithms, where both techniques can be mixed and iteratively applied multiple
times in arbitrary ways. In our model, keys can be either freshly generated
(i.e. are purely random) or produced by applying a pseudorandom generator
(polynomially many times) on freshly generated keys. Messages sent out by the
group center for rekeying the group are composed by encrypting keys iteratively
using different (random or pseudorandom) keys for encrytion at each iteration
(See Sect. 3 for a complete description of our model).

The lower bound we prove in this paper on multicast key distribution pro-
tocols matches the upper bound of [3] up to a small additive term. We demon-
strate that in any protocol where the group center broadcasts arbitrary expres-
sions built according to our formal logic for messages, the center must transmit
log2(n) + o(1) messages per group update operation in the worst case (here, n
is the size of the group and the number of messages per update operation is
measured by amortizing over an infinite sequence of such operations). In other
words, we demonstrate that the use of pseudorandom generators suggested in
[3] is essentially optimal, and that even a combined use of iterated encryption
does not substantially help to improve the worst-case communication complexity
below log2(n) messages per update.

Organization. In Sect. 2 we briefly review related work. In Sect. 3 we give a
detailed description of the model used to prove our lower bound. The actual
lower bound is proved in Sects. 4 and 5. Section 6 concludes the paper with a
discussion on possible extensions to our model.

2 Related Work

Previous work on secure communication in broadcast and multicast scenarios is
based on two distinct formulations. The first one, often referred to as broadcast
encryption, has received much attention from the cryptographic community (e.g.,
[6, 11].) In this model, as originally introduced by Fiat and Naor [6], receivers
are stateless, in the sense that they receive a set of keys at the very beginning

of the protocol, and they never update their state during protocol execution.
However, broadcast encryption schemes are typically secure only against coali-
tions of bounded size. An essentially optimal lower bound on the communication
complexity of broadcast encryption (as a function of the amount of key storage
allowed per user) was given by Luby and Staddon in [11],

In this paper we consider a different scenario more closely related to internet
applications, where the users maintain state, the group of recipients changes over
time, and all users in the group may broadcast information to the other group
members. As discussed in the following section, this problem is equivalent to
the key distribution problem, where a common secret key is established among
all current group members, and updated over time as the group membership
changes. This problem, usually called multicast encryption or multicast key dis-
tribution, is the one studied for example in [16, 15, 4, 14] already discussed in the
introduction.

Besides secrecy, other important security issues are authenticity, i.e., making
sure that only authorized users can transmit messages and these messages can-
not be altered during transmission, independence, i.e., emulating a synchronous
network where all players transmit and receive messages at the same time (e.g.,
see [7]), and availability, e.g., protecting the network against denial of service
attacks. These are all different security concerns that can be addressed sepa-
rately using the appropriate cryptographic techniques. Here we briefly discuss
authenticity. As discussed in [3], one can distinguish different kinds of authen-
ticity. The simplest kind only ensures that the sender of the information is one
of the current group members. This can be achieved using the same techniques
studied in this paper (e.g., establishing a common secret key and using it within
a message authentication protocol.) Individual authentication is a much harder
problem, and it has been shown that it is actually equivalent to using public key
digital signatures [2].

3 The Model

We consider a scenario in which an information provider wishes to communicate
to a selected (and dynamically changing) set of users over a broadcast channel.
At any point in time, all users may receive the information sent over the broad-
cast channel, and we want to ensure that only current group members can deci-
pher the transmitted information and recover the original messages sent by the
information provider. A centralized trusted authority, called the group center,
governs access to the group3. The problem of secure multicast communication
is easily seen to be equivalent to the problem of establishing a common secret
key, known to all and only the current group members: on the one hand, given
a secret key shared among all current group members, the information provider
can securely communicate with all group members by encrypting its messages

3 We remark that such a group center is only a logical abstraction, and does not
necessarily correspond to any single physical entity, like the information provider or
any of the group members.

using a secure symmetric key encryption scheme. On the other hand, given a
secure multicast protocol, the center can immediately establish a common se-
cret key among all current group members by picking a new key at random and
securely transmitting it to all group members using the secure multicast proto-
col. Therefore, in the rest of the paper we identify secure multicast encryption
with the group key distribution problem. We remark that a common secret key
allows all group members to act as information providers and securely transmit
information encrypted under the common secret key. The common secret key
can also be used to achieve additional security goals besides secrecy (for eg.,
message integrity against non-members).

3.1 Protocol Initialization

We assume users come from a fixed, but potentially infinite, set U and that they
communicate with the group center using a reliable and authenticated broadcast
channel. At every time instant t a finite set of users, Mt ⊂ U , referred to as
members, holds a shared secret key which is supposed to be known only to the
users in this set. All users and the center have black-box access to three functions,
E, D and G, where the functions (E, D) model an encryption/decryption pair
and G models a pseudorandom generator. We think of these three functions as
abstract operations satisfying the following conditions :

– E takes as input two expressions, K (a key) and γ (a message), and outputs
another expression, β (a ciphertext). D takes two expressions, K ′ and β′, as
input and outputs a third expression γ ′. These operations satisfy the obvious
correctness condition : D(K, E(K, γ)) = γ. We write EK(γ) for E(K, γ).

– G takes as input a key K and outputs two keys, denoted G0(K) and G1(K).
In other words, the function G models a length-doubling pseudorandom gen-
erator. We remark that our choice of using a length-doubling generator (and
not a more general one) is only for the purpose of simplifying the analysis
and it does not impact our lower bound in any way4.

Every user ui ∈ U also has a secret key Ki (referred to as the unique key of that
user) that is known only to him and the group center C from the beginning of
protocol execution (Such a key may be established using different techniques in
a setup phase using, say, unicast and public key cryptography).

3.2 Rekey Messages

Changes in the group membership (i.e. the set Mt) over time are modeled using
an adversary who adaptively chooses to add and delete members from the group.

4 Indeed, our lower bound can be shown to hold even if we replace G with a func-
tion that takes as input a single key and outputs arbitrarily many pseudorandom
keys. An intuitive reason for this is that any pseudorandom generator with arbitrary
expansion-factor can be easily built using only a length-doubling generator. The
proof of Lemma 2 makes this clearer.

At every point in time t, our adversary examines the history and current state
of the protocol and issues one of the following three commands:

– JOIN(ui): set Mt+1 = Mt ∪ {ui},
– LEAV E(ui): set Mt+1 = Mt \ {ui},
– REPLACE(ui, uj): set Mt+1 = Mt \ {ui} ∪ {uj},

In response to a membership change request, the group center transmits a set
of messages St = (γ1, . . . , γ|St|), known as rekey messages, over the broadcast
channel where each rekey message, γi, is a symbolic expression derived using the
following grammar :

M → EK(M) | K (1)

K → K | G0(K) | G1(K)

Here, the symbol M represents messages while the symbol K represents keys.
The expression K models any basic (i.e. freshly generated) key, including unique
keys of users. Messages can be built from keys by iterated application of the
encryption function, E, with basic keys or derived keys (obtained using the
pseudorandom generator)5.

Communication Complexity. The communication complexity of a group key dis-
tribution protocol is defined in terms of the number of rekey messages transmit-
ted by the center per update operation performed on the group. The cost of
transmitting a set of messages St equals the number of basic messages in the set
(i.e. |St|). The amortized cost of a group key distribution protocol in the course
of a sequence of such adversarial operations is the ratio of the total number of
messages transmitted by the center in that period to the total number of oper-
ations performed. This is expressed in terms of the size of the group, which is
the maximum number of members in the group at any stage in that sequence of
operations (As we will see, in our lower bound analysis, the number of members
is kept constant across time). The amortized communication complexity of the
protocol is the maximum amortized cost it has to incur in the course of any
sequence of adversarial operations. We are interested in a lower bound on the
amortized communication complexity for any group key distribution protocol
satisfying certain constraints. We next describe what these constraints are.

3.3 Security Definition

We analyze the security of key distribution protocols with respect to the abstract
cryptographic operations E, D and G. This approach is similar to that taken in

5 Note that we do not allow the use of expressions of the form EK(M) (i.e. ciphertexts)
either as keys or as inputs to the pseudorandom generator because ciphertexts do not
necessarily have the (pseudo)randomness properties necessary to prove that such an
application would be secure. For example, given any (provably secure) encryption
function, E, it is possible to build another (provably secure) encryption function,
E′, such that one can easily recover a message, γ, from a corresponding ciphertext
E′

E
′

K0
(K1)(γ) even without knowing any of the keys K0 and K1.

previous lower bounds for this problem[4, 14], except that we also allow for the
use of pseudorandomness and arbitrarily nested encryption as dictated by our
grammar.

Definition 1. For any set, S, of messages obtained using grammar 1, we define
the set of keys that can be derived from S as the smallest set, Keys(S), which
satisfies the following three conditions :

– If K0 ∈ S, then K0 ∈ Keys(S).
– If K0 ∈ Keys(S), then G0(K0) ∈ Keys(S) and G1(K0) ∈ Keys(S).
– If EK1

(EK2
(· · · (EKl

(K0)))) ∈ S and K1, . . . , Kl ∈ Keys(S), then K0 ∈
Keys(S).

This definition corresponds to the intuitive idea that given EK(M) one can com-
pute M if and only if K is known, and given K everybody can compute G0(K)
and G1(K) applying the pseudorandom generator to K. However, since pseu-
dorandom generators are one-way, given G0(K) or G1(K) (or both) one cannot
recover K, or even tell if G0(K), G1(K) is in the range of the pseudorandom gen-
erator. This is essentially a straightforward generalization of the Dolev-Yao [5]
model of encryption, extended with pseudorandom generation. Analyzing secu-
rity of protocols with respect to this formal cryptographic model is motivated by
the fact that we would like the protocols to be secure independently of the spe-
cific instantiation of the underlying cryptographic building blocks. The formal
analysis can be made precise and interpreted in standard complexity-theoretic
terms, by extending known soundness and completeness results of [1, 12].

Definition 2. We say that a group key distribution protocol is secure if for
any sequence of adverserial operations, and for every time instant t, there exists
a key, K, such that

– K ∈ Keys(S1∪· · ·∪St∪{Ki}) for all ui ∈ Mt, i.e., key K can be computed
by all current group members at time t;

– K 6∈ Keys(S1∪· · ·∪St∪{Ki: ui 6∈ Mt}), i.e., the users that do not belong to
the group at time t cannot compute K even if they collude and pool together
all the information available to them.

The first clause in the definition is a correctness criterion while the second clause
is the main security condition. Note that our definition of security is a bit re-
strictive in that it requires non-members not to be able to obtain the shared
secret key at any instant of time based only on the information obtained at or
before that instant. Intuitively, this captures the idea that if a user leaves the
group (i.e. becomes a non-member) at some point, then he should not be able to
decrypt any future communication (even if he colludes with other non-members
to do so), unless, of course, he is added back to the group. This kind of security
is often referred to as forward secrecy. However, one could also require that the
shared secret key at any instant be such that the non-members (at that instant)
not to be able to compute it even later on i.e. even if some of them become mem-
bers in the future. Such a security requirement is more stringent and it captures

the notion that any new entrant to the group should not be able to compute the
shared key for any past instant when he was not a member (a requirement often
referred to as backward secrecy). In order for a protocol to satisfy both forward
and backward secrecy, we must strengthen the security condition above so that
K /∈ Keys(S1∪· · ·∪St′ ∪{ki: ui /∈ Mt}) for all t′ ≥ t. We remark that backward
secrecy is usually considered a less important property than forward secrecy, as
in many multicast applications (e.g., stock quotes) information looses value over
time. The lower bound proved in this paper only requires forward secrecy and
is, thus, applicable to protocols satisfying the more stringent definition, too.

Another important remark is the following. Since most networking protocols
do not provide any form of security, it is a good practice to assume that an
adversary attacking the network has access to all transmitted data, which needs
to be properly protected using appropriate cryptographic techniques. Moreover,
this allows for the development of security solutions that are independent of the
underlying networking technology. In the above definition, the security criterion
models the fact that the adversary has complete knowledge of all past communi-
cation. The assumption of infinite memory is less reasonable in the case of group
members in our correctness criterion, but giving all past broadcast messages to
all users makes our security definition less stringent, and consequently it only
makes our lower bound stronger. We refer the interested reader to Sect. 6 for a
discussion on possible extensions to our model.

4 The Multicast Game

For the actual lower bound analysis, it is useful to view every secure group
key distribution protocol as an abstract game, which we call the multicast game,
played between the group center, C, and the adversary, A. In this game, keys are
modelled as nodes in an infinite hypergraph. Each node corresponds to either
a basic key (recall that basic keys include unique keys of users as well) or a
derived key obtained by applying the pseudorandom generator to some other key.
Messages transmitted by the group center are modeled as directed hyperedges,
so that the cost incurred by the center equals the number of hyperedges in the
graph. For any user, the set of keys known to him at any time is defined as the
set of nodes that can be “reached” from the node representing his unique key
following the hyperedges. Details follow.

4.1 Game Configurations

The playing board for the multicast game is an infinite collection of rooted binary
trees, T = {T1, T2, · · ·} each containing an infinite number of nodes. The entire
set of nodes in these trees is denoted V . The edges are directed edges and every
tree in T has one root node which has zero in-degree while all other nodes have
in-degree equal to 1. The out-degree of all nodes, including the root, is equal to
2. Every node in this playing board represents a key K. The roots of the trees are
associated to the basic keys, while the internal nodes are pseudorandom keys.

The two children of a node represent keys G0(K) and G1(K), the keys that
can be obtained by applying the pseudorandom generator to the key, K, of the
parent node.

The root nodes of some (but not all) trees in T correspond to the unique
keys, Ki, of all users. We refer to these special trees as user trees and denote
the entire set of user trees by U . At any given point in time during the game,
the root of every tree in U has one of two labels associated with it – member
or non-member. We refer to the edges in the trees in T as tree-edges or simply
t-edges and the entire set of t-edges in all the trees is denoted T . A t-edge from

a node v1 to a node v2 is denoted v1
t
→ v2.

Rekey messages sent by the group center are modeled as hyperedges as fol-
lows. A directed hyper-edge, or simply an h-edge, over nodes in V is a pair {V, v},

denoted V
h
→ v, where V is a finite subset of V and v is a single node. The h-edge

V
h
→ v is said to be incident on v. The hyperedge, {K1, · · · , Kd}

h
→ K models a

rekey message of the form EK1
(EK2

(· · ·EKd
(K) · · ·)). Here, K1, . . . , Kd, K can

be either basic or derived keys (i.e., keys associated to either root or internal
nodes), and the encryptions can be performed in any order.

A configuration, C, of the multicast game is defined as a triple C = (M,N ,H),
where M is the set of all member nodes, N is the set of all non-member nodes
and H is a (finite) set of h-edges over nodes in V . The union M∪N is always
equal to the set of roots of the user trees in U . A configuration of the game at
time t corresponds to the state of the group key distribution protocol at time
t with M representing the set of members, N the set of non-members and H
the set S0 ∪ S1 ∪ S2 ∪ · · · ∪ St of rekey messages transmitted by C in response
to the first t group update operations (plus an optional set S0 corresponding to
the initial configuration of the game).

4.2 Defining Moves of Players

Each move by player C in our game involves adding zero or more h-edges and
each move by player A involves changing the label on a node labelled member to
non-member or vice versa, or swapping a member with a non-member. Formally,
if the game is in a configuration C = (M,N ,H), then

– a move by player C changes the configuration of the game to C ′ = (M,N ,H′)
where H′ = H

⋃

Ha and Ha is a finite (possibly empty) set of h-edges over
nodes in V ;

– a move by player A changes the configuration to C ′ = (M′,N ′,H) where
either

• M′ = M\ {vm} and N ′ = N
⋃

{vm} for some vm ∈ M (we call this a
delete move and we say that the node vm gets deleted from M); or

• M′ = M
⋃

{vn} and N ′ = N \ {vn} for some vn ∈ N (we call this an
add move and we say that the node vn gets added to M).

• M′ = M
⋃

{vn} \ {vm} and N ′ = N \ {vn} ∪ {vm} for some vn ∈ N
and vm ∈ M (we call this a replace move and we say that the node

vm gets replaced by vn). This corresponds to a simultaneous execution
of an add move and a delete move, and it leaves the size, |M|, of the
group unchanged.

At any time instant t, a pair of moves is played, the first move being played
by A, followed by a response by C. Associated with each player’s move is a
cost function. The cost of a move by player C is the number of h-edges added
by him i.e. if a move by player C takes the game from C = (M,N ,H) to
C′ = (M,N ,H′), then the cost of the move is |H′| − |H|. The cost of any move
by player A is 1. For simplicity, we concentrate on replace operations that
leave the size of the group unchanged (since we are interested in proving a lower
bound, considering only replace operations only makes our result stronger).

4.3 Defining Goals of Players

The security notion described in Sect. 3 is easily modeled in terms of reachability
between nodes in the hypergraph corresponding to the current configuration.

Definition 3. A node, v ∈ V, is called h-reachable from a set of nodes, V ⊆ V,
under a configuration C = (M,N ,H) if any of the following conditions hold:

– v ∈ V .
– There exists a t-edge from some node v′ to v and v′ is h-reachable from V .

– For some m > 0 and a set of nodes, V = {v1, v2 · · · , vm} ⊆ V, there exists

an h-edge V
h
→ v in H and each of the nodes, v1, · · · , vm is h-reachable from

V .

We write V ⇒C v to denote that v is h-reachable from V under C and V 6⇒C v
to denote the converse. We say that v is h-reachable from a node v′ under C if
{v′} ⇒C v holds; this is denoted simply by v′ ⇒C v (similarly, v′ 6⇒C v denotes
that v is not h-reachable from v′ under C). If S is the set of rekey messages
represented by H, the set of h-edges in C, and K the set of keys represented by
V , then the set of nodes h-reachable from V under C corresponds exactly to the
set of keys Keys(K ∪ S) that can be computed from K and S according to the
Dolev-Yao model of abstract encryption described in Sect. 3.

A configuration which satisfies the security constraint for group key distri-
bution is called a secure configuration:

Definition 4. (Secure Configuration) A configuration C = {M,N ,H} is
called a secure configuration if there exists a node, vs ∈ V, such that

– vs is h-reachable from every node in M under C i.e. ∀v ∈ M, v ⇒C vs

– vs is not h-reachable from N under C i.e. N 6⇒C vs

A node, vs, which satisfies this property is called a secret node for the corre-
sponding secure configuration.

Clearly, the shared secret key at any instant of time, t, in the protocol, must be
(represented by) one of the secret nodes for the game configuration corresponding
to time t.

Goals of the players can now be defined in terms of secure configurations.
The goal of player C is that at the end of each of his moves, the game be in a
secure configuration. The goal of player A is the converse of this i.e. at the end
of at least one of player C’s moves, the configuration of the game is not secure.
Our aim here is to determine the minimum cost that every player C needs to
pay, relative to the cost paid by player A, in order to be able to attain his goal
in the game against any player A.

5 The Lower Bound Proof

In this section we present our main technical result on multicast games which
directly implies the lower bound for secure group key distribution protocols.

5.1 Usefulness of h-edges and Canonical Graphs

Let us fix a configuration, C = (M,N ,H) in the multicast game for this entire

subsection. An h-edge, V
h
→ v, in H is said to be useless under C if N ⇒C v. An

h-edge which is not useless under C is called useful under it. By the definition

of h-reachability, for every useful h-edge, V
h
→ v, in H, there must exist at least

one node in V which is not h-reachable from N under C. We assume an arbitrary

total order on the set V of all nodes. For any useful h-edge V
h
→ v, the first node

(according to the total ordering) in V which is not h-reachable from N (under C)
is referred to as the canonical node of that h-edge. Canonical nodes are defined
only for useful h-edges.

A canonical edge, or c-edge, corresponding to a useful h-edge, V
h
→ v, is a

simple directed edge from the canonical node, vc, of that h-edge to v and is
denoted vc

c
→ v. The definitions of canonical nodes and edges are both specific

to the configuration C.

Definition 5. Let C = (M,N ,H) be a configuration of the multicast game. A
canonical path or a c-path from a node v1 to another node v2 (v1, v2 ∈ V) under
C, denoted v1 C v2, is a path consisting of zero or more t-edges and c-edges
such that all nodes on this path are h-reachable from v1.

At this point it is not clear whether a canonical path must exist from any node
v1 to any other node v2. Indeed, this does not hold for every pair (v1, v2). The
following lemma characterizes the existence of canonical paths for certain pairs
of nodes - a canonical path from v1 to v2 must exist if v2 is h-reachable from v1

but is not h-reachable from the set N .

Lemma 1. For any configuration C = (M,N ,H) and any two nodes v1, v2 ∈ V,
if {v1} ⇒C v2 and N 6⇒C v2, then there exists a c-path from v1 to v2 under C.

Proof. Let R(v1) ⊆ V denote the set of all nodes which are h-reachable from v1

(here, and everywhere else in the proof, h-reachable means h-reachable under
C). Let B ⊆ R(v1) be the set of bad nodes such that for all v2 ∈ B, v2 is not h-
reachable from N and yet, there exists no c-path from v1 to v2. Let G = R(v1)\B
(the set of good nodes). We claim that either the set of bad nodes is empty or
(if not so) v1 is in it (i.e. B = φ or v1 ∈ B).

Suppose this is not the case i.e. suppose that B is non-empty and it still
doesn’t contain v1. Then for all nodes in B to be h-reachable from v1, there
exists some node v2 ∈ B such that one of the following conditions hold (i) For

some v ∈ G, v
t
→ v2 ∈ T ; (ii) For some V ⊆ G, V

h
→ v ∈ H. Since any v2 ∈ B is

not h-reachable from N , an h-edge incident on it must be useful and thus, must
have a c-edge corresponding to it. So, if B is non-empty and doesn’t contain
v1 there must exist a t-edge or a c-edge from some node v ∈ G to some node
v2 ∈ B. By the definition of B there exists no c-path from v1 to such a v2. Which
means there must not be a c-path from v1 to v as well (else joining such a path
with the edge between v and v2 would give us a c-path from v1 to v2). At the
same time v must not be h-reachable from N for that would imply N ⇒C v2.
Both these two conditions qualify v to be a member of B, which it is not. We,
thus, conclude that the set B is either empty or contains the node v1. If B is an
empty set, we’re done. If it isn’t and it contains v1, then the definition of B is
defied since there exists a trivial c-path (with 0 edges) from v1 to itself. Thus,
the set B must be empty and the lemma holds.

Canonical Graphs We focus our attention on secure configurations from now
on. Let C = (M,N ,H) be a secure configuration with secret node vs. By the
definition of a secret node and by Lemma 1, for every vm ∈ M there must exist
a canonical path from vm to vs. For every vm ∈ M select a c-path Pm ≡ vm C

vs. The canonical graph for C, denoted G(C), is defined as the graph formed
by superimposing the c-paths Pm associated to the member nodes vm ∈ M.
While superimposing paths, if there is more than one c-paths containing an
edge between the same two nodes and if at least one of these edges is a c-edges
then we insert a single c-edge between the nodes in G(C), and if all these edges
are t-edges, then we insert a single t-edge between the nodes. If there is no edge
(a c-edge or a t-edge) between any two nodes then there is no edge between them
in G(C) also. Note that in the graph G(C), there may be more than one paths
from any member node vm to vs, but only one of them corresponds (modulo
replacement of t-edges by c-edges) to the canonical path Pm associated to vm.
Figure 1(a) shows a toy example of a canonical graph for a configuration with
three members nodes {v1, v2, v3} and secret node vs.

For each member node, vm, in M, we define the incidence weight of vm in the
graph G(C) as the number of c-edges in this graph incident on any node along
the c-path Pm ≡ vm C vs. This is at least equal to the number of c-edges on the
c-path itself. The maximum incidence weight of the graph G(C) is the maximum
among the incidence weights of all member nodes in it. A useful property on

v1

v4

vs

v2

vs

v4

v3

vs

v5

vs

v5v4

v1 v2
v3

+ +

PP P
1 2 3 G(C)

(a)

�������
�

���
�

���
�

������������ 	�		�	
�

�

������������

���������������������������

���

���

���

v

v v v1 2

s

3

(b)

Fig. 1. Canonical Graphs : Figure (a) shows the construction of a canonical graph
for a configuration with three member nodes {v1, v2, v3} and secret node vs. c-edges
are shown by dark lines while t-edges are shown by dotted ones. Path Pi goes from
member i to vs. Note that there is a c-edge between v4 and vs in P1 and a t-edge
between the same two nodes in P2; the final graph has a c-edge between these nodes
because of the higher precedence given to c-edges. In this graph, v1, v2 and v3 have
incidence weights 3,3 and 2 respectively. Figure (b) shows an example of a graph that
cannot be a canonical graph since the topmost node, vs, has two t-edges enterring it.
This restriction on t-edges will be crucial in proving Lemma 2.

the maximum incidence weight of any canonical graph is given by the following
lemma.

Lemma 2. Let C = (M,N ,H) be a secure configuration such that |M| = n.
Then, any canonical graph for C has maximum incidence weight at least dlog2 ne.

Proof. We shall prove something stronger than what the lemma states. We say
that a node v ∈ V is M′-secure under C (for some M′ ⊆ M) if N 6⇒C v and
for all nodes u ∈ M′, u ⇒C v. For a set M′ ⊆ M and a node v which is M′-
secure under C, we define a sub-canonical graph for C over M′ and v, denoted
GC(M′, v), as a graph formed by superimposing c-paths from nodes in M′ to v,
one c-path being selected for every node in M′. The set of c-paths from nodes
in M′ to v used for constructing GC(M′) is denoted P (GC(M′, v)). As a special
case, observe that any canonical graph for C is a sub-canonical graph over M
and vs.

We hypothesize that for all i > 0, if there exists a pair (M′, v′) where M′ ⊆
M, |M′| = i and v′ is M′-secure then for every such pair (M′, v′) the maximum
incidence weight of any graph GC(M′, v′) is at least dlog2 ie. This hypothesis
clearly implies the above lemma.

The proof uses an inductive argument on i. For the base case observe that
a single node in the set M is a trivial sub-canonical graph with dlog2 1e = 0
c-edges. Suppose that for some j > 1 and for all i < j, the maximum incidence
weight of any graph, GC(Mi, vi), with Mi ⊆ M and |Mi| = i, if there exists
such a graph, is at least dlog2 ie. Suppose there exists a pair (Mj , vj) such
that, Mj ⊆ M, |Mj | = j and vj is Mj-secure under C. Consider the graph

GC(Mj , vj) and let vr be the (unique) node in this graph (vr may be the same
as vj) such that vr has in-degree greater than 1, say m, and all nodes on the
path from vr to vj have in-degree exactly 1 (By in-degree of a node we mean
the number of c-edges and t-edges in GC(Mj , vj) incident on it). Since vj is not
h-reachable from N and since a c-edge is defined only for a pair of nodes both
of which are not h-reachable from N , vr must also not be h-reachable from N .
Let v1,v2, · · · , vm be the nodes which point to vr and M1, M2 · · ·Mm be the
sets of member nodes in Mj for which the canonical paths to vj go through
v1, v2 · · · vm respectively. Since vr is not h-reachable from N under C, none of
the nodes v1, v2, · · · , vm must be so, too. It is not hard to see that, for any
l ∈ {1, · · · , m}, the graph formed by superimposing the portion of the c-paths
from nodes in Ml upto the node vl is also a sub-canonical graph for C (over Ml

and vl). Furthermore, there exists some l′ ∈ [m] such that |Ml′ | ≥ dj/me. From
the induction hypothesis, the maximum incidence weight the graph GC(Ml′ , vl′)
is at least dlog2

(

j

m

)

e. Finally, the maximum incidence weight of GC(Mj , vj)
must be at least equal to the maximum incidence weight of GC(Ml′ , vl′) plus
the number of c-edges incident on vr in GC(Mj , vj). A crucial observation is
that there can be at most one t-edge incident on vr, which means at least m− 1
out of the m edges incident on it must be c-edges. Thus, the maximum incidence
weight of GC(Mj , vj) is at least minm∈[j]dlog2

(

j

m

)

e + m − 1 which is not less
than dlog2 je.

5.2 The Main Theorem

We consider multicast games in which the group center, C, always maintains the
game in a secure configuration. The following theorem establishes a logarithmic
lower bound on the amortized cost of the moves performed by C, when the moves
of A are adversarially chosen. The lower bound holds for any initial configuration,
and even if A only issues replace operations that do not affect the size of the
group. This lower bound directly implies a dlog2 ne lower bound on the amortized
communication complexity of any secure group key distribution protocol.

Theorem 1. For every strategy of player C and initial configuration (M0,N0,H0),
there exists a strategy of player A consisting of replace operations only, such
that for any t ≥ 1, the amortized cost, c̃t, of the first t moves of C is at least
dlog2 ne − |H0|/t, where n = |M0| is the size of the group. In particular, the
asymptotic amortized cost of the moves of C is

lim
t→∞

c̃t ≥ dlog2 ne.

Proof. Let (Mi,Ni,Hi) be the sequence of configurations following each move by
C. We know by assumption that all configurations are secure. Notice that for all i,
Hi−1 ⊆ Hi, and the cost of each move by C equals ci = |Hi|−|Hi−1|. The moves
of A are chosen as follows. All moves are replace moves that substitute one of the
current member nodes with a non-member node. In particular, the size of the
group is always equal to n = |M0| = |Mi|. By Lemma 2, the maximum incidence

weight of the canonical graph, G(Ci), for any configuration Ci = (Mi,Ni,Hi)
is at least dlog2 ne. Let vi be a member node achieving the maximum incidence
weight in G(Ci). In his ith move, player A replaces the member node vi with a
new node from Ni that never was a member node before.

For the configuration, Ci, consider the graph, G(Ci), and the c-path vi Ci
vs

in this graph (here, vs is a secret node for Ci). Let ICi
(vi) be the set of c-edges

in G(Ci) which are incident on the nodes in vi Ci
vs and let HCi

(vi) be the
set of (useful) h-edges corresponding (uniquely) to the c-edges in ICi

(vi). The
key observation is that once vi gets labeled as a non-member node (and its label
doesn’t change after that), the nodes on the c-path vi Ci

vs become h-reachable
from the set of non-member nodes under any configuration of the game following
Ci. This implies that all h-edges in HCi

(vi) become (and remain) useless for all
configurations from time i onwards, since they are incident on vi Ci

vs.
Since vi is a node with maximum incidence weight in G(Ci), there are at least

dlog2 ne c-edges in ICi
(vi) and an equal number of h-edges in HCi

(vi). So, each
time A performs a move, the number of useless h-edges increases by dlog2 ne,
and after t move there are at least t · dlog2 ne useless h-edges in Ct. Clearly, the
number of useless h-edges cannot be greater than the number of h-edges in the
final configuration, i.e.,

t · dlog2 ne ≤ |Ht|

= |H0| +
t

∑

i=1

|Hi \ Hi−1|

= |H0| +
t

∑

i=1

ci

where ci is the cost of the ith move performed by C. From this, we immediately

get the desired bound on the amortized cost of C’s moves :
P

t

i=1
ci

t
≥ dlog2 ne−

|H0|
t

6 Extensions to Our Model

In this section, we address some of the possible extensions and modifications one
could make to our model for secure group key distribution described in Sect. 3.
Some of these extensions yield models that are equivalent to the model we have
already described while others lead to interesting open problems for the group
key distribution problem.

1. Allowing Message Pairs: We have proved a lower bound for protocols
where the rekey messages sent by the group center consist of a single key en-
crypted with multiple other keys. It is easy to see that our lower bound also
applies to more general protocols where every rekey message can also consist of
“pairs” of other rekey messages (i.e. protocols in which the grammar for mes-
sages also includes a rule M → (M,M)). Allowing messages pairs does not affect
communication complexity in any way.

2. Groups without Simultaneous Leave and Join: Our lower bound
for group key distribution is proved using a sequence of simultaneous join and
leave operations (which we refer to as a replace operation) performed on the
group by an adaptive adversary. One reason for having replace operations is
that they simplify our analysis considerably (by helping us keep the group size
constant over time). In groups where replace operations are not allowed, the
bound that we get using our technique is log2(n)/2. We remark that it is possible
to construct a practical protocol (without replace operations) in which every
individual join and leave can be performed at the cost of log2(n)/2 multicast
messages and log2(n)/2 unicast messages (this can be done by combining the
protocol of [3] with ideas from [13]). The interesting question is whether our
bound can be extended so that it is tight even when the log2(n)/2 unicast cost
is included in computing communication complexity or whether one can come
up with better protocols that involve no unicast at all. We are unable to resolve
this question at the moment and leave it open for future work.

3. Other Cryptographic Primitives: Our model for secure group key dis-
tribution allows the usage of iterated encryption and pseudorandom generation
for the center’s rekey messages and the best known protocols for this problem
also use just these cryptographic primitives. It would be interesting to find out
if better protocols can be constructed using other cryptographic primitives (for
eg., pseudorandom functions, secret sharing) or whether our lower bound can be
extended to even more general classes of protocols that allow the usage of such
primitives6.

Analyzing Upper Bounds. The model for secure multicast key distribution we
study in this paper can also be used to analyze upper bounds but in doing so,
one must take care of some efficiency issues which we ignore in our framework
(note that ignoring such issues only helps to strengthen our lower bound). For
example, in our model, the group members can compute the shared secret key
at any instant by looking at the rekey messages sent out in the entire history
of the protocol. Practical protocols should require that members be able to get
the key using just the rekey messages sent since they joined the group. Also, we
do not address the issue of storage limitations of the users or the group center.
In practice, the key update should be made possible not only with minimal
communication overhead but also with minimal storage requirements for the
users.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
2002.

6 We note that some known protocols do make use of pseudorandom functions (e.g.,
[13]), but not in a substantial way, meaning that whatever they do can be easily
achieved using pseudorandom generators instead.

2. D. Boneh, G. Durfee, and M. Franklin. Lower bounds for multicast message au-
thentication. In B. Pfitzmann, editor, Advances in Cryptology - EUROCRYPT
2001, Proceedings of the Internarional Conference on the Theory and Application
of Cryptographic Techniques, volume 2045 of Lecture Notes in Computer Science,
pages 437–452, Innsbruck, Austria, May 2001. Springer-Verlag.

3. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructions. In INFOCOM 1999. Pro-
ceedings of the Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 2, pages 708–716, New York, NY, Mar. 1999.
IEEE.

4. R. Canetti, T. Malkin, and K. Nissim. Efficient communication-storage tradeoffs for
multicast encryption. In J. Stern, editor, Advances in Cryptology - EUROCRYPT
’99, Proceedings of the International Conference on the Theory and Application
of Cryptographic Techniques, volume 1592 of Lecture Notes in Computer Science,
Prague, Czech Republic, May 1999. Springer-Verlag.

5. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

6. A. Fiat and M. Naor. Broadcast encryption. In D. R. Stinson, editor, Advances in
Cryptology - CRYPTO ’93, Proceedings of the 13th annual international Cryptology
conference, volume 773 of Lecture Notes in Computer Science, pages 480–491, Santa
Barbara, California, USA, Aug. 1993. Springer-Verlag.

7. R. Gennaro. A protocol to achieve independence in constant rounds. IEEE Trans-
actions on Parallel and Distributed Systems, 11(7):636–647, 2000.

8. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33:792–807, 1986.

9. H. Harney and C. Muckenhirn. Group key management protocol (GKMP) ar-
chitecture. Request for Comments 2094, Internet Engineering Task Force, July
1997.

10. H. Harney and C. Muckenhirn. Group key management protocol (GKMP) specifi-
cation. Request for Comments 2093, Internet Engineering Task Force, July 1997.

11. M. Luby and J. Staddon. Combinatorial Bounds for Broadcast Encryption. In
K. Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, Proceedings of the
International Conference on the Theory and Application of Cryptographic Tech-
niques, volume 1403 of Lecture Notes in Computer Science, pages 512–526, Espoo,
Finland, May 1998. Springer-Verlag.

12. D. Micciancio and B. Warinschi. Completeness theorems for the abadi-rogaway
logic of encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.
Preliminary version in WITS 2002.

13. A. Perrig, D. X. Song, and J. D. Tygar. ELK, A New Protocol for Efficient Large-
Group Key Distribution. In IEEE Symposium on Security and Privacy, pages
247–262, Oakland, CA, USA, May 2001. IEEE.

14. J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key distribution.
In INFOCOM 2001. Proceedings of the Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 1, pages 422–431, New
York, NY, Apr. 2001. IEEE.

15. D. M. Wallner, E. G. Harder, and R. C. Agee. Key management for multicast:
issues and architecture. Request for Comments 2627, Internet Engineering Task
Force, June 1999.

16. C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs. IEEE/ACM Transactions on Networking, 8(1):16–30, Feb. 2000. Prelimi-
nary version in SIGCOMM 1998.

