
Secure Computation
of the kth-Ranked Element

Gagan Aggarwal?, Nina Mishra??, and Benny Pinkas? ? ?

Abstract. Given two or more parties possessing large, confidential datasets, we
consider the problem of securely computing thekth-ranked element of the union
of the datasets, e.g. the median of the values in the datasets. We investigate proto-
cols with sublinear computation and communication costs. In the two-party case,
we show that thekth-ranked element can be computed inlog k rounds, where
the computation and communication costs of each round areO(log M), where
log M is the number of bits needed to describe each element of the input data.
The protocol can be made secure against a malicious adversary, and can hide the
sizes of the original datasets. In the multi-party setting, we show that thekth-
ranked element can be computed inlog M rounds, withO(s log M) overhead
per round, wheres is the number of parties. The multi-party protocol can be used
in the two-party case and can also be made secure against a malicious adversary.

1 Introduction

For a setS ⊂ R, thekth-ranked elementis the valuex ∈ S that is rankedk in the
list S sorted in increasing order of all elements. Thepth-percentileis the value
x ∈ S such thatp% of the values inS are belowx. Of particular interest is the
median or 50th-percentile, which is the element with rankp = d|S|/2e. Given
two partiesA and B with datasetsDA, DB ⊂ R, respectively, we consider
the problem of privately computing thekth-ranked element ofDA ∪ DB. We
also consider this problem in the multi-party case. In the setting we consider,
the datasetsDA andDB contain proprietary information, thus neither party is
willing to share its data with the other. In addition, we assume thatn=|DA| +
|DB| is very large.

There are many situations where secure computation of thekth-ranked el-
ement is useful. For example, two health insurance companies may wish to
compute the median life expectancy of their insured smokers. In such a set-
ting, both the number of insured smokers as well as their life expectancies are

? Computer Science Department, Stanford University. Supported in part by a Stanford
Graduate Fellowship, NSF Grant ITR-0331640 and NSF Grant EIA-0137761. Email:
gagan@cs.stanford.edu .

?? HP Labs and Stanford University. Supported in part by NSF grant EIA-0137761. Email:
nmishra@theory.stanford.edu , nmishra@hpl.hp.com .

? ? ? HP Labs, Princeton. Email:benny.pinkas@hp.com , benny@pinkas.net .

private information, but the median life expectancy is of combined mutual in-
terest. Another example is the annual Taulbee survey which collects salary and
demographic data for faculty in computer science and computer engineering
departments in North America. Each year, academic departments report only a
small number of statistics like the average salary for assistant, associate and full
professor positions. The Taulbee survey is thus able to publish only limited ag-
gregate information. A secure, multi-party solution for thekth-ranked element
would enable universities to quickly compute the median salary without trust-
ing individual salaries to Taulbee. Finally, secure computation of thekth-ranked
element facilitates secure computation of histograms [9, 16, 12].

The problem we discuss is exactly that of secure computation. Namely, it
involves several parties with private inputs that wish to compute a function of
their joint inputs, and require that the process of computing the function does
not reveal to an adversarial party (or a coalition of such parties) any information
that cannot be computed using the input of the adversary and the output of the
function.

There exist well known solutions for secure computation of any function
(see e.g. [18, 11]). The general method employed by these solutions is to con-
struct a combinatorial circuit that computes the required function, and then run
a distributed protocol that securely evaluates the circuit.1 The communication
overhead of these generic protocols is linear in the size of the circuit. The com-
putation involves (at the least) running an oblivious transfer protocol for every
input gate, or for every gate of the circuit, depending on the implementation.
Thekth-ranked element can be computed via a circuit of sizeΩ(n log M) (since
reading in the input requires at leastn log M gates), which implies that for large
values ofn the overhead of a secure protocol that is constructed by generic con-
structions is too large. In another generic construction, Naor and Nissim [15]
show that any two-party communication protocol can be translated into a secure
computation protocol, such that a protocol with communication complexity of
c bits is transformed to a secure protocol with overhead of2c public key oper-
ations. This transformation can be applied to a protocol, due to Karchmer, for
computing the median withlog n communication bits [13].

Contributions We are motivated by applications where the total number of
points owned by the parties (n) is very large, and thus even a linear communi-
cation and computation overhead might be prohibitive. Thus, we describe pro-
tocols with sublinear communication and computation overhead. Specifically,

1 The interested reader can find a description of these protocols in the references above. Alterna-
tively, descriptions of the two-party protocols are available at, e.g., [14, 10], and descriptions
of the multi-party protocols can be found, for example, in [1, 8, 10].

in the two-party case, we reduce the computation of thekth-ranked element to
O(log k) secure comparisons of (log M)-bit inputs2, wherelog M is the num-
ber of bits needed to describe the elements in the setsDA, DB. We also show
how to obtain security against malicious adversaries. In the multi-party case,
we reduce the computation of thekth-ranked element toO(log M) simple se-
cure computations that involve additions and a comparison of (log M)-bit long
numbers. Again, this protocol can be made secure against malicious adversaries.
Interestingly, the multi-party solution can be applied to the two-party scenario
if it uses secure two-party protocols as primitives. The protocol can even be
directly applied to inputs that contain duplicate items, whereas the two-party
protocol requires inputs comprising of distinct inputs. This is in contrast to the
typical case in secure computation where secure multi-party protocols require
the presence of an honest majority, which is not available in the two-party case.

The protocols given in this paper are modifications of well known algo-
rithms in the communication complexity literature [17, 13]. Our contribution is
the modifications and proofs of security that result in privacy-preserving solu-
tions, for both semi-honest and malicious adversaries. In addition, we show how
the parties can compute thekth-ranked element while hiding from each other the
actual sizes of their databases.

Efficient secure computation via reduction and composition We take the
same approach as that of previous solutions for secure computation of large
inputs (e.g. [14, 6, 4]), and reduce this task to many invocations of secure com-
putation of simpler functions of small inputs (but unlike these constructions, we
also design protocols which are secure against malicious adversaries). That is,
we describe a protocol for computing thekth-ranked value which uses oracle
queries to a few simple functionalities and is secure if these functionalities are
computed by a trusted oracle. A composition theorem (see [2, 3] and discus-
sions below) shows that if the oracle queries are replaced by secure protocols,
then the resulting combined protocol is also secure. In the semi-honest case the
oracle queries can be replaced by very simple invocations of secure function
evaluation. In the malicious adversary case they are replaced by a reactive se-
cure computation of a simple function. We also note that the protocol computes
theexactvalue of thekth-ranked item, rather than computing an approximation
as in [6].

2 If the two parties possess inputsx and y, a secure comparisonreveals 0 ifx ≥ y and 1
otherwise, and nothing more, assuming the usual cryptographic assumptions.

1.1 Security Definitions and a Composition Theorem

We describe protocols that are secure against malicious adversaries. We there-
fore use definitions that compare the actual execution of the protocol to an
“ideal” implementation, rather than use definitions that use simulation. The def-
initions we use follow those of Canetti and of Goldreich [2, 10]. We also state a
composition theorem that is used in analyzing the security of the protocols.

A semi-honest adversaryis an adversary that follows the instructions de-
fined by the protocol. It might try, however, to use the information that it learns
during the execution in order to learn information about the inputs of the other
parties. Amalicious adversaryis an adversary that can behave arbitrarily. In
particular, there are several things that a malicious adversary can do which we
cannot hope to avoid: (1) it can refuse to participate in the protocol, (2) it can
substitute an arbitrary value for its input, and (3) it can abort the protocol pre-
maturely. Following [2, 10] we do not consider here solutions for the fairness of
the protocol (i.e. item (3) above – the early termination problem) since there is
no perfect solution for this issue and existing solutions are quite complex.

The security definition we use captures both the correctness and the privacy
of the protocol. We only provide definitions for the two-party case. The defi-
nition is based on a comparison to the ideal model with a trusted third party
(TTP), where corrupt parties can choose to give an arbitrary input to the trusted
party, and to terminate the protocol prematurely, even at a stage where they have
received their output and the other parties have not. We limit it to the case where
both parties compute the same functionf : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.
Definition 1 (The Ideal Model). A strategy for partyA in the ideal model is
a pair of PPT (probabilistic polynomial time) algorithms,AI(X, r) that uses
the inputX and a sequence of coin flipsr to generate an input thatA sends to
the trusted party, andAO(X, r, Z) which takes as an additional input the value
Z that A receives from the TTP, and outputsA’s final output. IfA is honest
thenAI(X, r) = X andAO(X, r, Z) = Z. A strategy for partyB is similarly
defined using functionsBI(Y, r) andBO(Y, r, Z).

The definition is limited to the case where at least one of the parties is
honest. We call an adversary that corrupts only one of the parties anadmis-
sible adversary. The joint execution ofA and B in the ideal model, denoted
IDEALA,B(X, Y), is defined to be

– If B is honest,
• IDEALA,B(X, Y) equals(AO(X, r, f(X ′, Y)), f(X ′, Y)), whereX ′ =

AI(X, r) (in the case that A did not abort the protocol),
• or, IDEALA,B(X,Y) equals(AO(X, r, f(X ′, Y)),−), whereX ′ = AI(X, r)

(if A terminated the protocol prematurely).

– If A is honest
• IDEALA,B(X, Y) equals(f(X,Y ′), BO(Y, r, f(X, Y ′))), whereY ′ =

BI(Y, r),
• or, IDEALA,B(X,Y) equals(−, BO(Y, r, f(X, Y ′))), whereY ′ = BI(Y, r).

In the real execution a malicious party could follow any strategy that can
be implemented by a PPT algorithm. The strategy is an algorithm mapping a
partial execution history to the next message sent by the party in the protocol.

Definition 2 (The Real Model (for semi-honest and malicious adversaries)).
Letf be as in Definition 1, andΠ be a two-party protocol for computingf . Let
(A′, B′) be a pair of PPT algorithms representing the parties’ strategies. This
pair is admissible w.r.t.Π if at least one of(A′, B′) is the strategy specified by
Π for the corresponding party. In thesemi-honest casethe other party could
have an arbitrary output function. In themaliciouscase, the other party can
behave arbitrarily throughout that protocol.

The joint execution ofΠ in the real model, denotedREALΠ,A′,B′(X,Y) is
defined as the output pair resulting from the interaction betweenA′(X) and
B′(Y).

The definition of security states that an execution of a secure real model
protocol under any admissible adversary can be simulated by an admissible ad-
versary in the ideal model.

Definition 3 (Security (for both the semi-honest case and the malicious case)).
Let f and Π be as in Definition 2. ProtocolΠ securely computesf if for
every PPT pair(A′, B′) that is admissible in the real model (of Definition 2)
there is a PPT pair(A,B) that is admissible in the ideal model (of Defini-
tion 1), such thatREALΠ,A′,B′(X, Y) is computationally indistinguishable from
IDEALA,B(X, Y).

Reactive ComputationsA reactive computation consists of steps in which par-
ties provide inputs and receive outputs. Each step generates astatewhich is used
by the following step. The input that a party provides at stepi can depend on
the outputs that it received in previous steps. (We limit ourselves to synchronous
communication, and to an environment in which there are secure channels be-
tween the parties.) The protocols that we design for the malicious case imple-
ment reactive computation. Security definitions and constructions for reactive
computation were discussed in [3, 5] (in particular, they enable parties to abort
the protocol at arbitrary stages). We will not describe these definitions in this
extended abstract, due to their length and detail.

A Composition Theorem Our protocols implement the computation of thekth-
ranked element by running many invocations of secure computation of simpler
functionalities. Such constructions are covered by theorems of secure composi-
tion [2, 3]. Loosely speaking, consider ahybrid modelwhere the protocol uses
a trusted party that computes the functionalitiesf1, . . . , f`. The secure compo-
sition theorem states that if we consider security in terms of comparing the real
computation to the ideal model, then if a protocol is secure in the hybrid model,
and we replace the calls to the trusted party by calls to secure protocols com-
puting f1, . . . , f`, then the resulting protocol is secure. A secure composition
theorem applies to reactive computation, too [3, 5].

2 Two-party Computation of the kth Element

This section describes protocols for secure two-party computation of thekth-
ranked element of the union of two databases. The protocols are based on the
observation that a natural algorithm for computing thekth-ranked element dis-
closes very little information that cannot be computed from the value of the
kth-ranked element itself. Some modification to that protocol can limit the in-
formation that is leaked by the execution to information that can be computed
from the output alone.

To simplify the description of the basic, insecure, protocol, we describe it
for the case of two parties, A and B, each of which has an input of sizen/2, that
wish to compute the value of the median, i.e.(n/2)th-ranked element, of the
union of their two inputs sorted in increasing order of their values. This protocol
is a modification of the algorithm given in [17, 13]. Assume for simplicity that
all input values are different. The protocol operates in rounds. In each round,
each party computes the median value of his or her input, and then the two par-
ties compare their two median values. If A’s median value is smaller than B’s
then A adjusts her input by removing the values which are less than or equal
to her median, and B removes his input items which are greater than his me-
dian. Otherwise, A removes her items which are greater than her median and B
removes his items which are less than or equal to his median. The protocol con-
tinues until the inputs are of length 1 (thus the number of rounds is logarithmic
in the number of input items). The protocol is correct since when A’s median
is smaller than B’s median, each of the items that A removes is smaller than
A’s median, which is smaller than at leastn/4 inputs of A andn/4 inputs of B.
Therefore the removed item cannot be the median. Also, the protocol removes
n/4 items which are smaller than the median andn/4 which are greater than
it, and therefore the median of the new data is the same as that of the original
input. Other cases follow similarly.

Suppose now that the comparison is done privately, i.e. that the parties only
learn whose median value is greater, and do not learn any other information
about each others median value. We show below that in this case the protocol is
secure. Intuitively this is true since, e.g., if party A knows the median value of
her input and the median of the union of the two inputs, and observes that her
median is smaller than the median of the union, then she can deduce that her me-
dian value is smaller than that of B. This means that given the final output of the
protocol party A can simulate the results of the comparisons. Consequently, we
have a reduction from securely computing the median of the union to securely
computing comparisons.
Secure comparison:The main cryptographic primitive that is used by the pro-
tocol is a two-party protocol for secure comparison. The protocol involves two
parties, where party A has an inputx and party B has an inputy. The output is 0
if x ≥ y and 1 otherwise. The protocol (which essentially computes a solution to
Yao’s millionaires problem) can be implemented by encoding the comparison
function as a binary circuit which compares the bits encoding the two inputs,
and applying to it Yao’s protocol for secure two-party computation. The over-
head is|x| oblivious transfers, andO(|x|+ |y|) applications of a pseudo-random
function, as well asO(|x|+ |y|) communication. More efficient, non-interactive
comparison protocols also exist (see e.g. [7]).

2.1 A Protocol for Semi-Honest and Malicious Parties

Following is a description of a protocol that finds thekth-ranked element in the
union of two databases and is secure against semi-honest parties. The compu-
tation of the median is a specific case wherek is set to be the sum of the two
inputs divided by two. The protocol reduces the general problem of computing
the kth-ranked element of arbitrary size inputs, to the problem of computing
the median of two inputs of equal size, which is also a power of 2. To simplify
the exposition, we assume that all the inputs aredistinct. This issue is further
discussed later.
Security against a malicious adversary.The protocol for the semi-honest case
can be amended to be secure against malicious adversaries. The main change is
that the protocol must now verify that the parties provide consistent inputs to the
different invocations of the secure computation of the comparisons. For exam-
ple, if party A gave an input of value100 to a secure comparison computation,
and the result was that A must delete all its input items which are smaller than
100, thenA cannot provide an input which is smaller than100 to any subse-
quent comparison. We provide a proof that given this enforcement, the protocol
is secure against malicious behavior. For this protocol, we do not force the in-
put elements to be integers. However, if such an enforcement is required (e.g.

if the input consists of rounded salary data), then the protocol for the malicious
case verifies that there is room for sufficiently many distinct integers between
the reported values of different elements of the input. This is made more precise
later.

In protocolFIND-RANKED-ELEMENT that we describe here, we specify the
additionalfunctionalitythat is required in order to ensure security against mali-
cious parties. Then in Section 2.3 we describe how to implement this function-
ality, and prove that given this functionality the protocol is secure against mali-
cious adversaries. Of course, to obtain a protocol which is only secure against
semi-honest adversaries, one should ignore the additional highlighted steps that
provide security in the malicious case.
Protocol FIND-RANKED-ELEMENT

Input: DA known to A, andDB known to B. Public parameterk (for now, we
assume that the numerical value of the rank of the element is known). All items
in DA ∪DB are distinct.
Output: Thekth-ranked element inDA ∪DB.

1. Party A (resp., B) initializesSA (resp.,SB) to be the sorted sequence
of its k smallest elements inDA (resp.,DB).

2. If |SA| < k then Party A pads(k − |SA|) values of “+∞” to its
sequenceSA. Party B does the same: if|SB| < k then it pads(k −
|SB|) values of “+∞” to its sequenceSB.

3. Let 2j be the smallest power of 2 greater than or equal tok. Party
A pre-padsSA with (2j − k) values of “-∞” and Party B padsSB

with (2j − k) values of “+∞”. (The result is two input sets of size
2j each, whose median is thekth-ranked element inDA ∪DB .)
In the malicious case:The protocol sets boundslA = lB = −∞
anduA = uB = ∞.

4. Fori = (j − 1), . . . , 0 :
A. A computes the(2i)th element ofSA, denotedmA, and B com-

putes the(2i)th element ofSB, mB. (I.e., they compute the re-
spective medians of their sets.)

B. A and B engage in asecure computationwhich outputs 0 if
mA ≥ mB, and 1 ifmA < mB.
In the malicious case:The secure computation first checks that
lA < mA < uB andlB < mB < uB. If we want to force the
input to be integral, then we check thatlA +2i < mA ≤ uA−2i

and lB + 2i < mB ≤ uB − 2i. If these conditions are not
satisfied, then the protocol is aborted. Otherwise, ifmA ≥ mB,
the protocol setsuA to bemA and lB to bemB. Otherwise it

updateslA to mA anduB to mB. Note that the lower and upper
bounds are not revealed to either party.

C. If mA < mB, then A removes all elements ranked2i or less
from SA, while B removes all elements ranked greater than2i

from SB. On the other hand, ifmA ≥ mB, then A removes all
elements ranked higher than2i from SA, while B removes all
elements ranked2i or lower fromSB.

5. (Here every party has an input set of size 1.) PartyA and partyB
output the result of asecure computationof the minimum value of
their respective elements.
In the malicious case:The secure computation checks that the in-
puts given in this step are consistent with the inputs given earlier.
Specifically, for any item other than item2j of the original set of A
(respectively B), this means that the value must be equal touA (re-
spectivelyuB). For item2k of step A (respectively B), it is verified
that its value is greater thanlA (respectivelylB).

Overhead: Since the valuej is at mostlog 2k and the number of rounds of com-
munication is(j + 1), the total number of rounds of communication islog(2k).
In each round, the protocol performs at most one secure computation, which re-
quires a comparison of(log M) bit integers. Thus the total communication cost
is O(log M · log k) times the security parameter.

Proof of correctness Regardless of security issues, we first have to show that
the protocol indeed computes thekth-ranked item. We need to show that (a) The
preprocessing performed in Steps 1-3 does not eliminate thekth-ranked value
and (b) The(2i+1)st value ofSi

A ∪ Si
B is thekth-ranked value inDA ∪DB for

eachi = j − 1, . . . , 0 (whereSi
A, Si

B are the sorted sequences maintained by
partiesA, B, respectively, during iterationi). These two properties are shown
in Lemma 1.

Lemma 1. In ProtocolFIND-RANKED-ELEMENT, the(2i+1)st-ranked element
of SA ∪ SB in round i of Step 4 (i.e., the median) is equal to thekth-ranked
element inDA ∪DB, for i = (j − 1), . . . , 0.

Proof. Note that in the preprocessing (Step 1) we do not eliminate thekth-
ranked element since thekth-ranked element cannot appear in position(k + 1)
or higher in the sorted version ofDA or DB. Step 2 ensures that both sequences
have size exactlyk without affecting thekth-ranked element (since padding is
performed at the end of the sequences). And, Step 3 not only ensures that the
length of both sequences is a power of 2, but also padsSA andSB so that the

(2j)th element of the union of the two sequences is thekth-ranked element of
DA ∪DB. This establishes the Lemma for the case wherei = (j − 1).

The remaining cases ofi follow by induction. We have essentially trans-
formed the original problem to that of computing the median between two
sets of equal size2i+1. Note that neither party actually removes the median
of SA ∪ SB: if mA < mB then there are2 · 2i points inSA andSB that are
larger thanmA and2 · 2i points inSA andSB that are smaller thanmB, thus
no point in SA that is less than or equal tomA can be the median, nor can
any point inSB greater thanmB. A similar argument follows in the case that
mA > mB. Furthermore, the modifications made toSA andSB maintain the
median ofSA ∪ SB since at each iteration an equal number of elements are
removed from above and below the median (exactly half of the points of each
party are removed). The lemma follows.

2.2 Security for the Semi-honest Case

In the semi-honest case, the security definition in the ideal model is identical
to the definition which is based on simulation (which we haven’t explicitly de-
scribed). Thus, it is sufficient to show that, assuming that the number of elements
held by each party is public information, party A (and similarly party B), given
its own input and the value of thekth-ranked element, can simulate the execu-
tion of the protocol in the hybrid model, where the comparisons are done by a
trusted party (the proof follows by the composition theorem). We describe the
proof detail for the case of party A simulating the execution. Letx be thekth-
ranked element which the protocol is supposed to find. Then, party A simulates
the protocol as follows:

Algorithm SIMULATE -FIND-RANK

Input: DA andx known to A. Public parameterk. All items in DA ∪ DB are
distinct.
Output: Simulation of running the protocol for finding thekth-ranked element
in DA ∪DB.

1. Party A initializesSA to be the sorted sequence of itsk smallest
elements inDA

2. If |SA| < k then Party A pads(k − |SA|) values of “+∞” to its
sequenceSA.

3. Let2j be the smallest power of 2 larger thank. Party A pre-padsSA

with (2j − k) values of “-∞”.
4. Fori = (j − 1), . . . , 0 :

A. A computes the(2i)th element ofSA, mA

B. If mA < x, then the secure computation is made to output 1,
i.e.,mA < mB, else it outputs 0.

C. If mA < x, then A removes all elements ranked2i or less from
SA. On the other hand, ifx ≤ mA, then A removes all elements
ranked higher than2i from SA.

5. The final secure computation outputs 1 ifmA < x and 0 otherwise
(in this casemA = x is the median).

Lemma 2. The transcript generated by AlgorithmSIMULATE -FIND-RANK is
the same as the transcript generated by ProtocolFIND-RANKED-ELEMENT. In
addition, the state information that Party A has after each iteration of Step 4,
namely (SA, k), correctly reflects the state of ProtocolFIND-RANKED-ELEMENT

after the same iteration.

Proof. We prove the lemma by induction on the number of iterations. Assume
that the lemma is true at the beginning of an iteration of Step 4, i.e. Algo-
rithm SIMULATE -FIND-RANK has been correctly simulating ProtocolFIND-
RANKED-ELEMENT and its state correctly reflects the state of ProtocolFIND-
RANKED-ELEMENT at the beginning of the iteration. We show thatmA < x if
and only ifmA < mB. If mA < x then the number of points inSi

A smaller than
x is at least2i. If by way of contradictionmB ≤ mA, thenmB < x, implying
that the number of points inSi

B smaller thanx is at least2i. Thus the total num-
ber of points inSi

A ∪ Si
B smaller thanx would be at least2i+1, contradicting

thatx is the median. So,mA < mB. On the other hand, ifmA < mB, and by
way of contradiction,mA ≥ x, thenx ≤ mA < mB. Thus the number of points
in Si

B greater thanx is strictly more than2i. Also, at least2i points inSi
A are

greater thanx. Thus, the number of points inSi
A ∪ Si

B greater thanx is strictly
more than2i+1, again contradicting thatx is the median. So,mA < x. Thus,
the secure computations in Step 4 of Algorithm Simulate-Find-Rank return the
same outputs as in ProtocolFIND-RANKED-ELEMENT.

Duplicate Items ProtocolFIND-RANKED-ELEMENT preserves privacy as long
as no two input elements are identical (this restriction must be met for each
party’s input, and also for the union of the two inputs). The reason for this
restriction is that the execution of the protocol reveals to each party the exact
number of elements in the other party’s input which are smaller than thekth

item of the union of the two inputs. If all elements are distinct then given thekth-
ranked value each party can compute the number of elements in its own input
that are smaller than it, and therefore also the number of such elements in the
other party’s input. This information is sufficient for simulating the execution
of the protocol. However, if the input contains identical elements then given the

kth-ranked value it is impossible to compute the exact number of elements in the
other party’s input which are smaller than it and to simulate the protocol. (For
example, if several items in A’s input are equal to thekth-ranked element then
the protocol could have ended with a comparison involving any one of them.
Therefore A does not know which of the possible executions took place.)

Handling duplicate items ProtocolFIND-RANKED-ELEMENT-MULTI PARTY

in Section 3 can securely computed thekth-ranked item even if the inputs con-
tain duplicate elements, and can be applied to the two-party case (although with
log M rounds, instead oflog k). Also, protocolFIND-RANKED-ELEMENT can
be applied to inputs that might contain identical elements, if they are trans-
formed into inputs containing distinct elements. This can be done, for example,
in the following way: Let the total number of elements in each party’s input be
n. Add dlog ne+ 1 bits to every input element, in the least significant positions.
For every element in A’s input let these bits be a “0” followed by the rank of
the element in a sorted list of A’s input values. Apply the same procedure to
B’s inputs using a “1” instead of a “0”. Now run the original protocol using the
new inputs, but ensure that the output does not include the new least signifi-
cant bits of thekth item. The protocol is privacy preserving with regard to the
new inputs (which are all distinct). Also, this protocol does not reveal to party
A more information than running the original protocol with the original inputs
and in addition providing A with the number of items in B’s input which are
smaller than thekth value (the same holds of course w.r.t. B). This property can
be verified by observing that if A is given thekth-ranked element of the union
of the two inputs, as well as the number of elements inB’s input which are
smaller than this value, it can simulate the operation of the new protocol with
the transformed input elements.

Hiding the Size of the Inputs Assume that the parties wish to hide from each
other the size of their inputs. Note that ifk is public then the protocol that we de-
scribed indeed hides the sizes of the inputs, since each party transforms its input
to one of sizek. This solution in insufficient, though, ifk discloses information
about the input sizes. For example, if the protocol computes the median, thenk
is equal to half the sum of the sizes of the two inputs. We next show now how
to hide the size of the inputs when the two parties wish to compute the value of
thepth percentile, which includes the case of computing the median (which is
the50th percentile).

pth-Percentile Thepth percentile is the element with rankd p
100 ·(|DA|+|DB|)e.

We assume that an upper boundU on the number of elements held by each party
is known. Both parties first pad their inputs to getU elements each, in a way
that keeps the value of thepth percentile. For this, if a party A needs to add
X = U − |DA| elements to its input, it addsp100X elements with value−∞

and (100−p)
100 X elements with value+∞ (to simplify the exposition, we assume

that p
100X is an integer). Party B acts in a similar way. Then the parties engage

in a secure computation of thepth percentile, which is the(p
100 · 2U)th-ranked

element of the new inputs, using the protocol we described above.

2.3 Security for the Malicious Case

We assume that the comparison protocol is secure against malicious parties. We
then show that although the malicious party can choose its input values adap-
tively during the execution of the protocol, it could as well have constructed an
input apriori and given it to a trusted third party to get the same output. In other
words, although the adversary can define the values of its input points depend-
ing on whether that input point needs to be compared or not in our protocol,
this does not give it any more power. The proof is composed of two parts. First,
we show that the functionality provided by the protocol definition provides the
required security. Second, we show how to implement this functionality effi-
ciently.

Lemma 3. For every adversaryA′ in the real model there is an adversaryA′′

in the ideal model, such that the outputs generated byA′ andA′′ are computa-
tionally indistinguishable.

Proof Sketch:Based on the composition theorem, we can consider only a proto-
col in the hybrid model where we assume that the comparisons are done securely
by a trusted party. (We actually need here a composition theorem for a reactive
scenario. We refer the reader to [3, 5] for a treatment of this issue.)

Visualize the operation ofA′ as a binary tree. The root is the first comparison
it performs in the protocol. Its left child is the comparison which is done if the
answer to the first comparison is 0, and the right child is the comparison that
happens if the first answer is 1. The tree is constructed recursively following
this structure, where every node corresponds to a comparison done at Step 4(B).
We add leaves corresponding to the secure computation of Step 5 of the protocol
following the sequence of comparisons that lead to a leaf.

Fix the random input used by the adversaryA′. We also limit ourselves to
adversaries that provide inputs that correspond to the bounds maintained by the
protocol (otherwise the protocol aborts as in early termination, and since this is
legitimate in the ideal model, we are done). We must generate an input to the
trusted party that corresponds to the operation ofA′. Let us runA′ where we
provide it with the output of the comparisons. We go over all execution paths
(i.e. paths in the tree) by stopping and rewinding the operation. (This is possible
since the tree is of logarithmic depth.) Note that each of theinternal nodes

corresponds to a comparison involving adifferentlocation in the sorted list that
A′ is required to generate according to the protocol. Associate with each node
the value thatA′ provides to the corresponding comparison.

Observe the following facts:

– For any three internal nodesL,A, R whereL andR are the left and right
children ofA, the bounds checked by the protocol enforce that the value of
L is smaller than that ofA, which is smaller than that ofR. Furthermore, an
inorder traversal of the internal nodes of the tree results in a list of distinct
values appearing in ascending order.

– When the computation reaches a leaf (Step 5),A′ provides a single value
to a comparison. For the rightmost leaf, the value is larger than any value
seen till now, while for each of the remaining leaves, the value is the same
as the value on the rightmost internal node on the path from the root to the
leaf (this is enforced by checking that the value is the same asuA or uB

respectively).
– Each item in the input ofA′ is used in at most a single internal node, and

exactly a single leaf of the tree.

Consequently, the values associated with the leaves are sorted, and agree with
all the values thatA′ provides to comparisons in the protocol. We therefore use
these values as the input to the trusted third party in the ideal model. When we
receive the output from the trusted party we simulate the route that the execu-
tion takes in the tree, provide outputs toA′ andB, and perform any additional
operation thatA′ might apply to its view in the protocol.3 ¤

Implementing the functionality of the malicious case protocol The func-
tionality that is required for the malicious case consists of using the results of
the firsti comparisons in order to impose bounds on the possible inputs to the
following comparison. This is areactive secure computation, which consists
of several steps, where each step operates based on input from the parties and
state information that is delivered from the previous step. This scenario, as well
as appropriate security definitions and constructions, was described in [3, 5].
(We are interested, however, in a simpler synchronous environment with secure
channels.)

In order to implement secure reactive computation, each step should output
shares of a state-information string, which are then input to the following step.

3 Note that we are assuming that the inputs can be arbitrary Real numbers. If, on the other hand,
there is some restriction on the form of the inputs, the protocol must verify thatA′ provides
values which are consistent with this restriction. For example, if the inputs are integers then the
protocol must verify that the distance between the reported median and the bounds is at least
half the number of items in the party’s input (otherwise the input items cannot be distinct).

The shares must be encrypted and authenticated by the secure computation, and
be verified and decrypted by the secure computation of the following step. This
functionality can be generically added to the secure computation

3 Multi-party computation of the kth ranked element

We now describe a protocol that outputs the exact value of thekth-ranked ele-
ment of the union of multiple databases. For this protocol we assume that the
elements of the sets are integer-valued, but they need not be distinct. Let[α, β]
be the (publicly-known) range of input values, and letM = β − α + 1. The
protocol runs a series of rounds in which it (1) suggests a value for thekth-
ranked element, (2) performs a secure computation to which each party reports
the number of its inputs which are smaller than this suggested value, adds these
numbers and compares the result tok, and (3) updates the guess. The number
of rounds of the protocol is logarithmic inM .
Malicious adversaries. We describe a protocol which is secure against semi-
honest adversaries. Again, the protocol can be amended to be secure against
malicious adversaries by verifying that the parties are providing it with consis-
tent inputs. We specify in the protocol the additional functionality that should
be implemented in order to provide security against malicious adversaries.

Protocol FIND-RANKED-ELEMENT-MULTI PARTY

Input: PartyPi, 1 ≤ i ≤ s, has databaseDi. The sizes of the databases are
public, as is the valuek. The range[α, β] is also public.
Output: Thekth-ranked element inD1 ∪ · · · ∪Ds.

1. Each party ranks its elements in ascending order. Initialize the cur-
rent range[a, b] to [α, β] and setn =

∑ |Di|.
In the malicious case:Set for each partyi bounds(l)i = 0, (g)i =
0. These values are used to bound the inputs that partyi reports in the
protocol.(l)i reflects the number of inputs of partyi strictly smaller
than the current range, while(g)i reflects the number of inputs of
partyi strictly greater than the current range.

2. Repeat until “done”
(a) Setm = d(a + b)/2e and announce it.
(b) Each party computes the number of elements in its database

which are strictly smaller thanm, and the number of elements
strictly greater thanm. Let li andgi be these values for partyi.

(c) The parties engage in the following secure computation:
In the malicious case:Verify for every partyi that li + gi ≤
|Di|, li ≥ (l)i, and gi ≥ (g)i. In addition, ifm = α, then we
check thatli = 0; or if m = β, we verify thatgi = 0.

– Output “done” if
∑

li ≤ k − 1 and
∑

gi ≤ n − k. (This
means thatm is thekth-ranked item.)

– Output “0” if
∑

li ≥ k. In this case setb = m − 1. (This
means that thekth-ranked element is smaller thanm.)
In the malicious case:Set(g)i = |Di| − li. (Since the left
end-point of the range remains the same,(l)i remains un-
changed.)

– Output “1” if
∑

gi ≥ n−k +1. In this case seta = m+1.
(This means that thekth-ranked element is larger thanm.)
In the malicious case:Set(l)i = |Di| − gi.

Correctness:The correctness of this algorithm follows from observing that
if m is thekth-ranked element then the first condition will be met and the al-
gorithm will output it. In the other two cases, thekth-ranked element is in the
reduced range that the algorithm retains.

Overhead: The number of rounds islog M . Each round requires a secure
multi-party computation that computes two summations and performs two com-
parisons. The size of the circuit implementing this computation isO(s log M),
which is also the number of input bits. The secure evaluation can be imple-
mented using the protocols of [11, 1, 8].
Security for the semi-honest case:We provide a sketch of a proof for the
security of the protocol. Assume that the multi-party computation in step 2(c)
is done by a trusted party. Denote this scenario as the hybrid model. We show
that in this case the protocol is secure against an adversary that controls up to
s− 1 of the parties. Now, implement the multi-party computation by a protocol
which is secure against an adversary that controls up tot parties, e.g. using [11,
1, 8]. (Of course,t < s − 1 in the actual implementation, since the protocols
computing the “simple” functionalities used in the hybrid model are not secure
againsts−1 parties, but rather against, say, any coalition of less thans/3 corrupt
parties.) It follows from the composition theorem that the resulting protocol is
secure against this adversary.

In the hybrid model, the adversary can simulate its view of the execution of
the protocol, given the output of the protocol (and without even using its input).
Indeed, knowing the range[a, b] that is used at the beginning of a round, the
adversary can compute the target valuem used in that round. Ifm is the same
as the output, it concludes that the protocol must have ended in this round with
m as the output (if the real execution did not outputm at this stage,m would
have been removed from the range and could not have been output). Otherwise,
it simply updates the range to that side ofm which contains the output (if the
real execution had not done the same, the output would have gone out of the
active range and could not have been the output). Along with the knowledge of

the initial range, this shows that the adversary can simulate the execution of the
protocol.

Security for the malicious case: We show that the protocol is secure given
a secure implementation of the functionality that is described in Step 3 of al-
gorithm FIND-RANKED-ELEMENT-MULTI PARTY. Since this is a multi-party
reactive system we refer the reader to [3, 5] for a description of such a secure
implementation. (The idea is that the parties run a secure computation of each
step using, e.g., the protocol of [1]. The output contains encrypted and authenti-
catedsharesof the current state, which are then input to the computation of the
following step, and checked by it.)

For every adversary that corrupts up tos − 1 parties in the computation in
the hybrid model, there is an adversary with the same power in the ideal model.
We limit the analysis to adversaries that provide inputs that agree with all the
boundary checks in the algorithm (otherwise the protocol aborts, and this is a
legitimate outcome in the ideal model).

Imagine a tree of sizeM corresponding to the comparisons done in the pro-
tocol (i.e. the root being the comparison form = (β−α)/2, etc.). Consider also
the range[α, β] where each element is associated with the single nodeu in the
tree in whichm is set to the value of this element. Fix the random values (coin
flips) used by the adversary in its operation. Run the adversary, with rewinding,
checking the values that are given by each of the parties it controls to each of
the comparisons. The values that partyi provides to the comparison of nodeu
define, for the corresponding element in the range, the number of items in the
input of partyi which are smaller than, larger than, and equal to that value.

Assume that we first examine the adversary’s behavior for the root node,
then for the two children of the root, and continue layer by layer in the tree.
Then the boundary checks ensure that the nodes are consistent. Letlu, eu, gu

denote the number of items that are specified by the adversary to be less than,
equal to, and greater thanu, respectively. Then, for any three nodesL,A, R
that appear in this order in an inorder traversal of the tree, the boundary checks
ensure thatlL+eL ≤ lA andgR+eR ≤ gA. SincelA+eA+gA = lR+eR+gR,
the second inequality implies thatlA + eA ≤ lR. Thus, for any two nodesu and
v with u < v, we havelu + eu ≤ lv. In particular, fori = α, . . . , β − 1, we
haveli + ei ≤ li+1, which implies thatΣβ

i=αei ≤ lβ + eβ − lα . Sincelα = 0
andgβ = 0 (enforced by our checks), we know thatlβ + eβ − lα = Di. Thus,
ei = li+1 − li for α ≤ i < β.

We use the result of this examination to define the input that each corrupt
party provides to the trusted party in the ideal model. We set the input to contain
eu items of valueu, for everyu ∈ [α, β]. The trusted party computes thekth

value (say, using the same algorithms as in the protocol). Since in the protocol

itself the values provided by each party depend only on the results of previous
comparisons (i.e. path in the tree) the output of the trusted party is the same as
in the protocol.

Acknowledgements

We would like to thank Yehuda Lindell and Kobbi Nissim for stimulating dis-
cussions on this work.

References

1. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. InProc.
22nd Annual ACM Symposium on the Theory of Computing, pages 503–513, 1990.

2. R. Canetti. Security and composition of multiparty cryptographic protocols.Journal of
Cryptology, 13(1):143–202, 2000.

3. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145, 2001.

4. R. Canetti, Y. Ishai, R. Kumar, M. Reiter, R. Rubinfeld, and R. Wright. Selective private
function evaluation with applications to private statistics. InProc. of 20th ACM Symposium
on Principles of Distributed Computing, pages 293–304, 2001.

5. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two party com-
putation. InProc. 34th ACM Symp. on the Theory of Computing, pages 494–503, 2002.

6. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright. Secure multiparty
computation of approximations. InProc. 28th ICALP, pages 927–938, 2001.

7. M. Fischlin. A cost-effective pay-per-multiplication comparison method for millionaires. In
CT-RSA 2001: The Cryptographers’ Track at RSA Conference, pages 457–472, 2001.

8. M. Franklin and M. Yung. Communication complexity of secure computation (extended
abstract). InProc. 24th ACM Symp. on the Theory of Computing, pages 699–710, 1992.

9. P. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate his-
tograms. InProc. 23rd Int. Conf. Very Large Data Bases, pages 466–475, 1997.

10. O. Goldreich. Secure multi-party computation. InTheory of Cryptography Library, 1998.
11. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A complete-

ness theorem for protocols with honest majority. InProc. 19th Annual ACM Symposium on
Theory of Computing, pages 218–229, 1987.

12. H. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, and T. Suel. Optimal
histograms with quality guarantees. InProc. 24th Int. Conf. Very Large Data Bases, pages
275–286, 1998.

13. E. Kushilevitz and N. Nisan.Communication Complexity. Cambridge University Press,
1997.

14. Y. Lindell and B. Pinkas. Privacy preserving data mining.Journal of Cryptology, 15(3):177–
206, 2002.

15. M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation.
In Proc. 33rd Annual ACM Symposium on Theory of Computing, pages 590–599, 2001.

16. V. Poosala, V. Ganti, and Y. Ioannidis. Approximate query answering using histograms.
IEEE Data Engineering Bulletin, 22(4):5–14, 1999.

17. M. Rodeh. Finding the median distributively.Journal of Computer and Systems Sciences,
24:162–166, 1982.

18. A. Yao. How to generate and exchange secrets. InProc. 27th IEEE Symposium on Founda-
tions of Computer Science, pages 162–167, 1986.

