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Abstract. A new public-key model for resettable zero-knowledge (rZK)
protocols, which is an extension and generalization of the upper-bounded
public-key (UPK) model introduced by Micali and Reyzin [EuroCrypt’01,
pp. 373-393], is introduced and is named weak public-key (WPK) model.
The motivations and applications of the WPK model are justified in the
distributed smart-card/server setting and it seems more preferable in
practice, especially in E-commerce over Internet. In this WPK model
a 3-round (optimal) black-box resettable zero-knowledge argument with
concurrent soundness for NP is presented assuming the security of RSA
with large exponents against subexponential-time adversaries. Our result
improves Micali and Reyzin’s result of resettable zero-knowledge argu-
ment with concurrent soundness for NP in the UPK model. Note that
although Micali and Reyzin’ protocol satisfies concurrent soundness in
the UPK model, but it does not satisfy even sequential soundness in our
WPK model.
Our protocol works in a somewhat “parallel repetition” manner to reduce
the error probability and the black-box zero-knowledge simulator works
in strict polynomial time rather than expected polynomial time. The
critical tools used are: verifiable random functions introduced by Micali,
Rabin and Vadhan [FOCS’99, pp. 120-130], zap presented by Dwork and
Naor [FOCS’00, pp.283-293] and complexity leveraging introduced by
Canetti, Goldreich, Goldwasser and Micali [STOC’00, pp. 235-244].

1 Introduction

The strongest notion of zero-knowledge to date, resettable zero-knowledge (rZK),
was recently put forward by Canetti, Goldreich, Goldwasser and Micali [8].
Roughly speaking, an rZK protocol is an interactive system in which a veri-
fier learns nothing (except for the verity of a given statement) even if he can
interact with the prover polynomial many times, each time restarting an in-
teraction with the prover using the same configuration and random tape. rZK
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enlarges the number of physical ways to implement zero-knowledge protocols
while guaranteeing security is preserved. For example, rZK makes it possible to
implement the zero-knowledge prover by using those devices that may be possi-
bly (maliciously) resetted to their initial conditions or can not afford to generate
fresh randomness for each new invocation. An example of those devices is the
ordinary smart card. rZK is also guaranteed to preserve the prover’s security
when the protocol is executed concurrently in an asynchronous network like the
Internet. Actually, rZK is a generalization and strengthening of the notion of
concurrent zero-knowledge introduced by Dwork, Naor and Sahai [12].

1.1 Previous results

Under standard complexity assumptions, non-constant-round resettable zero-
knowledge proof for NP was constructed in [8, 22] by properly modifying the
concurrent zero-knowledge protocol of Richardson and Killian [28]. Unfortu-
nately, there are no constant-round rZK protocols in the standard model, at
least for the black-box case, as shown by Canetti, Killian, Petrank and Rosen
[9]. To get constant-round resettable zero-knowledge protocols Canetti, Goldre-
ich, Goldwasser and Micali [8] introduced an appealingly simple model, the bare
public-key (BPK) model, and presented a 5-round rZK argument for NP in this
model. The round complexity was further reduced to four by Micali and Reyzin
[24].

A protocol in the BPK model simply assumes that all verifiers have deposited
a public key in a public file before any interaction among the users. This public
file is accessible to all users at all times. Note that an adversary may deposit
many (possibly invalid) public keys in it, particularly, without even knowing
corresponding secret keys or whether such exist. We remark that the BPK model
is a weak version of the frequently used Public-Key Infrastructure (PKI) model,
which underlies any public key cryptosystem or digital signature.

Resettable zero-knowledge protocols also shed hope on finding ID schemes
secure against resetting attack. Feige, Fiat and Shamir [16, 14] introduced a
paradigm for ID schemes based on the notion of zero-knowledge proof of knowl-
edge. In essence, a prover identifies himself by convincing the verifier of knowing
a given secret. Almost all subsequent ID schemes followed this paradigm, and
were traditionally implemented by the prover being a smart card. However, up
to the emergence of rZK all the previous Fiat-Shamir like ID schemes fail to
secure whenever the prover is resettable. Using constant-round rZK protocols
in the BPK model above, Bellare, et al. [3] provided identification protocols se-
cure against resetting attack. Unfortunately, there is a main disadvantage of this
rZK-based solution since it only preserves the identity prover’s security but does
not guarantee to preserve any security of the identity verifier when the iden-
tification protocol is concurrently executed in an asynchronous setting like the
Internet. Actually, if an adversary is allowed to concurrently interact with the
identity verifiers then the adversary can easily impersonate the identity prover.
The reason is just that the underlying resettable zero-knowledge protocols in the
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BPK model [8, 24] do not guarantee to preserve verifier’s security when they are
concurrently executed.

The various security notions of the verifier in public-key models were first
noted and clarified by Micali and Reyzin [24, 27]. In public-key models, a verifier
V has a secret key SK, corresponding to its public-key PK. A malicious prover
P ∗ could potentially gain some knowledge about SK from an interaction with
the verifier. This gained knowledge might help him to convince the verifier of a
false theorem in another interaction. In [24] four soundness notions in public-key
models were defined in which each implies the previous one: one-time soundness,
sequential soundness, concurrent soundness, resettable soundness. In this paper
we focus on concurrent soundness which roughly means that a malicious prover
P ∗ can not convince the honest verifier V of a false statement even P ∗ is al-
lowed multiple interleaved interactions with V . As discussed above, resettable
zero-knowledge protocols with concurrent soundness are really desirable in most
smart-card and Internet based applications. Unfortunately, up to now we do
not know how to construct resettable zero-knowledge protocols with concurrent
soundness for NP in the BPK model. In a stronger version of BPK model intro-
duced by Micali and Reyzin [25] in which each public-key of an honest verifier
is restricted to be used at most a priori bounded polynomial times, the upper-
bounded public-key (UPK) model, Micali and Reyzin gave a 3-round black-box
rZK argument with sequential soundness for NP in the UPK model [25]. And
Reyzin [27] further proved that it also satisfies concurrent soundness in the UPK
model.

Regarding the round-complexity of resettable zero-knowledge protocols for
NP in public-key models, Micali and Reyzin [24, 25] showed that any (resettable
or not) black-box zero-knowledge protocol in public-key models for a language
outside of BPP requires at least three rounds (using an earlier result of Goldreich
and Kraczwyck [20]). For efficient 4-round zero-knowledge protocols for NP ,
readers are referred to [7]. We also note that 2-round public-coin black-box and
concurrent zero-knowledge protocols for NP do exist under the assumption that
the prover is resource bounded [13]. Here, resource bounded prover means that
during protocol execution the prover uses certain limited amount of (say, a-priori
polynomial bounded) time or non-uniform advice.

1.2 Our contributions

In this paper, we introduce a new public-key model for resettable zero-knowledge
(rZK) protocols, which we name it weak public-key (WPK) model. Roughly
speaking, in the WPK model the public-key of an honest verifier V can be used
by an (even malicious) prover P ∗ for any polynomial times just as allowed in
the BPK model. But for each theorem statement x selected by P ∗ on the fly x
is restricted to be used at most a priori bounded polynomial times with respect
to the same verifier’s public key. Note that if the same verifier’s public-key is
restricted to be used at most a priori bounded polynomial times just as required
in the UPK model then for each common input x selected by P ∗ x is also
restricted to be used at most a priori bounded polynomial times with respect
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to the same verifier’s public key. It means the WPK model is an extension and
generalization of the UPK model. Really, the WPK model just lies between the
BPK model and the UPK model. That is, the WPK model is stronger than the
BPK model but weaker than the UPK model.

The main result of this paper is a 3-round black-box resettable zero-knowledge
argument with concurrent soundness for NP in the WPK model. The round
complexity is optimal according to Micali and Reyzin’s result. In comparison
with Micali and Reyzin’s 3-round rZK argument with concurrent soundness for
NP in the UPK model [25], we remark that our protocol in the WPK model
is also an rZK argument with concurrent soundness for NP in the UPK model
since the WPK model is an extension and generalization of the UPK model. But,
the concurrent soundness of Micali and Reyzin’s protocol is not preserved in our
WPK model. The reason is that the concurrent soundness of Micali and Reyzin’s
protocol relies on the restriction that the public-key of V can not be used by
P ∗ more than a priori bounded polynomial times and without this restriction
P ∗ can easily cheat V with non-negligible probability (even with probability 1).
Since this restriction is removed in our WPK model, it means that Micali and
Reyzin’s protocol not only does not satisfy concurrent soundness in our WPK
model but also even does not satisfy sequential soundness in the WPK model.
Our protocol can be viewed as an improvement and extension of Micali and
Reyzin’ result.

Motivations, applications and implementation of the WPK model As
an extension and generalization of the UPK model, roughly speaking, almost all
the ways to implement the UPK model [25] can also be used to implement our
WPK model. A simple way is to just let the honest verifier to keep a counter
for each common input on which he has been invoked. This is an extension of
the implementation of the UPK model in which an honest verifier keeps a single
counter for all common inputs (selected on the fly by a malicious prover) on
which he has been invoked.

Note that one of the major applications of resettable zero-knowledge is that
it makes it possible to implement zero-knowledge prover by those devices that
may be possibly maliciously resetted to their initial conditions or can not afford
to generate fresh randomness for each invocation. The most notable example of
such devices is the widely used smart card. Also as argued above resettable zero-
knowledge provides the basis for identification protocols secure against resetting
attacks [3]. Then we consider the distributed client/server setting in which the
clients are implemented by smart cards. We remark that this setting is widely
used in practice, especially in E-commerce over Internet. When a resettable
identification protocol is executed in this distributed smart-card/server setting
we view the identity of each smart-card as the common input. An adversary may
hold many (any polynomial number of) smart-cards but in our WPK model we
require that each smart-card can be used by the adversary at most a priori
polynomial times. Note that in practice each smart-card has an expiry date that
corresponds to in some level the a-priori bounded polynomial restriction required
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in our WPK model. We remark that in this distributed smart-card/server setting
there usually exists a central server that may be located in a central bank or
other organizations and plays the verifier’s role. In practice the central server
keeps a record for each smart card and dynamically updates its information. It
is easy for this central server to keep a counter in each record to remember how
many times the corresponding smart-card has been used. We stress that in this
distributed smart-card/server setting since the server (verifier) may be invoked
and interacted concurrently with many smart-cards, the design of rZK protocols
with concurrent soundness in the WPK model is really desirable.

1.3 Organization of this paper

In Section 2, we recall the tools we will use in this paper. In Section 3, we provide
the formal description of the WPK model. In Section 4, we present the 3-round
black-box resettable zero-knowledge argument with concurrent soundness for
NP in the WPK model.

2 Preliminaries

In this section, we present some main tools used in this paper. However, one
critical tool, zap presented in [11], is absent from this section and is provided in
Section 3 together with the definition of resettable witness indistinguishability.
We remark that all these tools can be constructed assuming the security of RSA
with large prime exponents against subexponential-time adversaries.

Definition 1 (one-round perfect-binding commitments). A one-round
perfect-binding commitment scheme is a pair of probabilistic polynomial-time
(PPT) algorithms, denoted (C, R), satisfying:

– Completeness. ∀k, ∀v, let c = Csv (1
k, v) and d = (v, sv), where C is a

PPT commitment algorithm while using sv as its randomness and d is the

corresponding decommitment to c, it holds that Pr[(c, d)
R
←− C(1k, v) :

R(1k, c, v, d) = YES] = 1, where k is security parameter.
– Computational hiding. For every v, u of equal p(k)-length, where p is a posi-
tive polynomial and k is security parameter, the random variables Csv (1

k, v)
and Csu(1

k, u) are computationally indistinguishable.
– Perfect binding. For every v, u of equal p(k)-length, the random variables
Csv (1

k, v) and Csu(1
k, u) have disjoint support. That is, for every v, u and

m, if Pr[Csv (1
k, v) = m] and Pr[Csu(1

k, u) = m] are both positive then
u = v and sv = su.

A one-round perfect-binding commitment scheme can be constructed based
on any one-way permutation [17].

Definition 2 (Pseudorandom Functions PRF [19]). A pseudorandom func-
tion family is a keyed family of efficiently computable functions, such that a
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function picked at random from the family is indistinguishable (via oracle ac-
cess) from a truly random function with the same domain and range. Formally,
a function PRF: {0, 1}n × {0, 1}∗ → {0, 1}n is a pseudorandom function if for
all 2n

α

-size adversaries ADV, the following difference is negligible in n:

∣

∣

∣

∣

Pr
[

PRFKey
R
←− {0, 1}n : ADV PRF (PRFKey, ·) = 1

]

− Pr
[

F
R
←− ({0, 1}n){0,1}

∗

: ADV F (·) = 1
]

∣

∣

∣

∣

The value α is called the pseudorandomness constant.

Definition 3 (non-interactive zero-knowledge NIZK [2, 4]). Let NIP
and NIV be two probabilistic interactive machines, and let NIσLen be a positive
polynomial. We say that < NIT, NIV > is an NIZK proof system for an NP
language L, if the following conditions hold:

– Completeness. For any x ∈ L of length n, any σ of length NIσLen(n), and

NP-witness y for x ∈ L, it holds that Pr[Π
R
←− NIP (σ, x, y) : NIV (σ, x, Π)

= YES] = 1.

– Soundness. ∀x /∈ L of length n, Pr[σ
R
←− {0, 1}NIσLen(n) : ∃ Π s. t.

NIV (σ, x,Π) = YES] is negligible in n.
– Zero-Knowledge. ∃ α > 0 and a PPT simulator NIS such that, ∀ sufficiently
large n, ∀x ∈ L of length n and NP-witness y for x ∈ L, the following two
distributions are indistinguishable by any 2n

α

-gate adversary:

[(σ′, Π ′)
R
←− NIS(x) : (σ′, Π ′] and

[σ
R
←− {0, 1}NIσLen(n);Π

R
←− NIP (σ, x, y) : (σ, Π)].

The value α is called the NIZK constant.

Non-interactive zero-knowledge proof systems for NP can be constructed
based on any one-way permutation [15] and one-way permutations can be con-
structed in turn under RSA assumption [18]. An efficient implementation based
on any one-way permutation can be found in [21]. For more recent advances in
NIZK readers are referred to [10].

2.1 Verifiable random functions

A family of verifiable random functions (VRF), first introduced in [26], is es-
sentially a pseudorandom function family with an additional property that the
correct value of a function on an input can not only be computed by the owner
of the seed, but also be proven to be the unique correct value. The proof can be
verified by anyone who knows the public-key corresponding to the seed.

Definition 4 (Verifiable Random Functions). Let VRFGen, VRFEval,

VRFProve and VRFVer be polynomial-time algorithms (the first and the last are
probabilistic, and the middle two are deterministic). Let a : N → N ∪ {0, 1}∗
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and b : N → N be any two functions that are computable in time poly(k) and
bounded by a polynomial in k (except when a takes on {0, 1}∗).
We say that (VRFGen, VRFEval, VRFProve, VRFVer) is a verifiable pseu-

dorandom function (VRF) with input length a(k) and output length b(k) under
a security parameter k if the following properties hold:

1. The following two conditions hold with probability 1−2−Ω(k) over the choice
of

(V RFPK, V RFSK)
R
←− VRFGen(1k):

(a) (Domain-Range Correctness):

∀x ∈ {0, 1}a(k), VRFEval(V RFSK, x) ∈ {0, 1}b(k).

(b) (Complete Probability): ∀x ∈ {0, 1}a(k), if v = VRFEval(V RFSK, x) and
pf = VRFProve(V RFSK, x), then

Pr[VRFVer(V RFPK, x, v, pf) = YES] > 1− 2−Ω(k)

(This probability is over the coin tosses of VRFVer).
2. (Unique Probability) For every V RFPK, x, v1, v2, pf1, pf2 such that v1 6= v2,
the following holds for either i = 1 or i = 2:

Pr[VRFVer(V RFPK, x, vi, pfi) = YES] < 2−Ω(k)

(This probability is over the coin tosses of VRFVer).
3. (Residual Pseudorandomness): Let α > 0 be a constant. Let T = (TE , TJ )
be any pair of algorithms such that TE(·, ·) and TJ(·, ·) run for a total of
at most 2k

α

steps when their first input is 1k. Then the probability that T
succeeds in the following experiment is at most 1/2 + 1/2k

α

:
(a) Run VRFGen(1k) to obtain (V RFPK, V RFSK).

(b) Run T
VRFEval(V RFSK, ·),VRFProve(V RFSK, ·)
E (1k, V RFPK) to obtain the pair

(x, state).

(c) Choose r
R
←− {0, 1}.

– if r = 0, let v = VRFEval(V RFSK, x)

– if r = 1, choose v
R
←− {0, 1}b(k)

(d) Run T
VRFEval(V RFSK, ·),VRFProve(V RFSK, ·)
J (1k, V RFPK, v, state) to obtain

a guess.
(e) T = (TE , TJ ) succeeds if x ∈ {0, 1}

a(k), guess = r, and x was not asked
by either TE or TJ as a query to VRFEval(V RFSK, ·) or VRFProve(V RFSK, ·).
We call α the pseudorandomness constant.

The above verifiable pseudorandom functions can be constructed assuming
RSA with large prime exponents against subexponential-time adversaries [26].
Very recently, a new construction of VRF was provided by Lysyanskaya on an
assumption about groups in which decisional Diffie-Hellman is easy, but compu-
tational Diffie-Hellman is hard [23]. We remark that up to now the first appli-
cation of VRF, as suggested by Micali and Reyzin, is the simple construction of
an rZK argument with one-time soundness for NP in the BPK model [24]. Our
result can be viewed as another major application of VRF.
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3 The Weak Public-Key (WPK) Model

In this section, we present the formal definitions of resettable zero-knowledge
and concurrent soundness in our WPK model.

3.1 Honest players in the WPK model

The WPK model consists of the following:

– F be a public-key file that is a polynomial-size collection of records (id, PKid),
where id is a string identifying a verifier and PKid is its (alleged) public-key.

– P (1n, x, y, F, id, w) be an honest prover that is a polynomial-time interactive
machine, where 1n is a security parameter, x is an n-bit string in L, y is
an auxiliary input, F is a public-file, id is a verifier identity, and w is his
random-tape.

– V be an honest verifier that is an polynomial-time interactive machine work-
ing in two stages.
1. Key generation stage. V , on a security parameter 1n and a random-tape

r, outputs a public-key PK and remembers the corresponding secret key
SK.

2. Verification stage. V , on inputs SK, x ∈ {0, 1}n and a random tape ρ,
performs an interactive protocol with a prover and outputs “accept x”
or “reject x”. We stress that in our WPK model for each common input
x on which the verification stage of V has been invoked the honest veri-
fier V keeps a counter in secret with upperbound U(n), a priori bounded
polynomial, to remember how many times the verification stage has been
invoked on the same x and refuses to participate in other interactions
with respect to the same x once the counter reading reaches its upper-
bound U(n). It means that each common input x can not be used (even
by a malicious prover) more than U(n) times with respect to the same
PKid, where id is the identity of the honest verifier V .

3.2 The malicious resetting verifier and resettable zero-knowledge

A malicious (s, t)-resetting malicious verifier V ∗, where t and s are positive
polynomials, is a t(n)-time TM working in two stages so that, on input 1n,

Stage 1 V ∗ receives s(n) distinct strings x1, · · · , xs(n) of length n each, and
outputs an arbitrary public-file F and a list of (without loss of generality)
s(n) identities id1, · · · , ids(n).

Stage 2 Starting from the final configuration of Stage 1, s(n) random tapes,
w1, · · · , ws(n), are randomly selected and then fixed for P , resulting in s(n)3

deterministic prover strategies P (xi, idj , wk), 1 ≤ i, j, k ≤ s(n). V ∗ is then
given oracle access to these s(n)3 provers, and finally outputs its “view” of
the interactions (i. e. its random tape and messages received from all his
oracles).
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Definition 5 (Black-box Resettable Zero-Knowledge). A protocol < P, V >
is black-box resettable zero-knowledge for a language L ∈ NP if there exists a
black-box simulator M such that for every (s, t)-resetting verifier V ∗, the follow-
ing two probability distributions are indistinguishable. Let each distributions be
indexed by a sequence of common distinct inputs x̄ = x1, · · · , xs(n) ∈ L∩{0, 1}

n

and their corresponding NP -witnesses aux(x̄) = y1, · · · , ys(n):

Distribution 1 The output of V ∗ obtained from the experiment of choosing
w1, · · · , ws(n) uniformly at random, running the first stage of V

∗ to obtain
F , and then letting V ∗ interact in its second stage with the following s(n)3

instances of P : P (xi, yi, F, idj , wk) for 1 ≤ i, j, k ≤ s(n). Note that V ∗ can
oracle access to these s(n)3 instances of P .

Distribution 2 The output of MV ∗

(x1, · · · , xs(n)).

Remark 1. In Distribution 1 above, since V ∗ oracle accesses to s(n)3 instances
P : P (xi, yi, F, idj , wk), 1 ≤ i, j, k ≤ s(n), it means that V ∗ may invoke and
interact with the same P (xi, yi, F, idj , wk) multiple times, where each such in-
teraction is called a session. We remark that there are two versions for V ∗ works
in Distribution 1.

1. Sequential version. In this version, a session must be terminated (either com-
pleted or aborted) before V ∗ initiating a new session. That is, V ∗ is required
to terminate its current interaction with the current oracle P (xi, yi, F, idj , wk)
before starting an interaction with any P (xi′ , yi′ , F, idj′ , wk′), regardless of
(i, j, k) = (i′, j′, k′) or not. Thus, the activity of V ∗ proceeds in rounds. In
each round it selects one of his oracles and conducts a complete interaction
with it.

2. Interleaving version. In this version the above restriction is removed and so
V ∗ may initiate and interact with P (xi, yi, F, idj , wk)s concurrently in many
sessions. That is, we allow V ∗ to send arbitrary messages to each of the
P (xi, yi, F, idj , wk) and obtain the response of P (xi, yi, F, idj , wk) to such
message.

However, these two versions are equivalent as shown in [8]. In other words,
interleaving interactions do not help the malicious verifier get more advantages
on learning knowledge from his oracles than he can do by sequential interactions.
Without loss of generality, in the rest of this paper we assume the resetting
malicious verifier V ∗ works in the sequential version.

Definition 6 (Resettable Witness Indistinguishability rWI). A protocol
< P, V > is said to be resettable witness indistinguishable for an L ∈ NP if
for every pair of positive polynomials (s, t), for every (s, t)-resetting malicious
verifier V ∗, two distribution ensembles of Distribution 1 (defined in Definition
5), which are indexed by the same x̄ but possibly different sequence of prover’s

NP-witnesses : aux(1)(x̄) = y
(1)
1 , · · · , y

(1)
s(n) and aux

(2)(x̄) = y
(2)
1 , · · · , y

(2)
s(n), are

computationally indistinguishable.

In [8] Canetti et al. first gave a 4-round rWI for NP. The round-complexity
is drastically reduced to 2 by Dwork and Naor [11], where they named such a
2-round WI a zap.
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Dwork and Naor’s 2-round rWI proof for NP [11] The prover P has
a private random string s that determines a pseudorandom function fs. Let L
be an NP-Complete language and RL be its corresponding NP relation. Under
a security parameter n, let p be a positive polynomial and x ∈ {0, 1}n be the
common input and y be the corresponding NP-witness (kept in secret by the
prover) for x ∈ L.

Step 1 The verifier V uniformly selects (fixes once and for all) p(n) random
strings RV = (RV1

, RV2
, · · · , RVp(n)

) with length NIσLen(n) each and sends
them to P .

Step 2 Let fs(x, y,RV ) = (r1, r2, · · · , rp(n), RP ), where the length of RP is
also NIσLen(n). For each i, 1 ≤ i ≤ p(n), on x and y, P uses ri as its
randomness to compute an NIZK proof Πi with respect to common random
string RP ⊕RVi . In the rest of this paper we denote by Πi NIZK(x,RP ⊕
RVi), 1 ≤ i ≤ p(n). Finally P sends RP along with all the p(n) NIZK proofs
to V .

An interesting property of Dwork and Naor’s 2-round rWI is that RV in Step
1 can be fixed once and for all and applied to any instance of length n [11]. It
means RV can be posted in one’s public key in the public-key model. We will
use this property in our construction later. We also note that using the general
result of existence of zaps for NP (rather than the above specific NIZK-based
construction) may further simplify the construction of the protocol presented in
Section 4. We will investigate it in a late full version.

3.3 Concurrent soundness in the WPK model

For an honest verifier V with public-key PK and secret-key SK, an (s, t)-
concurrent malicious prover P ∗ in our WPK model, for a pair positive poly-
nomials (s, t), be a probabilistic t(n)-time Turing machine that, on a security
parameter 1n and PK, performs concurrently at most s(n) interactive protocols
(sessions) with V as follows.

If P ∗ is already running i − 1 (1 ≤ i − 1 ≤ s(n)) sessions, it can select
on the fly a common input xi ∈ {0, 1}n (which may be equal to xj for 1 ≤
j < i) and initiate a new session with the verification stage of V (SK, xi, ρi)
on the restriction that the same xi can not be used by P ∗ in more than U(n)
sessions, where U(n) is the a priori bounded polynomial indicating the upper-
bound of the corresponding counter kept in secret by V for xi. We stress that
in different sessions V uses independent random-tapes in his verification stage
(that is, ρ1, · · · , ρi (1 ≤ i ≤ s(n)) are independent random strings).

We then say a protocol satisfies concurrent soundness in our WPK model
if for any honest verifier V , for all positive polynomials (s, t), for all (s, t)-
concurrent malicious prover P ∗, the probability that there exists an i (1 ≤ i ≤
s(n)) such that V (SK, xi, ρi) outputs “accept xi” while xi 6∈ L and xi is not
used in more than U(n) sessions is negligible in n.
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4 3-Round Resettable Zero-Knowledge Argument for
NP with Concurrent Soundness in the WPK model

In this section, we present the main result of this paper: a 3-round resettable
zero-knowledge argument forNP with concurrent soundness in the WPK model.
As discussed before, the design of such a protocol is really desirable in practice.
Three tools are crucial to our construction: verifiable pseudorandom functions
[26], Dwork and Naor’s 2-round rWI [11] and “complexity leveraging” [8].

4.1 Complexity leveraging

The “complexity leveraging” is used as follows. Let α be the pseudorandom
constant of a VRF (that is, the output of VRFEval is indistinguishable from
random for circuit of size 2k

α

, where k is the security parameter of the VRF).
Let γ1 be the following constant: for all sufficiently large n, the length of the NP-
witness y for x ∈ L ∩ {0, 1}n is upper-bounded by nγ1 . Let γ2 be the following
constant: for all sufficiently large n, the length of the NIZK proof Π for an
NP-statement x′ ∈ L′ of length poly(n) is upper-bounded by nγ2 . We then set
γ = max{γ1, γ2} and ε > γ/α. We use a VRF with a larger security parameter
k = nε. This ensures that one can enumerate all potential NP-witnesses y, or all
potential NIZK proofs for x′, in time 2n

γ

, which still lesser than the time it would
take to break the residual pseudorandomness of the VRF (because 2n

γ

< 2k
α

).

4.2 The VRF used

Let x be the common input of length n, and U be an a-priori bounded polynomial
indicating the upper-bound of the corresponding counter kept by an honest
verifier for x. That is x is allowed to be used at most U(n) times by a malicious
prover with the same honest verifier. We need a verifiable pseudorandom function
with input length n and output length 2U(n) · n2. We denote by
VRFEval(V RFSK, x) = R1

1R
1
2 · · ·R

1
2U(n)R

2
1R

2
2 · · ·R

2
2U(n) · · ·R

n
1R

n
2 · · ·R

n
2U(n) the

output of VRF on input x of length n, where for each i (1 ≤ i ≤ n) and each j
(1 ≤ j ≤ 2U(n)), the length of Ri

j is n.

4.3 Key generation of V

Under a system security parameter n, each verifier with identity id, Vid , gener-
ates a key pair (V RFSK, V RFPK)id for a VRF with security parameter k. Vid
then uniformly selects p(n) random strings (RV1

, RV2
, · · · , RVp(n)

)id to be used
as the first message of Dwork and Naor’s 2-round rWI, where p is a positive
polynomial. V RFSKid is Vid’s secret key and V RFPKid along with the p(n)
random strings, (RV1

, RV2
, · · · , RVp(n)

)id, is its public key. We remark that in
comparison with the key generation stage of Micali and Reyzin’s protocol [25],
the key generation stage of our protocol is greatly simplified.



134 Yunlei Zhao, Xiaotie Deng, C. H. Lee, and Hong Zhu

4.4 The full protocol

Common input An element x ∈ L∩ {0, 1}n. Denote by RL the corresponding
NP-relation for L.

System Security parameter n. (Note that the security parameter of the VRF
is k that is much larger than n).

Public file A collection F of records (id, PKid), where PKid = (V RFPKid,
(RV1

, RV2
, · · · , RVp(n)

)id).

P private input An NP-witness y for x ∈ L; V ’s id and the file F ; and a
random string w that determines a PRF fw.

V private input A secret key SKid = V RFSKid.

P -step-one

1. Using the PRF fw, P generates RP and (s11, s
1
2, · · · , s

1
2U(n), s

2
1, s

2
2, · · · ,

s22U(n), · · · , s
n
1 , s

n
2 , · · · , s

n
2U(n)) from the inputs x, y, and PKid. RP will

be served as the first part of the second message of Dwork and Naor’s
2-round rWI and the other 2U(n)·n pseudorandom strings will be served
as the randomnesses used in the one-round perfect binding commitment
scheme defined in Definition 1.

2. Selects 2U(n) · n arbitrary strings of length 2U(n) · n2 each:
(t11, t

1
2, · · · , t

1
2U(n), t

2
1, t

2
2, · · · , t

2
2U(n), · · · , t

n
1 , t

n
2 , · · · , t

n
2U(n)). Let Com =

{c(i, j) = Csij (t
i
j), 1 ≤ i ≤ n and 1 ≤ j ≤ 2U(n)}, where C is the one-

round perfect binding commitment scheme defined in Definition 1.

3. P sends (RP , Com) to V .

V -step one

1. Computes V Rx = VRFEval(SKid, x) = R1
1R

1
2 · · ·R

1
2U(n)R

2
1R

2
2 · · ·R

2
2U(n)

· · ·Rn
1R

n
2 · · ·R

n
2U(n), and pfx = VRFProve(SKid, x). Note that SKid =

V RFSK. We call each Ri
j , 1 ≤ i ≤ n and 1 ≤ j ≤ 2U(n), a block with

respect to the pair (x, id).

2. Randomly selects (j1, j2, · · · , jn), where ji, 1 ≤ i ≤ n, is uniformly
distributed over {1, 2, · · · , 2U(n)}. For each i, 1 ≤ i ≤ n, computes
V RRi

ji

= VRFEval(SKid, R
i
ji
) and pfRi

ji

= VRFProve(SKid, R
i
ji
).

3. V sends (V Rx, pfx, (j1, j2, · · · , jn), (V RR1
j1
, V RR2

j2
, · · · , V RRn

jn
),

(pfR1
j1
, pfR2

j2
, · · · , pfRn

jn
)) to the prover P .

P-step-two

1. Verifies that V Rx is correct by invoking VRFVer(V RFPK, x, V Rx, pfx).
If not, aborts.

2. For each i, 1 ≤ i ≤ n, verifies that V RRi
ji

is correct by invoking

VRFVer(V RFPK,Ri
ji
, V RRi

ji

, pfRi
ji

). If not, aborts.

3. Constructs another NP-statement: x′=“there exists an NP-witness y
such that (x, y) ∈ RL OR for each i, 1 ≤ i ≤ n, there exists a j ∈
{1, 2, · · · , 2U(n)} and a string sij such that ci, j = Csij (V RRi

ji

)”.
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4. As does in the second round of Dwork and Naor’s 2-round rWI, on the
statement x′ while using y as the witness P generates and sends to V
p(n) NIZK proofs {NIZK(x′, RP⊕RVi), 1 ≤ i ≤ p(n)}. The randomness
used by P is got by applying his PRF fw on the transcript so far. In the
rest of this paper, we denote by {NIZK(x′, RP ⊕RVi), 1 ≤ i ≤ p(n)} a
p(n)-NIZK-proof sequence.

Verifier’s decision If the p(n) NIZK proofs above are all acceptable then ac-
cepts, otherwise, rejects.

Theorem 1. Assuming the security of RSA with large exponents against subexponential-
time adversaries, the above protocol is a 3-round black-box resettable zero-knowledge
argument with concurrent soundness for NP in the WPK model.

Proof. (sketch)

The completeness and the optimal round-complexity of our protocol can
be easily checked. In the rest we focus on proofs of black-box resettable zero-
knowledge and concurrent soundness.

(1). Black-box resettable zero-knowledge

The rZK property can be shown in a way similar to (and simpler than) the
way shown in [8].

Specifically, for any (s, t)-resetting malicious verifier V ∗, suppose the outputs
of the first stage of V ∗ are: s(n) distinct strings x1, x2, · · · , xs(n) ∈ L of length n
each, the public file F and a list of s(n) identities id1, id2, · · · , ids(n). Intuitively,
if for each block, Ri

j (1 ≤ i ≤ n and 1 ≤ j ≤ 2U(n)), with respect to (xk, idt),

1 ≤ k, t ≤ s(n), the simulator can learn the output of VRFEval on Ri
j before

his commitments in P-step-one then it is easy for the simulator to generate a
transcript that is computationally indistinguishable from the real interactions
between P and V ∗. That is, the simulator simulates the P-step-one by just
setting tij = VRFEval(V RFSK,Ri

j), 1 ≤ i ≤ n and 1 ≤ j ≤ 2U(n). Since for

an (s, t)-resetting verifier V ∗, there are at most s(n)2 · 2U(n) · n blocks in total,
the simulator works as follows to generate a simulated transcript while oracle
accessing to V ∗.

The simulator works in s(n)2 · 2U(n) · n+ 1 phases. Each phase corresponds
to an attempt to simulate the real interactions between P and V ∗ and so each
phase may consist of multiple sessions. In each phase the simulator uses an
independent random-tape to try to simulate the real interactions between P
and V ∗ except that at the current session V ∗ invokes P on the same x and PKid

that has been used in a previous session. In this case, the simulator simulates
the P-step-one of current session by just copy the P-step-one messages sent in
the previous session. In each phase, suppose V ∗ invokes P on x and PKid at
the current session then the simulator simulates the P-step-one of the current
session by committing to the outputs of VRFEval on the blocks with respect
to (x, id) he has learnt previously, together with committing to some garbage
values if he has not yet leant the outputs of VRFEval on all the blocks with
respect to the pair (x, id). We remark that at any point in the simulation if the
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simulator detects cheating (e. g. the V-step-one messages do not pass through
the VRFVer test correctly) then the simulator aborts the simulation and outputs
the transcript so far. It is easy to see that in each phase if V ∗ does not select a
new block in this phase then the simulator succeeds in generating a simulated
transcript that is indistinguishable from the real interactions between P and V ∗

due to the pseudorandomness of the PRF used and the computational hiding
of the commitment scheme and the witness indistinguishability property of the
underlying Dwork and Naor’s 2-round rWI. Otherwise, the simulator will learn
the outputs of VRFEval on at least one new block and in this case the simulator
goes to the next phase. Here we have ignored the probability that a malicious
verifier may give different outputs of VRFEval on the same block. But according
to the unique probability of the VRF this probability is indeed exponentially
small.

We stress that in each phase of above simulation the simulator does not
rewind V ∗ and so he can proceed in strict polynomial-time in each phase. Also
note that the total number of phases is also a polynomial. It means that the
black-box simulator works in strict polynomial time rather than expected polyno-
mial time. We remark that this result does not hold for black-box zero-knowledge
in the standard model. Indeed, expected polynomial time is necessary for black-
box zero-knowledge simulation in the standard model [6] and the first non-black-
box zero-knowledge argument forNP with strict polynomial time simulation was
presented in [1].

(2). Concurrent soundness

We first note that a computational power unbounded prover can easily con-
vince the verifier of a false statement since he can get the V RFSK if his compu-
tational power is unbounded. Hence the above protocol constitutes an argument
system rather than a proof system.

To deal with the soundness of the above protocol in the WPK model we stress
that we should be very careful since our argument system works in a somewhat
“parallel repetition” manner to reduce the error probability. The reason is that
Bellare et al. have proven that for a 3-round argument system if the verifier has
secret information regarding historical transcripts then parallel repetition does
not guarantee to reduce the error probability [5]. Note, however, that in our
argument protocol the verifier indeed has secret information, the SK.

The following proof uses a standard reduction technique. That is, if the above
protocol does not satisfy concurrent soundness in the WPK model then we will
construct a machine T = (TE , TJ ) to break the residual pseudorandomness of
the VRF.

Suppose the above protocol does not satisfy concurrent soundness in the
WPK model then in a concurrent attack issued by an (s, t)-concurrent malicious
prover P ∗ against an honest verifier with identity id, Vid, with non-negligible
probability there exists an i, 1 ≤ i ≤ s(n), such that Vid outputs “accept xi”
while xi 6∈ L and xi has not been used by P ∗ in more than U(n) sessions. Now,
TE first guesses this “i” and then simulates the concurrent multiple interactions
between P ∗ and Vid while running P ∗. Note that in his simulation TE does
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not need to rewind P ∗ since he has oracle access to both VRFEval(V RFSK, ·)
and VRFProve(V RFSK, ·) and the ji, 1 ≤ i ≤ n, in V-step-one is uniformly
distributed over {1, 2, · · · , 2U(n)}. So, TE can simulate the multiple concurrent
interactions between P ∗ and Vid. When it is the time to simulate the i-th session
TE first determines whether xi ∈ L or not by just enumerating all the NP-
witnesses of xi. Note that with non-negligible probability this is the case that
xi /∈ L since TE can correctly guess the i with non-negligible probability. If
xi /∈ L then TE runs P ∗ to get the P-step-one messages from P ∗. Then TE
uniformly selects (j1, j2, · · · , jn) from {1, 2, · · · , 2U(n)} and computes n blocks
(R1

j1
, R2

j2
, · · · , Rn

jn
) with respect to (xi, id) just as Vid does in V-step-one. Since

xi has been used at most U(n) times and for each i, 1 ≤ i ≤ n, ji is uniformly
distributed over {1, 2, · · · , 2U(n)}, then with probability at least 1−2−n TE will
select a new block from all the 2U(n) · n blocks with respect to the pair (xi, id),
on which the output of VRFEval is unknown to P ∗ up to now. Denote by Rk

jk
,

1 ≤ k ≤ n, the new block selected. TE then outputs (Rk
jk
, state), where state is

the historical view of TE .

Now, TJ receives v and TJ ’s job is to find whether v is a truly random value
or VRFEval(V RFSK,Rk

jk
). For this purpose TJ first constructs the new NP-

statement x′ (defined in P-step-two) with respect to (V RR1
j1
, V RR2

j2
, · · · , V R

Rk−1
jk−1

,

v, V R
Rk+1
jk+1

, · · · , V RRn
jn
). The key observation is that if v is a truly random value

then most likely there are no p(n)-NIZK-proof sequences in which the p(n) NIZK
proofs are all acceptable on the statement x′ since xi /∈ L and the commitment
scheme used by P ∗ is perfect binding and v is completely unpredictable for
P ∗. However, if v = VRFEval(V RFSK,Rk

jk
), then (according to our assump-

tion) with non-negligible probability there exists a p(n)-NIZK-proof sequence
in which the p(n) NIZK proofs are all acceptable on the statement x′. Note
that TJ can enumerate all the NIZK proofs for x′ in time p(n) · 2n

γ

. Then
TJ checks that if there exists a p(n)-NIZK-proof sequence in which the p(n)
NIZK proofs are all acceptable. If find such a sequence then TJ decides that
v = VRFEval(V RFSK,Rk

jk
), otherwise, TJ decides that v is a truly random

value. Note that p(n) · 2n
γ

< 2n
α

which violates the residual pseudorandomness
of the VRF. ¤
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