
From Identification to Signatures via the

Fiat-Shamir Transform: Minimizing

Assumptions for Security and Forward-Security

Michel Abdalla1, Jee Hea An2, Mihir Bellare3, and Chanathip Namprempre3

1 Magis Networks, Inc., 12651 High Bluff Drive, San Diego, CA 92130, USA.
E-Mail: mabdalla@cs.ucsd.edu. URL: www.michelabdalla.net.

2 SoftMax, Inc., 10760 Thornmint Road, San Diego, CA 92128, USA.
E-Mail: jeehea@cs.ucsd.edu.

3 Dept. of Computer Science & Engineering, University of California San Diego, 9500
Gilman Drive, La Jolla, California 92093, USA. E-Mail: {mihir,meaw}@cs.ucsd.edu.

URL: www-cse.ucsd.edu/users/{mihir,cnamprem}.

Abstract. The Fiat-Shamir paradigm for transforming identification
schemes into signature schemes has been popular since its introduction
because it yields efficient signature schemes, and has been receiving re-
newed interest of late as the main tool in deriving forward-secure signa-
ture schemes. We find minimal (meaning necessary and sufficient) con-
ditions on the identification scheme to ensure security of the signature
scheme in the random oracle model, in both the usual and the forward-
secure cases. Specifically we show that the signature scheme is secure
(resp. forward-secure) against chosen-message attacks in the random or-
acle model if and only if the underlying identification scheme is secure
(resp. forward-secure) against impersonation under passive (i.e.. eaves-
dropping only) attacks, and has its commitments drawn at random from
a large space. An extension is proven incorporating a random seed into
the Fiat-Shamir transform so that the commitment space assumption
may be removed.

1 Introduction

The Fiat-Shamir method of transforming identification schemes into signature
schemes [11] is popular because it yields efficient signature schemes, and has
been receiving renewed interest of late as the main tool in deriving forward-
secure signature schemes. We find minimal (meaning necessary and sufficient)
conditions on the identification scheme to ensure security of the signature scheme
in the random oracle model. The conditions are simple and natural. Below we
begin with some background and discussion of known results, and then move to
our results, considering first the usual and then the forward-secure case.

Canonical ID schemes. The Fiat-Shamir (FS) transform applies to identi-
fication (ID) schemes having a three-move format that we call canonical. The
prover, holding a secret key sk , sends a message Cmt called a commitment to



the verifier. The verifier returns a challenge Ch consisting of a random string
of some length. The prover provides a response Rsp. Finally, the verifier applies
a verification algorithm V to the prover’s public key pk and the conversation
Cmt‖Ch‖Rsp to obtain a decision bit, and accepts iff Dec = 1. The length
of the challenge is c(k) where k is the security parameter and c is a function
associated to the scheme. A large number of canonical ID schemes are known
(e.g., [11, 14, 6, 17, 24, 7, 12, 20, 19, 26, 21]) and are candidates for conversion to
signature schemes via the FS transform.

The FS transform. The signer has the public and secret keys pk , sk of the
prover of the ID scheme. To sign a messageM it computesCmt just as the prover
would, hashes Cmt‖M using a public hash function H: {0, 1}∗ → {0, 1}c(k)

to obtain a “challenge” Ch = H(Cmt‖M), computes a response Rsp just as
the prover would, and sets the signature of M to Cmt‖Rsp. To verify that
Cmt‖Rsp is a signature of M , one first computes Ch = H(Cmt‖M) and
then checks that the verifier of the identification scheme would accept, namely
V (pk ,Cmt‖Ch‖Rsp) = 1. Fiat and Shamir’s suggestion that one model H as
a random oracle [11] is adopted by previous security analyses, both in the stan-
dard setting [23, 18] and in the forward-secure setting [4, 2, 15], and also by this
paper.

Target security goal for signatures. Focusing first on the standard set-
ting (meaning where forward-security is not a goal), the target is to prove that
the signature scheme is unforgeable under chosen-message attack [13] in the ran-
dom oracle model [5]. This requires that it be computationally infeasible for an
adversary to produce a valid signature of a new message even after being allowed
a chosen-message attack on the signer and provided oracle access to the random
hash function.

Non-triviality. Previous works [23, 18] have assumed that the ID scheme has
the property that the space from which the prover draws its commitments is
large, meaning super-polynomial. We refer to a scheme with this property as
non-trivial. (A more general definition, in terms of min-entropy, is Definition 3.)
We point out in Section 6 that non-triviality of the ID scheme is necessary for
the security of the signature scheme derived via the FS transform, and thus all
discussions related to the FS transform below will assume it. (We will see however
that this assumption can be removed by considering a randomized generalization
of the FS transform.)

1.1 Main result

In this work we find simple and natural assumptions on the ID scheme that are
both sufficient and necessary for the security of the signature scheme, and are
related to the security of the underlying ID scheme for the purpose for which it
was presumably designed, namely identification.

Statement.We prove the following: The signature scheme resulting from apply-
ing the FS transform to a non-trivial ID scheme is secure against chosen-message



attack in the random oracle model if and only if the underlying identification
scheme is secure against impersonation under passive attack. A precise state-
ment is Theorem 1. Let us recall the notion of security used here, following [10],
and then compare this to previous work.

Security of identification schemes. As with any primitive, a notion of
security considers adversary goals (what it has to do to win) and adversary ca-
pability (what attacks it is allowed). Naturally, for an ID scheme, the adversary
goal is impersonation: it wins if it can interact with the verifier in the role of a
prover and convince the latter to accept. There are two natural attacks to con-
sider: passive and active. Passive attacks correspond to eavesdropping, meaning
the adversary is in possession of transcripts of conversations between the real
prover and the verifier. Active attacks mean that it gets to play the role of a ver-
ifier, interacting with the real prover in an effort to extract information. Security
against impersonation under active attack is the attribute usually desired of an
ID scheme to be used in practice for the purpose of identification. It is however
the weaker attribute of security against impersonation under passive attack that
we show is tightly coupled to the security of the derived signature scheme.

1.2 Comparison with previous work

Past security analyses identify assumptions on a non-trivial ID scheme that
suffice to prove that corresponding the FS-transform based signature scheme is
secure, as follows. The pioneering work of Pointcheval and Stern [23] assumes
that the identification scheme is honest verifier zero-knowledge and also, in their
Forking Lemma, assume a property that implies that it is a “proof of knowledge”
[10, 3], namely that there is an algorithm that can produce two transcripts which
start with the same commitment (Cmt,Ch,Rsp), (Cmt,Ch

′,Rsp
′) such that, if

both are accepted by the verifier V , the underlying secret key can be determined.
(This property is called collision intractability in [9].) We refer to an ID scheme
meeting these conditions as PS-secure.

Ohta and Okamoto [18] assume that the identification scheme is honest-
verifier (perfect) zero-knowledge and that it is computationally infeasible for a
cheating prover to convince the verifier to accept. We refer to such an ID scheme
as OO-secure.

Relations. Figure 1 puts our result in context with previous works. It consid-
ers the three assumptions made on non-trivial identification schemes for the
purpose of proving security of the corresponding FS-transform based signa-
ture scheme: PS-security [23]; OO-security [18]; and the assumption of security
against impersonation under passive attacks. As the picture indicates, all three
suffice to prove security of the signature scheme in the random oracle model.
However, the assumption we make is not only necessary but also sufficient, while
the others are provably not necessary. Furthermore, our assumption is weaker
than the other assumptions, shown to imply them but not be implied by them.
Let us discuss this further.



ID scheme is
PS-secure.

ID scheme is secure
against impersonation
under passive attacks.

ID scheme is
OO-secure.

Signature scheme is secure
against chosen-message attacks
in the random oracle model.
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easy

Prop. 1

easy

Prop. 2

Lemma 2Lemma 1

Fig. 1. We depict relations among assumptions on non-trivial ID schemes that have
been used to prove security of the corresponding signature scheme. An arrow denotes an
implication while a barred arrow denotes a separation. The dotted arrows are existing
relations, annotated with citations to the papers establishing them. The full arrows are
either relations established in this paper, or are easy.

It is well known that PS or OO security imply security against imperson-
ation under passive attacks. The converse, however, is not true: in Section 4,
we present examples that show that a non-trivial ID scheme could be secure
against impersonation under passive attack yet be neither PS nor OO secure.
Thus, our assumption on the ID scheme is weaker than previous ones. On the
other hand, the fact that this assumption is necessary says that it is minimal.
A consequence is that there exist (non-trivial) ID schemes that are neither PS-
secure norOO-secure, yet the corresponding signature scheme is secure, showing
that the previous assumptions are not necessary conditions for the security of
the signature scheme.

In practice, these gaps may not be particularly limiting, because practical ID
schemes for the most part are PS-secure or OO-secure. However our result can
simplify future or even existing constructions of identification based signature
schemes, and clarifies the theoretical picture.

Assumptions related to the problem. Fiat and Shamir [11] suggested that
their transform be applied to an ID scheme. However, previous security analyses
have made assumptions that are in fact not inherent to the notion of identifica-
tion itself. By this we mean assumptions such as honest verifier zero-knowledge
or that underlying the forking lemma. These types of properties are convenient
tools in the analysis of ID schemes, but not the end goals of identification. In
particular, as we show in Section 4, there exist ID schemes, secure even against
active attack, that are not honest verifier zero-knowledge and fail to meet the
conditions of the forking lemma. In contrast, our necessary and sufficient condi-
tion, namely security against impersonation under passive attacks, is a natural



end goal of identification. Our results thus support the original intuition that
seems to have guided [11], namely that the security of the signature scheme
stems from the security of the identification scheme relative to the job for which
the latter was intended.

1.3 Generalized transform

As previously mentioned, the non-triviality assumption on an ID scheme is nec-
essary to guarantee that the FS transform yields a secure signature scheme.
We define a randomized generalization of the Fiat-Shamir transform (described
in detail in Construction 1). We show that this modification allows the non-
triviality assumption to be removed. Specifically, we prove that the signature
scheme resulting from our generalized Fiat-Shamir transform is secure against
chosen-message attack in the random oracle model if and only if the underlying
identification scheme is secure against impersonation under passive attack. A
precise statement is presented in Theorem 2.

We note that the process of applying our generalized transform to a given
ID scheme can be alternatively viewed as first modifying the ID scheme by
enhancing its commitment space and then applying the FS transform.

1.4 Results for forward security

An important paradigm in the construction of forward-secure signature schemes,
beginning with [4] and continuing with [2, 15], has been to first design a forward-
secure identification scheme and then obtain a forward-secure signature scheme
via the FS transform. The analyses in these works are however ad hoc.

We prove an analogue of our main result that says that the signature scheme
resulting from applying FS transform to a non-trivial ID scheme is forward-secure
against chosen-message attacks in the random oracle model if and only if the
underlying identification scheme is forward-secure against impersonation under
passive attack. An extension based on the generalized FS transform, analogous
to that mentioned above, also holds. This brings the characterization described
above to forward-secure signature schemes, and helps to unify previous results [4,
2, 15]. Our result can simplify future or even existing constructions of identifica-
tion based forward-secure signature schemes, saving repetition in the analytical
work. (One should note however that non-modular analyses may have the bene-
fit of yielding better concrete security than is obtained by our general result [2,
15].)

1.5 Discussion and remarks

Other transforms. There are other methods of transforming ID schemes into
signature schemes. A variant of the FS transform suggested by Micali and Reyzin
[16] applies only to a subclass of canonical ID schemes. A transform suggested by
Cramer and Damg̊ard [9] has the advantage of not requiring random oracles in



the analysis, but is relatively inefficient. Overall the FS transform has remained
the most attractive, due to its wide applicability, the efficiency of the resulting
signature scheme, and its robustness in the face of extra goals such as forward
security, and thus is our focus.

The proofs. This abstract outlines proof ideas where space permits. Full proofs
can be found in [1]. We note that our proofs appear to be simpler than previous
ones even though our results are stronger. We believe that this is true because
our assumptions, although weaker, have extracted more of the properties of the
ID scheme that are truly relevant to the security of the signature scheme, thereby
leaving less to be proven.

2 Definitions

Notation. If A(·, ·, . . .) is a randomized algorithm, then y ← A(x1, x2, . . . ;R)
means y is assigned the unique output of the algorithm on inputs x1, x2, . . . and
coins R, while y ← A(x1, x2, . . .) is shorthand for first picking R at random
and then setting y ← A(x1, x2, . . . ;R). We let CoinsA(k) denote the space from
which R is drawn —it is a set of binary strings of some appropriate length—

where k is the underlying security parameter. If S is a set then s
R
← S indicates

that s is chosen uniformly at random from S. If x1, x2, . . . are strings then
x1‖x2‖ · · · denotes an encoding under which the constituent strings are uniquely
recoverable. It is assumed any string x can be uniquely parsed as an encoding
of some sequence of strings. The empty string is denoted ε.

Canonical identification schemes.We use the term canonical to describe a
three-move protocol in which the verifier’s move consists of picking and sending
a random string of some length, and the verifier’s final decision is a deterministic
function of the conversation and the public key (cf. Figure 2). The specification
of a canonical identification scheme will take the form ID = (K,P,V , c) where
K is the key generation algorithm, taking input a security parameter k ∈ N and
returning a public and secret key pair (pk , sk); P is the prover algorithm taking
input sk and the current conversation prefix to return the next message to send
to the verifier; c is a function of k indicating the length of the verifier’s challenge;
V is a deterministic algorithm taking pk and a complete conversation transcript
to return a boolean decision Dec on whether or not to accept. We associate to
ID and each (pk , sk) a randomized transcript generation oracle which takes no
inputs and returns a random transcript of an “honest” execution, namely:

Function Tr
ID
pk ,sk ,k

RP
R
← CoinsP (k)

Cmt← P (sk ;RP ) ; Ch
R
← {0, 1}c(k) ; Rsp← P (sk ,Cmt‖Ch;RP ) ;

Return Cmt‖Ch‖Rsp

The scheme must obey a standard completeness requirement, namely that for
every k, we have Pr[V (pk ,Cmt‖Ch‖Rsp) = 1] = 1, the probability being over
(pk , sk)← K(k) and Cmt‖Ch‖Rsp← Tr

ID
pk ,sk ,k.



Prover Verifier
Input: sk Input: pk

Cmt -
Ch

R
← {0, 1}c(k)

Ch¾
Rsp -

Dec← V (pk ,Cmt‖Ch‖Rsp)

Fig. 2. A canonical identification protocol.

Security against impersonation under passive attacks considers an adversary
—here called an impersonator— whose goal is to impersonate the prover without
the knowledge of the secret key. In practice, such an adversary generally has
access not only to the public key but also to conversations between the real
prover and an honest verifier, possibly via eavesdropping over the network. We
model this setting by viewing an impersonator as a probabilistic algorithm I and
giving to it the public key and the transcript-generation oracle defined above.
This oracle gives I the ability to obtain some number of transcripts of honest
executions of the protocol. After reviewing the transcripts, the impersonator
must then participate in the three-move protocol with an honest verifier and try
to get the verifier to accept.

Definition 1. [Security of an identification scheme under passive at-
tacks] Let ID = (K,P,V , c) be a canonical identification scheme, and let I be
an impersonator, st be its state, and k be the security parameter. Define the
advantage of I as

Advimp-pa
ID,I (k) = Pr[Expimp-pa

ID,I (k) = 1 ] ,

where the experiment in question is

Expimp-pa
ID,I (k)

(pk , sk)← K(k) ; st‖Cmt← ITr
ID

pk,sk,k(pk) ; Ch
R
← {0, 1}c(k)

Rsp← I(st,Ch) ; Dec← V (pk ,Cmt‖Ch‖Rsp) ; Return Dec

We say that ID is polynomially-secure against impersonation under passive at-

tacks if Advimp-pa
ID,I (·) is negligible for every probabilistic poly(k)-time imperson-

ator I.

Signature schemes. We recall the standard definition of security of a digital
signature scheme under chosen-message attacks (cf. [13]) adapted to the random
oracle model as per [5].

The specification of a digital signature scheme will take the form DS =
(K,S,Vf , c) where: K is the key generation algorithm, taking input a security
parameter k ∈ N and returning a public and secret key pair (pk , sk); S is the



signing algorithm taking input sk and a message M ∈ {0, 1}∗ to be signed and
returning a signature; Vf is the verification algorithm taking input pk , a message
M and a candidate signature σ for M and returning a boolean decision. The
signing and verifying algorithms have oracle access to a function H: {0, 1}∗ →
{0, 1}c(k) (which in the random oracle model will be a random function) so that
c in the scheme description is a function of k whose value is the output-length of
the hash function being used. The signing algorithm may be randomized, drawing
coins from a space CoinsS(k), but the verification algorithm is deterministic. It
is required that valid signatures are always accepted.

The adversary F —called a forger in this setting— gets the usual signing
oracle plus direct access to the random oracle and wins if it outputs a valid
signature of a new message. Below, we let [{0, 1}∗→{0, 1}c] denote the set of

all maps from {0, 1}∗ to {0, 1}c. The notation H
R
← [{0, 1}∗→{0, 1}c] is used to

mean that we select a hash function H at random from this set. The discussion
following the definition clarifies how this random selection from an infinite space
is implemented.

Definition 2. [Security of a digital signature scheme] Let DS = (K,S,V,
c) be a digital signature scheme, let F be a forger and k the security parameter.
Define the experiment

Expfrg-cma
DS,F (k)

H
R
← [{0, 1}∗→{0, 1}c]

(pk , sk)← K(k) ; (M,σ)← FSH
sk (·),H(·)(pk) ; Dec← Vf H(pk ,M, σ)

If M was previously queried to SHsk (·) then return 0 else return Dec

Define the advantage of F as

Advfrg-cma
DS,F (k) = Pr[Expfrg-cma

DS,F (k) = 1 ] .

DS is polynomially-secure against chosen-message attacks if Advfrg-cma
DS,F (·) is

negligible for every probabilistic poly(k)-time forger F .

A special convention is needed with regard to how one can measure the time
taken by the first step of Expfrg-cma

DS,F (k) where one picks at random a function H
from an infinite space. This selection of the hash function is not viewed as being
performed all at once. Rather, the hash function is built dynamically using a
table. In particular, for each hash-oracle query M , we check if the entry H(M)
exists. If so, we return it. Otherwise, we pick a random element y from {0, 1}c,
make a table entry H(M) = y, and return y.

Concrete security issues. In addition to our main results which speak in
the usual language of polynomial security, we make concrete security statements
so as to better gauge the practical impact of our reductions. Below, we discuss
the parameters and conventions used.

When we refer to the running time of an adversary such as an impersonator
or forger, we mean the time-complexity of the entire associated experiment, in-
cluding the time taken to pick keys, compute replies to oracle queries, implement



a random hash function as described above, and even compute the final outcome
of the experiment.

For identification, the parameters of interest are the running time of the
adversary and the number of queries q it makes to its transcript oracle. For
signatures, the parameters of interest are the forger’s running time, the number
of sign-oracle queries, denoted qs, and the number of hash-oracle queries, denoted
qh. All of these are functions of the security parameter k.

All query parameters are bounded by the running time, so if the adversary is
polynomial time, all the other parameters are poly(k)-bounded. Thus, they can
be ignored in the polynomial-time setting.

3 Equivalence Results

To save space (and avoid repetition), we present straightaway our randomized
generalization of the Fiat-Shamir transform. The standard Fiat-Shamir trans-
formation is the special case of the construction below in which the seed length
is s(k) = 0.

Construction 1 (Generalized Fiat-Shamir Transform). Let ID = (K,

P,V , c) be a canonical identification scheme and let s: N → N be a function
which we call the seed length. We associate to these a digital signature scheme
DS = (K,S,Vf , c). It has the same key generation algorithm as the identification
scheme, and the output length of the hash function equals the challenge length
of the identification scheme. The signing and verifying algorithms are defined as
follows:

Algorithm SH(sk ,M)

R
R
← {0, 1}s(k) ; RP

R
← CoinsP (k)

Cmt← P (sk ;RP )
Ch← H(R‖Cmt‖M)
Rsp← P (sk ,Cmt‖Ch;RP )
Return R‖Cmt‖Rsp

Algorithm Vf H(pk ,M, σ)
Parse σ as R‖Cmt‖Rsp

Ch← H(R‖Cmt‖M)
Dec← V (pk ,Cmt‖Ch‖Rsp)
Return Dec

Note that the signing algorithm is randomized, using a random tape whose length
is s(k) plus the length of the random tape of the prover. Furthermore, the chosen
random seed is included as part of the signature, to make verification possible.

We use the concept of min-entropy [8] to measure how likely it is for a com-
mitment generated by the prover of an identification scheme to collide with a
fixed value. This is used to provide a more precise definition of what in the
Introduction was referred to as a non-trivial ID scheme.

Definition 3. [Min-Entropy of Commitments] Let ID = (K,P,V , c) be
a canonical identification scheme. Let k ∈ N, and let (pk , sk) be a key pair
generated by K on input k. Let C(sk) = {P (sk ;RP ) : RP ∈ CoinsP (k)} be the



set of commitments associated to sk . We define the maximum probability that
a commitment takes on a particular value via

α(sk) = max
Cmt∈C(sk)

{

Pr
[

P (sk ;RP ) = Cmt : RP
R
← CoinsP (k)

]}

Then, the min-entropy function associated to ID is defined as follows:

β(k) = min
sk

{

log2
1

α(sk)

}

,

where minimum is over all (pk , sk) generated by K on input k. We say that ID
is non-trivial if β(·) = ω(log(·)) is super-logarithmic.

We remark that for practical identification schemes, the commitment is drawn
uniformly from some set. If the size of this set is γ(·) then the min-entropy of
the scheme is log2(γ(·)). Non-triviality means that this set has super-polynomial
size.

The following theorem considers Construction 1 above in the special case
where s(k) = 0. This case is exactly the Fiat-Shamir transform.

Theorem 1 (Equivalence Under Standard Fiat-Shamir Transform). Let
ID = (K,P,V , c) be a non-trivial, canonical identification scheme, and let

DS = (K,S,Vf , c) be the associated signature scheme as per Construction 1

with s(k) = 0. Then DS is polynomially-secure against chosen-message attacks

in the random oracle model if and only if ID is polynomially-secure against

impersonation under passive attacks.

The non-triviality assumption above can be removed if one applies the general-
ized FS transform with a seed length that is not zero but which, when added to
the min-entropy, results in a super-logarithmic function.

Theorem 2 (Equivalence Under Generalized Fiat-Shamir Transform).
Let ID = (K,P,V , c) be a canonical identification scheme, let s(·) be a seed

length, and let DS = (K,S,Vf , c) be the associated signature scheme as per

Construction 1. Let β(·) be the min-entropy function associated to ID. Assume
s(·) + β(·) = ω(log(·)). Then DS is polynomially-secure against chosen-message

attacks in the random oracle model if and only if ID is polynomially-secure

against impersonation under passive attacks.

Theorem 1 is the special case of Theorem 2 in which s(·) = 0 and β(·) is super-
logarithmic. Accordingly, it suffices to prove Theorem 2. The proof of Theorem 2
follows easily from the two lemmas below. The first lemma relates the exact
security of the signature scheme to that of the underlying identification scheme.

Lemma 1 (ID⇒ SIG). Let ID = (K,P,V , c) be a canonical identification

scheme, let s(·) be a seed length, and let DS = (K,S,Vf , c) be the associated

signature scheme as per Construction 1. Let β(·) be the min-entropy function

associated to ID. Let F be an adversary attacking DS in the random oracle



model, having time-complexity t(·), making qs(·) sign-oracle queries and qh(·)
hash-oracle queries. Then there exists an impersonator I attacking ID such that

Advfrg-cma
DS,F (k) ≤

(

1+qh(k)
)

·Advimp-pa
ID,I (k) +

[1+qh(k)+qs(k)] · qs(k)

2s(k)+β(k)
. (1)

Furthermore, I has time-complexity t(·) and makes at most qs(·) queries to its

transcript oracle.

The full proof of Lemma 1 is presented in the full version of the paper [1], but
we give a brief sketch of it here. We use a standard approach, namely assuming
that a forger F can break the signature scheme, we construct an impersonator
I that has access to a transcript generation oracle. The goal of I is to convince
an honest verifier that it is a prover without knowing the secret key. I achieves
its goal by running the forger F as a subroutine, answering its hash and sign
oracle queries. When F outputs a forgery, I can make use of it in its interaction
with the verifier. In order to do so, I guesses the “forgery point,” at which F

makes a hash query (of the form R‖Cmt‖M) that contains the message M on
which F will attempt to forge, and uses Cmt as its commitment to the verifier.
The verifier then replies with a challenge, and I uses this value in its response to
F ’s hash query at the forgery point. I simulates the response to F ’s other hash
and sign queries using the transcript generation oracle and randomness. When
F finally outputs a forgery, I uses it to respond to the verifier’s challenge. If I
guessed F ’s forgery point correctly and if F ’s forgery was successful, then the im-
personator succeeds. Note that “enough” randomness or min-entropy is needed
to successfully simulate the responses to the forger’s hash and sign queries.

Going in the opposite direction, the following lemma relates the security of
the identification scheme to that of the signature scheme derived from it. In fact,
it says that if the signature scheme is secure then so is the identification scheme
(regardless of the min-entropy of the ID scheme).

Lemma 2 (ID⇐ SIG). Let ID = (K,P,V , c) be a canonical identification

scheme, let s(·) be a seed length, and let DS = (K,S,Vf , c) be the associated

signature scheme as per Construction 1. Let I be an adversary attacking ID,
having time-complexity t(·) and making q(·) queries to its transcript oracle. Then,
in the random oracle model, there exists a forger F attacking DS such that

Advimp-pa
ID,I (k) ≤ Advfrg-cma

DS,F (k) . (2)

Furthermore, F has time-complexity t(·), makes at most q(·) queries to its sign-

oracle and at most q(·) queries to its hash-oracle.

The proof of the lemma above uses a standard reduction technique and is
straightforward. We assume that an impersonator mounting a passive attack can
break the identification scheme, and build a forger who runs it as a subroutine.
Transcript queries are answered by the forger using its signature oracle, and a
successful impersonation attempt translates easily into a successful forgery. The
proof details can be found in the full version of the paper [1].



4 Separations among Security Assumptions

In this section, we justify the claimed separations among the security condi-
tions in Figure 1. Specifically, we give an example of an ID scheme that is se-
cure against impersonation under passive attack but is not honest-verifier zero-
knowledge, and also an example of an ID scheme that is secure against imper-
sonation under passive attack and is not a proof of knowledge. (In this section,
proof of knowledge means proof of knowledge of the secret key. More precisely,
it refers to some underlying witness-relation R(pk , sk) depending on the proto-
col.) Since the PS and OO assumptions include either an assumption of honest
verifier zero-knowledge or an assumption of proof of knowledge, this implies that
there exists an identification scheme secure against impersonation under passive
attack that is not PS secure, and there exists an identification scheme secure
against impersonation under passive attack that is not OO secure, justifying
two of the claimed separations in Figure 1, and showing that our assumption on
the ID scheme is strictly weaker than previous ones used to prove security of the
signature scheme.

Furthermore, this also justifies two more separations claimed in Figure 1,
namely that the signature scheme could be secure even if the ID scheme is not
PS secure or OO secure. This follows simply by logic, because if we assume
that security of the signature scheme implies, say, PS-security of the ID scheme,
the existing arrows say that security against impersonation under passive attack
impliesPS-security, which we know from the above to not be true. The analogous
argument applies in the case of OO.

We now proceed to the examples. Shoup notes that the 2m-th root identi-
fication (a special case of the identification scheme of Ong and Schnorr [20]) is
provably not a proof of knowledge if factoring is hard [25]. However, he shows
that this scheme is secure against impersonation under active (and hence cer-
tainly under passive) attacks if factoring is hard. This yields the following:

Proposition 1. If factoring is hard, then there exists a non-trivial canonical

identification scheme that is secure against impersonation under passive attacks

but is not a proof of knowledge.

Similarly, we show that there exists an identification scheme that is secure against
impersonation under passive attacks yet is not honest verifier zero-knowledge.
We take the following approach in constructing such an identification scheme.
We begin with a canonical identification secure against impersonation under pas-
sive attacks and modify it so that it remains secure against impersonation under
passive attacks but is not zero-knowledge. A detailed construction is presented
in the full version of the paper [1]. The example we construct, though contrived,
makes the point that zero-knowledge is not strictly necessary in a secure identi-
fication scheme. The following proposition states this more precisely.

Proposition 2. If factoring is hard, then there exists a non-trivial canonical

identification scheme that is secure against impersonation under passive attacks

but is not honest-verifier zero-knowledge.



5 Extension to forward security

We prove an extension of Theorem 2 to the case where the security requirement
is forward security.

Canonical forward-secure identification schemes. We consider key-
evolving identification schemes. The operation of the scheme is divided into
time periods, where a different secret is used in each time period. The public key
remains the same in every time period. A canonical key-evolving identification
scheme is a three-move protocol in which the verifier’s only move is to pick and
send a random challenge to the prover. Unlike canonical identification schemes
with fixed keys, the verifier’s final decision, though still deterministic, is not
only a function of the conversation with the prover and the public key, but also
a function of the the index of the current time period. We say that a canonical
key-evolving identification scheme is forward-secure if it is infeasible for a passive
adversary, even with access to the current secret key, to impersonate the prover
with respect to an honest verifier in any of the prior time periods.

As pointed out by Bellare and Miner [4], forward-secure identification schemes
are artificial constructs since, due to the online nature of identification protocols,
the kind of attack we withstand in this case cannot exist in reality. Neverthe-
less, the schemes are still very useful in the design of efficient forward-secure
signature schemes. Please refer to the full version of the paper [1] for a formal
definition of a key-evolving identification scheme and what it means for it to be
forward-secure.

Forward-secure signature schemes. A forward-secure signature scheme is
in essence a key-evolving signature scheme in which the secret key is updated
periodically. As in standard signature schemes, the public key remains the same
throughout the lifetime of the scheme. In each time period, a different secret key
is used to sign messages. The verification algorithm checks not only the validity
of a signature, but also the particular time period in which it was generated.
At the end of each time period, an update algorithm is run to compute the new
secret key from the current one, which is then erased. Informally, we say that a
key-evolving signature scheme is forward-secure under chosen-message attack if
it is infeasible for an adversary, even with access to the secret key for the current
period and to previously signed messages of its choice, cannot forge signatures
for a past time period. For a formal definition of a key-evolving signature scheme
and what it means for it to be forward-secure, see the full version of the paper [1].

The Equivalence. Our transformation of key-evolving ID schemes into key-
evolving signature schemes follows the same paradigm of Construction 1, in
which the challenge becomes the output of a hash function H. The main differ-
ence with respect to that construction is that the secret key is no longer fixed
but varies according to the time period. As a result, the current time index j

is also given as input to the signing algorithm and attached to the signature to
allow for correct verification. The current time index j is also added to the input
of the hash function, which now becomes j‖R‖Cmt‖M . The update algorithm



of the key-evolving signature scheme is exactly the same as that of the identifi-
cation scheme on which it is based. The following theorem, where min-entropy
is defined in a manner similar to that for canonical identification schemes, states
precisely the equivalence with regard to forward security of the key-evolving ID
scheme and the associated key-evolving signature scheme.

Theorem 3 (Forward security equivalence theorem). Let FID = (K,P,

Vid , c, T ) be a canonical key-evolving identification scheme, let s(·) be a seed

length, and let FSDS = (K,S,VSig , c, T ) be the associated key-evolving signa-

ture scheme as per the new construction described above. Let β(·) be the min-

entropy function associated to FID and assume s(·) + β(·) = ω(log(·)). Then
FSDS is polynomially-forward-secure against chosen-message attack in the ran-

dom oracle model if and only if FID is polynomially-forward-secure against im-

personation under passive attacks.

The full paper [1] states and proves a pair of lemmas, one for each direction
of the “if and only if”. These indicate the concrete security of the underlying
reductions. The theorem follows.

As in the case of standard signature and ID schemes, if we consider key-
evolving ID schemes in which the commitment is chosen from a large space (i.e.,
β(·) = ω(log(·))), then the key-evolving signature scheme resulting from the
Fiat-Shamir transform (i.e., s(k) = 0) is forward-secure against chosen-message
attack in the random oracle model if and only if the underlying identification
scheme is forward-secure against impersonation under passive attacks.

6 The Non-Triviality Condition

We show that applying the FS transform to a trivial identification scheme can
result in an insecure signature scheme, which supports our claim in the Introduc-
tion that non-triviality of the ID scheme is necessary for security of the signature
scheme obtained via the FS transform. This is implied by the following, whose
proof is presented in the full version of the paper [1].

Proposition 3. If factoring Williams integers is hard, then there exists a triv-

ial, canonical identification scheme that is secure against impersonation under

passive attacks, but the signature scheme resulting from applying the standard

Fiat-Shamir transform is insecure.

This example also shows why the generalized FS transform that we have in-
troduced is useful. Since the ID scheme is secure against impersonation under
passive attacks, the generalized transform does yield a secure signature scheme,
even though the triviality of the ID scheme prevented the FS transform from
doing so.
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