
A Block-Cipher Mode of Operation for

Parallelizable Message Authentication

John Black1 and Phillip Rogaway2

1 Dept. of Computer Science, University of Nevada, Reno NV 89557, USA,
jrb@cs.unr.edu, www.cs.unr.edu/~jrb

2 Dept. of Computer Science, University of California, Davis, CA 95616, USA,
rogaway@cs.ucdavis.edu, www.cs.ucdavis.edu/~rogaway

Abstract. We define and analyze a simple and fully parallelizable block-
cipher mode of operation for message authentication. Parallelizability
does not come at the expense of serial efficiency: in a conventional, se-
rial environment, the algorithm’s speed is within a few percent of the
(inherently sequential) CBC MAC. The new mode, PMAC, is deter-
ministic, resembles a standard mode of operation (and not a Carter-
Wegman MAC), works for strings of any bit length, employs a single
block-cipher key, and uses just max{1, d|M |/ne} block-cipher calls to
MAC a string M ∈ {0, 1}∗ using an n-bit block cipher. We prove PMAC
secure, quantifying an adversary’s forgery probability in terms of the
quality of the block cipher as a pseudorandom permutation.

1 Introduction

Background. Many popular message authentication codes (MACs), like the
CBC MAC [17] and HMAC [1], are inherently sequential: one cannot process
the i-th message block until all previous message blocks have been processed.
This serial bottleneck becomes increasingly an issue as commodity processors
offer up more and more parallelism, and as increases in network speeds outpace
increases in the speed of cryptographic hardware. By now there would seem to
be a significant interest in having a parallelizable MAC which performs well in
both hardware and software, built from a block cipher like AES.

There are several approaches to the design of such an MAC. One is to
generically construct a more parallelizable MAC from an arbitrary one. For ex-
ample, one could begin with breaking the message M [1] · · ·M [2m] into M ′ =
M [1]M [3] · · ·M [2m − 1] and M ′′ = M [2]M [4] · · ·M [2m] then separately MAC
each half. But such an approach requires one to anticipate the maximal amount
of parallelism one aims to extract. In the current work we are instead interested
in fully parallelizable MACs: the amount of parallelism that can be extracted is
effectively unbounded.

One idea for making a fully parallelizable MAC is to use the Carter-Wegman
paradigm [13, 23], as in [12, 16, 19], making sure to select a universal hash-
function family that is fully parallelizable. In fact, most universal hash func-
tions that have been suggested are fully parallelizable. This approach is elegant

and can lead to a nice MAC, but constructions for fast universal hash-functions
have proven to be quite complex to specify or to implement well [7, 9], and may
be biased either towards hardware or towards software. Twenty years after the
paradigm was introduced, we still do not know of a single Carter-Wegman MAC
that actually gets used. So the current work goes back to giving a conventional
mode, but one designed, this time around, for serial and parallel efficiency.

The XOR MAC. Bellare, Guérin and Rogaway introduced a parallelizable MAC
in their XOR MACs [3]. The message M is divided into pieces M [1] · · ·M [`] of
length less than the blocksize; for concreteness, think of each M [i] as having 64
bits when the blocksize is n = 128 bits. Each piece M [i] is preceded by [i], the
number i encoded as a 64-bit number, and to each [i]‖M [i] one applies the block
cipher E, keyed by the MAC key K. One more block is enciphered, it having a
first bit of 1 and then a counter or random value in the remaining n − 1 bits.
The MAC is that counter or random value together with the XOR of all ` + 1
ciphertext blocks. Thus the MAC uses `+ 1 ≈ 2m+ 1 block-cipher invocations
to authenticate a message of m blocks of n bits; one has paid for parallelizability
at a cost of about a factor of two in serial speed. Further disadvantages include
the need for randomness or state (conventional MACs are deterministic) and in
the increased length of the MAC (because of the counter or random value that
has to be included).

PMAC. Unlike the XOR MAC, our new algorithm, PMAC, doesn’t waste any
block-cipher invocations because of block-indices (nor for a counter or random
values). Also, in the spirit of [11], we optimally deal with short final blocks;
we correctly MAC messages of arbitrary and varying bit lengths. The result
is that PMAC makes do with just d|M |/ne block-cipher calls to MAC a non-
empty message M using an n-bit block cipher. PMAC is deterministic, freeing
the user from having to provide a counter or random value, and making the
MAC shorter. Overhead beyond the block-cipher calls has been aggressively
optimized, so a serial implementation of PMAC runs just a few percent slower
than the CBC MAC.

Besides the efficiency measures already mentioned, PMAC uses very little
key-setup: one block-cipher call. (A few shifts and conditional xors are also used.)
The PMAC key is a single key for the underlying blocks cipher; in particular,
we forgo the need for key-separation techniques. Avoiding multiple block-cipher
keys saves time because many block ciphers have significant key-setup costs.

Being so stingy with keys and block-cipher invocations takes significant care;
note that even the traditional CBC MAC uses between one and four additional
block-cipher calls, as well as additional key material, once it has been enriched to
take care of messages of arbitrary lengths [6, 11, 17, 21]. Of course avoiding this
overhead doesn’t matter much on long messages, but it is significant on short
ones. And in many environments, short messages are common.

We prove PMAC secure, in the sense of reduction-based cryptography. Specif-
ically, we prove that PMAC approximates a random function (and is therefore
a good MAC) as long as the underlying block cipher approximates a random

permutation. The actual results are quantitative; the security analysis is in the
concrete-security paradigm.

PMAC was proposed in response to NIST’s call for contributions for a first
modes-of-operation workshop. Earlier versions of this writeup were submitted to
NIST and posted to their website (Oct 2000, Apr 2001).

Additional related work. Building on [3], Gligor and Donescu describe a
MAC they call the XECB MAC [14]. That MAC is not deterministic, it uses
more block-cipher invocations, and it was not designed for messages of arbitrary
bit length. But, like PMAC, it goes beyond the XOR MAC by combining a
message index and a message block in a way other than encoding the two. In
particular, [14] combines i and M [i] by adding to M [i], modulo 2n, a secret
multiple i. We combine i and M [i] by different means, to reduce overhead and
obtain a better bound.

PMAC was also influenced by the variant of the XOR MAC due to Bern-
stein [8]. His algorithm is deterministic, and the way that the XOR MAC was
made deterministic in [8] is similar to the way that PMAC has been made de-
terministic. Finally, there is also some similarity in appearance between PMAC
and Jutla’s IAPM encryption mode [18].

2 Mathematical Preliminaries

Notation. If i ≥ 1 is an integer then ntz(i) is the number of trailing 0-bits
in the binary representation of i. So, for example, ntz(7) = 0 and ntz(8) = 3.
If A ∈ {0, 1}

∗
is a string then |A| denotes its length in bits while ‖A‖n =

max{1, d|A|/ne} denotes its length in n-bit blocks (where the empty string
counts as one block). If A = an−1 · · · a1a0 ∈ {0, 1}

n
is a string (each ai ∈ {0, 1})

then str2num(A) is the number
∑n−1

i=0 2
iai. If A,B ∈ {0, 1}

∗
are equal-length

strings than A⊕B is their bitwise xor. If A ∈ {0, 1}
∗
and |A| < n then padn(A)

is the string A 10n−|A|−1. If A ∈ {0, 1}
n
then padn(A) = A. With n understood

we write pad(A) for padn(A). If A = an−1an−2 · · · a1a0 ∈ {0, 1}
n
then A<<1 =

an−2an−3 · · · a1a00 is the n-bit string which is the left shift of A by 1 bit while
A>>1 = 0an−1an−2 . . . a2a1 is the n-bit string which is the right shift of A by one
bit. In pseudocode we write “Partition M into M [1] · · ·M [m]” as shorthand for
“Letm = ‖M‖n and letM [1], . . . ,M [m] be strings such thatM [1] · · ·M [m] =M
and |M [i]| = n for 1 ≤ i < m.”

The field with 2n points. The field with 2n points is denoted GF(2n). We
interchangeably think of a point a in GF(2n) in any of the following ways: (1) as
an abstract point in the field; (2) as an n-bit string an−1 . . . a1a0 ∈ {0, 1}

n
; (3) as

a formal polynomial a(x) = an−1x
n−1 + · · ·+ a1x+ a0 with binary coefficients;

(4) as a nonnegative integer between 0 and 2n−1, where a ∈ {0, 1}
n
corresponds

to str2num(a). We write a(x) instead of a if we wish to emphasize that we
are thinking of a as a polynomial. To add two points in GF(2n), take their
bitwise xor. We denote this operation by a ⊕ b. To multiply two points, fix
some irreducible polynomial p(x) having binary coefficients and degree n. To

be concrete, choose the lexicographically first polynomial among the irreducible
degree n polynomials having a minimum number of coefficients. To multiply
points a, b ∈ GF(2n), which we denote a · b, regard a and b as polynomials
a(x) = an−1x

n−1 + · · · + a1x + a0 and b(x) = bn−1x
n−1 + · · · + b1x + b0, form

their product c(x) where one adds and multiplies coefficients in GF(2), and take
the remainder when dividing c(x) by p(x). Note that it is particularly easy to
multiply a point a ∈ {0, 1}

n
by x. We illustrate the method for n = 128, where

p(x) = x128 + x7 + x2 + x+ 1. Then multiplying a = an−1 · · · a1a0 by x yields

a · x =

{

a<<1 if firstbit(a) = 0
(a<<1)⊕ 012010000111 if firstbit(a) = 1

(1)

It is similarly easy to divide a by x (meaning to multiply a by the multiplicative
inverse of x). To illustrate, assume that n = 128. Then

a · x−1 =

{

a>>1 if lastbit(a) = 0
(a>>1)⊕ 101201000011 if lastbit(a) = 1

(2)

If L ∈ {0, 1}
n
and i ≥ −1, we write L(i) to mean L · xi. To compute

L(−1), L(0), . . . , L(µ), where µ is small, set L(0) = L and then, for i ∈ [1..µ], use
Equation (1) to compute L(i) = L(i− 1) · x from L(i− 1); and use Equation (2)
to compute L(−1) from L.

We point out that huge = x−1 will be an enormous number (when viewed
as a number); in particular, huge starts with a 1 bit, so huge > 2n−1. In the
security proof this fact is relevant, so there we use huge as a synonym for x−1

when this seems to add to clarity.

Gray codes. For any ` ≥ 1, a Gray code is an ordering γ` = γ`
0 γ`

1 . . . γ`
2`−1 of

{0, 1}
`
such that successive points differ (in the Hamming sense) by just one bit.

For n a fixed number, PMAC makes use of the “canonical” Gray code γ = γn

constructed by γ1 = 0 1 while, for ` > 0,

γ`+1 = 0γ`
0 0γ

`
1 · · · 0γ

`
2`−2 0γ

`
2`−1 1γ

`
2`−1 1γ

`
2`−2 · · · 1γ

`
1 1γ

`
0.

It is easy to see that γ is a Gray code. What is more, for 1 ≤ i ≤ 2n − 1,
γi = γi−1 ⊕ (0

n−11<<ntz(i)). This makes it easy to compute successive points.
Note that γ1, γ2, . . . , γ2n−1 are distinct, different from 0, and γi ≤ 2i.

Let L ∈ {0, 1}
n
and consider the problem of successively forming the strings

γ1 ·L, γ2 ·L, γ3 ·L, . . ., γm ·L. Of course γ1 ·L = 1 ·L = L. Now, for i ≥ 2, assume
one has already produced γi−1 · L. Since γi = γi−1 ⊕ (0

n−11<<ntz(i)) we know
that γi · L = (γi−1 ⊕ (0

n−11<<ntz(i))) · L = (γi−1 · L) ⊕ (0
n−11<<ntz(i)) · L =

(γi−1 · L) ⊕ (L · x
ntz(i)) = (γi−1 · L) ⊕ L(ntz(i)). That is, the ith word in the

sequence γ1 · L, γ2 · L, γ3 · L, . . . is obtained by xoring the previous word with
L(ntz(i)).

3 Definition of PMAC

PMAC depends on two parameters: a block cipher and a tag length. The block
cipher is a function E: K × {0, 1}

n
→ {0, 1}

n
, for some number n, where each

Algorithm PMACK (M)

1. L← EK(0n)
2. if |M | > n2n then return 0τ

3. Partition M into M [1] · · ·M [m]
4. for i← 1 to m− 1 do
5. X[i]←M [i]⊕ γi · L
6. Y [i]← EK(X[i])
7. Σ ← Y [1]⊕ Y [2]⊕ · · · ⊕ Y [m− 1]⊕ pad(M [m])
8. if |M [m]| = n then X[m] = Σ ⊕ L · x−1

9. else X[m]← Σ
10. Tag = EK(X[m]) [first τ bits]
11. return Tag

Fig. 1. Definition of PMAC. The message to MAC is M and the key is K. The
algorithm depends on a block cipher E: K×{0, 1}n → {0, 1}n and a number τ ∈ [1..n].
Constants γ1, γ2, . . ., the meaning of the multiplication operator, and the meaning of
pad() are all defined in the text.

E(K, ·) = EK(·) is a permutation on {0, 1}
n
. Here K is the set of possible keys

and n is the block length. The tag length is an integer τ ∈ [1..n]. By trivial means
the adversary will be able to forge a valid ciphertext with probability 2−τ . With
E: K×{0, 1}

n
→ {0, 1}

n
and τ ∈ [1..n], we let PMAC[E, τ] denote PMAC using

block cipher E and tag length τ . We simplify to PMAC-E when τ is irrelevant.
PMAC[E, τ] is a function taking a key K ∈ K and a message M ∈ {0, 1}

∗
and

returning a string in {0, 1}
τ
. The function is defined in Figure 1 and illustrated

in Figure 2. We comment that line 2 of Figure 1 is simply to ensure that PMAC
is well-defined even for the highly unrealistic case that |M | > n2n (by which time
our security result becomes vacuous anyway). Alternatively, one may consider
PMAC’s message space to be strings of length at most n2n rather than strings
of arbitrary length.

4 Comments

As we shall soon prove, PMAC is more than a good MAC: it is good as a pseu-
dorandom function (PRF) having variable-input-length and fixed-output-length.
As long as the underlying block cipher E is secure, no reasonable adversary will
be able to distinguish PMACK(·), for a random and hidden key K, from a ran-
dom function ρ from {0, 1}

∗
to {0, 1}

τ
. It is a well-known observation, dating to

the introduction of PRFs [15], that a good PRF is necessarily a good MAC.

Conceptually, the key is (K,L). But instead of regarding this as the key
(and possibly defining K and L from an underlying key), the value L is defined
from K and then K is still used as a key. Normally such “lazy key-derivation”
would get one into trouble, in proofs if nothing else. For PMAC we prove that
this form of lazy key-derivation works fine.

τ

q qq

q qq

q qq

f ff

fff
f

¾? ¾? ?

- ?

?

?

?

?

?

¾?

?

-

?

-?-- ?

-

M [m]

EK

γ2 · L

M [2]

EK

γm−1 · L pad

EK

EK

γ1 · L

M [1]

first τ bits

Y [1]

X[1]

Y [2]

X[2]

M [m − 1]

X[m − 1]

Y [m − 1]

Tag

Σ

0n if |M [m]| < n
L · x−1 if |M [m]| = n

}

Fig. 2. Illustration of PMAC. Message M is written
as M = M [1] · · ·M [m], where m = max{1, d|M |/ne}
and |M [1]| = |M [2]| = · · · = |M [m − 1]| = n. Value
L = EK(0n) is derived from K. The meaning of the
γi · L values is described in the text.

Any string M ∈ {0, 1}
∗
can be MACed, and messages which are not a mul-

tiple of the block length are handled without the need for obligatory padding,
which would increase the number of block-cipher calls.

MAC generation is “on line,” meaning that one does not need to know the
length of the message M in advance. Instead, the message can be MACed as
one goes along, continuing until there is an indication that the message is now
complete. The work of Petrank and Rackoff brought out the importance of this
property [21].

In contrast to a scheme based on mod p arithmetic (for a prime p) or mod 2n

arithmetic, there is almost no endian-favoritism implicit in the definition of
PMAC. (The exception is that the left shift used for forming L(i + 1) from
L(i) is more convenient under a big-endian convention, as is the right shift used
for forming L(−1) = L · x−1 from L.)

If τ = n (or one retains a constant amount of extra information) PMAC is
incremental in the sense of [15] with respect to operations append(M,x) =M ‖x,
truncate(M,∆) =M [first |M | −∆ bits], for |M | ≥ ∆, and replace(M, i, x) =
M [first i− 1 bits] ‖ x ‖M [last |M | − i− |x|+ 1 bits], where |M | ≥ i+ |x| − 1).
For each operation it is easy to see how to update the MAC of M in time
proportional to |x|, ∆, or |x|, respectively.

PMAC is parsimonious, as defined in [5]. PartitionM intoM [1] · · ·M [m] and
assume |M | ≥ n and τ = n. For i ∈ [1..m] such that |M [i]| = n, there is a simple
algorithm to recover M [i] from K, M ′ =M [1] · · ·M [i− 1]M [i+ 1] · · ·M [m],
and Tag = PMACK(M). As shown in [5], a parsimonious PRF can be combined
with a parsimonious encryption scheme (eg., CTR mode) to yield a length-
preserving pseudorandom permutation (a “variable-input-length block cipher”)
that acts on messages of any number of bits greater than or equal to n.

5 Theorems

Security definitions. We first recall the needed definitions. A block cipher is
a function E: K × {0, 1}

n
→ {0, 1}

n
where K is a finite set and each EK(·) =

E(K, ·) is a permutation on {0, 1}
n
. Let Perm(n) denote the set of all permuta-

tions on {0, 1}
n
. This set can be regarded as a block cipher by imagining that

each permutation is named by a unique element of K. Let A be an adversary
(a probabilistic algorithm) with access to an oracle, and suppose that A always
outputs a bit. Define

Adv
prp
E (A) = Pr[K

R
← K : AEK(·) = 1]− Pr[π

R
← Perm(n) : Aπ(·) = 1]

The above is the probability that adversary A outputs 1 when given an oracle
for EK(·), minus the probability that A outputs 1 when given an oracle for π(·),
whereK is selected at random from K and π is selected at random from Perm(n).
Similarly, a function family from n-bits to n-bits is a map F : K × {0, 1}

n
→

{0, 1}
n
where K is a finite set. We write FK(·) for F (K, ·). Let Rand(n) denote

the set of all functions from {0, 1}
n
to {0, 1}

n
. This set can be regarded as a

function family as above. Define

Adv
prf
F (A) = Pr[K

R
← K : AFK(·) = 1]− Pr[ρ

R
← Rand(n) : Aρ(·) = 1]

Finally, a function family from {0, 1}
∗
to {0, 1}

τ
is a map f : K×{0, 1}

∗
→ {0, 1}

τ

where K is a set with an associated distribution. We write fK(·) for f(K, ·). Let
Rand(∗, τ) denote the set of all functions from {0, 1}

∗
to {0, 1}

τ
. This set is

given a probability measure by asserting that a random element ρ of Rand(∗, τ)
associates to each string x ∈ {0, 1}

∗
a random string ρ(x) ∈ {0, 1}

τ
. Define

Adv
prf
f (A) = Pr[K

R
← K : AfK(·) = 1]− Pr[g

R
← Rand(∗, τ) : Ag(·) = 1]

Main result. We now give an information-theoretic bound on the security of
our construction.

Theorem 1. [Security of PMAC] Fix n, τ ≥ 1. Let A be an adversary with an

oracle. Suppose that A asks its oracle q queries, these having aggregate length

of σ blocks. Let σ̄ = σ + 1. Then

Adv
prf
PMAC[Perm(n),τ] (A) ≤

σ̄2

2n−1

10 L
R
← {0, 1}n

11 for i← 1 to m− 1 do { X[i]←M [i]⊕ γi · L; Y [i]
R
← {0, 1}n }

12 Σ ← Y [1]⊕ · · · ⊕ Y [m− 1]⊕ pad(M [m])
13 if |M [m]| = n then X[m]← Σ ⊕ huge · L else X[m]← Σ
14 X ← {X[1], . . . , X[m]}
15 if there is a repetition in {0n} ∪ X then Mcoll ← true

16 Equal ← {i ∈ [1..min{m, m̄} − 1] : M [i] = M̄ [i]}
17 Unequal ← [1..m̄] \ Equal

18 for i← 1 to m̄− 1 do
19 if i ∈ Equal then { X̄[i]← X[i]; Ȳ [i]← Y [i] }

20 if i ∈ Unequal then { X̄[i]← M̄ [i]⊕ γi · L; Ȳ [i]
R
← {0, 1}n }

21 Σ̄ ← Ȳ [1]⊕ · · · ⊕ Ȳ [m̄− 1]⊕ pad(M̄ [m̄])
22 if |M̄ [m̄]| = n then X̄[m̄]← Σ̄ ⊕ huge · L else X̄[m̄]← Σ̄
23 X̄ ← {X̄[i] : i ∈ Unequal}
24 if X ∩ X̄ 6= ∅ then MMcoll ← true

Fig. 3. Defining the collision probabilities. Functions Mcolln(·) and MMcolln(·, ·)
are defined using this game. In lines 14 and 23, X and X̄ are understood to be multisets.
The union in line 15 is a multiset union. Recall that huge is a synonym for x−1.

In the theorem statement and from now on, the aggregate length of messages
M1, . . . ,Mq asked by A is the number σ =

∑q
r=1 ‖Mr‖n.

From the theorem above it is standard to pass to a complexity-theoretic
analog. Fix parameters n, τ ≥ 1 and block cipher E: K × {0, 1}

n
→ {0, 1}

n
.

Let A be an adversary with an oracle and suppose that A asks queries having
aggregate length of σ blocks. Let σ̄ = σ + 1. Then there is an adversary B for
attacking E that achieves advantageAdv

prp
E (B) ≥ Adv

prf
PMAC[E,τ](A)−σ̄2/2n−1.

Adversary B asks at most σ̄ oracle queries and has a running time equal to A’s
running time plus the time to compute E on σ̄ points, plus additional time of
cnσ̄ for a constant c that depends only on details of the model of computation.

It is a standard result that being secure in the sense of a PRF implies an
inability to forge with good probability. See [4, 15].

Structure of the proof. The proof combines two lemmas. The first, the
structure lemma, measures the pseudorandomness of PMAC using two functions:
the M-collision probability, denoted Mcolln(·), and the MM-collision probability,
denoted MMcolln(·, ·). The second lemma, the collision-bounding lemma, upper-
bounds Mcolln(m) and MMcolln(m, m̄).

We begin by defining Mcolln(·) and MMcolln(·, ·). Fix n and choose M and
M̄ , partitioning them into M [1] · · ·M [m] and M̄ [1] · · · M̄ [m̄]. Consider the ex-
periment of Figure 3. WhenM is a string, let Mcolln(M) denote the probability
that Mcoll gets set to true in line 15 when the program of Figure 3 is run on
M . When m is a number, Mcolln(m) is the maximum value of Mcolln(M) over
all strings M such that ‖M‖n = m. Similarly, when M and M̄ are strings, let
MMcolln(M, M̄) denote the probability that MMcoll gets set to true when the

program of Figure 3 is run on strings M, M̄ . When m and m̄ are numbers, let
MMcolln(m, m̄) denote the maximum value of MMcolln(M, M̄) over all strings
M, M̄ such that ‖M‖n = m and ‖M̄‖n = m̄. We can now state the structure
lemma.

Lemma 1. [Structure lemma] Fix n, τ ≥ 1. Let A be an adversary that asks q
queries, these having an aggregate length of σ blocks. Then

Adv
prf
PMAC[Perm(n),τ](A) ≤

max
m1,...,mq
σ=

∑

mi
mi≥1







∑

1≤r≤q

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)







+
(σ + 1)2

2n+1

The proof of this lemma is found in [10].

Explanation. Informally, Mcolln(m) measures the probability of running into
trouble when the adversary asks a single question M having block length m.
Trouble means a collision among the values X[0], X[1], . . . , X[m], where X[0] =
0n and each X[i] is the block-cipher input associated to message block i. Infor-
mally, MMcolln(m, m̄) measures the probability of running into trouble across
two messages, M and M̄ , having lengths m and m̄. This time trouble means a
“non-trivial” collision. That is, consider the m+m̄+1 points at which the block
cipher is applied in processing M and M̄ . There are m points X[1], . . . , X[m],
another m̄ points X̄[1], . . . , X̄[m̄], and then there is the point 0n (the block ci-
pher was applied at this point to define L). Some pairs of these m + m̄ + 1
points could coincide for a “trivial” reason: namely, we know that X[i] = X̄[i]
if i < m and i < m̄ and M [i] = M̄ [i]. We say that there is a nontrivial collision
between M and M̄ if some other X[i] and X̄[j] happened to coincide. Note that
M-collisions include collisions with 0n, while MM-collisions do not. Also, MM-
collisions do not include collisions within a single message (or collisions with 0n)
because both of these possibilities are taken care of by way of M-collisions.

The structure lemma provides a simple recipe for measuring the maximum
advantage of any adversary that attacks the pseudorandomness of PMAC: bound
the collision probabilities Mcolln(·) and MMcolln(·, ·) and then use the formula.
The lemma simplifies the analysis of PMAC in two ways. First, it allows one to
excise adaptivity as a concern. Dealing with adaptivity is a major complicating
factor in proofs of this type. Second, it allows one to concentrate on what happens
to single messages and to a fixed pair of messages. It is easier to think about
what happens with one or two messages than what is happening with all q of
them.

Bounding the collision probabilities. The following lemma indicates that
the two types of collisions we have defined rarely occur. The proof shall be given
shortly.

Lemma 2. [Collision-bounding lemma] Let Mcolln(·) and MMcolln(·, ·) de-

note the M-collision probability and the MM-collision probability. Then

Mcolln(m) ≤

(

m+ 1

2

)

·
1

2n
and MMcolln(m, m̄) ≤

mm̄

2n

Concluding the theorem. Pseudorandomness of PMAC, Theorem 1, follows
by combining Lemmas 1 and 2. Namely,

Adv
prf
PMAC[Perm(n),τ]

≤ max
m1,...,mq
σ=

∑

mi
mi≥1







∑

1≤r≤q

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)







+
(σ + 1)2

2n+1

≤ max
m1,...,mq
σ=

∑

mi
mi≥1







∑

1≤r≤q

Mcolln(mr)







+ max
m1,...,mq
σ=

∑

mi
mi≥0







∑

1≤r<s≤q

MMcolln(mr,ms)







+
(σ + 1)2

2n+1

≤ max
m1,...,mq
σ=

∑

mi
mi≥0







∑

1≤r≤q

(

mr + 1

2

)

·
1

2n







+ max
m1,...,mq
σ=

∑

mi
mi≥0







∑

1≤r<s≤q

mrms

2n







+
(σ + 1)2

2n+1

≤
(σ + 1)2

2n
+
(σ2/2)

2n
+
(σ + 1)2

2n+1
(3)

≤
2 (σ + 1)2

2n

where (3) follows because the first sum is maximized with a single message of
length σ, while the second sum is maximized by q messages of length σ/q. (These
claims can be justified using the method of Lagrange multipliers.) This completes
the proof of Theorem 1.

Proof of Lemma 2.We now bound Mcolln(m) and MMcolln(m, m̄). To begin,
let Unequal′ = Unequal\{X̄[m̄]} (multiset difference: remove one copy of X̄[m̄])
and define

D1 = {0
n} D2 = {X[1], . . . , X[m− 1]} D3 = {X[m]}

D4 = {X̄[j] : j ∈ Unequal′} D5 = {X̄[m̄]}

We first show that for any two points X[i] and X[j] in the multiset D1∪D2∪D3,
where i < j and X[0] = 0n, the probability that these two points collide is at

most 2−n. The inequality Mcolln(m) ≤
(

m+1
2

)

· 12n follows because there arem+1
points in D1 ∪D2 ∪D3. Afterwards, we show that for any point X[i] in D2 ∪D3

and any point in X̄[j] in D4∪D5, the probability that they collide is at most 2
−n.

The inequality MMcolln(m, m̄) ≤ mm̄
2n follows because |D2∪D3|·|D4∪D5| ≤ mm̄.

To show Mcolln(m) ≤
(

m+1
2

)

· 1
2n consider the following four cases:

Case (D1, D2): Pr[0n = X[i]] = Pr[M [i]⊕ γi ·L = 0
n] = Pr[L = γ−1i ·M [i]] =

2−n. We have used that γi is nonzero and we are working in a field. (We will
continue to use this without mention.)

Case (D1, D3): If |M [m]| < n and m ≥ 2 then Σ is a random n-bit string and
so Pr[0n = X[m]] = Pr[0n = Σ] = Pr[0n = Y [1]⊕ · · ·Y [m− 1]⊕ pad(M [m])] =
2−n. If |M [m]| = n and m ≥ 2 then Σ is a random n-bit string that is indepen-
dent of L and so Pr[0n = X[m]] = Pr[0n = Σ ⊕ huge · L] = 2−n. If |M [m]| < n
and m = 1 then Pr[0n = X[1]] = Pr[0n = pad(M [m])] = 0. If |M [m]| = n and
m = 1 then Pr[0n = X[1]] = Pr[0n = pad(M [m])⊕ huge · L] = 2−n.

Case (D2, D2): For i, j ∈ [1..m−1], i < j, Pr[X[i] = X[j]] = Pr[M [i]⊕γi ·L =
M [j]⊕ γj ·L] = Pr[M [i]⊕M [j] = (γi ⊕ γj) ·L] = 2

−n because γi 6= γj for i 6= j.
(Here one assumes that j < 2n because the lemma gives a non-result anyway if
j were larger.)

Case (D2, D3): Assume that m ≥ 2, for otherwise there is nothing to show.
Suppose first that |M [m]| < n. Then Pr[X[i] = X[m]] = Pr[M [i] ⊕ γi · L = Σ].
The value Σ is uniformly random and independent of L, so this probability is
2−n. Suppose next that |M [m]| = n. Then Pr[X[i] = X[m]] = Pr[M [i]⊕ γi ·L =
Σ⊕huge ·L] = Pr[M [i]⊕Σ = (γi⊕huge) ·L]. This value is 2−n since γi 6= huge.
Here we are assuming that i < 2n−1, which is without loss of generality since
a larger value of i, and therefore m, would give a non-result in the theorem
statement.

Moving on, to show that MMcolln(m, m̄) ≤ mm̄
2n we verify the following four

cases:

Case (D2, D4): Let i ∈ [1..m − 1] and j ∈ Unequal′ and consider Pr[X[i] =
X̄[j]] = Pr[M [i] ⊕ γi · L = M̄ [j] ⊕ γj · L] = Pr[M [i] ⊕ M̄ [j] = (γi ⊕ γj) · L. If
i 6= j then γi 6= γj and this probability is 2

−n. If i = j then the probability is 0
since, necessarily, M [i] 6= M̄ [j].

Case (D2, D5): Suppose that |M̄ [m̄]| < n. Then Pr[X[i] = X̄[m̄]] = Pr[M [i]⊕
γi · L = Σ̄] = 2−n because Σ̄ is independent of L. Suppose that |M̄ [m̄]| = n.
Then Pr[X[i] = X̄[m̄]] = Pr[M [i] ⊕ γi · L = Σ̄ ⊕ huge · L] = Pr[M [i] ⊕ Σ̄ =
(γi ⊕ huge) · L] = 2−n because Σ̄ is independent of L and γi 6= huge.

Case (D3, D4): Suppose that |M [m]| < n. Then Pr[X[m] = X̄[j]] = Pr[Σ =
M̄ [j]⊕ γj · L] = 2

−n because Σ is independent of L. Suppose that |M [m]| = n.
Then Pr[X[m] = X̄[j]] = Pr[Σ ⊕ huge · L = M̄ [j] ⊕ γj · L] = Pr[Σ ⊕ M̄ [j] =
(γj ⊕ huge) · L] = 2−n because γj 6= huge.

Algorithm 16 B 128 B 2 KB

PMAC-AES128 22.1 18.7 18.4

CBCMAC-AES128 18.9 17.4 17.1

Fig. 4. Performance results. Numbers are in cycles per byte (cpb) on a Pentium 3,
for three message lengths, the code written in assembly.

Case (D3, D5): Suppose that |M [m]| < n and |M̄ [m̄]| < n. If m > m̄ then
Pr[X[m] = X̄[m̄]] = Pr[Σ = Σ̄] = 2−n because of the contribution of Y [m − 1]
in Σ—a random variable that is not used in the definition of Σ̄. If m < m̄ then
Pr[X[m] = X̄[m̄]] = Pr[Σ = Σ̄] = 2−n because of the contribution of Ȳ [m̄−1] in
Σ̄—a random variable that is not used in the definition of Σ. Ifm = m̄ and there
is an i < m such that M [i] 6= M̄ [i] then Pr[X[m] = X̄[m̄]] = Pr[Σ = Σ̄] = 2−n

because of the contribution of Ȳ [i] in Σ̄—a random variable that is not used in
the definition of Σ. If m = m̄ and for every i < m we have that M [i] = M̄ [i],
then, necessarily, M [m] 6= M̄ [m]. In this case Pr[Σ = Σ̄] = 0, as the two
checksums differ by the nonzero value pad(M [m])⊕ pad(M̄ [m]).

Suppose that |M [m]| = n and |M̄ [m̄]| = n. Then X[m] and X̄[m] are offset
by the same amount, huge ·L, so this offset is irrelevant in computing Pr[X[m] =
X̄[m̄]. Proceed as above.

Suppose that |M [m]| < n and |M̄ [m̄]| = n. Then Pr[X[m] = X̄[m]] = Pr[Σ =
Σ̄⊕huge ·L] = 2−n since Σ and Σ̄ are independent of L. Similarly, if |M [m]| = n
and |M̄ [m̄]| < n, then Pr[X[m] = X̄[m]] = 2−n. This completes the proof.

6 Performance

A colleague, Ted Krovetz, implemented PMAC-AES128 and compared its perfor-
mance in an entirely sequential setting to that of CBCMAC-AES128. The latter
refers to the “basic” CBC MAC; nothing is done to take care of length-variability
or the possibility of strings which are not a multiple of the block length. The
code was written in modestly-optimized assembly under Windows 2000 sp1 and
Visual C++ 6.0 sp4. All data fit into L1 cache. Disregarding the one-block mes-
sage in Figure 4 we see that, in a serial environment, PMAC-AES128 was about
8% slower than CBCMAC-AES128. A more aggressively optimized implementa-
tion of CBCMAC-AES128, due to Helger Lipmaa, achieves 15.5 cpb for 1 KByte
message lengths [20]. Adding the same 8%, we expect that this code could be
modified to compute PMAC at a rate of about 16.7 cpb. In general, differences
in implementation quality would seem to be a more significant in determining
implementation speed than the algorithmic difference between PMAC and the
CBC MAC.

Though some or all of the L(i)-values are likely to be pre-computed, calcu-
lating all of these values “on the fly” is not expensive. Starting with 0n we form
successive offsets by xoring the previous offset with L, 2 ·L, L, 4 ·L, L, 2 ·L, L,
8 · L, and so forth, making the expected number of a · x-operations to compute

an offset at most
∑∞

i=1 i/2
i+1 = 1. For n = 128, each a · x instruction requires a

128-bit shift and a conditional 32-bit xor.

Acknowledgments

We would like to thank several people for helpful comments on drafts of this
manuscript: Michael Amling, Mihir Bellare, Johan H̊astad, Ted Krovetz, David
McGrew, David Wagner, and the Eurocrypt program committee. Special thanks
to Ted, who wrote reference code, prepared test vectors, and collected perfor-
mance data. Virgil Gligor described [14] to Rogaway at Crypto ’00 and that
event, along with the announcement of a NIST modes-of-operation workshop in
October 2000, inspired the current work.

This paper was written while Rogaway was on leave from UC Davis, visiting
the Department of Computer Science, Faculty of Science, Chiang Mai University.

References

1. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for mes-
sage authentication. Advances in Cryptology — CRYPTO ’96. Lecture Notes in
Computer Science, vol. 1109, Springer-Verlag, pp. 1–15, 1996. Available at URL
www-cse.ucsd.edu/users/mihir

2. M. Bellare, S. Goldwasser, and O. Goldreich. Incremental cryptography
and applications to virus protection. Proceedings of the 27th Annual ACM Sym-

posium on the Theory of Computing (STOC ’95). ACM Press, pp. 45–56, 1995.
Available at URL www.cs.ucdavis.edu/∼rogaway

3. M. Bellare, R. Guérin and P. Rogaway. “XOR MACs: New methods for
message authentication using finite pseudorandom functions.” Advances in Cryp-

tology — CRYPTO ’95. Lecture Notes in Computer Science, vol. 963, Springer-
Verlag, pp. 15–28, 1995. Available at URL www.cs.ucdavis.edu/∼rogaway

4. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System Sciences,
vol. 61, no. 3, Dec 2000. (Full version of paper from Advances in Cryptology —

CRYPTO ’94. Lecture Notes in Computer Science, vol. 839, pp. 340–358, 1994.)
Available at URL www.cs.ucdavis.edu/∼rogaway

5. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient encryption. Advances in Cryptol-

ogy — ASIACRYPT ’00. Lecture Notes in Computer Science, vol. 1976, Springer-
Verlag, 2000. Available at URL www.cs.ucdavis.edu/∼rogaway

6. A. Berendschot, B. den Boer, J.P. Boly, A. Bosselaers, J. Brandt, D.
Chaum, I. Damgård,M. Dichtl,W. Fumy,M. van der Ham, C.J.A. Jansen,
P. Landrock, B. Preneel, G. Roelofsen, P. de Rooij, and J. Vandewalle.
Integrity primitives for secure information systems, Final report of RACE integrity
primitives evaluation (RIPE-RACE 1040). Lecture Notes in Computer Science,
vol. 1007, Springer-Verlag, 1995.

7. D. Bernstein. Floating-point arithmetic and message authentication. Unpub-
lished manuscript. Available at URL http://cr.yp.to/papers.html#hash127

8. D. Bernstein. How to stretch random functions: the security of protected counter
sums. Journal of Cryptology, vol. 12, no. 3, pp. 185–192 (1999). Available at URL
cr.yp.to/djb.html

9. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:
Fast and secure message authentication. Advances in Cryptology — CRYPTO ’99.
Lecture Notes in Computer Science, Springer-Verlag, 1999. Available at URL
www.cs.ucdavis.edu/∼rogaway

10. J. Black and P. Rogaway. A block-cipher mode of operation for paral-
lelizable message authentication. Full version of this paper. Available at URL
www.cs.ucdavis.edu/∼rogaway

11. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The
three-key constructions. Full version of paper from Advances in Cryptology —

CRYPTO ’00. Lecture Notes in Computer Science, vol. 1880, pp. 197–215, 2000.
Available at URL www.cs.ucdavis.edu/∼rogaway

12. G. Brassard. On computationally secure authentication tags requiring short se-
cret shared keys. Advances in Cryptology — CRYPTO ’82. Plenum Press, pp. 79–
86, 1983.

13. L. Carter and M. Wegman. Universal hash functions. J. of Computer and Sys-

tem Sciences. vol. 18, pp. 143–154, 1979.
14. V. Gligor and P. Donescu. Fast encryption and authentication: XCBC en-

cryption and XECB authentication modes. Fast Software Encryption, Lecture
Notes in Computer Science, Springer-Verlag, April 2001. Available at URL
www.eng.umd.edu/∼gligor

15. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, vol. 33, no. 4, pp. 210–217, 1986.

16. S. Halevi and H. Krawczyk. MMH: Software message authentication in the
Gbit/second rates. Fast Software Encryption (FSE 4), Lecture Notes in Com-
puter Science, vol. 1267, Springer-Verlag, pp. 172–189, 1997. Available at URL
www.research.ibm.com/people/s/shaih

17. Iso/Iec 9797. Information technology – Security techniques – Data integrity
mechanism using a cryptographic check function employing a block cipher algo-
rithm. International Organization for Standards (ISO), Geneva, Switzerland, 1994
(second edition).

18. C. Jutla. Encryption modes with almost free message integrity. Advances in

Cryptology — EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045,
B. Pfitzmann, ed., Springer-Verlag, 2001.

19. H. Krawczyk. LFSR-based hashing and authentication. Advances in Cryptol-

ogy — CRYPTO ’94. Lecture Notes in Computer Science, vol. 839, Springer-
Verlag, pp 129–139, 1994.

20. H. Lipmaa. Personal communication, July 2001. Further information available at
www.tcs.hut.fi/∼helger

21. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. Jour-

nal of Cryptology, vol. 13, no. 3, pp. 315–338, Nov 2000. Available at URL
www.cs.technion.ac.il/∼erez/publications.html. Earlier version as 1997/010 in the
Cryptology ePrint archive, eprint.iacr.org

22. B. Preneel. Cryptographic primitives for information authentication — State
of the art. State of the Art in Applied Cryptography, COSIC ’97, LNCS 1528,
B. Preneel and V. Rijmen, eds., Springer-Verlag, pp. 49–104, 1998.

23. M. Wegman and L. Carter. New hash functions and their use in authentication
and set equality. J. of Comp. and System Sciences. vol. 22, pp. 265–279, 1981.

