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Abstract. SFLASH [Spec] is a fast asymmetric signature scheme in-
tended for low cost smart cards without cryptoprocessor. It belongs
to the family of multivariate asymmetric schemes. It was submitted to
the call for cryptographic primitives organised by the European project
NESSIE, and successfully passed the first phase of the NESSIE selection
process in September 2001. In this paper, we present a cryptanalysis of
SFLASH which allows an adversary provided with an SFLASH public
key to derive a valid signature of any message. The complexity of the
attack is equivalent to less than 238 computations of the public function
used for signature verification. The attack does not appear to be applica-
ble to the FLASH companion algorithm of SFLASH and to the modified
(more conservative) version of SFLASH proposed in October 2001 to the
NESSIE project by the authors of SFLASH in replacement of [Spec].
Keywords : asymmetric signature, cryptanalysis, multivariate polyno-
mials, SFLASH.

1 Introduction

SFLASH [Spec] is a an asymmetric signature scheme which was submitted to the
call for cryptographic primitives organized by the European project NESSIE, to-
gether with a more conservative companion algorithm named FLASH. SFLASH
was selected in September 2001 for phase II of the NESSIE project (whereas
FLASH was not, probably because its longer key size makes it less attractive
than SFLASH, assuming equivalent security levels [Nes01a]). No weakness of the
SFLASH and FLASH algorithms was reported in the NESSIE security evalua-
tion [Nes01b].
SFLASH and FLASH both belong to the family of multivariate asymmetric

schemes [Pa00, Cou01], and do both represent particular instances of C∗−−,
a variant of the C∗ scheme [MI88] in which a sufficient number r of public
equations of the C∗ trapdoor permutation are withdrawn in order to withstand
Patarin’s cryptanalysis of C∗ [Pa95]. Both schemes are based on the difficulty
of solving large systems of quadratic multivariate polynomials over a finite field
K. Their trapdoor essentially consists in hiding a monomial transformation over
an extension L of K, using two affine transformations s and t of the K-vector
space Kn.



One of the distinctive properties of SFLASH and FLASH is that unlike most
standard public key signature schemes (e.g. RSA, DSA, ECDSA, etc.), they are
sufficiently fast to be well suited for implementation on low cost smart cards
without cryptographic coprocessor. SFLASH and FLASH produce rather short
signatures (259 bits in the case of SFLASH). The moderate public key size of
SFLASH (2.2 Kbytes, versus 18 Kbytes for FLASH) represents an additional
advantage for such applications.

In this paper, we present an attack of SFLASH which takes advantage of
some special features introduced in SFLASH in order to save a substantial factor
in the public key size as compared with more general instances of C∗−− such
as FLASH. This attack allows an adversary provided with an SFLASH public
key to derive a valid signature, for that public key, of any message M . The
complexity of the attack is well under the security target of 280 : it is equivalent
to less than 238 computations of the SFLASH public function used for signature
verification. Although the attack was not fully implemented, the essential parts
were confirmed by computer experiments.

Our attack does not appear to be applicable to FLASH and to the modified
(more conservative, at the expense of a larger public key size) version of SFLASH
proposed in October 2001 to the NESSIE project by the authors of SFLASH, in
replacement of [Spec].

This paper is organised as follows. Section 2 describes SFLASH and its con-
nection to C∗. Section 3 gives an overview of the attack. Section 4 details the
two most essential steps of the attack.

2 Outline of C∗, C∗−−, and SFLASH

In this Section, we briefly outline those features of C∗ and its cryptanalysis which
are relevant for the attack presented here, and then provide a short description
of SFLASH.

2.1 C∗

C∗ is a trapdoor permutation based on hidden monomial field equations pro-
posed by Matsumoto and Imai in 1988 [MI88]. An efficient attack of C∗ was
found by Patarin [Pa95]. It is sufficient for the sequel to only consider the basic
version of C∗, which can be summarised as follows :

– K denotes a finite field of characteristic 2 : K = F2m = Fq, where q = 2m.

– L denotes an extension of K of degree n : L = Fqn . The representation of L
associated with a P (X) irreducible polynomial of degree n of K[X] is used
in the various computations. Thus any element a of L can be represented as
the

∑n−1
i=0 aiX

i element of K[X]/P (X). We will denote in the sequel by ϕ
the one to one mapping from Kn to L associated with this representation :
∀c = (c0, c1, .., cn−1) ∈ Kn, ϕ(c) =

∑n−1
i=0 ciX

i mod P (X).



– The public key of C∗ consists of a set of n quadratic functions from Kn to
K which together define a G function from Kn to Kn

G : Kn → Kn

x = (x0, .., xn−1) 7→ y = (y0, .., yn−1)

where
yi =

∑

0≤j<k≤n−1

ρijkxjxk +
∑

0≤j≤n−1

σijxj + τi

(in other words, the public key is made up of the ρijk, σij and τi coefficients
in K of the n public equations).

– The private key consists of two secret affine one to one functions of Kn : s
and t (each determined by n(n+1) K coefficients). The knowledge of s and
t provides a secret representation of G as :

G = t ◦ ϕ−1 ◦ F ◦ ϕ ◦ s

where
F : L→ L

a 7→ b = aq
θ+1

(θ being a public or private integer such that qθ+1 be co-prime with qn−1).
Note that since F is the pointwise product of the two L automorphisms a 7→ a

and a 7→ aq
θ

, ϕ−1 ◦ F ◦ ϕ (and thus G) is quadratic. Moreover, F is one to
one, and its inverse F−1 is the monomial function a 7→ ah, where h is the
inverse of qθ + 1 modulo qn − 1.

The knowledge of the private key allows to compute the inverse of the G
function. Thus G is a trapdoor permutation which was initially conjectured to
be one way, and proposed as a public key encryption or signature function.

2.2 Attack of C∗

The main attack of C∗ described in [Pa95] is based upon the following observa-

tion : the b = aq
θ+1 equation of the F function implies aq

2θ

· b = a · bq
θ

as can

be seen is multiplying the former equation by aq
2θ

. But the latter equation has
the property that both the left and the right terms are ”bilinear” in a and b. As
a consequence, there exists ”bilinear” equations of the form

∑

0≤j≤n−1,0≤k≤n−1

γjkxjyk +
∑

0≤j≤n−1

δjxj +
∑

0≤j≤n−1

εjyj + η = 0

relating the (x0, .., xn−1) and (y0, .., yn−1) K
n input and output vectors of the G

public function (i.e. equations of total degree 2 without any xjxk or yjyk term).
It is shown in [Pa95] that the linear equations in γjk, δj , εj and η provided
by a sufficient number of G input-output pairs allow to recover these unknown
coefficients, and that once this has been done, the obtained vector space of



solutions can be used to compute the inverse by G of any Kn element y at
the expense of solving a small K-linear system. The complexity of the attack is
about m2n4logn.
J. Patarin, L. Goubin and N. Courtois investigated in [PGC98] the simple

variant of C∗ obtained by removing r of the public equations, say the r last ones.
Thus the public key now consists of a G function from Kn to Kn−r given by
n−r quadratic equations over K. They came to the conclusion that the obtained
variant of C∗ (denoted by C∗−) can still be attacked if r is sufficiently small.
However, attacks investigated in [PGC98] are not applicable when qr is larger
than say 264. The C∗−− name was introduced to refer to C∗− variants for which
q and r satisfy this condition. Unlike C∗, C∗−− can only be used for signature
purposes, not for encryption purposes.

2.3 Description of SFLASH

SFLASH is a special instance of C∗−−, in which a particular choice of the s and
t functions (and of the polynomials associated with the representation of K and
L) enables to considerably shorten the public key size.
More precisely :

– K is chosen equal to GF (27), i.e. m = 7 and q = 27. We denote by K ′ the
GF (2) = {0, 1} subfield of K. K elements are represented as 7-tuples of K ′

elements, using the representation of GF (27) associated with the X7+X+1
irreducible polynomial of K ′[X].

– L is chosen equal to K[X]/P (X), where P (X) is publicly known and equal
to the X37+X12+X10+X2+1 irreducible polynomial of K[X]. (Note that
all coefficients of P (X) belong to K ′). Thus n is equal to 37 and L elements
can be represented as 37-tuples of K elements.

– The F monomial function of L involved in the secret representation of G is
taken equal to a 7→ a12811+1; in other words, θ is public and equal to 11.

– The number r of withdrawn equations is equal to 11. Thus qr = 277 > 264

and the C∗−− condition is satisfied.
– The two secret affine functions s and t of Kn = K37 are taken from a small
subset of the bijective affine functions from Kn to Kn, namely those which
can be represented by an n × n matrix and a n × 1 column vector which
n× (n+ 1) coefficients do all belong to the K ′ subfield.

It is easy to see that as a consequence of the special choice of the s and
t functions (and of the K and L representations), all the coefficients of the
n − r = 26 public quadratic equations of the public function G belong to the
K ′ = GF (2) subfield. This results in a gain by a factor of approximately m = 7
in the length of the SFLASH public key.
In addition to the above mentioned s and t affine mappings, an SFLASH

private key also contains a 80-bit secret key ∆, which acts as a pseudo-random
generation seed in the signature generation process.
In order to sign a message M , the owner of a (s, t,∆) private key performs

the following operations.



– The M1 = SHA − 1(M) and M2 = SHA − 1(M1) 160-bit strings, the
182-bit string V = M10→159||M20→21 and the 77-bit string W = SHA −
1(V ||∆)0→76 are computed.

– V is divided into n − r = 26 strings y0, ..., y25 of length 7 bits each, repre-
senting 26 elements of K, and W is divided into r = 11 strings y26, .., y36 of
length 7 bits each representing 11 elements ofK. Let us denote the (y0, .., y25)
26-tuple by y, and the (y0, .., y25, y26, · · · y36) 37-tuple by y∗.

– The secret function s−1◦ϕ−1◦F−1◦ϕ◦t−1 is applied to y∗. The obtained 37-
tuple x of K elements represents the signature of M . In order to check that
the x signature of an M message is valid, a verifier just needs to compute
G(x), using the 26 public quadratic equations of G, and to make sure that
the obtained value is equal to y.

M

M1=SHA−1(M)

y* = y || W

SHA−1( y ||     )∆ 

ϕ−1 −1 −1

x 

M2=SHA−1(M1)

y

ϕs   o      o F  o     o t−1

Fig. 1. SFLASH signature scheme



3 Overview of our attack

The following simple observation represents the starting point for our attack.
Let us consider the G∗ = t◦ϕ−1 ◦F ◦ϕ◦s untruncated SFLASH transformation
of Kn from which G is derived (G∗ is given by the n− r quadratic equations of
G and r additional quadratic equations). Since the s, t and ϕ−1 ◦F ◦ϕ mappings
are constructed as to leave the K ′n = GF (2)37 subset of Kn invariant (this is
the price to pay for having very compact public key equations), G∗ and its secret
inverse s−1 ◦ ϕ−1 ◦ F−1 ◦ ϕ ◦ t−1 used in the signature computations also leave
K ′n invariant. In other words, the restriction of G∗ (resp G) to K ′n induces a g∗

(resp g) mapping of K ′n to K ′n (resp K ′n to K ′n−r) and since G∗ is one to one,
g∗ is also one to one. 1 It is also worth noticing that G∗ and g∗, though they are
defined over distinct vector spaces (Kn and K ′n), are described by exactly the
same set of n quadratic equations which coefficients belong by construction to
K ′.
Moreover, due to the fact that K ′n = GF (2)37 is a small set, it is computa-

tionally easy to ”invert” the public function g, i.e. given any 26-tuple y of K ′

elements, to determine the class(y) set of all the 2r = 211 x values in K ′37 such
that g(x) = y. Our attack makes an extensive use of this property.
The purpose of our attack is to find r additional quadratic equations of the

form
zi(x) =

∑

0≤j<k≤n−1

αijkxjxk +
∑

0≤j≤n−1

βijxj

(where the αijk and βij coefficients are K ′ elements) which, together with the
n− r G quadratic equations

yi(x) =
∑

0≤j<k≤n−1

ρijkxjxk +
∑

0≤j≤n−1

σijxj + τi

represent a full C∗ instance consistent with G. More formally, we want to find
r additional quadratic equations such that there exists a t′ one to one affine
mapping of Kn with coefficients in K ′ such that

∀x = (x0, x1, .., xn−1) ∈ Kn,
(y0(x), .., yn−r−1(x), z0(x), .., zr−1(x)) = t′ ◦ ϕ−1 ◦ F ◦ ϕ ◦ s(x) (1)

1 The following even stronger property of g deserves being mentioned : the public
function g represents a ”restricted SFLASH” induced overK ′n by the initial SFLASH
, with distinct parameters (q′ = 2 whereas q = 27, θ′ = 3 whereas θ = 11, n′ = n =

37, r′ = r = 11). The q′r
′

> 264 condition of C∗−− is not satisfied by this restricted
SFLASH, since q′r is only equal to 211. This mere property is sufficient to make
the security of SFLASH suspicious, as first pointed out by Nicolas Courtois, Louis
Goubin and Jacques Patarin in a discussion we had with them at an early stage
of this work. However, we did not manage to apply the attacks of C∗− described
in [PGC98] to the g function, so we are unsure that this property is sufficient to
draw firm conclusions concerning the security of SFLASH. Therefore we mounted a
different attack dedicated to SFLASH, which takes advantage of the small value of
q′n = 237, as explained in the rest of this paper.



Once any such set of n equations overKn satisfying (1) have been determined,
then the C∗ attack of [Pa95] can be applied to compute the preimage of any Kn

element in few operations, so that a valid signature of any message M can then
be computed by the adversary, using the following procedure :
- V = SHA − 1(M)0→159||SHA − 1(M1)0→21, is computed and is divided

into n − r = 26 7-bit strings y0, ..., y25, and r = 11 arbitrary additional 7-bit
values z0, ..., z10 are selected ;
- The preimage of (y0, ..., y25, z0, ..., z10), which is computed using the C∗

attack of [Pa95], is a valid signature of M .
It is easy to see (one simply to consider t′ and t) that the

zi(x) =
∑

0≤j<k≤n−1

αijkxjxk +
∑

0≤j≤n−1

βijxj

quadratic equations satisfying requirement (1) are those linear combinations of
the n− r public quadratic equations yi(x) (without their τi constants) and the
r additional hidden quadratic equations (again without their τi constants) such
that in addition the n quadratic functions y0(x), · · · , yn−r−1(x), z0(x), · · · , zr−1(x)
be linearly independent.
So, each of the r = 11 additional quadratic functions zi we are trying to

determine, belongs to the same 37-dimensional K ′-vector space E of quadratic
functions, generated by the 37 public and hidden (constant less) quadratic equa-
tions. Our attack from now on consists in determining this partly unknown vector
space E. (Once E has been found, any z0(x), .., zr−1(x) functions of E such the
n quadratic equations y0(x), .., yn−r−1(x), z0(x), .., zr−1(x) be linearly indepen-
dent can be used to mount the rest of the attack, using the C∗ cryptanalysis of
[Pa95].) There are two main steps in the determination of E :
The first step consists of an initial (partial) characterization of the coefficients

of the zi(x) equations by expressing the fact that g∗ is one to one. This first
phase allows to reduce the set of zi(x) candidates from the K ′-vector space of
all quadratic functions constant less with K ′ coefficients, which dimension is
n(n−1)/2+n = 703, to a smaller K ′-vector space E′ of dimension 4∗37 = 148.
The second step consists of an enhanced characterization of the zi(x) co-

efficients. We are using the knowledge of E ′ to express additional conditions
reflecting the a priori knowledge by the adversary of the degree in the y0 to yn−1

variables of the quadratic functions of E ′. Our computer experiments indicated
that these additional conditions allow to fully determine the E set.

4 Detail of the two main steps of the attack

As said before, we attempt to characterize the 703 GF (2)-coefficients of any
quadratic functions of E

z(x) =
∑

0≤j≤k≤n−1

αjkxjxk +
∑

0≤j≤n−1

βjxj



(representing any of the z0(x) to z10(x) functions we are try to determine in
order to extend the G set of 26 public equations to a complete set G∗ of 37
equations representing a C∗ instance.)

4.1 First step of the attack : derivation of E′

For that purpose, we are expressing the fact that since g∗ is one to one, each
class(y) of 211 x preimages by g of any arbitrary element y = (y0, .., y26) of
K ′26 necessarily contains exactly 2r−1 = 210 x values such that z(x) = 0 and
2r−1 = 210 x values such that z(x) = 1, so that

∑

x∈class(y)

z(x) ≡ 0 mod 2

So any arbitrary y value provides one GF (2)-linear equation in the 703 co-
efficients of the quadratic function z(x).
In order to compute the coefficients of the equation associated with y, one

first needs to determine class(y). This can be done with a total of less than 237

computations and a limited amount of memory if we first select once for all the
N arbitrary y = (y0, · · · , y25) values for which we want to determine class(y)
and if we then perform an exhaustive computation of the g public function
for all 237 possible x input values, and store the N2r x preimages of the N
selected y values. Once class(y) has been determined, the GF (2)-coefficients of
the corresponding equation are easy to compute, and equal to

∑

x∈class(y) xjxk
for each αjk coefficient, and to

∑

x∈class(y) xj for each βj coefficient.

We collect a little bit more than 703 such equations (say N = 1000 for
instance) thus obtaining a N × 703 matrix representing a system of N GF (2)-
linear equations which right terms are equal to zero, and compute the kernel of
this matrix using gaussian elimination.
Instead of the initially anticipated 37-dimensional GF (2) vector space E

spanned by the 26 public equations and the 11 hidden public equations without
their constant terms, we found a much larger GF (2)-vector space E ′ of solutions,
of dimension 37 ∗ 4 = 148. Unsurprisingly, E ′ is a superset of E.

4.2 Explanation of the above phenomenon

The reason why E′ contains parasitic solutions distinct from the quadratic func-
tions of the E set appears to be the following : z(x) =

∑

x∈class(y) z(x) can be

regarded as a z(y∗) function of the actual (partly hidden) y∗ = (y0, ..., y36) =
g∗(x) value. For any fixed y = (y0, · · · , y25) value, let us denote by V11(y) the
(y0, · · · , y25)×GF (2)11 affine subset of GF (2)37. We can write

∑

x∈class(y)

z(x) =
∑

y∗∈V11

z(s−1 ◦ ϕ−1 ◦ F−1 ◦ ϕ ◦ t−1(y∗)) =def

∑

y∗∈V11

z(y∗)

In other words,
∑

x∈class(y) z(x) can be expressed as an 11th order derivative

of the z(y∗) function of y∗ induced by z(x). Therefore, the equations of the



previous Section are satisfied if z(y∗) can be expressed as a boolean function of
total degree at most 10 of the components of y∗.

Now, let us consider any gi(x) = ϕ−1 ◦fi ◦ϕ◦s(x) quadratic function of K
′37

associated with any fi monomial function a 7→ a2i+1 of L′ = GF (237). Let us
use the q′ and θ′ notation of the footnote of Section 3 to refer to the parameters
of the restricted SFLASH g. Since b = t−1(y∗) is equal to g3(x), x is equal to bh

′

,
where h′ is the inverse of q′θ

′

+ 1 = 23 + 1 modulo 237 − 1. Therefore, if z(x) is
equal to any linear combination of the outputs of gi(x), z(x) can be expressed as

a linear combination of the 37 GF (2)-components of bh
′.(2i+1). Thus the degree

of z(x) as seen as a z(y∗) function of y∗ is then bounded above by the Hamming
weight of h′.(2i + 1) mod 237 − 1.

We computed h′i = h′.(2i + 1) mod 237 − 1 for the i values between 0 and
36, and found exactly 4 h′i values of weight at most 10

2, of weights 1, 4, 7
and 10 respectively, namely i = 3, 9, 15 and 21. Thus the output bits of g3(x),
g9(x) g15(x) and g21(x) are quadratic in x and can all be expressed as functions
of degree at most 10 of y∗ , so that any z(x) linear combination of these 148
output bits satisfies the equations of the previous Section.

So in summary E′ is the 148-dimensional vector space spanned by the 37
components of each of the g3, g9 g15 and g21 functions of GF (2)37.

4.3 Second step of the attack : derivation of E

We select an arbitrary B = (ζ0(x), .., ζ147(x)) basis of E
′ provided by the gaus-

sian elimination of step 1, and now attempt to characterize the 148 GF (2)-
coordinates γi in this basis of any z(x) =

∑

0≤i≤147 γiζi(x) element of E, in
order to eliminate the E′\E set of ”parasitic solutions”.

As said in the previous Section, each ζi(x) quadratic function and their z(x)
linear combination can be seen as a ζi(y

∗) and a z(y∗) boolean function of the
y∗ 37-tuple. We can notice that due to the structure of E ′, the total degree in
y0, .., y36 of each of the ζi(y

∗) functions is very likely to be equal to 10. If z(x) ∈ E
the total degree in y0, .., y36 of z(y

∗) is by definition equal to 1. Therefore, if z(x)
belongs to E, then any 12th degree derivative of each of the z(y∗)·ζi(y

∗) functions
(which degree is at most 10 + 1 = 11) is equal to zero. On the other hand, if
z(x) belongs to E′\E, the degree of at least one of the z(y∗) ·ζi(y

∗) functions (in
practice of one of the z(y∗) · ζ0(y

∗) and z(y∗) · ζ1(y
∗) functions) can be expected

to be at least 4 + 10 = 14, due to the structure of E ′, so that the 12th degree
derivative of z(y∗) · ζ0(y

∗) or z(y∗) · ζ1(y
∗) (or both) can then be expected to

differ from the null function. This provides one non trivial linear equation in the
γi unknown coefficients of z(x).

For any fixed y = (y0, · · · , y24) value, let us denote by V12(y) the affine subset
of GF (2)37 defined by (y0, · · · , y24) × GF (2)12. For any arbitrary (y0, · · · , y24)

2 up to circular rotations of h′i. Indeed, if i1 and i2 are such that h′i1 = 2δh′i2 mod 237
−

1, then gi1 and gi2 are equal up to a linear monomial transformation, and span the
same set of quadratic functions.



value we have

∑

y∗∈V12(y)

z(y∗) · ζ0(y
∗) = 0 and

∑

y∗∈V12(y)

z(y∗) · ζ1(y
∗) = 0.

For each y value, each of these two equations provides the cryptanalyst with
a GF (2)-linear equation in the 148 unknown GF (2) coefficients γi, as can be
seen in rewriting the first equation (associated with ζ0) as

∑

0≤i≤147

γi





∑

x∈class(y0,..,y24,0)∪class(y0,..,y24,1)

ζi(x) · ζ0(x)



 ≡ 0 mod 2

We collect a little bit more than 148 such equations (say N ′ = 200, some
of which being associated with z(x) · ζ0(x) and the other being associated with
z(x) · ζ1(x)), thus obtaining a N ′× 148 matrix representing a system of N ′ 148-
bit vectors corresponding to GF (2)-linear equations which right terms are equal
to zero. We compute the kernel of this matrix using gaussian elimination. It was
confirmed by computer experiments that we obtain a kernel of dimension only
37, equal to the E subspace of E ′. This completes step 2 of our attack.

Once E has been recovered with the above method, a complete G∗ set of
37 Kn-quadratic functions with K ′ coefficient can be obtained (one just needs
to complete the 26 public equations of G as to obtain a basis of E), and the
C∗ attack of [Pa95] can be applied to compute the inverse by G∗ of any K37

element, so that a valid signature of any message M can be produced by the
adversary.

4.4 Complexity of the attack

The most complex calculation required by the attack is the exhaustive compu-
tation of the 237 values of the public function g, which is needed to obtain the
(at most) N + 2N ′ sets of 211 preimages required for the computations of step
1 and step 2.

The computations of step 1 are essentially the derivation of the N = 1000
linear equations in 703 variables and the gaussian elimination of the resulting
N × 703 system in step 1. So, the complexity of step 1 is bounded above by

N.703.211 + N3

3 ≤ 231. In the same way, the complexity of the derivation of
the N ′ = 148 linear equations in 703 variables and the gaussian elimination
of the resulting N ′ × 148 system in step 2 are bounded above by 227. Both
complexities are far lower than 237 computations of the SFLASH public function.
Moreover the complexity of the attack of C∗ presented in [Pa95] is here about
227 computations. In summary, the overall complexity of the attack is bounded
above by 238.



5 Conclusion

The attack presented in this paper uses extensively the fact that the SFLASH
public function overK37 induces a restricted scale function over the much smaller
vector space GF (2)37.
Our attack does not seem applicable to more conservative instances of C∗−−

such as FLASH, because a more sophisticated method than the one used in our
attack would then have to be found to determine complete sets of 2r preimages
of some C∗−− outputs.
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