
Fast Correlation Attacks:

an Algorithmic Point of View

Philippe Chose, Antoine Joux, and Michel Mitton

DCSSI, 18 rue du Docteur Zamenhof
F-92131 Issy-les-Moulineaux cedex, France

Philippe.Chose@ens.fr, Antoine.Joux@m4x.org

michelmitton@compuserve.com

Abstract. In this paper, we present some major algorithmic improve-
ments to fast correlation attacks. In previous articles about fast correla-
tions, algorithmics never was the main topic. Instead, the authors of these
articles were usually addressing theoretical issues in order to get better
attacks. This viewpoint has produced a long sequence of increasingly
successful attacks against stream ciphers, which share a main common
point: the need to find and evaluate parity-checks for the underlying lin-
ear feedback shift register. In the present work, we deliberately take a
different point of view and we focus on the search for efficient algorithms
for finding and evaluating parity-checks. We show that the simple algo-
rithmic techniques that are usually used to perform these steps can be
replaced by algorithms with better asymptotic complexity using more
advanced algorithmic techniques. In practice, these new algorithms yield
large improvements on the efficiency of fast correlation attacks.

Keywords. Stream ciphers, fast correlation attacks, match-and-sort,
algorithmics, parity-checks, linear feedback shift registers, cryptanalysis.

1 Introduction

Stream ciphers are a special class of encryption algorithms. They generally en-
crypt plaintext bits one at a time, contrary to block ciphers that use blocks of
plaintext bits. A synchronous stream cipher is a stream cipher where the cipher-
text is produced by bitwise adding the plaintext bits to a stream of bits called
the keystream, which is independent of the plaintext and only depends on the
secret key and on the initialization vector. These synchronous stream ciphers are
the main target of fast correlation attacks.
The goal in stream cipher design is to produce a pseudo-random keystream

sequence, pseudo-random meaning indistinguishable from a truly random se-
quence by polynomially bounded attackers. A large number of stream ciphers
use Linear Feedback Shift Registers (LFSR) as building blocks, the initial state
of these LFSRs being related to the secret key and to the initialization vector.
In nonlinear combination generators, the keystream bits are then produced by
combining the outputs of these LFSRs through a nonlinear boolean function (see

Fig. 1). Many variations exist where the LFSRs are multiplexed or irregularly
clocked.

i
!!

HH-

-

-

? --

F

xi

zi

LFSR 1

LFSR 2

LFSR 3

CiphertextPlaintext

Keystream

Fig. 1. Three LFSRs combined by a nonlinear boolean function

Among the different kinds of attacks against stream ciphers, correlation at-
tacks are one of the most important [12, 13]. These cryptanalytic methods target
nonlinear combination keystream generators. They require the existence of linear
correlations between LFSR internal stages and the nonlinear function output,
i.e. correlation between linear combinations of internal and output bits; these
correlations need to be good enough for the attack to be successful. A very
important fact about nonlinear functions is that linear correlations always ex-
ist [12]. Finding them can sometimes be the hardest part of the job, since the
main method for finding them is by statistical experimentation. For the simplest
ciphers, the correlations can be found by analyzing the nonlinear function with
the well-known Walsh transform. Once a correlation is found, it can be written
as a probability

p = Pr(zi = x
j1
i ⊕ x

j2
i ⊕ . . .⊕ x

jM

i) 6= 0.5

where zi is the i-th keystream output bit and the x
j1
i , . . . , x

jM

i are the i-st output
bits of some LFSRs j1, . . . , jM (see Fig. 1). The output can thus be considered
as a noisy version of the corresponding linear combination of LFSR outputs.
The quality of the correlation can be measured by the quantity ε = |2p − 1|.
If ε is close to one, the correlation is a very good one and the cipher is not
very strong. On the other hand, when ε is close to zero, the output is very
noisy and correlation attacks will likely be inefficient. Since the LFSR output
bits are produced by linear relations, we can always write this sum of output
bits xj1i ⊕ x

j2
i ⊕ . . . ⊕ x

jM

i as the output of only one larger LFSR. Without
loss of generality, the cipher can be presented as in Fig. 2, where this sum has
been replaced by xi the output of one LFSR, and the influence of the nonlinear
function has been replaced by a BSC (binary symmetric channel), i.e. by a
channel introducing noise with probability 1− p. Fast correlation attacks are an

l -- CiphertextPlaintext

zx

?

-LFSR

ii -

-©©
©©*HHHHj

0

1 1

0p

p
1-p
1-p

Fig. 2. Equivalent diagram where the output xi of the LFSR is correlated with the
keystream output zi: P (zi = xi) = p 6= 0.5

improvement of the basic correlation attacks. They essentially reduce the time
complexity of the cryptanalysis by pre-computing data [3, 5, 7, 8, 9].

In this article, we present substantial algorithmic improvements of existing
fast correlation attacks. The paper is organized as follows. In Sect. 2, we in-
troduce the basics of fast correlation attacks and a sketch of our algorithmic
improvements. A detailed description of the algorithm is given in Sect. 3, to-
gether with its complexity analysis and, finally, some comparisons with other
algorithms are provided in Sect. 4.

2 Fast Correlation Attacks

Fast correlation attacks are usually studied in the binary symmetric channel
model as shown on Fig. 2. In this model, we consider the output of the generator
as a noisy version of the output of some of the linear registers. The cryptanalysis
then becomes a problem of decoding: given a noisy output, find the exact output
of the registers and, when needed, reconstruct the initial filling of the registers.

The common point between all fast correlation attacks algorithms is the use of
the so-called parity-check equations, i.e. linear relations between register output
bits xi. Once found, these relations can be evaluated on the noisy outputs zi of
the register. Since they hold for the exact outputs xi, the evaluation procedure
on the noisy zi leaks information and helps to reconstruct the exact output
sequence of the LFSR.

Fast correlation algorithms are further divided into iterative algorithms and
one-pass algorithms. In iterative algorithms, starting from the output sequence
zi, the parity-checks are used to modify the value of these output bits in order to
converge towards the output xi of the LFSR thus removing the noise introduced
by the BSC. The reconstruction of the internal state is then possible [2, 7]. In
one-pass algorithms, the parity-checks values enable us to directly compute the
correct value of a small number of LFSR outputs xi from the output bits zi of
the generator. This small number should be larger than the size of the LFSR in
order to allow full reconstruction [3, 5, 8, 9].

2.1 Sketch of One-Pass Fast Correlation Attacks

The one-pass correlation attack presented here is a variation of the attacks found
in [3] and [9]. The main idea is, for each LFSR’s output bit to be predicted
(henceforth called target bits), to construct a set of estimators (the parity-check
equations) involving k output bits (including the target bit), then to evaluate
these estimators and finally to conduct a majority poll among them to recover
the initial state of the LFSR.

This main idea is combined with a partial exhaustive search in order to yield
an efficient cryptanalysis. More precisely, for a length–L LFSR, B bits of the
initial state are guessed through exhaustive search and L−B bits remain to be
found using parity-checks techniques (see Fig. 3). However, for a given target
bit, the result of the majority poll may lead to a near tie. In order to avoid this
problem, we target more than L−B bits, namely D and hope that at least L−B
will be correctly recovered.

�������
�
������������

Initial state of the LFSR
Output bits

B L-B i m n

Fig. 3. Construction of parity-checks: In this example, the parity-check combines two
bits of output (m and n) together with a linear combination of the B guessed bits in
order to predict the target bit i

For each of these D target bits, we evaluate a large number Ω of estimators
using the noisy zi values and we count the number of parity-checks that are
satisfied and unsatisfied, respectively Ns and Nu = Ω −Ns. When the absolute
value of the difference of these two numbers is smaller than some threshold θ, we
forget this target bit. However when the difference is larger than the threshold,
the majority poll is considered as successful. In that case, we predict x̂i = zi if
Ns > Nu and x̂i = zi ⊕ 1 otherwise (see Fig. 4). When the majority polls are
successful and give the correct result for at least L−B of the D target bits, we
can recover the complete state of the LFSR using simple linear algebra.

2.2 New Algorithmic Ideas

When implementing the fast correlation attack from the previous section, sev-
eral algorithmic issues arise. First we need to pre-compute the parity-checks for
each target bit. Then we need to efficiently evaluate these parity-checks and re-
cover the target bits. In previous papers, the latter step was performed using
the straightforward approach, i.e. by evaluating parity-checks one by one for
each possible guess of the first B bits, then by counting the number of positive
and negative checks. For the preprocessing step, three algorithms were known,

............

............

Number of satisfied parity checks

Unknown LFSR output bits xi

Algorithm predicted bits x̂i

1 1 1 10 0

0 1 00 0 1

? 1 0 10 ?

Known keystream D output bits zi

0

Ω

Ω/2 + θ/2

Ω/2− θ/2

Fig. 4. Sketch of the decision procedure

simple exhaustive search, square-root time-memory tradeoffs and Zech’s loga-
rithm technique [10]. The main contribution of this paper is to propose better
algorithmic techniques for both tasks.

Pre-processing Stage The usual square-root algorithm for computing parity-
checks on k bits (the target bit plus k − 1 output bits) works as follows. For
each target bit, compute and store in a table the formal expression of the sum of
bk−1

2 c output bits and the target bit in term of the initial L-bit state. Then sort

this table. Finally compute the formal sum of d k−1
2 e output bits and search for a

partial collision (on the L−B initial bits, excluding the B guessed bits). The time
and memory complexity of this algorithm are respectively O(DN d(k−1)/2e logN)
and O(N b(k−1)/2c) where N is the length of the considered output sequence and
D is the number of target bits. For even values of k, a different tradeoff exists:
it yields a respective time and memory complexity O(N k/2 logN) and O(Nk/2).
This square-root algorithm is part of a family of algorithms which can be used
to solve a large class of problems. In some cases, there exists an alternative
algorithm with the same time complexity as the original and a much lower
memory complexity. A few examples are:

– the knapsack problem and modular knapsack problem [11, 1],
– the match and sort stage of SEA elliptic curve point counting [6],
– the permuted kernel problem [4].

Our goal is to propose such an alternative for constructing parity-checks. Ac-
cording to known results, we might expect a time complexity of
O(min(DN d(k−1)/2e logN,N dk/2e logN)) and a memory complexity of
O(N bk/4c). It turns out that such an alternative really exists for k ≥ 4, the
algorithmics being given in Sect. 3.

Decoding Stage When using the usual method for evaluating the parity-
checks, i.e. by evaluating every parity-check for each target bit and every choice

of the B guessed bits, the time complexity is O(D2BΩ) where Ω is the number
of such parity-check equations. By grouping together every parity-check involv-
ing the same dependence pattern on a well chosen subset of the B guessed bits
(of size around log2 Ω), it is possible to evaluate these grouped parity-checks in
a single pass through the use of a Walsh transform. This is much faster than
restarting the computation for every choice of the B bits. The expected time
complexity of this stage then becomes O(D2B log2 Ω).

3 Algorithmic Details and Complexity Analysis

We present in this section a detailed version of our algorithmic improvements.
We consider here that the parameters N , L, D, B, θ and ε are all fixed. The
optimal choice of these parameters is a standard calculation and is given in
appendix A.
Let us recall the notations used in the following:

– N is the number of available output bits;
– L is the length of the LFSR;
– B is the number of guessed bits;
– D is the number of target bits;
– xi is the i-th output bit of the LFSR;
– zi is the i-th output bit of the generator;
– p = Pr(xi = zi) =

1
2 (1 + ε) is the probability of correct prediction;

3.1 Pre-processing Stage

During the pre-processing stage, we search for all parity-checks of weight k asso-
ciated with one of the D target bits. Following [9] and [2], we construct the set
Ωi of parity-check equations associated with the target bit i. This set contains
equations of the form:

xi = xm1
⊕ . . .⊕ xmk−1

⊕

B−1∑

j=0

c
j
m,ixj

where the mj are arbitrary indices among all the output bits and the c
j
m,i are

binary coefficients characterizing the parity-check. m stands for [m1, . . . ,mk−1].
In these equations, we express xi as a combination of k−1 output bits plus some
combination of the B guessed bits. The expected number of such parity-check
equations for a given i is:

Ω ≈ 2B−L

(

N

k − 1

)

For k ≤ 4, the basic square-root time-memory tradeoff gives us these parity-
checks with a time and memory complexity respectively of O(DN d(k−1)/2e logN)
and O(N b(k−1)/2c).

In the sequel, we first solve a slightly more general problem. We try to find
equations of the form:

A(x) = xm1
⊕ . . .⊕ xmk′

⊕
B−1∑

j=0

c
j
m,ixj

where A(x) =
∑L−1

j=0 ajxj , x = [x0, . . . , xL−1] and the aj are fixed constants.
When k is even, A(x) will not be used and will be set to 0. When k is odd, A(x)
will be set to the formal expresion of one of the target bits and the problem
will be similar to the even case. For the time being, let k′ be the weight of the
parity-check equation.
The main idea of the match-and-sort algorithm alternative we are going to

use here is to split the huge task of finding collisions among N k′ combinations
into smaller tasks: finding less restrictive collisions on smaller subsets, sort the
results and then aggregate these intermediate results to solve the complete task.

Algorithm 1 Find parity-checks of weight k′ for a given A(x)

Evenly split k′ between l1, l2, l3 and l4 with l1 ≥ l2 and l3 ≥ l4
for all choice of l2 bits (j1 . . . jl2) do

Formally compute xj1 ⊕ . . .⊕ xjl2
=
∑L−1

k=0
ukxk

Store in U [u] = {j1, . . . , jl2}
end for

for all choice of l4 bits (m1 . . .ml4) do

Formally compute xm1 ⊕ . . .⊕ xml4
=
∑L−1

k=0
vkxk

Store in V [v] = {m1, . . . ,ml4}
end for

for all s = 0 . . . 2S − 1 do

for all choice of l1 bits (i1 . . . il1) do

Formally compute A(x)⊕ xi1 ⊕ . . .⊕ xil2
=
∑L−1

k=0
ckxk

Search for u in U such that πS(u⊕ c) = s
Store in C[u⊕ c] = {i1, . . . , il1 , j1, . . . , jl2}

end for

for all choice of l3 bits (k1 . . . kl3) do

Formally compute xk1 ⊕ . . .⊕ xkl3
=
∑L−1

k=0
dkxk

Search for v in V such that πS(v ⊕ d) = s
Let t = v ⊕ d

Search for c in C such that πL−B(c⊕ t) = 0
Output {A(x), i1...l1 , j1...l2 , k1...l3 ,m1...l4 , c⊕ t}

end for

end for

First evenly split k′ between four integer l1, l2, l3 and l4 with l1 ≥ l2 and
l3 ≥ l4, i.e. find l1, l2, l3 and l4 such that l1+l2+l3+l4 = k′ and for i from 1 to 4,
li = b

k′

4 c or li = d
k′

4 e. Compute the formal sums of l2 output bits in terms of the

initial L-bit state, xj1⊕. . .⊕xjl2
=
∑L−1

k=0 ukxk. Let us write u = {u0, . . . , uL−1}.

middle guess

s

C

U V

i j k m

0 0

L

SB

Fig. 5. Match-and-sort algorithm for finding parity-check equations

Store all these expressions in table U at entries u. Do the same for a table V
containing combinations of l4 output bits. We will now try to match elements of
table U with formal sums of l1 output bits and elements of table V with formal
sums of l3 output bits (see Fig. 5). We only require the matching to be effective

on a subset S of the L− B bits. This S is chosen close to k′

4 log2 N in order to
minimize the memory usage without increasing the time complexity. For each
value s of the S bits, compute the formal sum c of A(x) and of l1 output bits
in terms of initial bits and search for a partial collision in table U on S bits, i.e.
find a u in U such that πS(u⊕c) = s where πS is the projection on the subspace
spanned by the S bits. Store these collisions on S bits in a table C. Repeat the
same procedure (finding partial collisions) with l3 and l4 replacing l1 and l2. For
each found collision, search for a new collision combining the just found collision
with an entry of table C, this time not on the S bits but on the full set of L−B

bits. Every found collision is a valid parity-check since it only involves the B
guessed bits and l1 + l2 + l3 + l4 = k′ output bits (see Algorithm 1).

The time complexity of this algorithm is O(Nmax(l1+l2,l3+l4) logN) and the
memory complexity is O(Nmax(min(l1,l2),min(l3,l4))), which for an even division of
k′ are equal respectively to O(N dk′/2e logN) and O(N b(k

′+1)/4c). In fact, using
the above algorithm for the homogenous case when A(x) = 0 is a simple matter.
Depending on the parity of k, two alternatives are possible. When k is odd,
we simply let k′ = k − 1 and let A(x) represent xi, one of the target bits. Of
course we need to run the algorithm D times. When k is even, we let k′ = k and
A(x) = 0. In that case, we get the parity-checks for all output bits of the LFSR
instead of merely D. With these choices, the complexities are listed in Table 1.

Table 1. Time and memory complexities of the new algorithm compared to those of
the square-root algorithm

New algorithm Square-root algorithm Square-root algorithm

(tradeoff 1) (tradeoff 2)

k Time Memory Time Memory Time Memory

4 N2 logN N DN2 logN N N2 logN N2

5 DN2 logN N DN2 logN N2 DN2 logN N2

6 N3 logN N DN3 logN N2 N3 logN N3

7 DN3 logN N DN3 logN N3 DN3 logN N3

8 N4 logN N2 DN4 logN N3 N4 logN N4

9 DN4 logN N2 DN4 logN N4 DN4 logN N4

3.2 Processing Stage

Decoding Part Let us write B = B1+B2 where B1 and B2 are positive integers
to be determined. These two integers define two sets of bits in the initial state of
the LFSR. Let us guess the B1 bits of the initial state of the LFSR and denote by
X1 the value of this guess. We regroup together all parity-check equations that
involve the same pattern of the B2 initial bits; let us rewrite each parity-check
equation as:

zi = zm1
⊕ ...⊕ zmk−1

⊕

B1−1∑

j=0

c
j
m,ixj

︸ ︷︷ ︸

t1
m,i

⊕

B1+B2−1∑

j=B1

c
j
m,ixj

︸ ︷︷ ︸

t2
m,i

We group them in sets Mi(c2) = {m | ∀j < B2, c
B1+j
m,i = c

j
2} where c2 is a

length B2 vector and we define the function fi as follows:

fi(c2) =
∑

m∈Mi(c2)

(−1)t
1
m,i

The Walsh transform of fi is:

Fi(X2) =
∑

c2

fi(c2)(−1)
c2.X2

When X2 = [xB1
, xB1+1, ..., xB−1], we have Fi(X2) =

∑

m
(−1)t

1
m,i⊕t2

m,i . So
Fi(X2) is the difference between the number of predicted 0 and the number
of predicted 1 for the bit zi, given the choice X = [X1,X2] for the B initial
guessed bits. Thus a single Walsh transform can evaluate this difference for the
2B2 choices of the B2 bits.

The computation of fi(c2) for every c2 in IF
B2

2 requires 2B2 steps for the
initialization and Ω steps for the evaluation of each parity-checks, whereas the
Walsh transforms takes a time proportional to 2B2 log2 2

B2 = 2B2B2. Since these
calculations are done for every bit among the D considered ones and for each
guess of the B1 bits, the complexity of this part of the decoding is:

C1 = O(2
B1D(2B2 +Ω + 2B2B2))

= O(2BD(
Ω

2B2
+B2))

Choosing B2 = log2 Ω, we get C1 = O(2
BD log2 Ω). This should be compared

to the complexity using the straightforward approach: C ′1 = O(2
BDΩ).

Once Fi(X2) is evaluated, predicting the corrected values x̂i can be done
with a simple procedure: for each i among the D considered bits, we have a
function Fi(X2). If the value of this function for a given value of X2 is far
enough from zero, then the computed value of zi that dominates among the |Ωi|
parity-check equations has a big probability to be the correct value of xi (see
Fig. 4). Let us call θ the threshold on the function Fi(X2); we thus predict that,
for a given X2:

xi =

{

0 if Fi(X2) > θ

1 if Fi(X2) < −θ

Checking Part In order for our algorithm to be succesful, we need to have
at least L − B correctly predicted bits among the D considered bits. However,
every predicted bit can sometimes be wrong. In order to increase the overall
probability of success, let us introduce an extra step in the algorithm.
When the number of correctly predicted bits is less than L−B, the algorithm

has failed. When this number is exactly equal to L−B, we can only hope that
none of these bits is wrong. But when we have more than L−B predicted bits,
namely L − B + δ, the probability that, among these bits, L − B are correctly
predicted greatly increase. So we add to the procedure an exhaustive search on
all subset of size L− B among the L− B + δ bits, in order to find at least one
full correct prediction. Every candidate is then checked by iterating the LFSR
and computing the correlation between the newly generated keystream xi and
the original one zi.
If perr is the probability that a wrong guess gives us at least L − B + δ

predicted bits, then the checking part of the processing stage has a complexity
of:

C2 = O((1 + perr(2
B − 1))

(

L−B + δ

δ

)

C3)

since among the 2B−1 wrong guesses, perr(2
B−1) will be kept for checking and

the 1 being there for the correct guess that should be kept. C3 is the complexity
of a single checking, i.e. C3 = O(

1
ε2).

The total complexity of the processing stage of the algorithm is then:

C = O(2BD log2 Ω + (1 + perr(2
B − 1))

(

L−B + δ

δ

)

1

ε2
)

4 Performance and Implementation

In this section, we present experimental and theoretical results of our algorithm
applied to two LFSRs of lengths 40 and 89 bits. Optimal parameters were com-
puted according to appendix A.

4.1 40-bit Test LFSR

Table 2. Complexity of the cryptanalysis for a probability of success psucc close to 1.
The LFSR polynomial is 1 + x + x3 + x5 + x9 + x11 + x12 + x17 + x19 + x21 + x25 +
x27 + x29 + x32 + x33 + x38 + x40.

Algorithm Noise Required Sample Complexity

FSE’2001 [9] 0.469 400000 ∼ 242

FSE’2001 [9] 0.490 360000 ∼ 255

Our algorithm 0.469 80000 ∼ 231

Our algorithm 0.490 80000 ∼ 240

The chosen LFSR is the standard register used in many articles. The attack
on the LFSR with noise 1−p = 0.469 has been implemented in C on a Pentium III
and provides results in a few days for the preprocessing stage and a few minutes
for the decoding stage. After optimization of all the parameters (D = 64, δ = 3,
B = 18 and k = 4 for the first case, D = 30, δ = 3, B = 28, k = 4 for the
second one) the results are presented on Table 2. Results for 1 − p = 0.490 are
only theoretical. The gain on the complexity is at least equal to 211: it comes
primarily from the Walsh transform. Moreover, the required length is five times
smaller. This represents a major improvement on the time complexity of one-pass
fast correlation attacks.

4.2 89-bit LFSR Theoretical Result

For a 89-bit LFSR, only theoretical results are provided on Table 3. The expected
time complexity is 28 times smaller than previous estimations. Moreover the
required sample length has decreased in a large amount. The parameters for our
algorithm are D = 128, δ = 4, B = 32 and k = 4.

Table 3. Complexity of the cryptanalysis for a probability of success psucc close to 1
on a 89-bit LFSR

Algorithm Noise Required Sample Complexity

FSE’2001 [9] 0.469 238 252

Our algorithm 0.469 228 244

5 Conclusion

In this paper, we presented new algorithmic improvements to fast correlation
attacks. These improvements yield better asymptotic complexity than previous
techniques for finding and evaluating parity-checks, enabling us to cryptanalyze
larger registers with smaller correlations. Experimental results clearly show the
gain on efficiency that these new algorithmic techniques bring to fast correlation
attacks.

References

[1] D. Boneh, A. Joux, and P. Nguyen. Why textbook ElGamal and RSA encryption
are insecure. In Proceedings of ASIACRYPT’2000, volume 1976 of Lecture Notes

in Computer Science, pages 30–43. Springer, 2000.
[2] A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check

equations of weight 4 and 5. In Advances in Cryptology — EUROCRYPT’00, vol-
ume 1807 of Lecture Notes in Computer Science, pages 573–588. Springer Verlag,
2000.

[3] V. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast
correlation attacks on stream ciphers. In Fast Software Encryption — FSE’00,
volume 1978 of Lecture Notes in Computer Science. Springer Verlag, 2000.

[4] É. Jaulmes and A. Joux. Cryptanalysis of pkp: a new approach. In Public Key

Cryptography 2001, volume 1992 of Lecture Notes in Computer Science, pages
165–172. Springer, 2001.

[5] T. Johansson and F. Jönsson. Fast correlation attacks through reconstruction of
linear polynomials. In Advances in Cryptology — CRYPTO’00, volume 1880 of
Lecture Notes in Computer Science, pages 300–315. Springer Verlag, 2000.

[6] A. Joux and R. Lercier. “Chinese & Match”, an alternative to atkin’s “Match
and Sort” method used in the SEA algorithm. Accepted for publication in Math.
Comp., 1999.

[7] W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers.
Journal of Cryptology, 1:159–176, 1989.

[8] M. Mihaljević, M. P. C. Fossorier, and H. Imai. A low-complexity and high-
performance algorithm for fast correlation attack. In Fast Software Encryption

— FSE’00, pages 196–212. Springer Verlag, 2000.
[9] M. Mihaljević, M. P. C. Fossorier, and H. Imai. Fast correlation attack algorithm

with list decoding and an application. In Fast Software Encryption — FSE’01,
pages 208–222. Springer Verlag, 2001. Pre-proceedings, final proceedings to appear
in LNCS.

[10] W. T. Penzhorn and G. J. Kuhn. Computation of low-weight parity checks for
correlation attacks on stream ciphers. In Cryptography and Coding – 5th IMA

Conference, volume 1025 of Lecture Notes in Computer Science, pages 74–83.
Springer, 1995.

[11] R. Schroeppel and A. Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput., 10(3):456–464, 1981.

[12] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Trans. on Information Theory, IT-30:776–780, 1984.

[13] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE

Trans. Comput., C-34:81–85, 1985.

A Optimal Parameters

In this appendix, we evaluate quantities needed in order to optimize parameters
of the algorithm (B, D, θ and δ). We first look at the probability of successful
decoding, i.e. the probability that the right guess gives us the right complete
initial filling of the LFSR. Then we will evaluate the probability of false alarm,
i.e. the probability that, having done a wrong guess, the algorithm outputs a full
initial filling of the LFSR. This probability of false alarm enters in the complexity
evaluation of our algorithm. In all our experimental results, the parameters were
tuned to get a probability of success higher than 0.99.

A.1 Probability of Successful Decoding

Let us first suppose we have done the right guess for the B bits. Let us write
q = 1

2 (1+ε
k−1) the probability for one parity-check equation to yield the correct

prediction. Then the probability that at least Ω−t parity-check equations predict
the correct result is:

P1(t) =
Ω∑

j=Ω−t

(1− q)Ω−jqj

(

Ω

j

)

Let t be the smallest integer such that D P1(t) ≥ L − B + δ (t is related to
the former parameter θ by θ = Ω − 2t). Then we have, statistically, at least
L−B+δ predicted bits in the selection of D bits, and we are able to reconstruct
the initial state of the LFSR. The probability that at least Ω − t parity-check
equations predict the wrong result is:

P2(t) =

Ω∑

j=Ω−t

qΩ−j(1− q)j

(

Ω

j

)

Let pV be the probability that a bit is correctly predicted, knowing that we have
at least Ω − t parity-check equations that predict the same value for this bit:

pV =
P1(t)

P1(t)+P2(t)
. Then

psucc =

δ∑

j=0

(

L−B + δ

j

)

p
L−B+δ−j
V (1− pV)

j

is the probability that at most δ bits are wrong among the L−B + δ predicted
bits, i.e. the probability of success of the first part of our algorithm.

A.2 Probability of False Alarm

The probability that a wrong guess gives at least Ω − t identical predictions
among the Ω parity-check equations for a given bit i is

E(t) =
1

2Ω−1

Ω∑

j=Ω−t

(

Ω

j

)

since the probability that a parity-check equation is verified in this case is 1
2 . We

can then deduce the probability that, with a wrong guess, more than L−B + δ

bits are predicted, i.e. the probability of false alarm of the first part of our
algorithm:

perr =

D∑

j=L−B+δ

(

D

j

)

E(t)j(1−E(t))D−j

