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Abstract. We investigate the possibility of cryptographic primitives
over nonclassical computational models. We replace the traditional fi-
nite field F ∗

n with the infinite field Q of rational numbers, and we give all
parties unbounded computational power. We also give parties the abil-
ity to sample random real numbers. We determine that secure signature
schemes and secure encryption schemes do not exist. We then prove more
generally that it is impossible for two parties to agree upon a shared se-
cret in this model. This rules out many other cryptographic primitives,
such as Diffie-Hellman key exchange, oblivious transfer and interactive
encryption.

1 Introduction

In the classical model of cryptography, parties represent data as a sequence of
bits, and have a small set of bit operations to work with. Usually some parties
are restricted to a polynomial number of operations in the size of a security
parameter. In our model, all parties start with the field of rational numbers Q,
and have a certain set of operations to work with. We will consider the standard
sets of field operations {+, -, *, /}. We give all parties the ability to sample
a uniform distribution of real numbers over a bounded interval. Furthermore,
all parties have unbounded computational power; that is to say, all parties can
perform any finite number of field operations.

It is critical that we give all parties the ability to sample from a uniform
distribution of real numbers so that they can generate random secrets that
are unpredictable to an adversary. Otherwise any “secret” used by one party
could be generated by another party. Indeed, the rational numbers are count-
able. Therefore, any adversary could simply enumerate elements of his field until
he encounters another party’s secret since he has unbounded computational time.
When we allow sampling from the reals, we are allowing parties to sample from
an uncountable domain. Therefore, an adversary cannot simply enumerate the
elements of his field to find another party’s secret.

The existence of many cryptographic primitives, such as signature schemes,
encryption schemes, and identification protocols, depends on the existence of
one-way functions and trapdoor functions. In [5] Rompel shows that one-way



functions are necessary and sufficient for secure signature schemes to exist in
the standard computational model. The proof relies on the bit-representation
of numbers in the number field the parties are working in. In our model, bit-
representations play no role. Parties are equipped with infinite-precision registers
with the ability to perform any field operation on irrational numbers in constant
time.

We do not need to speculate about the existence of one-way functions in this
model. Over the rational numbers, a party can sample a random real number r
and publish its square r2. It is impossible to deduce r to infinite precision from
r2 and Q using only the operations {+, -, *, /}. Even if one were to sample real
numbers, there are only a countable number of real numbers that could help one
deduce r from Q(r2), but we’re drawing from an uncountable set. Hence, there is
zero probability of deducing r from r2 and Q, so the function f(r)→ r2, where
r is a real number, is a one-way function in this model.

Given that we have one-way functions, it is only natural to ask which cryp-
tographic primitives are possible. In [2], an elegant proof of knowledge was pre-
sented over the ruler-compass constructible points, and then extended to an
authentication protocol. What, if any other, primitives are possible over the
ruler-compass constructible points? In our model, we will see that authentication
protocols exist but secure signatures schemes and public-key encryption schemes
do not. We conjecture the same to be true of the ruler-compass constructible
points.

Secion 2 covers some standard techniques in modern algebra, focusing mainly
on the theory of field extensions. The theorems presented in this section are cru-
cial to understanding the impossibility proofs in the remaining sections. Section
3 presents an authentication protocol in this model. Section 4 shows that secure
encryption schemes do not exist and section 5 shows the same for secure signa-
ture schemes. Finally, Section 6 shows more generally that it is impossible to
share a secret in this model.

2 Algebraic Preliminaries

The proof of knowledge presented in [2] over the ruler-compass constructible
points is based on the idea that trisecting an arbitrary angle is impossible with
only a ruler and a compass. Although it is well-known that one cannot trisect an
arbitrary angle, the proof is not well-known. Proving that signature schemes and
encryption schemes are not possible over the rationals requires field-theoretic
techniques similar to those used in [1] where angle trisection is shown to be
impossible. We state and develop some of these techniques here. We assume
familiarity with the definition of a field. We shall restrict our attention to infinite
subfields of the real numbers.

A real number x is said to be algebraic over a field F if x is a root of a
polynomial p(t), with coefficients in F in the indeterminate t. If no such polyno-
mial exists, x is said to be transcendental over F . For example,

√
2 is algebraic

over Q because it satisfies the polynomial p(t) = t2 − 2. We can think of a tran-



scendental element over a field F as a “variable” over that field. For example,
the symbol “y” and the number π are transcendental over Q because they do
not satisfy a polynomial p(t) with rational coefficients [4]. A new field can be
obtained by taking the set-theoretic union of the elements of F with x, then
closing up under all of the field operations {+, -, *, /}. This new field, denoted
F (x), is the minimal field containing F and x, i.e., the intersection of all fields
containing F and x.

The new field F (x) can be thought of as a vector space over F . A basis for
this vector space is a set of elements {vα} such that every element of F (x) can
be written as a unique finite linear combination of the form f1vα1

+ f2vα2
+

...+ fnvαn
, where fi ∈ F for all i. The dimension of this vector space is defined

as the number of elements in any basis. If x is algebraic over F , then there
exists a polynomial q(t) of minimal degree such that q(x) = 0. It is a theorem of
algebra [3] that, if x is algebraic over F and q(t) denotes its minimal polynomial
over F , then the set {1, x, x2, x3, ..., x(n−1)} forms a basis for the extension field
F (x) viewed as a vector space over F , where n is the degree of q(t). Hence, the
dimension of this vector space is equal to the degree of q(t). Call this degree
the degree of the field extension F (x)/F and denote it by [F (x) : F ]. If x is
transcendental over F , then there is no finite basis of F (x) over F . In this case
[F (x) : F ] = ∞. Furthermore, the elements of F (x) constitute the set of all
elements of the form p(x)/q(x), q(x) 6= 0, where p and q are polynomials with
coefficients in F in the indeterminate x.

More generally, any field extension K/F can be viewed as a vector space over
F . The degree [K : F ] of this extension denotes the (possibly infinite) number
of elements in any basis of K/F . It is a well-known fact that if we have the
field inclusions F ⊂ L ⊂ K, then the degree [K : F ] of the extension K/F is
equal to the product of the degrees [K : L] and [L : F ]. We will use this fact
frequently and refer to it as the Tower Law. For example, since

√
2 is irrational,

it does not lie in Q. It satisfies the polynomial p(t) = t2 − 2. Clearly, p(t) is
the polynomial of minimal degree of

√
2 over Q, as otherwise there would be

a polynomial q(t) = q1t + q2, such that q(
√
2) = q1

√
2 + q2 = 0, implying√

2 = −q2/q1 and therefore that
√
2 is rational. Hence, [Q(

√
2) : Q] = 2. It

is not hard to see that
√
3 is not in the field Q(

√
2) (indeed,

√
3 6= q1 + q2

√
2

for any q1, q2 in Q). Since
√
3 satisfies the polynomial p(t) = t2 − 3 over Q,

it also satisfies this polynomial over Q(
√
2), and since it is not contained in

Q(
√
2), this polynomial has minimal degree. Hence, we have the field inclusions

Q ⊂ Q(
√
2) ⊂ Q(

√
2,
√
3), where [Q(

√
2) : Q] = 2 and [Q(

√
2,
√
3) : Q(

√
2)] = 2,

so by the Tower Law [Q(
√
2,
√
3) : Q] = 4. A basis of Q(

√
2,
√
3) as a vector

space over Q is {1,
√
2,
√
3,
√
6}.

Also note that if [K : F ] = 1, then K = F . Indeed, [K : F ] = 1 implies that
there is only one element in any basis of K over F . Consider the set {1}, where
1 is the identity element of F . Trivially, this is a linearly independent set, and
since we know the size of any basis is one, {1} also spans K over F , so {1} is a
basis. Any element of K can be written as f · 1, for f ∈ F . This implies K = F .



Given a field extension F (x)/F , we can adjoin another element y to the field
F (x), obtaining the field F (x)(y). It is a standard fact that F (x)(y) = F (y)(x).
We will let F (x, y) = F (x)(y) = F (y)(x).

We now define the algebraic closure of a field. Consider an infinite field F .
Consider the set S of all polynomials p(t) with coefficients in F in the indetermi-
nate t. Suppose we take the minimal field containing F and adjoin all the roots
of all the polynomials of S. This new field will be called the algebraic closure of
F . For the countably infinite fields we shall be dealing with, it is known [4] that
the cardinality of the algebraic closure of F is also countable.

We will need some specific facts concerning transcendental field extensions.
Let x be transcendental over a field F and let K = F (x). Then any element u ∈
K can be written as p(x)/q(x), where p and q are relatively prime polynomials
with coefficients in F in the indeterminate x. We have that F (u) ⊂ K. In [4] it
is shown that the degree [K : F (u)] equals max{deg(p(x)), deg(q(x))}.

We will also need some specific results concerning the intermediate fields of a
field extension. A field L such that F ⊂ L ⊂ K is called an intermediate field of
the field extensionK/F . If x is transcendental overK, it is clearly transcendental
over F since F ⊂ K. Conversely, if every element k ∈ K is algebraic over F and
if x is transcendental over F , it is also transcendental over K. This follows from
the transitivity property of being algebraic, namely, if x is algebraic over K, and
K is algebraic over F , then x is algebraic over F [4].

Suppose x is transcendental over F , and K is an algebraic extension of F ,
then the intermediate fields L of K/F are in bijective correspondence with the
intermediate fields of K(x)/F (x). The bijection sends an intermediate field L
of K/F to the intermediate field L(x) of K(x)/F (x). The inverse sends an
intermediate field G of K(x)/F (x) to G ∩ K. The intuition behind this fact
is that x, being transcendental over F , plays no role in factoring the minimal
polynomials of elements of K over F . Since the intermediate fields of K(x)/F (x)
are determined by these polynomials, the intermediate fields of K(x)/F (x) are
exactly those of K/F with the additional element x adjoined. This result also
holds if K is a transcendental extension of F and x is transcendental over K.
See [4] for more details.

The final theorem that we will need, due to Lüroth [4], states that if x is
transcendental over a field F , then the intermediate fields L of the field extension
F (x)/F all have the form F (u), where u has the form p(x)/q(x), where p and q
are polynomials with coefficients in F and q 6= 0.

3 An Identification Protocol

Here is a simple zero-knowledge proof of knowledge similar to that in [2]. Suppose
Alice wishes to identify herself to Bob. She samples a random real number r and
publishes p = r2. Because finding the exact square root of r2 over Q with only
the operations {+, -, *, /} is impossible, Alice knows she is the only one who
knows r. Also, even if parties are allowed to sample random real numbers, the



probability is zero that any number sampled will help an adversary compute r
from Q and r2. Here’s the protocol:

1. Alice samples a real number s. She gives Bob t = s2.
2. Bob flips a coin and tells Alice the result.
3. – If Bob said “heads”, then Alice gives Bob s, and Bob checks that s2 = t.

– If Bob said “tails”, then Alice gives Bob u = rs, and Bob checks that
u2 = pt.

We sketch a proof of the three properties of zero-knowledge: completeness,
soundness, and zero-knowledge. For completeness, note that if Alice and Bob fol-
low the protocol, then Bob always accepts Alice’s proof of identity. For sound-
ness, note that anyone impersonating Alice cannot respond to both of Bob’s
challenges because he cannot know both s and rs, as otherwise he could com-
pute (rs)/s = r, contradicting the fact that it is not possible to compute r given
only Q and r2 in our model of computation. Hence, with each iteration of the
above protocol an impersonator can succeed with probability at most 1/2. After
k iterations, the probability that Bob will be fooled by the impersonator is at
most 2−k.

To show the protocol is zero-knowledge, we construct a simulator to pro-
duce transcripts of Bob’s view in the protocol. Bob’s views are of the form
(t,“heads”, s) or (t,“tails”, u). The first can be simulated by choosing s at ran-
dom and setting t to be s2. The second can be simulated by choosing u at random
and taking t to be u2/p. As stated in [2], even if Bob is to use a nonuniform
distribution, his view can be simulated by probing and resetting him. If k rounds
are executed in series, the expected number of trials of the simulator is 2k. If k
flips are sent in parallel, then the expected number of trials is 2k; this is not a
problem since there are no complexity assumptions in our computational model.

4 The Impossibility of Secure Public-Key Encryption

Schemes

We now address the possibility of secure encryption schemes in this model. We
would like an encrypter to be able to encrypt an arbitrary real number of his
choice, even after the public and secret keys have been generated. Intuitively,
such encryption schemes cannot exist because both the message space and the
ciphertext space are uncountably infinite, whereas the set of numbers that are
“algebraically dependent” on any finite set of secret keys is only countably infi-
nite. Since all parties are restricted to finite time, only a finite set of secret keys
can be generated. Hence, the trapdoor information that comes with knowledge
of the set of secret keys can only help decrypt a countable number of messages.
We now formalize this intuition.

We first consider a special scenario. Suppose Alice starts with the field Q.
She then samples a random real number SK to be her secret key. She now
has the field Q(SK). Suppose she then performs some finite number of field
operations in the field Q(SK) to compute her public key PK, another element



of Q(SK). She then publishes PK. We first consider the case when the degree
[Q(SK) : Q(PK)] is finite.

We would like Bob to be able to encrypt an arbitrary real number m using
Alice’s public key PK, generating a ciphertext c. Given the ciphertext c and
PK, we do not want an adversary to be able to decrypt c to obtain the original
message m. However, we do want Alice to be able to use her secret key SK,
together with c, to decrypt c and recover the original message m. Collecting this
information, we have the following tower of fields:

Q(PK, c) ⊂ Q(PK,m) ⊂ Q(SK, c).

Indeed, the inclusion Q(PK, c) ⊂ Q(PK,m) holds because, given PK andm,
the encrypter can compute c with only field operations, and hence c ∈ Q(PK,m).
The inclusion Q(PK,m) ⊂ Q(SK, c) holds because, given SK and c, the legiti-
mate decrypter Alice can recover m with only field operations.

Let’s now inspect the degrees of these field extensions. Set n = [Q(SK) :
Q(PK)]. Then [Q(SK, c) : Q(PK, c)] is at most n, since adjoining c to both
fields can only reduce the degree of the minimal polynomial of SK over Q(PK).
We show that Q(SK, c) = Q(SK,m). We know Q(SK, c) ⊃ Q(SK,m) from the
tower of fields above. Furthermore, given SK anyone can recompute PK since
Q(PK) ⊂ Q(SK), and given PK and m anyone can recompute c. Therefore,
Q(SK,m) ⊃ Q(SK, c). We deduce that [Q(SK, c) : Q(PK,m)] = [Q(SK,m) :
Q(PK,m)]. Sincem is a general real number, [Q(SK,m) : Q(PK,m)] also equals
n. Applying the Tower Law, we have that [Q(PK,m) : Q(PK, c)][Q(SK, c) :
Q(PK,m)] = [Q(SK, c) : Q(PK, c)]. Since [Q(SK, c) : Q(PK, c)] is at most n,
and since [Q(SK, c) : Q(PK,m)] is exactly n, we see that [Q(PK,m) : Q(PK, c)]
must equal 1. Hence, Q(PK,m) = Q(PK, c). Therefore the message m lies in
the adversary’s field. Since the adversary has unbounded computational time,
and since his field Q(PK, c) is countable, he can enumerate each of the elements
of his field and run the public encryption algorithm on each of them until he
finds the unique message m which encrypts to c.

Hence, for the above scenario, any encryption scheme is not secure. So we
modify the scenario in a couple of ways. Suppose instead of a single secret key
SK and a single public key PK, Alice uses n secret keys SK1, ..., SKn, and
m public keys PK1, ..., PKm. If each SKi is algebraic over Q(PK1, ..., PKm),
[Q(SK1, ..., SKn) : Q(PK1, ..., PKm)] will still be finite. Replacing SK with
SK1, ..., SKn and PK with PK1, ..., PKm in the above argument, we conclude
that even in this case secure encryption is not possible. Note that since all
parties are restricted to a finite number of operations, there can be at most a
finite number of public and secret keys generated.

For now, we will continue to assume that the degree of the legitimate de-
crypter’s field over the adversary’s field is finite. For convenience, we will as-
sume that there is one secret key SK and one public key PK. From the results
in the previous paragraph, the following arguments easily generalize to the case
of multiple public-secret keys in so long as each secret key is algebraic over the
field Q(PK1, ...PKm) where m is the number of public keys. Whereas before we



restricted the encrypter to field operations when encrypting a message m, we
now allow the encrypter to sample real numbers as he encrypts and we allow the
adversary to sample real number as well.

We first show that giving the adversary the power to sample real num-
bers will not help him. The encrypter will have the field Q(PK,m, r1, ..., rm)
where ri is a sampled real number for all i. Note that the number of real num-
bers sampled is necessarily finite. Now, the adversary has the field Q(PK, c) ⊂
Q(PK,m, r1, ...rm). For the adversary to gain anything by sampling real num-
bers, he must be able to generate, via sampling and field operations, an ele-
ment of Q(PK,m, r1, r2, ..., rm) \ Q(PK, c). Suppose he draws m random reals
s1, ..., sm. He now has the field Q(PK, c, s1, ..., sm). Every element of his field
has the form p(PK, c, s1, ..., sm)/q(PK, c, s1, ..., sm), for p and q polynomials
with rational coefficients in the indeterminates PK, c, s1, ..., sm. To generate
an element y in Q(PK,m, r1, ..., rm) \ Q(PK, c), we must have some expres-
sion p(PK, c, s1, ..., sm)/q(PK, c, s1, ..., sm) = y. We know that p/q is not in
Q(PK, c) since y is assumed not to lie in Q(PK, c). Note that not all of the
coefficients of the si in the expression p/q can be zero and not all of the si
in p can cancel with those in q; for example, we cannot have the cancellation
(s1 + s2)/(2(s1 + s2)) = 1/2, for then p/q would actually be an element of
Q(PK, c). But then we have found a nontrivial relation among the si over the
field Q(PK, c). If the si are random real numbers, this occurs with probabil-
ity zero since the field Q(PK, c) is countable, whereas the real numbers are
uncountable. Hence, sampling does not help the adversary.

We now allow the encrypter to probabilistically encrypt; that is to say, we
give him the ability to sample real numbers. We still necessarily have the tower
of fields Q(PK, c) ⊂ Q(PK,m) ⊂ Q(SK, c), where, if the encryption scheme is
to be secure, then each of the above inclusions must be a proper inclusion. How-
ever, the encrypter’s field is no longer Q(PK,m), but rather Q(PK,m, r1, ...rm),
where each ri is a sampled real number. However, the argument given above
still implies that the inclusions in this tower cannot be proper. That is to say,
Q(PK, c) = Q(PK,m). Hence, even if the adversary is not able to recover the
original field Q(PK,m, r1, ...rm) of the encrypter, he can still recover Q(PK,m)
and hence recover m.

We now consider the case where [Q(SK) : Q(PK)] is infinite. We still want
the inclusions in the tower of fields

Q(PK, c) ⊂ Q(PK,m) ⊂ Q(SK, c),

to be proper.
We want both to be able to encrypt an arbitrary real number m and to

have a ciphertext c decrypt to a unique message m. Hence, the number of dis-
tinct ciphertexts is at least as large as the number of distinct messages. These
observations imply that the number of possible ciphertexts is uncountably in-
finite. Since any element y which is algebraic over Q(SK) is in the algebraic
closure of Q(SK), and since the algebraic closure of Q(SK) is countable, there
is zero probability that the ciphertext c will be algebraic over Q(SK). Hence, c
is transcendental over Q(SK) with probability 1.



Since c is transcendental over Q(SK), and hence over Q(PK), the interme-
diate fields of Q(SK, c)/Q(PK, c) are of the form L(c), where L is an interme-
diate field of Q(SK)/Q(PK). By Lüroth’s theorem, all intermediate fields of
Q(SK)/Q(PK) have the form Q(u), where u has the form p(SK)/q(SK), for p
and q are polynomials with coefficients in Q in the indeterminate SK and q 6= 0.
For the inclusions in the above tower of fields to be proper, Q(PK,m) must be
of the form Q(u, c). But u has the form p(SK)/q(SK) with u /∈ Q(PK, c), and
such a u is impossible for the encrypter to generate since all he has are PK and
m, which are each algebraically independent of SK. Even if he were to sample
real numbers, he has zero probability of generating an element u of the form
p(SK)/q(SK). Therefore the field Q(PK,m) cannot contain an element of the
form p(SK)/q(SK), and therefore Q(PK,m) is forced to equal Q(PK, c).

5 The Impossibility of Secure Signature Schemes

We now shift our attention to the possibility of secure signature schemes in this
model. We will show the strongest possible result, that even one-time signature
schemes cannot exist.

We first need to define exactly what we mean by a signature scheme. We
would like the signer to be able to sign an arbitrary real number m that is
not fixed at the time of key generation. If we were to remove this constraint
and instead allow the signer to specify a finite sequence of messages m1, ...,mN

which he would like to be able to sign with a given keypair, secure signature
schemes would in fact be possible. A secure signature scheme can be built on
the fact that finding a square root of an arbitary real number r is impossible in
the field Q(r2). Let Alice be the signer, Bob the verifier. Here’s the protocol:

1. Initialization: Alice decides upon a finite sequence of messages (m1,m2, ...,
mN ) she would like to be able to sign with the public-secret keypair she is
about to create. She then samples N real numbers r1, r2, ..., rN . The ordered
set (r1, r2, ..., rN ) forms Alice’s secret key. Alice publishes the two ordered
sets (r2

1, r
2
2, ..., r

2
N ) and (m1,m2, ...,mN ).

2. Signing: To sign the messagemi for 1 ≤ i ≤ N), Alice sends the pair (mi, ri).
3. Verifying: Bob verifies the pair (mi, s) by computing i from mi and checking

that s2 = r2
i .

It is easy to verify the security of the above signature scheme. Also, since all par-
ties are given unbounded computational time, N can be chosen to be arbitrarily
large.

We can improve this signature scheme by reducing the number of real num-
bers sampled to exactly one. This more efficient protocol is based on the fact
that finding an nth root of an arbitrary real number r is impossible in the field
Q(r). Here’s the protocol:

1. Initialization: Alice decides upon a finite ordered set of messages (m1,m2, ...,
mN ) she would like to sign with the key pair she is about to generate. She



then calls the subroutine primeConvolve(N), described below to get the
ordered set (n1, n2, ..., nN ) and the integer P . She samples a real number r,
which is her secret key. She publishes the ordered sets (m1,m2, ...,mN ) and
(n1, n2, ..., nN ) along with the real number rP and the integer P .

2. Signing: To sign the messagemi for 1 ≤ i ≤ N , Alice sends the pair (mi, u
ni).

3. Verifying: Bob verifies the pair (mi, s) by computing i from mi and checking
that s(P/ni) = rP .

We describe the subroutine primeConvolve(N) in English. For every nonempty
subset S of {1, 2, ..., N}, the subroutine chooses a unique prime pS . It then defines
ti for 1 ≤ i ≤ N to be the product Πi∈SpS . Finally, it returns the ordered set
(t1, ..., tn) and the product ΠS⊂{1,...,N}pS .

PrimeConvolve(N) is used to thwart a gcd attack by an adversary who uses
an adaptive chosen-message attack. PrimeConvolve(N) generates a set T of N
elements with the property that ∀T ′ ⊂ T , the gcd(y ∈ T ′) does not divide x for
x ∈ T \ T ′. For example, calling primeConvolve(3) could return the set

(2 · 7 · 11 · 17, 3 · 7 · 13 · 17, 5 · 11 · 13 · 17)

and the product 2 · 3 · 5 · 7 · 13 · 17. If, for example, messages m1 and m2 have
been signed, then an adversary will learn r(2·7·11·17) and r(3·7·13·17), from which
he can compute gcd(r(2·7·11·17), r(3·7·13·17)) = r(7·17). This is the smallest power
of r that can be obtained by the adversary if r was chosen to be a random real
number. Now, 7 does not divide 5 · 11 · 13 · 17; so an adversary cannot compute
r(5·11·13·17) so it is not possible for him to forge message m3.

The above two signature schemes suffer because the message space is fixed
to a finite subset of the real numbers at the time of key generation. We now
show that, if we remove this constraint and instead allow Alice the ability to
sign arbitrary real numbers after the time of key generation, then even one-time
schemes are not secure.

Suppose Alice starts with the field Q. She then samples a random real number
SK that will be her secret key. She is left with the field Q(SK). Suppose she then
performs some finite number of field operations in the field Q(SK) to compute
her public key PK, another element of Q(SK). She then publishes PK. We
consider the case where the degree [Q(SK) : Q(PK)] is finite. Let m be the
message to be signed, σ(m) its signature. For the moment, suppose that σ(m)
can be generated from Q(SK,m) with field operations alone. We would like the
inclusions in the following tower of fields to be proper:

Q(PK,m) ⊂ Q(PK,m, σ(m)) ⊂ Q(SK,m)

The leftmost field is known by an adversary trying to forge the signature
σ(m). The rightmost field is known by the legitimate signer Alice. The field in
between is known by all after m has been signed. If the inclusion Q(PK,m) ⊂
Q(PK,m, σ(m)) were not proper, the adversary could run the public verifica-
tion algorithm on each element of his field to determine if it is in fact a valid
signature for m. Since his field is enumerable, he will find σ(m) in finite time.



We also want the inclusion Q(PK,m, σ(m)) ⊂ Q(SK,m) to be proper. Oth-
erwise, after viewing one signature σ(m), anyone could enumerate through the
field Q(PK,m, σ(m)) to discover Alice’s secret key SK.

Since m is a general real, m is transcendental over Q(SK), and hence over
Q(PK). Therefore, the intermediate fields of Q(SK,m)/Q(PK,m) all have the
form L(m), where L is an intermediate field of Q(SK)/Q(PK). Now, in the case
[Q(SK) : Q(PK)] finite, there are only a finite number of intermediate fields of
Q(SK)/Q(PK). After one messagem has been signed, the public learns the field
Q(PK,m, σ(m)) = L(m) for some L. Hence, given any future message m′ to be
signed, the probability that the signature σ(m′) is in the field L(m′) is nonzero.
Since an adversary has learned the field L, he can simply adjoin the message
m′ to the field L, obtaining the field L(m′). He can then enumerate elements of
this field until he finds σ(m′), which can be verified using the public verification
algorithm. The probability that he forges an arbitrary future message m′ is
nonzero. Therefore, after obtaining the signature for only one message, there
is a nonnegligible probability that the signature of any future message can be
forged. Hence, even one-time signature schemes are not possible in this model.

We now allow parties to sample real numbers. Intuitively, sampling real num-
bers cannot help the adversary since only a countable subset of the real numbers
helps, and he is drawing from an uncountable set; see Section 3.2 for more detail.
Now, if the signer is allowed to sample real numbers, the tower of fields changes
to

Q(PK,m) ⊂ Q(PK,m, σ(m)) ⊂ Q(SK,m, r).

For the signature scheme to be secure, each of the above inclusions must be a
proper inclusion. We may not have the inclusion Q(PK,m, σ(m)) ⊂ Q(SK,m),
so the argument given above does not apply. Note, however, if there exists a
message m whose signature σ(m) does not lie in the field Q(SK,m), then it is
necessarily transcendental over Q(PK,m). This assertion follows from Lüroth’s
theorem; see Section 2. But then there can be no public verification algorithm
involving PK,m, and σ(m) over Q since σ(m) does not satisfy any algebraic
relation over Q(PK,m).

Finally, we consider the case where [Q(SK) : Q(PK)] is infinite. The analysis
in this case is similar to that given in the previous case where we allowed the
signer to use randomness. As always, we want the inclusions in the following
tower of fields to be proper:

Q(PK,m) ⊂ Q(PK,m, σ(m)) ⊂ Q(SK,m)

Since SK is transcendental over Q(SK), Lüroth’s theorem tells us that
the only intermediate fields of Q(SK)/Q(PK) are transcendental extensions
of Q(PK). Therefore, all intermediate fields of Q(SK,m)/Q(PK,m) are tran-
scendental extensions of Q(PK,m). If the signature scheme is to be secure, σ(m)
cannot be in Q(PK,m). Then Q(PK,m, σ(m)) would necessarily be a transcen-
dental extension of Q(PK,m), and hence, σ(m) would be transcendental over



Q(PK,m). As we argued previously, in this case, there can be no public veri-
fication algorithm of σ(m) over Q(PK,m) because σ(m) does not satisfy any
algebraic relation over Q(PK,m).

6 The Impossibility of Secret Sharing

We now generalize the impossibility of public-key encryption in this model to the
impossibility of sharing a secret. The impossibility of sharing a secret will im-
mediately rule out public-key encryption, interactive encryption, Diffie-Hellman
key exchange, and oblivious transfer. We will consider an arbitrary two-party
protocol and show that no such protocol establishes a shared secret.

A protocol between Alice and Bob consists of a sequence of steps. Let FA be
the field generated by Alice and let FB be the field generated by Bob. During each
step information may be revealed to the public. Let FP be the field generated by
the public information. There are two types of steps, either Alice (Bob) selects a
random element thereby extending her associated field or Alice (Bob) transmits
an element from her field to Bob (Alice). Due to the transmission a transmitted
element is revealed to the public.

Step 1. A trancedental element x over Q(FA, FB) is selected by Alice:

(FA, FB , FP )→ (FA(x), FB , FP ),

or a trancedental element x over Q(FA, FB) is selected by Bob:

(FA, FB , FP )→ (FA, FB(x), FP ).

Step 2. Alice selects an element x in FA and transmits it to Bob:

(FA, FB , FP )→ (FA, FB(x), FP (x)),

or Bob selects an element x in FB and transmits it to Alice:

(FA, FB , FP )→ (FA(x), FB , FP (x)).

To show the impossibility of secret sharing over rational numbers we need to
prove

FA ∩ FB = FP (1)

after each step of the protocol. In other words all shared information can be
computed by the public by means of field operations. In the unbounded com-
puting model there does not exist a secret since the field FP is countable. We
need to prove that (1) is invariant under steps 1 and 2.

In the remainder we assume w.l.o.g. that Bob selects x in both steps. Steps
1 and 2 are invariant under:

Invariant 1. FA, FB, and FP are fields such that FP ⊆ FA ∩FB. Furthermore
FA = Q(A) and FB = Q(B) for finite sets of real numbers A and B.



Proof. From the invariant we infer that FP ⊆ FA ∩ FB ⊆ FA ∩ FB(x) and
secondly FP (x) ⊆ (FA ∩FB)(x) ⊆ FA(x)∩FB(x) = FA(x)∩FB for x ∈ FB . ut

In general however, we can not prove that FA ∩ FB = FP is invariant under
step 2. For example, take FA = Q(

√
6,
√
15), FB = Q(

√
2,
√
5), FP = Q, and

x =
√
2 ∈ FB . Clearly, FA(x) = Q(

√
2,
√
3,
√
5) implying that FA(x) ∩ FB =

Q(
√
2,
√
5) while FP (x) = Q(

√
2).

Thus in order to prove that (1) is invariant under steps 1 and 2 we need to
introduce a stronger invariant.

Lemma 1. Let G ⊆ F be fields such that [G(v) : G] = [F (v) : F ]. Then either

v is trancedental over F or there exists a basis X = {1, v, v2, . . . , vn−1} of F (v)
over F which is also a basis of G(v) over G.

Proof. The basis X of F (v) over F is linear independent over G ⊆ F . Since
[G(v) : G] = [F (v) : F ] and X does not depend on F , X is a basis of G(v) over
G. ut

Now we are ready to formulate the stronger invariant.

Invariant 2. There exist real numbers ai, 1 ≤ i ≤ n, such that

FB = FP (a1, a2, . . . , an)

and

Q(FA, FB) = FA(a1, a2, . . . , an)

with

[FA(a1, . . . , ai+1) : FA(a1, . . . , ai)] = [FP (a1, . . . , ai+1) : FP (a1, . . . , ai)]

for all 0 ≤ i ≤ n− 1.

Initially, FA = FB = FP = Q and invariant 2 holds for n = 0. The next
lemmas will be used to prove that invariant 2 implies (1).

Lemma 2. Let G ⊆ F and let v be trancedental over F . Then F ∩G(v) = G.

Proof. Let x ∈ G(v). Then there exist polynomials f(.) and g(.) with coefficients
in G ⊆ F and g(v) 6= 0 such that x = f(v)/g(v). If x is also in F then either v
is algebraic over F or f(v)/g(v) does not depend on v, that is x ∈ G. ut

We define the vector space

G[X ] =







x =
∑

γ∈X

xγ · γ : xγ ∈ G







.

If X is a basis of G(v) over G then G(v) = G[X ].



Lemma 3. Let G ⊆ F and let X be a finite linear independent set over F with

1 ∈ X . Then F ∩G[X ] = G.

Proof. Let x ∈ G[X ]. Then there exist coefficients xγ ∈ G ⊆ F such that
x =

∑

γ∈X xγ ·γ. If x is also in F then x = x1 ∈ G since X is linearly independent
over F . ut

Theorem 1. Invariant 2 implies FA ∩ FB = FP .

Proof. Let Fi = FA(a1, . . . , ai) and Gi = FP (a1, . . . , ai). By lemma 1, invariant
2 implies either ai+1 is trancedental over Fi or there exists a basis X of Fi(ai+1)
over Fi which is also a basis of Gi(ai+1) over Gi. According to lemmas 2 and 3
respectively, Fi ∩Gi(ai+1) = Gi. Since FA ⊆ Fi, FA ∩Gi(ai+1) ⊆ Gi, that is

FA ∩Gi+1 = FA ∩Gi(ai+1) ⊆ FA ∩Gi.

Hence,

FP ⊆ FA ∩ FB = FA ∩Gn ⊆ . . . ⊆ FA ∩G0 = FA ∩ FP = FP .

ut

The next invariant is like invariant 2 where the A’s and a’s are interchanged
with the B’s and b’s. Because of the symmetry theorem 1 also holds for this
invariant.

Invariant 3. There exist real numbers bi, 1 ≤ i ≤ m, such that

FA = FP (b1, b2, . . . , bn)

and

Q(FA, FB) = FB(b1, b2, . . . , bm)

with

[FB(b1, . . . , bi+1) : FB(b1, . . . , bi)] = [FP (b1, . . . , bi+1) : FP (b1, . . . , bi)]

for all 0 ≤ i ≤ m− 1.

The next lemmas are used to show that invariants 2 and 3 are equivalent.
The proof of Lemma 5 is left to the appendix.

Lemma 4. Consider the chain of fields G ⊆ H ⊆ F and suppose that [F (v) :
F ] = [G(v) : G]. Then [F (v) : F ] = [H(v) : H] = [G(v) : G].

Proof. According to lemma 1 either v is trancedental over F or there exists a
basis X of F (v) over F which is also a basis of G(v) over G. If v is trancedental
over F then it is also trancedental over its subfields G and H in which case
[F (v) : F ] = [H(v) : H] = [G[v] : G] = ∞. If X is a basis over F then it is
linear independent over H, hence [H(v) : H] ≥ [F (v) : F ]. If Y is a basis over
H then it is linear independent over G, hence [G(v) : G] ≥ [H(v) : H]. Since
[F (v) : F ] = [G(v) : G], equalities hold everywhere. ut



Lemma 5. Let G be a field. If [G(u, v) : G(u)] = [G(v) : G] then also [G(v, u) :
G(v)] = [G(u) : G].

Theorem 2. Invariants 2 and 3 are equivalent.

Proof. Suppose that invariant 2 holds. By invariant 1 there exist real numbers
bi, 1 ≤ i ≤ m, such that FA = FP (b1, b2, . . . , bm). Let

Hi,j = FP (a1, . . . , ai)(b1, . . . , bj),

Fi = FA(a1, . . . , ai), and Gi = FP (a1, . . . , ai). Notice thatHn,j = FB(b1, . . . , bj),
H0,j = FP (b1, . . . , bj), andHn,m = Q(FA, FB). Clearly,Gi ⊆ Hi,j ⊆ Hi,j(bj+1) ⊆
Fi). By using invariant 2 and twice applying lemma 4 we obtain

[Fi(ai+1) : Fi] = [Hi,j(bj+1, ai+1) : Hi,j(bj+1)]

= [Hi,j(ai+1) : Hi,j ] = [Gi(ai+1) : Gi].

By lemma 5 we conclude [Hi,j(bj+1, ai+1) : Hi,j(ai+1)] = [Hi,j(bj+1) : Hi,j ], that
is

[Hi+1,j+1 : Hi+1,j ] = [Hi,j+1 : Hi,j ].

Repeating this process gives

[Hn,j+1 : Hn,j ] = [H0,j+1 : H0,j ],

which is equivalent to invariant 3. ut

Notice that the above proof holds for all real numbers bi, 1 ≤ i ≤ m, such
that FA = FP (b1, b2, . . . , bm). We may reformulate both invariants accordingly.

Now we are ready to prove the correctness of both invariants under steps 1
and 2. Consider step 1. Bob selects a trancedental element x over Q(FA, FB).
Take an+1 = x. Notice that

[Q(FA, FB)(x) : Q(FA, FB)] = [Q(FB)(x) : Q(FB)]. (2)

Hence, invariant 2 holds again:

FB(x) = FP (a1, . . . , an+1)

and

Q(FA, FB(x)) = Q(FA, FB)(x) = FA(a1, . . . , an+1)

together with the corresponding degree requirements.
Consider step 2. Bob selects an element x ∈ FB which he transmits to Alice.

Invariant 3 holds prior to this step: FA = FP (b1, . . . , bm) and Q(FA, FB) =
FB(b1, . . . , bm) with

[FB(b1, . . . , bi+1) : FB(b1, . . . , bi)] = [FP (b1, . . . , bi+1) : FP (b1, . . . , bi)]



for 0 ≤ i ≤ m−1. Notice that FP ⊆ FP (x) ⊆ FB . By repeadetly applying lemma
4 we obtain

[FB(b1, . . . , bi+1) : FB(b1, . . . , bi)] = [FP (x)(b1, . . . , bi+1) : FP (x)(b1, . . . , bi)]

for 0 ≤ i ≤ m − 1. Since FA(x) = FP (x)(b1, . . . , bm) and Q(FA(x), FB) =
Q(FA, FB) = FB(b1, . . . , bm), invariant 3 holds again. By theorem 2 both invari-
ants hold again after each step.

Theorem 3. Invariants 2 and 3 are invariant under steps 1 and 2.

The proof of the invariants being invariant under step 1 only requires the con-
dition (2), which is satisfied for step 1 because x is trancedental over Q(FA, FB).

7 Conclusion

In summary, we have shown that although authentication protocols and one-way
functions exist in the this model, secure signature schemes, secure encryption
schemes, and secret sharing schemes do not. If we replace the operations {+, -,
*, /} with the operations {+, -, *, /, xy}, where xy denotes the operation of
raising an arbitrary number x to an arbitrary power y, we are able to recover
many cryptographic primitives, such as Diffie-Hellman Key Exchange, secure
signature schemes, and secure encryption schemes. Of course we still allow all
parties the ability to sample real numbers. We would like to determine a set
of necessary and sufficient conditions for a set of operations to admit certain
cryptographic primitives.
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A Proof of Lemma 5

If [G(u, v) : G(u)] = [G(v) : G] <∞ then the proof follows from

[G(u, v) : G(u)][G(u) : G] = [G(u, v) : G] = [G(v, u) : G(v)][G(v) : G].

If [G(u, v) : G(u)] = [G(v) : G] =∞ then v is trancedental over G(u). We distin-
guish two cases. Firstly, if u is trancedental over G(v) then it is also trancedental
over G, hence, [G(v, u) : G(v)] = [G(u) : G] =∞.

Secondly, suppose that u is algebraic over G(v). We will show that u is
algebraic over G and that a basis of G(u) over G is also linearly indepen-
dent over G(v), which implies [G(u) : G] ≤ [G(v, u) : G(v)]. A basis X =
{1, u, u2, . . . , un−1} of G(v, u) over G(v) exists and is also linearly independent
over G and part of G(u), which implies [G(u) : G] ≥ [G(v, u) : G(v)] and equality
must hold.

We are in the case that v is trancedental over G(u) and u is algebraic over
G(v). Then there exist a finite and strictly positive number of non-zero coeffi-
cients ui ∈ G(v) such that 0 =

∑

i ui · ui. Each coefficient ui is in G(v) and
can be expressed as ui = fi(v)/gi(v), where fi(.) and gi(.) are polynomials with
coefficients in G. Define hi(v) = fi(v)

∏

j 6=i gj(v). Then
∑

i hi(v) · ui = 0. Poly-

nomial hi(.) has coefficients in G, therefore hi(v) =
∑

j hi,j · vj for finitely many
non-zero coefficients hi,j ∈ G. We obtain

0 =
∑

j

{

∑

i

hi,j · ui
}

· vj .

The inner sums are in G(u). Since v is trancedental over G(u), these inner sums
are equal to 0. If u is trancedental over G then all coefficients hi,j = 0. This im-
plies that hi(v) = 0. All fj(v) 6= 0, therefore gi(v) = 0, hence, uj = 0. However,
there is a strictly positive number of non-zero coefficients uj . Concluding, u is
not trancedental but algebraic over G.

Since u is algebraic over G there exists a finite basis X of G(u) over G
with G(u) = G[X ]. We want to show that X is linearly independent over G(v).
Suppose that

∑

γ∈X xγ · γ = 0 for some xγ ∈ G(v). For the coefficients xγ there
exist polynomials fγ(.) and gγ(.) with coefficients in G with gγ(v) 6= 0 such that
xγ = fγ(v)/gγ(v). Define hγ(v) = fγ(v)

∏

σ 6=γ gσ(v). Then
∑

γ∈X hγ(v) · γ = 0.

Polynomial hγ(.) has coefficients in G, therefore hγ(v) =
∑

j hγ,j · vi for finitely
many non-zero coefficients hγ,j ∈ G. We obtain

0 =
∑

j







∑

γ∈X

hγ,j · γ







· vj .

The inner sums are inG[X ] = G(u). Since v is trancedental overG(u), these inner
sums are equal to 0. Set X is linearly independent over G, hence, all coefficients
hγ,j = 0. This implies that hγ(v) = 0. All fσ(v) 6= 0, therefore gγ(v) = 0, hence,
xγ = 0.


