
Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels?

Ran Canetti?? and Hugo Krawczyk? ? ?

Abstract. We present a formalism for the analysis of key-exchange pro-
tocols that combines previous definitional approaches and results in a
definition of security that enjoys some important analytical benefits:
(i) any key-exchange protocol that satisfies the security definition can
be composed with symmetric encryption and authentication functions
to provide provably secure communication channels (as defined here);
and (ii) the definition allows for simple modular proofs of security: one
can design and prove security of key-exchange protocols in an idealized
model where the communication links are perfectly authenticated, and
then translate them using general tools to obtain security in the realistic
setting of adversary-controlled links.
We exemplify the usability of our results by applying them to obtain
the proof of two classes of key-exchange protocols, Diffie-Hellman and
key-transport, authenticated via symmetric or asymmetric techniques.

1 Introduction

Key-exchange protocols (ke, for short) are mechanisms by which two parties
that communicate over an adversarially-controlled network can generate a com-
mon secret key. ke protocols are essential for enabling the use of shared-key
cryptography to protect transmitted data over insecure networks. As such they
are a central piece for building secure communications (a.k.a “secure channels”),
and are among the most commonly used cryptographic protocols (contemporary
examples include SSL, IPSec, SSH, among others).

The design and analysis of secure ke protocols has proved to be a non-trivial
task, with a large body of work written on the topic, including [15, 30, 10, 7, 16,
5, 6, 26, 2, 34] and many more. In fact, even today, after two decades of research,
some important issues remain without satisfactory treatment. One such issue is
how to guarantee the adequacy of ke protocols for their most basic application:
the generation of shared keys for implementing secure channels. Providing this
guarantee (with minimal requirements from ke protocols) is the main focus and
objective of this work. The other central goal of the paper is in simplifying

? This proceedings version is a condensed high-level outline of the results in this work;
for a complete self-contained treatment the reader is referred to [13].

?? IBM T.J. Watson Research Center, Yorktown Heights, New York 10598. Email:
canetti@watson.ibm.com.

? ? ? EE Department, Technion, Haifa, Israel. Email: hugo@ee.technion.ac.il. Supported
by Irwin and Bethea Green & Detroit Chapter Career Development Chair.



452 Ran Canetti and Hugo Krawczyk

the usability of the resultant security definitions via a modular approach to the
design and analysis of ke protocols. We exemplify this approach with a proof of
security for two important classes of ke protocols.

This paper adopts a methodology for the analysis of ke protocols that results
from the combination of two previous works in this area: Bellare and Rogaway [5]
and Bellare, Canetti and Krawczyk [2]. A main ingredient in the formalization
of [5] is the use of the indistinguishability approach of [20] to defining security:
roughly speaking, a key-exchange protocol is called secure if under the allowed
adversarial actions it is infeasible for the attacker to distinguish the value of
a key generated by the protocol from an independent random value. Here we
follow this exact same approach but replace the adversarial model of [5] with
an adversarial model derived from [2]. This combination allows to achieve the
above two main objectives. We elaborate on these main aspects of our work.

First, the formalization of [2] captures not only the specific needs of ke

protocols but rather develops a more general model for the analysis of security
protocols. This allows formulating and proving the statement that ke protocols
proven secure according to our definition (we call these protocols SK-secure)
can be used in standard ways to provide “secure channels”. More specifically,
consider the common security practice by which pairs of parties establish a
“secure channel” by first exchanging a session key using a ke protocol and
then using this key to encrypt and authenticate the transmitted data under
symmetric cryptographic functions. We prove that if in this setting one uses
an SK-secure ke protocol together with secure MAC and encryption functions
combined appropriately then the resultant channel provides both authentication
and secrecy (in a sense that we define precisely) to the transmitted data. While
this property of ensuring secure channels is indeed an obvious requirement from
a secure ke protocol it turns out that formalizing and proving this property is
non-trivial. In fact, there are “seemingly secure” key exchange protocols that
do not necessarily guarantee this (e.g. those that use the session key during the
exchange itself), as well as proposed definitions of secure key-exchange that do
not suffice to guarantee this either (e.g., the definitions in [5, 8, 9, 2]). Moreover,
although several works have addressed this issue (see Section 1.1), to the best of
our knowledge the notion of secure channels was never formalized in the context
of ke protocols, let alone demonstrating that some definition of ke protocols
suffices for this basic task. Indeed, one of the contributions of this work is a
formalization of the secure channels task. While this formalization is not intended
to provide general composability properties for arbitrary cryptographic settings,
it arguably provides sufficient security guarantee for the central task of protecting
the integrity and authenticity of communications over adversarially-controlled
links.

Second, the approach of [2] allows for a substantial simplification in designing
ke protocols and proving their security. This approach postulates a two-step
methodology by which protocols can first be designed and analyzed in a much
simplified adversarial setting where the communication links are assumed to
be ideally authenticated (i.e., the attacker is not allowed to insert or change



Analysis of Key-Exchange Protocols and Secure Channels 453

information transmitted over the communication links between parties). Then,
in a second step, these protocols are “automatically” transformed into secure
protocols in the realistic scenario of fully adversary-controlled communications
by applying a protocol translation tool (or “compiler”) called an authenticator.
Fortunately, simple and efficient realizations of authenticators based on different
cryptographic functions exist [2] thus making it a useful and practical design and
analysis tool. (We stress that our framework does notmandate this methodology;
i.e., it is possible of course to prove security of a ke protocol directly in the fully
adversarial model.)

We use this approach to prove the security of two important classes of key-
exchange protocols: Diffie-Hellman and key-transport protocols. All one needs to
do is to simply prove the security of these protocols in the ideal authenticated-
links model and then, thanks to the above modular approach, one obtains ver-
sions of these protocols that are secure in a realistic adversary-controlled net-
work. The “authenticated” versions of the protocols depend on the authentica-
tors in use. These can be based either on symmetric or asymmetric cryptographic
techniques (depending on the trust model) and result in natural and practical ke

protocols. The security guarantees that result from these proofs are substantial
as they capture many of the security concerns in real communications settings
including the asynchronous nature of contemporary networks, the run of multiple
simultaneous sessions, resistance to man-in-the-middle and known-key attacks,
maintaining security of sessions even when other sessions are compromised, and
providing “perfect forward secrecy”, i.e., protection of past sessions in case of
the compromise of long-term keying material.

1.1 Related work

Since its introduction in the seminal work of Diffie and Hellman [15] the notion
of a key-exchange protocol has been the subject of many works (see [28] for
an extensive bibliography). Here we mention some of the works that are more
directly related to the present work.

Among the early works on this subject we note [30, 10, 7, 16] as being in-
strumental in pointing out to the many subtleties involved in the analysis of ke

protocols. The first complexity-theoretic treatment of the notion of security for
ke protocols is due to Bellare and Rogaway [5] who formalize the security of ke

protocols in the realistic setting of concurrent sessions running in an adversary-
controlled network. As said above, [5] apply the indistinguishability definitional
approach that we follow here as well. While [5] focused on the shared-key model
of authentication, other works [8, 9, 4] extended the techniques to the public-key
setting. One important contribution of [4] is in noting and fixing a shortcoming
in the original definition of [5]; this fix, that we adopt here, is fundamental for
proving our results about secure channels.

Bellare, Canetti, and Krawczyk [2] present a model for studying general
session-oriented security protocols that we adopt and extend here. They also
introduce the “authenticator” techniques that allow for greatly simplifying the



454 Ran Canetti and Hugo Krawczyk

analysis of protocols and that we use as a basic tool in our work. In addition, [2]
proposes a definition of security of ke protocols rooted in the simulatability (or
“ideal third party”) approach used to define security of multiparty computation
[19, 29, 1, 11]. While this definitional approach is intuitively appealing the actual
ke security definition of [2] comes short of the expectations. On one hand, it
seems over-restrictive, in the sense that it rules out protocols that seem to pro-
vide sufficient security (and as demonstrated here can be safely used to obtain
secure channels); on the other, it is not clear whether their definition suffices to
prove composition theorems even in the restricted sense of secure channels as
dealt with in this paper.

More recently, Shoup [34] presents a framework for the definition of security
of ke protocols that follows the basic simulatability approach as in [2] but intro-
duces significant modifications in order to overcome some of the shortcomings of
the ke definition in [2] as well as to seek composability with other cryptographic
applications. In particular, [34] states as a motivational goal the construction of
“secure sessions” (similar to our secure channels), and it informally claims the
sufficiency of its definitions to achieve this goal. A more rigorous and complete
elaboration of that work will be needed to assess the correctness of these claims.
In addition, [34] differs from our work in several other interesting aspects. In
order to keep this introduction short, we provide a more extensive comparison
with [34] in Appendix A.

A promising general approach for the analysis of reactive protocols and their
concurrent composition has been developed by Pfitzmann, Schunter and Waid-
ner [32, 31, 33] and Canetti [12]. This approach, that follows the simulatability
tradition, can be applied to the task of key exchange to obtain a definition
of ke protocols that guarantees secure concurrent composition with any set of
protocols that make use of the generated keys. See more details in [14].

A subjective discussion. The above works follow two main distinct ap-
proaches to defining security of ke protocols: simulation-based and indistingui-
shability-based. The former is more intuitively appealing (due to its modeling
of security via an ideally-trusted third party), and also appears to be more
amenable to demonstrating general composability properties of protocols. On
the other hand, the complexity of the resulting definitions, once all details are
filled in, is considerable and makes for definitions that are relatively complex to
work with. In contrast, the indistinguishability-based approach yields definitions
that are simpler to state and easier to work with, however their adequacy for
modeling the task at hand seems less clear at first glance. The results in this
paper indicate the suitability of the indistinguishability-based approach in the
context of ke protocols — if the goal is the application of ke protocols to the
specific task of secure channels as defined here. By following this approach we
gain the benefit of simpler analysis and easier-to-write proofs of security. At the
same time, our work borrows from the simulation-based approach the modu-



Analysis of Key-Exchange Protocols and Secure Channels 455

larity of building proofs via the intermediate ideally-authenticated links model,
thus enjoying the “best of both worlds”.

Organization. Due to lack of space, the presentation here is kept at an
informal level, and omits some important pieces. A complete and rigorous treat-
ment, including model details and proofs, appears in [13]. Section 2 presents an
overview of the protocol and adversary models used throughout this work. The
definition of SK-security for ke protocols is presented in Section 3. Section 4
states the security of sample protocols. Section 5 demonstrates the suitability
of our notion of security to realizing secure channels.

2 Protocol and Adversary Models: An Overview

In order to to define what is meant by the security of a key-exchange (ke) pro-
tocol we first need to establish a formalism for the most basic notions: what is
meant by a protocol in general and a key-exchange protocol in particular, what
are sessions, and what is an ‘attacker’ against such protocols. Here we use a
formalism based on the approach of [2], where a general framework for studying
the security of session-based multi-party protocols over insecure channels is in-
troduced. We extend and refine this formalism to better fit the needs of practical
ke protocols.

In order to motivate and make the formalism easier to understand, we start
by providing a high-level overview of our model. The precise technical description
appears in [13]. After introducing the protocol and adversary models we proceed
to define the security of ke protocols in Section 3.

2.1 Protocols, Sessions and Key-Exchange

Message-driven protocols We consider a set of parties (probabilistic polyno-
mial-time machines), which we usually denote by P1, . . . , Pn, interconnected by
point-to-point links over which messages can be exchanged. Protocols are collec-
tions of interactive procedures, run concurrently by these parties, that specify
a particular processing of incoming messages and the generation of outgoing
messages. Protocols are initially triggered at a party by an external “call” and
later by the arrival of messages. Upon each of these events, and according to
the protocol specification, the protocol processes information and may generate
and transmit a message and/or wait for the next message to arrive. We call
these message-driven protocols. (We note the asynchronous nature of protocols
defined in this way which reflects the prevalent form of communication in today’s
networks.)

Sessions and protocol output. Protocols can trigger the initiation of sub-
protocols (i.e. interactive subroutines) or other protocols, and several copies of
such protocols may be simultaneously run by each party. We call each copy of
a protocol run at a party a session. Technically, a session is an interactive sub-
routine executed inside a party. Each session is identified by the party that runs



456 Ran Canetti and Hugo Krawczyk

it, the parties with whom the session communicates and by a session-identifier.
These identifiers are used in practice to bind transmitted messages to their cor-
responding sessions. Each invocation of a protocol (or session) at a given party
creates a local state for that session during execution, and produces local out-
puts by that party. This output can be a quantity (e.g a session key) returned
to the calling program, or it can be the recording of a protocol event (such as
a successful or failed termination). These local outputs serve to represent the
“history” of a protocol and are important to formalize security. When a session
ends its run we call it complete and assume that its local state is erased.

Key-exchange protocols. Key-exchange (ke) protocols are message-driven
protocols (as defined above) where the communication takes place between pairs
of parties and which return, upon completion, a secret key called a session key.
More specifically, the input to a ke protocol within each party Pi is of the form
(Pi, Pj , s, role), where Pj is the identity of another party, s is a session id, and
role can be either initiator or responder. A session within Pi and a session within
Pj are called matching if their inputs are of the form (Pi, Pj , s, initiator) and
(Pj , Pi, s, responder). The inputs are chosen by a “higher layer” protocol that
“calls” the ke protocol. We require the calling protocol to make sure that the
session id’s of no two ke sessions in which the party participates are identical.
Furthermore, we leave it to the calling protocol to make sure that two parties
that wish to exchange a key will activate matching sessions. Note that this may
require some communication before the actual ke sessions are activated.1

Upon activation, the partners Pi and Pj of two matching sessions exchange
messages (the initiator goes first), and eventually generate local outputs that
include the name of the partners of the session, the session identifier, and the
value of the computed session key. A key establishment event is recorded only
when the exchange is completed (this signals, in particular, that the exchanged
key can be used by the protocol that called the ke session). We note that a
session can be completed at one partner but not necessarily at the other.

After describing these ‘mechanics” of a ke protocol we need to define what
is meant by a “secure” ke protocol. This is the subject of Section 3 and it is
based on the adversarial model that we introduce next.

2.2 The unauthenticated-links adversarial model (um)

In order to talk about the security of a protocol we need to define the adversarial
setting that determines the capabilities and possible actions of the attacker. We
want these capabilities to be as generic as possible (as opposed to, say, merely
representing a list of possible attacks) while not posing unrealistic requirements.
We follow the general adversarial formalism of [2] but specialize and extend it

1 Indeed, in practice protocols for setting up a secure session typically exchange some
messages before the actual cryptographic key-exchange starts. The IKE protocol of
the IPSEC standard is a good example [23].



Analysis of Key-Exchange Protocols and Secure Channels 457

here for the case of ke protocols. Using the terminology of [2] we call this model
the Unauthenticated Links Model (um).

Basic attacker capabilities. We consider a probabilistic polynomial-time
(ppt) attacker that has full control of the communications links: it can listen to
all the transmitted information, decide what messages will reach their destination
and when, change these messages at will or inject its own generated messages.
The formalism represents this ability of the attacker by letting the attacker be
the one in charge of passing messages from one party to another. The attacker
also controls the scheduling of all protocol events including the initiation of
protocols and message delivery.

Obtaining secret information. In addition to these basic adversarial ca-
pabilities (given “for free” to the attacker), we let the attacker obtain secret
information stored in the parties memories via explicit attacks. We consider all
the secret information stored at a party as potentially vulnerable to break-ins
or other forms of leakage. However, when defining security of a protocol it is
important to guarantee that the leakage of some form of secret information has
the least possible effect on the security of other secrets. For example, we will
want to guarantee that the leakage of information specific to one session (such
as the leakage of a session key or ephemeral state information) will have no
effects on the security of other sessions, or that even the leakage of crucial long-
term secrets (such as private keys) that are used across multiple sessions will not
necessarily compromise secret information from all past sessions. In order to be
able to differentiate between various vulnerabilities and to be able to guarantee
as much security as possible in the event of information exposures, we classify
attacks into three categories depending on the type of information accessed by
the adversary:

Session-state reveal. The attacker provides the name of a party and a session
identifier of a yet incomplete session at that party and receives the internal state
of that session (since we see sessions as procedures running inside a party then
the internal state of a session is well defined). An important point here is what
information is included in the local state of a session. We leave this to be specified
by each ke protocol. Therefore, our definition of security is parameterized by the
type and amount of information revealed in this attack. For instance, the infor-
mation revealed in this way may be the exponent x used by a party to compute
a value gx in a Diffie-Hellman key-exchange protocol, or the random bits used
to encrypt a quantity under a probabilistic encryption scheme during a session.
Typically, the revealed information will include all the local state of the session
and its subroutines, except for the local state of the subroutines that directly
access the long-term secret information, e.g. the local signature/decryption key
of a public-key cryptosystem, or the long-term shared key.

Session-key query. The attacker provides a party’s name and a session identifier
of a completed session at that party and receives the value of the key generated
by the named session This attack provides the formal modeling for leakage of
information on specific session keys that may result from events such as break-



458 Ran Canetti and Hugo Krawczyk

ins, cryptanalysis, careless disposal of keys, etc. It will also serve, indirectly,
to ensure that the unavoidable leakage of information produced by the use of
session keys in a security application (e.g., information leaked on a key by its
use as an encryption key) will not help in deriving further information on this
and other keys.

Party corruption. The attacker can decide at any point to corrupt a party, in
which case the attacker learns all the internal memory of that party including
long-term secrets (such as private keys or master shared keys used across differ-
ent sessions) and session-specific information contained in the party’s memory
(such as internal state of incomplete sessions and session-keys corresponding to
completed sessions). Since by learning its long term secrets the attacker can
impersonate a party in all all its actions then a party is considered completely
controlled by the attacker from the time of corruption and can, in particular,
depart arbitrarily from the protocol specifications.

Terminology: if a session is subject to any of the above three attacks (i.e. a
session-state reveal, a session-key query or the corruption of the party holding
the session) then the session is called locally exposed. If a session or its matching
session is locally exposed then we call the session exposed.

Session expiration. One important additional element in our security model
is the notion of session expiration. This takes the form of a protocol action that
when activated causes the erasure of the named session key (and any related
session state) from that party’s memory. We allow a session to be expired at
one party without necessarily expiring the matching session. The effect of this
action in our security model is that the value of an expired session key cannot be
found via any of the above attacks if these attacks are performed after the session
expired. This has two important consequences: it allows us to model the common
(and good) security practice of limiting the life-time of individual session keys
and it allows for a simple modeling of the notion of perfect forward secrecy (see
Section 3.2). We note that in order for a session to be locally exposed (as defined
above) the attack against the session must happen before the session expires.

Bootstrapping the security of key-exchange protocols. Key-exchange
protocols, as other cryptographic applications, require the bootstrapping of se-
curity (especially for authentication) via some assumed-secure means. Examples
include the secure generation of parties’ private keys, the installation of public
keys of other parties, or the installation of shared “master” keys. Here too we
follow the approach of [2] where the bootstrapping of the authentication func-
tions is abstracted into an initialization function that is run prior to the initiation
of any key-exchange protocol and that produces in a secure way (i.e. without
adversarial participation) the required (long-term) information. By abstracting
out this initial phase we allow for the combination of different protocols with
different initialization functions: in particular, it allows our analysis of protocols
(such as Diffie-Hellman) to be applicable under the two prevalent settings of
authentication: symmetric and a-symmetric authentication. Two points to note
are (1) the specification of the initialization function is part of the definition



Analysis of Key-Exchange Protocols and Secure Channels 459

of each ke protocol; and (2) secret information generated by this function at a
given party can be discovered by the attacker only upon corruption of that party.
We stress that while this abstraction adds to the simplicity and applicability of
our analysis techniques, the bootstrapping of security in actual protocols is an
element that must be carefully analyzed (e.g., the interaction with a CA in the
case of public-key based protocols). Integrating these explicit elements into the
model can be done either directly as done in [34], or in a more modular way via
appropriate protocol composition.

2.3 The am, protocol emulation and authenticators

A central ingredient in our analyses is the methodology introduced in [2] by which
one can design and analyze a protocol under the highly-simplifying assumption
that the attacker cannot change information transmitted between parties, and
then transform these protocols and their security assurance to the realistic um

where the adversary has full control of the communication links. The main com-
ponents in the formalization of this methodology are shortly described here (see
[2, 13] for complete details).

First, an adversarial model called authenticated-links model (denoted am) is
defined in a way that is identical to the um with one fundamental difference:
the attacker is restricted to only deliver messages truly generated by the parties
without any change or addition to them. Then, the notion of “emulation” is
introduced in order to capture the equivalence of functionality between protocols
in different adversarial models, in particular between the um and am. Roughly
speaking, a protocol π′ emulates protocol π in the um if for any adversary that
interacts with π′ in the um there exists an adversary that interacts with π in
the am such that the two interactions “look the same” to an outside observer.
Finally, special algorithms called authenticators are developed with the property
that on input the description of a protocol π the authenticator outputs the
description of a protocol π′ such that π′ emulates protocol π in the um. That
is, authenticators act as an automatic “compiler” that translate protocols in the
am into equivalent (or “as secure as”) protocols in the um.

In order to simplify the construction of authenticators, [2] offers the following
methodology. First consider a very simple one-flow protocol in the am, called mt,
whose sole functionality is to transmit a single message from sender to recipient.
Now build a restricted-type authenticator, called mt-authenticator, required to
provide emulation for this particular mt protocol only. Finally, to any such mt-
authenticator λ one associates an algorithm (or compiler) Cλ that translates
any input protocol π into another protocol π′ as follows: to each of the messages
defined in protocol π apply the mt-authenticator λ. It is proven in [2] that Cλ is
an authenticator (i.e., the resultant protocol π′ emulates π in the um). Particular
realizations of mt-authenticators are presented in [2] based on different type of
cryptographic functions (e.g., digital signatures, public-key encryption, MAC,
etc.)



460 Ran Canetti and Hugo Krawczyk

3 Session-Key Security

After having defined the basic formal model for key-exchange protocols and
adversarial capabilities, we proceed to define what is meant for a key-exchange
protocol to be secure. While the previous section was largely based on the work of
[2], our definition of security closely follows the definitional approach of [5]. The
resultant notion of security, that we call session-key security (or SK-security),
focuses on ensuring the security of individual session-keys as long as the session-
key value is not obtained by the attacker via an explicit key exposure (i.e. as long
as the session is unexposed – see the terminology in the previous section). We
want to capture the idea that the attacker “does not learn anything about the
value of the key” from interacting with the key-exchange protocol and attacking
other sessions and parties. As it is standard in the semantic-security approach
this is formalized via the infeasibility to distinguish between the real value of
the key and an independent random value.

We stress that this formulation of SK-security is very careful about tuning
the definition to offer enough strength as required for the use of key-exchange
protocols to realize secure channels (Section 5), as well as being realistic enough
to avoid over-kill requirements which would prevent us from proving the security
of very useful protocols (Section 4). We further discuss these aspects after the
presentation of the definition.

3.1 Definition of SK-Security

We first present the definition for the um. The formalization in the am is anal-
ogous. We start by defining an “experiment” where the attacker U chooses a
session in which to be “tested” about information it learned on the session-key;
specifically, we will ask the attacker to differentiate the real value of the chosen
session key from a random value. (Note that this experiment is an artifact of
the definition of security, and not an integral part of the actual key-exchange
protocols and adversarial intervention.)

For the sake of this experiment we extend the usual capabilities of the ad-
versary, U , in the um by allowing it to perform a test-session query. That is, in
addition to the regular actions of U against a key-exchange protocol π, we let
U to choose, at any time during its run, a test-session among the sessions that
are completed, unexpired and unexposed at the time. Let κ be the value of the

corresponding session-key. We toss a coin b, b
R
← {0, 1}. If b = 0 we provide U

with the value κ. Otherwise we provide U with a value r randomly chosen from
the probability distribution of keys generated by protocol π. The attacker U is
now allowed to continue with the regular actions of a um-adversary but is not
allowed to expose the test-session (namely, it is not allowed session-state reveals,
session-key queries, or partner’s corruption on the test-session or its matching



Analysis of Key-Exchange Protocols and Secure Channels 461

session.2) At the end of its run, U outputs a bit b′ (as its guess for b).
We will refer to an attacker that is allowed test-session queries as a ke-adversary.

Definition 1. A ke protocol π is called SK-secure if the following properties
hold for any ke-adversary U in the um.

1. Protocol π satisfies the property that if two uncorrupted parties complete
matching sessions then they both output the same key; and

2. the probability that U guesses correctly the bit b (i.e., outputs b′ = b) is no
more than 1/2 plus a negligible fraction in the security parameter.

If the above properties are satisfied for all ke-adversaries in the am then we say
that π is SK-secure in the am.

The first condition is a “consistency” requirement for sessions completed by
two uncorrupted parties. We have no requirement on the session-key value of a
session where one of the partners was corrupted before the session completed
– in fact, most ke protocols allow a corrupted party to strongly influence the
exchanged key. The second condition is the “core property” for SK-security. We
note that the term ‘negligible’ refers, as customary, to any function (in the secu-
rity parameter) that diminishes asymptotically faster than any polynomial frac-
tion. (This formulation allows, if so desired, to quantify security via a concrete
security treatment. In this case one quantifies the attacker’s power via specific
bounds on computation time, number of corruptions, etc., while its advantage
is bounded through a specific parameter ε.)

Discussion. We highlight three aspects of Definition 1.

– The attacker can keep running and attacking the protocol even after receiv-
ing the response (either real or random) to its test-session query. This ability
(which represents a substantial strengthening of security relative to [5], see
also [4]) is essential for proving the main property of SK-security shown in
this paper, namely its guarantee of security when used to generate secure
channels as described in Section 5.

– The attacker is not allowed to corrupt partners to the test-session or issue any
other exposure command against that session while unexpired. This reflects
the fact that there is no way to guarantee the secure use of a session-key
that was exposed via an attacker’s break-in (or cryptanalysis). In particular,
this restriction is instrumental for proving the security of specific important
protocols (e.g., Diffie-Hellman key exchange) as done in Section 4.

– The above restriction on the attacker by which it cannot corrupt a partner
to the test-session is lifted as soon as the session expires at that partner. In
this case the attacker should remain unable to distinguish between the real

2 We stress, however, that the attacker is allowed to corrupt a partner to the test-
session as soon as the test-session (or its matching session) expires at that party.
See the discussion below. This may be the case even if the other partner has not yet
expired the matching session or not even completed it.



462 Ran Canetti and Hugo Krawczyk

value of the key from a random value. This is the basis to the guarantee of
“perfect forward secrecy” provided by our definition and further discussed
in Section 3.2.

We stress that in spite of its “compact” formulation Definition 1 is very
powerful and can be shown to ensure many specific properties that are required
from a good key-exchange protocol (see, for example, chapter 12 of [28]). Some
of these properties include the guarantee that session-keys belong to the right
probability distribution of keys (except if one of the partners is corrupted at
time of exchange), the “authenticity” of the exchange (namely, a correct and
consistent binding between keys and parties’ identities), resistance to man-in-the-
middle attacks (for protocols proven SK-secure in the um), resistance to known-
key attacks, forward secrecy, and more. However, we note that all these properties
(which are sometimes listed as a replacement to a formal definition of security)
in combination do not suffice to guarantee the most important aspect of key-
exchange security that SK-security enjoys: namely, the composition of the key-
exchange protocols with cryptographic functions to enable secure channels (e.g.,
the original definition of security in [5] does satisfy the above list of properties
but is insufficient to guarantee secure channels).

We finally remark that Definition 1 makes security requirements from a ke

protocol only in case that the protocol completes ke-sessions. No guarantee is
made that ke-sessions will ever return, or that they will not be aborted, i.e.,
that the corresponding session key will not be null. (In fact, a ke protocol where
all ke-sessions “hang” and never return satisfies the definition.) One can add an
explicit termination requirement for sessions in which the parties are uncorrupted
and all messages are correctly delivered by the attacker. For simplicity, we choose
to leave the analysis of the termination properties of protocols out of the scope
of the definition of security.

3.2 Forward Secrecy

Informally, the notion of “perfect forward secrecy” (pfs) [22, 16] is stated as the
property that “compromise of long-term keys does not compromise past session
keys”. In terms of our formalism this means that even if a party is corrupted (in
which case all its stored secrets – short-term and long-term – become known to
the attacker) then nothing is learned about sessions within that party that were
previously unexposed and expired before the party corruption happened.

The provision that expired session-keys remain indistinguishable from ran-
dom values even if a partner to that session is corrupted guarantees the perfect
forward secrecy of SK-secure protocols. Put in other words, when proving a pro-
tocol to be SK-secure using Definition 1 one automatically gets a proof that that
protocol guarantees pfs.

On the other hand, while pfs is a very important security property it is not
required for all application scenarios, e.g., when only authentication is required,
or when short-term secrecy suffices. Indeed, it is common to find in practice



Analysis of Key-Exchange Protocols and Secure Channels 463

protocols that do not provide pfs and still are not considered insecure. One such
typical case are “key-transport protocols” in which public key encryption is used
to communicate a session-key from one party to another. (In this case, even if
session-keys are erased from memory when no longer required, the corruption of
a party may allow an attacker to compute, via the discovered long-term private
keys, all the past session-keys.) Due to the importance of such protocols (they
are commonly used in, e.g., SSL), and given that achieving pfs usually has a
non-negligible computational cost, we define a notion of “SK-security without
pfs” by simply disallowing the protocol’s action of key expiration. That is, under
this modified model, session-keys never expire. This results in a weaker notion
of security since now by virtue of Definition 1 the attacker is never allowed to
corrupt a partner to the test-session (or in other words, this weaker definition
of security does not guarantee the security of a session-key for which one of the
partners is ever corrupted).

Definition 2. We say that a ke protocol satisfies SK-security without pfs if it
enjoys SK-security relative to any ke-adversary in the um that is not allowed
to expire keys. (Similarly, if the above holds for any such adversaries in the am

then we say that π is SK-secure without pfs in the am.)

4 SK-Secure Protocols

This section demonstrates the usability of our definition of SK-security for prov-
ing the security of some simple and important key-exchange protocols. One is the
original Diffie-Hellman protocol, the other is a simple “key transport” protocol
based on public-key encryption. We first show that these protocols are secure in
the simpler authenticated-links model (am). Then, using the methodology from
[2] we can apply to these protocols a variety of (symmetric or asymmetric) au-
thentication techniques to obtain key-exchange protocols that are secure in the
realistic um model. Namely, applying any mt-authenticator (see Section 2.3) to
the messages of the am-protocol results in a secure ke protocol in the um The
next Theorem (proven in [13]) states that this methodology does work for our
purposes.

Theorem 1. Let π be a SK-secure key-exchange protocol in the am with pfs

(resp., without pfs) and let λ be an authenticator. Then π′ = Cλ(π) is a SK-
secure key-exchange protocol in the um with pfs (resp., without pfs).

For lack of space we only describe here the protocol based on Diffie-Hellman ex-
change. The key-transport protocol based on public-key encryption is presented
and analyzed in [13].

4.1 Two-move Diffie-Hellman

We demonstrate that under the Decisional Diffie-Hellman (DDH) assumption
the ‘classic’ two-move Diffie-Hellman key-exchange protocol designed to work



464 Ran Canetti and Hugo Krawczyk

against eavesdroppers-only is SK-secure in the am. We denote this protocol by
2dh and describe it in Figure 1. Here and in the sequel all exponentiations are
modulo the defined prime p.

Protocol 2dh

Common information: Primes p, q, q/p−1, and g of order q in Z∗

p .

Step 1: The initiator, Pi, on input (Pi, Pj , s), chooses x
R
← Zq and sends

(Pi, s, α = gx) to Pj .

Step 2: Upon receipt of (Pi, s, α) the responder, Pj , chooses y
R
← Zq, sends

(Pj , s, β = gy) to Pi, erases y, and outputs the session key γ = αy under
session-id s.

Step 3: Upon receipt of (Pj , s, β), party Pi computes γ′ = βx, erases x,
and outputs the session key γ′ under session-id s.

Fig. 1. The two-move Diffie-Hellman protocol in the am

Theorem 2. Assuming the Decisional Diffie-Hellman (DDH) assumption, pro-
tocol 2dh is SK-secure in the am.

Using Theorem 1 we can apply any authenticator to this protocol to obtain
a secure Diffie-Hellman exchange against realistic um attackers. For illustration,
a particular instance of such a SK-secure protocol in the um, using digital signa-
tures for authentication, is shown in Section 4.2. Other flavors of authenticated
DH protocols can be derived in a similar way by using other authenticators (e.g.
based on public key encryption or on pre-shared keys [2]).

4.2 SK-secure Diffie-Hellman Protocol in the um

Here we apply the signature-based authenticator of [2] to the protocol 2dh from
Figure 1 to obtain a Diffie-Hellman key-exchange that is SK-secure in the um.
We present the resultant protocol in Figure 2 (it is very similar to a protocol
specified in [24]). Its SK-security follows from Theorems 1 and 2.

Remarks on protocol sig-dh. The protocol is the result of applying the
signature-based authenticator of [2] to the 2-pass Diffie-Hellman protocol of Fig-
ure 1 where the values α and β (the DH exponentials) serve as the challenges
required by the signature-based authenticator. This assumes (as specified in
protocol 2dh) that these exponentials are chosen afresh for each new exchange
(otherwise each party can add an explicit nonce to the messages which is also
included under the signature). We note that the identity of the destination party
included under the signatures is part of the specification of the signature-based
authenticator of [2] and is fundamental for the security of the protocol.

The description of sig-dh in Figure 2 assumes, as formalized in our model,
that the value s of the session-id is provided to the parties. In practice, one



Analysis of Key-Exchange Protocols and Secure Channels 465

Protocol sig-dh

Initial information: Primes p, q, q/p−1, and g of order q in Z∗

p . Each player
has a private key for a signature algorithm sig, and all have the public
verification keys of the other players.

Step 1: The initiator, Pi, on input (Pi, Pj , s), chooses x
R
← Zq and sends

(Pi, s, α = gx) to Pj .

Step 2: Upon receipt of (Pi, s, α) the responder, Pj , chooses y
R
← Zq, and

sends to Pi the message (Pj , s, β = gy) together with its signature
sigj(Pj , s, β, α, Pi); it also computes the session key γ = αy and erases

y.
Step 3: Upon receipt of (Pj , s, β) and Pj ’s signature, party Pi verifies

the signature and the correctness of the values included in the sig-
nature (such as players identities, session id, the value of exponen-
tials, etc.). If the verification succeeds then Pi sends to Pj the message
(Pi, s, sigj(Pi, s, α, β, Pj)), computes γ′ = βx, erases x, and outputs the
session key γ′ under session-id s.

Step 4: Upon receipt of the triple (Pi, s, sig), Pj verifies Pi’s signature sig
and the values it includes. If the check succeeds it outputs the session
key γ under session-id s.

Fig. 2. Diffie-Hellman protocol in the um: authentication via signatures.

usually generates the session identifier s as a pair (s1, s2) where s1 is a value
chosen by Pi and different (with very high probability) from all other such values
chosen by Pi in his other sessions with Pj . Similarly, s2 is chosen by Pj with
an analogous uniqueness property. These values s1, s2 can be exchanged by the
parties as a prologue to the above protocol (this may be the case of protocols
that implement such a prologue to exchange some other system information and
to negotiate exchange parameters; see for example [23]). Alternatively, s1 can be
included by Pi in the first message of sig-dh, and s2 be included by Pj in the
second message. In any case, it is important that these values be included under
the parties’ signatures.

5 Applications to Secure Channels

It is common practice to protect end-to-end communications by letting the end
parties exchange a secret session key and then use this key to authenticate and
encrypt the transmitted data under symmetric cryptographic functions. In order
for a key-exchange protocol to be considered secure it needs to guarantee that the
above strategy for securing data works correctly, namely, that by using a shared
key provided by the ke protocol one achieves sound authentication and secrecy.
As it is customary, we will refer to a link between a pair of parties that achieves
these properties as a secure channel. While secure channels may have different
formalizations, here we restrict our treatment to the above setting of securing
communications using symmetric cryptography with a key derived from a key-



466 Ran Canetti and Hugo Krawczyk

exchange protocol. We prove that an SK-secure key-exchange protocol, together
with a secure MAC and symmetric encryption appropriately combined, suffices
for realizing such secure channels.

For lack of space, this extended abstract contains only our treatment of the
task of authenticating the communication. Full treatment, including the task of
providing secrecy (both in the am and in the um) appears in [13].

A Template Protocol: Network Channel. We start by formalizing a “tem-
plate protocol” that captures a generic session-oriented ke-based protocol for
secure channels between pairs of parties in a multi-party setting with parties
P1, . . . , Pn. This template protocol, called NetChan, applies to the unauthentica-
ted-links model um as well as to the authenticated-links model am. Later we
will see specific implementations of this template protocol where the generic
‘send’ and ‘receive’ primitives defined there are instantiated with actual func-
tions (e.g., for providing authentication and/or encryption). We will also define
what it means for such an implementation to be “secure”.

A (session-based) network channel protocol, NetChan(π, snd, rcv), is defined on
the basis of a ke protocol π, and two generic functions snd and rcv. (A more
general treatment can be obtained by considering these functions as interac-
tive protocols but we leave this more general approach beyond the scope of the
present paper.) Both snd and rcv are probabilistic functions that take as argu-
ments a session-key (we denote this key as a subscript to the function) and a
message m. The functions may also depend on other session information such as
a session-id and partner identifiers. The output of snd is a single value m′, while
the output of rcv is a pair (v, ok) where ok is a bit and v an arbitrary value. (The
bit ok will be used to return a verification value, e.g. the result of verifying an
authentication tag.) On the basis of such functions we define NetChan(π, snd, rcv)
in Figure 3.

Network Authentication. On the basis of the above formalism, we treat
the case of network channels that provide authentication of information over
adversary-controlled channels. Namely, we are interested in a NetChan protocol
that runs in the unauthenticated-links model um and yet provides authenticity of
transmitted messages. This implementation of NetChan (which we call NetAut)
will be aimed at capturing the practice by which communicating parties use
a key-exchange protocol to establish a shared session key, and use that key
to authenticate (via a message authentication function, MAC) the information
exchanged during that session. Namely, if Pi and Pj share a matching session s
and Pi wants to send a message m to Pj during that session then Pi transmits
m together with MACκ(m) where κ is the corresponding session key. Thus, in
this case we will instantiate the snd and rcv functions of NetChan with a MAC
function as follows.

Protocol NetAut . Let π be a ke protocol and let f be a MAC function. Pro-
tocol NetAut(π, f) is protocol NetChan(π, snd, rcv) as defined in Figure 3, where
functions snd and rcv are defined as:

– On input m, sndκ(m) produces output m
′ = (m, t) = (m, fk(m)).



Analysis of Key-Exchange Protocols and Secure Channels 467

Protocol NetChan(π, snd, rcv)

NetChan(π, snd, rcv) is initialized with the same initialization function I of
the ke protocol π. It can then be invoked within a party Pi under the
following activations:

1. establish-session(Pi, Pj , s, role): this triggers a ke-session under π within
Pi with partner Pj , session-id s and role ∈ {initiator, responder}. If
the ke-session completes Pi records in its local output “established
session s with Pj” and stores the generated session key.

2. expire-session(Pi, Pj , s): Pi marks session (Pi, Pj , s) (if it exists at Pi)
as expired and the session key is erased. Pi records in its local output
“session s with Pj is expired”.

3. send(Pi, Pj , s,m): Pi checks that session (Pi, Pj , s) has been completed
and not expired, if so it computes m′ = sndκ(m), using the correspond-
ing session key κ, sends (Pi, s,m

′) to Pj , and records “sent message

m to Pj within session s” in the local output.
4. On incoming message (Pj , s,m

′), Pi checks that the session (Pi, Pj , s)
has been completed and not expired, if so it computes (m, ok) =
rcvκ(m

′) under the corresponding session key κ. If ok = 1 then Pi
records “received message m from Pj within session s.” If ok = 0
then no further action is taken.

Fig. 3. A generic network channels protocol

– On input m′, rcvκ(m
′) outputs (v, ok) as follows. If m′ is of the form (m, t),

and the pair (m, t) passes the verification function of f under key κ, then
ok = 1 and v = m. Otherwise, ok = 0 and v = null.

In order to simplify and shorten presentation we assume that no two send activa-
tions within a session contain the same message. One can easily implement this
assumption by specifying that the sender concatenates to the message a unique
message id. In the cases where we care about preventing replay of messages by
the attacker (as it is usually the case when providing message authentication)
then message id’s need to be specified in a way that the receiver can check their
uniqueness (in this case sender and receiver maintain a shared state).

Our goal is to show that if the key-exchange protocol π is SK-secure and the
MAC function f is secure (against chosen-message attacks) then the resultant
network channels protocol NetAut(π, f) provides authenticated transmission of
information. This requirement can be formulated under the property that “any
message recorded by Pi as received from Pj has been necessarily recorded as sent
by Pj , except if the pertinent session is exposed”. We will actually strengthen
this requirement and ask that a network channels protocol provides authenti-
cation if it emulates (i.e. imitates) the transmission of messages in the ideally
authenticated-links model am. Formally, we do so using the notion of protocol
emulation and the formalization (see Section 2.3) of the message transmission
protocol (mt) in the am as done in [2]. Recall that mt is a simple protocol that
defines the transmission of individual messages in the am. Here we extend the



468 Ran Canetti and Hugo Krawczyk

basic definition of mt to a session-based message transmission protocol called
smt. By proving that the network channels protocol NetAut emulates smt in the
um we get the assurance that transmitting messages over unauthenticated-links
using NetAut is as secure as transmitting them in the presence of an attacker
that is not allowed to change or inject messages over the communication links.

The smt protocol. We extend protocol mt from [2] to fit our session-based
setting in which transmitted messages are grouped into different sessions. We call
the extended protocol a session-based message transmission protocol (smt), and
define it in Figure 4. Note the structural similarity between smt and NetChan –
the differences are that no actual key-exchange is run in smt, and the functions
snd and rcv are instantiated to simple “identity functions”.

Protocol smt

Protocol smt can be invoked within a party Pi under the following activa-
tions:

1. establish-session(Pi, Pj , s): in this case Pi records in its local output
“established session s with Pj”.

2. expire-session(Pi, Pj , s): in this case Pi records in its local output
“session s with Pj is expired”.

3. send(Pi, Pj , s,m): in this case Pi checks that session (Pi, Pj , s) has been
established and not expired, if so it sends message m to Pj together
with the session-id s (i.e., the values m and s are sent over the ideally-
authenticated link between Pi and Pj); Pi records in its local output
“sent message m to Pj within session s”.

4. On incoming message (m, s) received over its link from Pj , Pi checks
that session (Pi, Pj , s) is established and not expired, if so it records in
the local output “received message m from Pj within session s”.

Fig. 4. smt: The session-based mt protocol in the am.

Protocol smt represents a perfectly authenticated exchange of messages. An
implementation of protocol NetChan is said to be a secure network authentication
protocol if it emulates (see Section 2.3) protocol smt in the um.

Definition 3. Protocol NetChan(π, snd, rcv) is called a secure network authenti-
cation protocol if it emulates protocol smt in the um.

The following theorem is proven in [13]:

Theorem 3. If π is a SK-secure key-exchange protocol in the um and snd, rcv
are based as described above on a MAC function f that is secure against chosen
message attacks, then protocol NetAut(π, snd, rcv) is a secure network authenti-
cation protocol.

Network Encryption and Secure Channels Protocols. For lack of space,
we omit from this extended abstract two basic components in our work (the



Analysis of Key-Exchange Protocols and Secure Channels 469

complete treatment appears in [13]). One is the formalization of a network en-
cryption protocol and its security, the other is the definition of a secure channels
protocol. These formalizations are based, as in the case of the network authenti-
cation protocol, on the above generic network channels template. In the case of
the network encryption protocol, security (in the sense of secrecy) is formulated
following the indistinguishability approach. Secure channels are then defined as
network channel protocols that are simultaneously secure network authentica-
tion and secure network encryption protocols. Implementations of such secure
protocols are presented using SK-secure key-exchange protocols and secure en-
cryption and authentication functions. One particularly interesting aspect of our
work is highlighted by recent results in [25] where it is demonstrated that the
specific ordering of encryption and authentication as applied here is instrumental
for achieving secure channels (if one assumes the standard strength, i.e. against
chosen-plaintext attacks, of the encryption function). As it turns out other com-
mon orderings of these functions do not guarantee secure channels in this case
(even if the ke protocol in use is secure).

References

1. D. Beaver, “Secure Multi-party Protocols and Zero-Knowledge Proof Systems
Tolerating a Faulty Minority”, J. Cryptology (1991) 4: 75-122.

2. M. Bellare, R. Canetti and H. Krawczyk, “A modular approach to the design
and analysis of authentication and key-exchange protocols”, 30th STOC, 1998.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations Among No-
tions of Security for Public-Key Encryption Schemes”, Advances in Cryptology

- CRYPTO’98 Proceedings, Lecture Notes in Computer Science Vol. 1462, H.
Krawczyk, ed., Springer-Verlag, 1998, pp. 26–45.

4. M. Bellare, E. Petrank, C. Rackoff and P. Rogaway, “Authenticated key ex-
change in the public key model,” manuscript 1995–96.

5. M. Bellare and P. Rogaway, “Entity authentication and key distribution”, Ad-

vances in Cryptology, - CRYPTO’93, Lecture Notes in Computer Science Vol.
773, D. Stinson ed, Springer-Verlag, 1994, pp. 232-249.

6. M. Bellare and P. Rogaway, “Provably secure session key distribution– the three
party case,” Annual Symposium on the Theory of Computing (STOC), 1995.

7. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva and M. Yung,
“Systematic design of two-party authentication protocols,” IEEE Journal on

Selected Areas in Communications (special issue on Secure Communications),
11(5):679–693, June 1993. (Preliminary version: Crypto’91.)

8. S. Blake-Wilson, D. Johnson and A. Menezes, “Key exchange protocols and
their security analysis,” Proceedings of the sixth IMA International Conference
on Cryptography and Coding, 1997.

9. S. Blake-Wilson and A. Menezes, “Entity authentication and key transport pro-
tocols employing asymmetric techniques”, Security Protocols Workshop, 1997.

10. M. Burrows, M. Abadi and R. Needham, “A logic for authentication,” DEC
Systems Research Center Technical Report 39, February 1990. Earlier versions
in Proceedings of the Second Conference on Theoretical Aspects of Reasoning
about Knowledge, 1988, and Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, 1989.



470 Ran Canetti and Hugo Krawczyk

11. R. Canetti, “Security and Composition of Multiparty Cryptographic Protocols”,
Journal of Cryptology, Vol. 13, No. 1, 2000.

12. R. Canetti, “A unified framework for analyzing security of Protocols”,
manuscript, 2000. Available at http://eprint.iacr.org/2000/067.

13. R. Canetti and H. Krawczyk, “Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels (Full Version)”, http://eprint.iacr.org/2001.

14. R. Canetti and H. Krawczyk, “Proving secure composition of key-exchange pro-
tocols with any application”, in preparation.

15. W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. Info.

Theory IT-22, November 1976, pp. 644–654.
16. W. Diffie, P. van Oorschot and M. Wiener, “Authentication and authenticated

key exchanges”, Designs, Codes and Cryptography, 2, 1992, pp. 107–125.
17. O. Goldreich, “Foundations of Cryptography (Fragments of a book)”, Weizmann

Inst. of Science, 1995. (Available at http://philby.ucsd.edu/cryptolib.html)
18. O. Goldreich, S. Goldwasser and S. Micali, “How to construct random func-

tions,” Journal of the ACM, Vol. 33, No. 4, 210–217, (1986).
19. S. Goldwasser, and L. Levin, “Fair Computation of General Functions in Pres-

ence of Immoral Majority”, CRYPTO ’90, LNCS 537, Springer-Verlag, 1990.
20. S. Goldwasser and S. Micali, Probabilistic encryption, JCSS, Vol. 28, No 2, April

1984, pp. 270-299.
21. S. Goldwasser, S. Micali and C. Rackoff, “The Knowledge Complexity of In-

teractive Proof Systems”, SIAM Journal on Comput., Vol. 18, No. 1, 1989, pp.
186-208.

22. C.G. Günther, “An identity-based key-exchange protocol”, Advances in Cryptol-

ogy - EUROCRYPT’89, Lecture Notes in Computer Science Vol. 434, Springer-
Verlag, 1990, pp. 29-37.

23. D. Harkins and D. Carrel, ed., “The Internet Key Exchange (IKE)”, RFC 2409,
November 1998.

24. ISO/IEC IS 9798-3, “Entity authentication mechanisms — Part 3: Entity au-
thentication using asymmetric techniques”, 1993.

25. H. Krawczyk, “The order of encryption and authentication for protecting com-
munications (Or: how secure is SSL?)”, manuscript.

26. H. Krawczyk, “SKEME: A Versatile Secure Key Exchange Mechanism for In-
ternet,”, Proceedings of the 1996 Internet Society Symposium on Network and
Distributed System Security, Feb. 1996, pp. 114-127.

27. P. Lincoln, J. Mitchell, M. Mitchell, A. Schedrov, “A Probabilistic Poly-time
Framework for Protocol Analysis”, 5th ACM Conf. on Computer and System
Security, 1998.

28. A. Menezes, P. Van Oorschot and S. Vanstone, “Handbook of Applied Cryptog-
raphy,” CRC Press, 1996.

29. S. Micali and P. Rogaway, “Secure Computation”, unpublished manuscript,
1992. Preliminary version in CRYPTO 91.

30. R. Needham and M. Schroeder, “Using encryption for authentication in large
networks of computers,” Communications of the ACM, Vol. 21, No. 12, Decem-
ber 1978, pp. 993–999.

31. B. Pfitzmann, M. Schunter and M. Waidner, “Secure Reactive Systems”, IBM
Research Report RZ 3206 (#93252), IBM Research, Zurich, May 2000.

32. B. Pfitzmann and M. Waidner, “A General Framework for Formal Notions of
‘Secure’ System”, Hildesheimer Informatik-Berichte 11/94 Institut fr Informatik,
Universitt Hildesheim, April 1994.



Analysis of Key-Exchange Protocols and Secure Channels 471

33. B. Pfitzmann and M. Waidner, “A model for asynchronous reactive systems and
its application to secure message transmission”, IBM Research Report RZ 3304
(#93350), IBM Research, Zurich, December 2000.

34. V. Shoup, “On Formal Models for Secure Key Exchange”, Theory of Cryp-
tography Library, 1999. Available at: http://philby.ucsd.edu/cryptolib/1999/99-
12.html.

A A comparison with [34]

Section 1.1 mentioned the work by Shoup [34] on definitions and analysis of ke

protocols. This appendix further expands on some of the differences between
that work and ours.

We start with a short summary of the relevant parts of [34]. Shoup’s defini-
tions are based on the simulatability approach of [2] with some significant mod-
ifications. Three levels of security are presented: Static security (i.e., security
against adversaries that corrupt parties only at the onset of the computation),
adaptive security (where the adversary obtains only the long-term information of
a newly corrupted party) and strongly adaptive security where the adversary ob-
tains all the private information of corrupted parties. (Oddly, strongly adaptive
security does not imply adaptive security.) In addition, two definitions based on
the indistinguishability approach of Bellare and Rogaway [5] are presented. The
first is aimed at capturing security without perfect forward secrecy (PFS), and
is shown to be equivalent to the static variant of the simulation-based defini-
tion. The second is aimed at capturing security with PFS, and is claimed to be
equivalent to the adaptive variant of the simulation-based definition. Sufficiency
of the definitions to constructing secure-channel protocols is informally argued,
but is not proved nor rigorously claimed.

While the first variant of the indistinguishability-based definition is roughly
equivalent to the non-PFS variant presented here (modulo the general differences
mentioned below), the second variant is strictly weaker than our PFS formulation
of SK-security. Specifically, the definition in [34] accepts as secure protocols that
do not erase sensitive ephemeral data (e.g. protocol DHKE-1 in [34]), while the
definition here treats these protocols as insecure.

There are several other technical and methodological differences between
the two works that we mention next. (a) A major methodological difference is
our use of the authenticated-links model and authenticators as a simplifying
analysis tool. While our formalization of security does not mandate the use of
this methodology we carefully build our definitions to accomodate the use of
this tool. (b) Shoup allows the adversary a more general attack than session-key
query, namely an application attack that reveals an arbitrary function of the key.
Our modeling does not define this explicit attack as it turns out to be unnecessary
for guaranteeing secure channels. (c) Here we consider an additional adversarial
behavior that is not treated in [34]. Specifically, we protect against adversaries
that obtain the internal state of corrupted sessions (even without fully corrupting
the corresponding parties) by requiring that such exposure will not compromise



472 Ran Canetti and Hugo Krawczyk

other protocol sessions run by the same parties. This protection is not guaranteed
by some protocols suggested in [34] (e.g., protocol DHKE). (d) The treatment of
the interaction with the certificate authority (CA). In [34] the interaction with
the CA is an integral part of every ke protocol, whereas here this interaction
with the CA is treated as a separate protocol. We make this choice for further
modularity and ease of proof. Yet, as we already remarked in Section 2.2, the
CA protocol needs to be taken into consideration with any full specification and
analysis of actual ke protocols. (e) The treatment of the session-id’s. In [34] the
session-id’s are artificially given to the parties by the model which results, in our
view, in a more cumbersome formalization of the security conditions. In contrast,
here we adopt a more natural approach where the session-id’s are generated
by the calling protocol and security is guaranteed only when these session-id’s
satisfy some minimal (and easy to implement) conditions. In particular, this
formalism can be satisfied by letting the parties jointly generate the session-id
(as is common in practice).

Overall, we believe that the approaches in this work and in [34] are not
“mutually exclusive” and both can be useful depending on a particular setting
or even taste. However, for [34] to be truly useful, and for a full comparison
and assessment to be possible, many of the missing definition and proof details
in that work will need to be completed. Especially, rigorous proofs of protocols
and a definition of secure channels is needed to assess the sufficiency of these
protocols for providing the basic secure-channels functionality.


