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Abstract. Message integrity from one sender to one receiver is typically
achieved by having the two parties share a secret key to compute a Mes-
sage Authentication Code (MAC). We consider the “multicast MAC”,
which is a natural generalization to multiple receivers. We prove that
one cannot build a short and efficient collusion resistant multicast MAC
without a new advance in digital signature design.

1 Introduction

We study the problem of message integrity in the context of a single source mul-
ticast. Consider a TV station, such as the Disney channel. The TV station is
broadcasting to n receivers. Each receiver would like to ensure that the broad-
casts are indeed coming from the Disney channel rather than from a malicious
third party (who might be transmitting offensive material).
One natural approach would be to employ digital signatures. Suppose the

transmitter has a secret signing key and each of the receivers has the corre-
sponding public key. To provide message integrity the transmitter signs every
message she broadcasts. No coalition of receivers can forge a message/signature
pair that will fool another receiver. Although signatures provide multicast mes-
sage integrity they are fundamentally an overkill solution for this problem. First,
signatures are somewhat expensive to compute. Second, digital signatures pro-
vide non-repudiation: Any receiver can use the signature to prove to a third
party that the message came from the transmitter. However, non-repudiation is
unnecessary for message integrity.
Message integrity between two parties is usually done by sharing a secret

key k between the sender and receiver. When sending a message M the sender
computes a keyed hash function MAC = Hk(M) and transmits the MAC along
with the message. MACs are much faster than digital signatures, and do not
provide non-repudiation. We seek a generalization of MACs for the multicast
setting. This would be a distribution of keys to sender and receivers, and a
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method for tagging messages by the sender that would be convincing to every
receiver. We call this primitive a “multicast MAC” (MMAC).

One simple approach for a MMAC might be to share a global secret key k
between the transmitter and all n receivers. The transmitter appends Hk(M) to
every transmitted message M . Each receiver can then verify the MAC sent by
the transmitter. This is insecure since any receiver can forge messages that will
fool any other receiver.

Another simple approach is secure but inefficient. The transmitter shares
a distinct secret key ki with each of the n receiver u1, . . . , un. When sending
a message M the transmitter computes MMAC = Hk1

(M)‖ . . . ‖Hkn
(M) and

transmits (M,MMAC). Each receiver ui verifies the MMAC by using the entry
that corresponds to the key ki. This construction is secure, in the sense that no
coalition of users can create a message/MMAC pair that will fool a user outside
the coalition (since they do not have the outsider’s MAC key). Unfortunately, the
length of the MMAC is linear in the number of receivers. Hence, this construction
is not very practical, even though it avoids non-repudiation.

Since none of the above solutions is perfect, it is tempting to try to build a
MMAC that is as short as a signature (i.e., length independent of the number
of receivers), but much more efficient. We give lower bounds that suggest that
this might be a difficult task. Our main results show that if one could build
practical (i.e. short) MMACs, then they could be converted into new efficient
digital signature schemes. Consequently, it is unlikely that practical MMACs
could be constructed without an unexpected advance in digital signature design.

We can relax our security requirement by saying that a MMAC is κ-secure if
no coalition of size less than κ can fool another receiver. In Section 5 we generalize
our lower bound and show that if one could build a κ-secure MMAC whose length
is less than log2

∑κ
i=0

(

n
i

)

then it could be converted into an efficient signature
scheme. For small values of κ this lower bound is approximated by O(κ log n).
This lower bound matches an upper bound construction based on pseudorandom
functions due to Canetti et al. [1]. Hence our results show that for small values
of κ the Canetti et al. construction is optimal.

Our results demonstrate the importance of recent constructions for practical
multicast authentication [5, 17, 10, 11, 7, 12]. Some of these constructions achieve
great efficiency (well beyond what is implied by our bounds) by making use of
additional assumptions, such as weak time synchronization between sender and
receivers [10, 11]. We emphasize that our lower bounds for MMACs suggest diffi-
culty only for constructions that use the standard model for MACs, as described
in the next section.

A fundamental result of theoretical cryptography is that a digital signature
scheme can be derived from any one way function [9, 13, 2]. Since the existence of
a multicast MAC implies the existence of a one way function, that would seem to
imply a reduction of the form that we claim. However, this construction is far too
inefficient to be considered for any practical purposes. In contrast, our results are
achieved through direct reductions from multicast MACs to public key signature
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schemes. Our reductions are efficient, in the sense that the derived signature
schemes have almost the same level of security as the underlying MMAC schemes.

1.1 Related work

Previous work on multicast authentication followed two tracks: (1) the computa-
tional model, based on pseudorandom functions and hash functions, and (2) the
information theoretic model, providing unconditional security. Constructions in
the information theoretic model provide very strong security guarantees. This
strong security comes at a price: The secret key can only be used for a small num-
ber of messages. MMACs built in the computational model are not as strong,
since their security depends on a complexity assumption. However, computa-
tional MMACs can be used to authenticate many messages using relatively short
keys. All of the results in this paper are set in the computational model.
In the computational model, Canetti et al. [1] construct a κ-secure MMAC

by concatenating many pseudorandom functions whose output is a single bit.
This construction does not provide non-repudiation. As mentioned above, our
results show that this clever construction is optimal. We note that the security
model in [1] is slightly different from our security model. They require that a
coalition should not be able to create a forgery that can fool a specific receiver.
In some cases a coalition might be content if a broadcast of a forged message
fools any receiver. Hence, in our model, a forgery is considered successful if it
fools any receiver outside the coalition. Adapting the construction of Canetti et
al. to this stronger security model adds a factor of lnn to the length of their
MMAC. The result is a MMAC of length 4e(κ + 1) lnn ln 1/ε where n is the
number of receivers, ε is the failure probability, and e = 2.718. For small values
of κ, and a fixed ε, our lower bound of O(κ log n) asymptotically matches their
upper bound.
In the information theoretic model, Multicast MACs were introduced by

Desmedt, Frankel, and Yung [3] (see also Simmons [16] for the somewhat related
notion of authentication codes with arbitration). They gave two constructions for
κ-secure MMACs. Kurosawa and Obana [8] derived elegant lower bounds on the
probability of success in impersonation and substitution attacks. They showed
that the DFY construction is optimal. Safavi-Naini and Wang [14, 15] show how
to construct information theoretic MMACs using cover free set systems. Their
constructions are similar to the ones given in [1]. Cover free set systems were
also used by Fujii, et al. [4].
We briefly review the use of signatures as an alternative to MMACs for mul-

ticast authentication. There are two difficulties in using signatures for multicast
MACs: (1) in streaming audio and video applications one cannot afford to buffer
the entire message prior to signing it, and (2) multicast transmissions suffer from
packet loss (multicast does not provide packet loss recovery), so one needs signa-
ture schemes for an unreliable transmission channel. Problem (1) is often solved
by combining standard signatures with fast one time signatures [5, 12]. Prob-
lem (2) is solved by introducing various types of redundancy during signature
generation [17, 12, 10, 7].
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We note that the constructions in [10, 11] provide short multicast message
authentication without non-repudiation. The authentication tags in these con-
structions are shorter than our lower bounds predict since they rely on some
weak timing synchorinization between sender and receivers. Our lower bounds
suggest that one must resort to such assumptions to obtain practical multicast
authentication without non-repudiation.

2 Definitions

We begin by giving precise definitions for MMACs secure against existential
and selective forgeries. To reduce the number of definitions in the section we
only consider the strongest adversaries, namely adversaries capable of adaptive
chosen message attacks. For completeness, we briefly recall definitions of security
for signatures schemes.

2.1 Multicast MACs

A Multicast MAC, or MMAC, is specified by three randomized algorithms
(key-gen, mac-gen, mac-ver).

key-gen: takes a security parameter s and a number of receivers n and returns
keys sk, rk1, . . . , rkn ∈ {0, 1}

∗. We call sk the sender key and rki the ith
receiver key.

mac-gen: takes as input a message M ∈ {0, 1}∗ and a key K ∈ {0, 1}∗ and
returns a tag T = mac-gen(M,K) ∈ {0, 1}τ for some fixed tag length τ bits.

mac-ver: takes as input a message M ∈ {0, 1}∗, a tag T ∈ {0, 1}τ , and a key
K ∈ {0, 1}∗, and returns a bit: mac-ver(M,T,K) ∈ {‘yes’, ‘no’}.

These algorithms are subject to the constraint that for all (sk, rk1, . . ., rkn)
produced by key-gen(s, n) we have that

∀M ∈ {0, 1}∗, ∀i ∈ {1, . . . , n} : mac-ver(M,mac-gen(M, sk), rki) = ‘yes’

In other words, tags created by mac-gen using the correct sender key verify
correctly for all receivers. Each of these algorithms must run in time polynomial
in n, s, and the size of the message input.

MMAC security against selective forgery A MMAC (key-gen, mac-gen,
mac-ver) is said to be (t, ε, q)-secure against selective forgery under an adaptive

chosen message attack if every t-time probabilistic algorithm A wins the game
below with probability at most ε. We model the game as a communication be-
tween a challenger and the forging algorithm A. See Figure 1. We assume that
the system parameters n and s are fixed ahead of time.

Step 1: The forging algorithm A starts the game by sending the challenger a
target message M ∈ {0, 1}∗. The forger’s goal is to forge a MMAC for this
message M . The forger also sends a subset I ⊆ {1, . . . , n}. The subset I
should be viewed as the set of receivers colluding to fool some other receiver.
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MMAC: Selective Forgery

challenger forger

M

I � {1, . . . , n}

rki1 , . . . , rkiw
runs key-gen

M1

T1 = mac-gen(M1, sk)

Mq

... ∀i :Mi 6=M

Tq = mac-gen(Mq, sk)

T

∃j 6∈ I : mac-ver(M,T, rkj) = ‘yes’

MMAC: Existential Forgery

challenger forger

runs key-gen

I � {1, . . . , n}

rki1 , . . . , rkiw

M1

T1 = mac-gen(M1, sk)

Mq

...

Tq = mac-gen(Mq, sk)

M,T

∃j 6∈ I : mac-ver(M,T, rkj) = ‘yes’

Fig. 1. The games used to define two security notions for a MMAC.

Step 2: The challenger runs algorithm key-gen(s, n) and obtains the MMAC
keys (sk, rk1, . . ., rkn). The challenger sends the subset {rki}i∈I to A.

Step 3: Algorithm A then mounts a chosen message attack by sending queries
M1, . . . ,Mq to the challenger, where Mi 6= M for all i = 1, . . . , q. The chal-
lenger responds with Ti = mac-gen(Mi, sk) for i = 1, . . . , q. Note that these
queries may be issued adaptively. That is, the adversary A might wait for a
response Ti before issuing request Mi+1.

Step 4: Finally, A outputs a candidate MMAC, T , for the target message M .

We say that A wins this game if T verifies as a valid tag for M for some receiver
j outside of I. More precisely, we say that A wins the game if

∃j 6∈ I s.t. mac-ver(M,T, rkj) = ‘yes’.

The probability that A wins this game is taken over the random coin flips of the
algorithms key-gen, mac-gen, mac-ver, and the random coin flips of A.
The definition above assumes the adversary commits to the set of corrupt

users I at the beginning of the game. One can also consider a stronger definition
where the adversary is dynamic: the adversary adaptively chooses which users
to corrupt during the game. Since our lower bounds already apply when the
adversary is restricted to the static settings, the same lower bounds apply in
the dynamic settings. Therefore, throughout the paper we only consider static
adversaries.
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MMAC security against existential forgery A MMAC (key-gen, mac-gen,
mac-ver) is said to be (t, ε, q)-secure against existential forgery under an adaptive
chosen message attack if every t-time probabilistic algorithm A wins the following
modified game with probability less than ε. The game is identical to the above,
except that A does not commit to the message M in Step 1. Instead, the target
message M is output by A in the last step (Step 4), at the same time as the
candidate tag T . Note that we must have M 6=Mi for all i. See Figure 1.

2.2 Signature Schemes

Our goal is to establish a relation between MMACs and digital signatures. We
therefore briefly review two notions of security for digital signatures: security
against selective forgery, and security against existential forgery [6]. We review
both notions under a chosen message attack.
A signature scheme is specified by three probabilistic algorithms (skey-gen,

sig-gen, sig-ver).

skey-gen: takes a security parameter s and returns keys Ksec,Kpub ∈ {0, 1}
∗.

We call Ksec the secret key and Kpub the public key.
sig-gen: takes as input a messageM ∈ {0, 1}∗ and a key K ∈ {0, 1}∗ and returns

a signature S = sig-gen(M,K) ∈ {0, 1}∗.
sig-ver: takes as input a messageM ∈ {0, 1}∗, a candidate signature S ∈ {0, 1}∗,

and a key K ∈ {0, 1}∗, and returns a bit: sig-ver(M,S,K) ∈ {‘yes’, ‘no’}.

These algorithms are subject to the constraint that for all pairs (Ksec, Kpub)
produced by skey-gen(s), we have that

∀M ∈ {0, 1}∗ : sig-ver(M, sig-gen(M,Ksec),Kpub) = ‘yes’

Each of these algorithms must run in time polynomial in n, s, and the size of
the input.

Signature security against selective and existential forgery A signature
scheme (skey-gen, sig-gen, sig-ver) is said to be (t, ε, q)-secure against selective

forgery under an adaptive chosen message attack if every t-time probabilistic
algorithm B wins the game below with probability at most ε. See Figure 2. We
assume the security parameter s has already been fixed.

Step 1: The forging algorithm B outputs a target message M ∈ {0, 1}∗.
Step 2: The challenger runs algorithm skey-gen(s) and obtains the keys (Ksec,

Kpub). The challenger sends Kpub to B.
Step 3: Algorithm B then mounts a chosen message attack by querying the

challenger with messages M1, . . . ,Mq ∈ {0, 1}
∗, where Mi 6= M for all i =

1, . . . , q. The challenger responds with Si = sig-gen(Mi,Ksec). Note that
these queries may be issued adaptively.

Step 4: Finally, B outputs a candidate signature S for the target message M .
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Signatures: Selective Forgery

challenger forger

M

Kpubruns skey-gen

M1

S1 = sig-gen(M1,Ksec)

Mq

... ∀i :Mi 6=M

Sq = sig-gen(Mq,Ksec)

S

sig-ver(M,S,Kpub) = ‘yes’

Signatures: Existential Forgery

challenger forger

runs skey-gen Kpub

M1

S1 = sig-gen(M1,Ksec)

Mq

...

Sq = sig-gen(Mq,Ksec)

M,S

sig-ver(M,S,Kpub) = ‘yes’

Fig. 2. Signature Scheme Security.

We say that B wins this game if S verifies as a valid signature on M . More
precisely, we say that B wins this game if sig-ver(M,S,Kpub) = ‘yes’.

Similarly, a signature scheme is said to be (t, ε, q)-secure against existential
forgery under an adaptive chosen message attack if every t-time probabilistic
algorithm B wins a modified game with probability less than ε. The game is
identical to the above, except that the target message M is output by B in the
last step (Step 4), at the same time as the candidate signature S. See Figure 2.

3 Equivalence of MMAC and Signing for Selective

Forgery

One can easily show that for each notion of security defined above, every (t, ε,
q)-secure signature scheme is also a (t, ε, q)-secure multicast authentication code.
Our goal in the next two sections is to show an approximate converse: any short
MMAC gives rise to a signature scheme with an almost equal level of security.
We begin by showing that a MMAC secure against selective forgery gives rise to
a signature scheme secure against selective forgery. In the next section, we show
a similar result for existential forgery.

The derived signature scheme: Given a MMAC (key-gen, mac-gen, mac-ver)
we define the derived signature scheme (skey-gen, sig-gen, sig-ver) as follows:
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skey-gen(k, n) 1. Run key-gen(k, n) to get (sk, rk1, . . . , rkn).
2. Pick a random subset I = {i1, . . . , iw} ⊆ {1, . . . , n}.
3. Output Ksec = sk and Kpub = (rki1 , . . . , rkiw).

sig-gen(M,Ksec) Output T = mac-gen(M,Ksec).

sig-ver(M,S,Kpub) Write Kpub = (rki1 , . . . , rkiw). Output ‘yes’ if and only if
for all j = 1, . . . , w, mac-ver(M,S, rkij ) = ‘yes’.

The following theorem shows that the derived signature scheme has nearly
identical security properties as the MMAC.

Theorem 1. Suppose the MMAC (key-gen, mac-gen, mac-ver) is (t, ε, q)-secure
against selective forgery under an adaptive chosen message attack, and suppose

the length of the output of mac-gen(M , sk) is bounded above by τ = n −m for

all M and sk. Then the derived signature scheme (skey-gen, sig-gen, sig-ver) is
(t, ε+ 1

2m , q)-secure against selective forgery under an adaptive chosen message

attack.

Note that taking m = 80 already results in a sufficiently secure signature
scheme. Hence, whenever the MMAC length is slightly shorter than the number
of receivers, n, the MMAC is easily converted into a secure signature scheme.

Proof. Suppose we have a forger B that produces successful selective forgeries for
the derived signature scheme (skey-gen, sig-gen, sig-ver). We build a forger A for
the MMAC (key-gen, mac-gen, mac-ver). The proof will follow by contradiction.
Recall that we model security as the probability of winning a game against a
certain challenger. We describe how the algorithm A interacts with the challenger
in this game, using B as a subroutine. See Figure 3.

Step 1: The algorithm A runs B to obtain the selected message M , which
it forwards to the challenger as the message intended for its own selective
forgery.

Step 2: Algorithm A chooses a random subset I = {i1, . . . , iw} ⊆ {1, . . . , n}
and sends this to the challenger. The challenger responds with (rki1 , . . .,
rkiw) for some (sk, rk1, . . ., rkn) generated randomly by key-gen.

Step 3: The algorithm A sets Kpub = (rki1 , . . ., rkiw) and sends Kpub to B.
The distribution on Kpub is identical to the distribution on keys generated
by skey-gen.

Step 4: Algorithm A now continues the execution of B, forwarding each query
Mi to the challenger, and passing along each response Ti back to B. Note
that Ti is a valid signature onMi as defined by the derived signature scheme.

Step 5: After at most q queries, B outputs a signature forgery S for M . The
algorithm A outputs S as its candidate MMAC forgery for M .

We show that A wins the selective forgery game for MMACs with probability
at least ε. That is, S is a MMAC forgery with probability at least ε. The proof
is based on the concept of a “bad pair”. Let M ′ be a message in {0, 1}∗ and let
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M

I �R {1, . . . , n}

rki1 , . . . , rkiw

M1

T1 = mac-gen(M1, sk)

Mq

...

Tq = mac-gen(Mq, sk)

S

M

Kpub = (rki1 , . . . , rkiw)

M1

T1

Mq

...

Tq

S

1

2

3

4

5

runs key-gen

∀i :Mi 6=M

challenger algorithm A algorithm B

Fig. 3. MMAC forger A uses signature forger B to forge a MMAC.

I ′ be a coalition I ′ ⊆ {1, . . . , n}. We say that the pair (M ′, I ′) is bad if there is
some tag T ∈ {0, 1}n−m satisfying:

∀i ∈ I ′ : mac-ver(M ′, T, rki) = ‘yes’ and ∀j 6∈ I ′ : mac-ver(M ′, T, rkj) = ‘no’.

In other words, (M ′, I ′) is bad if I ′ is precisely the subset of receiver keys for
which some tag T verifies as a valid tag forM ′. The following lemma shows that
for a fixed message M there are few pairs (M, I) that are bad.

Lemma 1. For any message M :

Pr[(M, I) is bad ] ≤
1

2m
.

where the probability is over the choice of a random coalition I ⊆ {1, . . . , n}.

Proof. For each tag T ∈ {0, 1}n−m, let IT be the set of receivers i for which
mac-ver(M,T, rki) = ‘yes’. By definition, the pair (M, IT ) is bad. Notice that
the collection

{

(M, IT )
∣

∣ T ∈ {0, 1}n−m
}

completely describes all bad pairs containing M in the first coordinate. Since
there are only 2n−m possible values for T , this set is of size at most 2n−m. Since
I is chosen independently of M , it follows that

Pr
I⊆{1,...,n}

[(M, I) is bad] ≤
2n−m

2n
=
1

2m
,
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establishing the lemma.

We are now ready to complete the proof Theorem 1.

Proof of Theorem 1. We will establish the contrapositive. Suppose there
is a forger B for the derived signature scheme (skey-gen, sig-gen, sig-ver) that
runs in time t, makes q queries, and produces a successful selective forgery with
probability at least ε + 1

2m . We show the algorithm A described in Figure 3
wins the selective forgery game for the MMAC (key-gen, mac-gen, mac-ver) with
probability at least ε.

We say that event A occurs when the pair (M, I) is not bad where M is
the message chosen in Step 1, and I is the random set chosen in Step 2. We say
the event B occurs when the algorithm B wins the signature forgery game by
outputting a forgery S on M in the derived signature scheme. By assumption
we know that Pr[B] > ε+ 1

2m . Now, when both events A and B occur, we deduce
the following:

(1) Since S is a signature forgery for M we have that

∀i ∈ I : mac-ver(M,S, rki) = ‘yes’;

(2) Since (M, I) is not bad, the set of users for which S is a valid MMAC cannot
be I. Hence, by (1),

∃j 6∈ I : mac-ver(M,S, rkj) = ‘yes’.

But the second condition is precisely what is needed for A to win the selective
forgery game against the MMAC. Since by Lemma 1 we have that Pr[¬A] ≤ 1

2m

we obtain the following:

Pr[A wins MMAC forgery game] ≥ Pr[B ∧ A] ≥ Pr[B]− Pr[¬A]

≥

(

ε+
1

2m

)

−
1

2m
= ε.

This probability is taken over the random coin flips of the challenger and of the
algorithms A and B. Thus, the theorem follows.

4 Equivalence of MMAC and Signing for Existential

Forgery

Next, we show that an existentially secure MMAC gives rise to an existentially
secure signature scheme. The resulting bounds are a bit weaker than for se-
lective forgery. Let (key-gen, mac-gen, mac-ver) be a MMAC, and let H be a
collision-resistant hash function from {0, 1}∗ to {0, 1}h. Define the derived sig-
nature scheme (skey-gen, sig-gen, sig-ver) as follows:
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skey-gen(k, n) 1. Run key-gen(k, n) to get (sk, rk1, . . . , rkn).
2. Pick random subset I = {i1, . . . , iw} ⊆ {1, . . . , n}.
3. Output Ksec = sk and Kpub = (rki1 , . . . , rkiw).

sig-gen(M,Ksec) Output T = mac-gen(H(M),Ksec).

sig-ver(M,S,Kpub) Write Kpub = (rki1 , . . . , rkiw). Output ‘yes’ if and only if
for all j = 1, . . . , w, mac-ver(H(M), S, rkij ) = ‘yes’.

Suppose the MMAC (key-gen, mac-gen, mac-ver) is (t, ε, q)-secure against
existential forgery under an adaptive chosen message attack, and suppose the
length of the output of mac-gen(M) is bounded by τ = n−m for allM . Further-
more let H be chosen from a family of collision-resistant hash function. specifi-
cally, suppose no t-time algorithm can findM1 6=M2 such that H(M1) = H(M2)
with success probability greater than some small εH . We show in the following
theorem that the derived signature scheme retains nearly identical security prop-
erties.

Theorem 2. The derived signature scheme (skey-gen, sig-gen, sig-ver) is (t,
ε + 1

2m−h + εH , q)-secure against existential forgery under an adaptive chosen

message attack.

For example, suppose (key-gen, mac-gen, mac-ver) is (t, ε, q)-secure against
existential forgery. Let H be the hash function SHA-1 : {0, 1}∗ → {0, 1}160,
with security εH ≈ 1

280 . Then taking m = 240 results in a sufficiently secure
signature scheme. Hence, as soon as the MMAC length is slightly less than the
number of receivers, n, we obtain an existentially secure signature scheme.

Proof of Theorem 2. We will establish the contrapositive. Suppose we have a
forger B that produces successful existential forgeries for the derived signature
scheme (skey-gen, sig-gen, sig-ver). We build a MMAC forger A for (key-gen,
mac-gen, mac-ver). Recall that we model security as the probability of winning
a game against a certain challenger. We describe how the algorithm A interacts
with the challenger in this game, using B as a subroutine.

Step 1: The algorithm A chooses a random subset I = {i1, . . . , iw} ⊆ {1, . . . , n}
and sends this to the challenger, which responds with (rki1 , . . . , rkiw) for
some (sk, rk1, . . . , rkn) generated randomly by key-gen.

Step 2: Algorithm A sets Kpub = (rki1 , . . . , rkiw) and sends Kpub to B.
Step 3: For each query Mi made by B, algorithm A sends the query H(Mi) to

the challenger. Algorithm A then passes the response Ti back to B.
Step 4: After at most q queries, B outputs a message M and a candidate sig-

nature forgery S for M . If H(Mi) = H(M) for some i ∈ {1, . . . , q}, the
algorithm A aborts the forgery attempt, as a collision in H has been found.
Otherwise, the algorithm A outputs the pair (H(M), S) as its candidate
MMAC forgery.

We claim that A wins the existential forgery game for MMACs with probabil-
ity at least ε. The proof uses the following concept: we say that a subset of users
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I ′ ⊆ {1, . . . , n} is bad if there is some Hm ∈ {0, 1}
h and some tag T ∈ {0, 1}n−m

such that

∀i ∈ I ′ : mac-ver(Hm, T, rki) = ‘yes’, and

∀j 6∈ I ′ : mac-ver(Hm, T, rkj) = ‘no’.

That is, I ′ is bad when I ′ is precisely the subset of receiver keys for which some
tag T verifies as a valid tag for some Hm in the range of the hash function H.

Lemma 2. When I is a random subset of {1, . . . , n} we have that:

Pr[I is bad ] ≤
1

2m−h
.

Proof. We use the bound of Lemma 1 on the probability that a pair (Hm, I ′) is
bad, for any Hm ∈ {0, 1}

h. We obtain the following:

Pr
I⊆{1,...,n}

[I is bad] = Pr
I⊆{1,...,n}

[∃Hm ∈ {0, 1}
h s.t. (Hm, I) is bad]

≤
∑

Hm∈{0,1}h

Pr
I⊆{1,...,n}

[(Hm, I) is bad] ≤ 2h
(

1

2m

)

=
1

2m−h
,

as desired.

We can now complete the proof Theorem 2. Suppose there is a forger B for the
derived signature scheme (skey-gen, sig-gen, sig-ver) that runs in time t, makes
q queries, and produces a successful existential forgery with probability at least
ε+ 1

2m−h +εH . We claim algorithm A described above wins the existential forgery
game for the MMAC (key-gen, mac-gen, mac-ver) with probability at least ε.
We say the event A occurs when the set I chosen in Step 1 of algorithm A

is not bad. We say the event B occurs when the algorithm A does not abort
in Step 4. Finally, we say the event C occurs when the algorithm B wins the
existential forgery game by outputting a forgery S onM in the derived signature
scheme. By assumption we know that Pr[C] ≥ ε+ 1

2m−h + εH .
Now, when events A, B, and C hold, we deduce the following:

(1) ∀i ∈ I : mac-ver(H(M), S, rki) = ‘yes’ (S is a signature forgery for M),
(2) ∀i ∈ I : H(M) 6= H(Mi) (A does not abort),
(3) ∃j 6∈ I : mac-ver(H(M), S, rkj) = ‘yes’ (by (1) and the fact that

I is not bad).

But the second and third conditions are precisely what is needed for A to
win the existential forgery game against a MMAC. So, by Lemma 2 and the fact
that H is collision-resistant:

Pr[A wins MMAC forgery game] ≥ Pr[C ∧ A ∧ B]

≥ Pr[C]− Pr[¬A]− Pr[¬B]

≥

(

ε+
1

2m−h
+ εH

)

−
1

2m−h
− εH = ε.
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This probability is taken over the random coin flips of the challenger and of the
algorithms A and B. Thus, the theorem follows.
Note that the construction of the signature scheme above made use of a

collision resistant hash function. The proof can be easily modified to only use
one way universal hashing (OWUHF). Since OWUHF’s can be constructed from
one-way functions, there is no need to rely on collision resistance.

5 Coalitions of Limited Size

A MMAC (key-gen, mac-gen, mac-ver) is said to be (t, ε, q, κ)-secure against

selective forgery under an adaptive chosen message attack if every t-time prob-
abilistic algorithm A wins the game in Section 2 (depicted in Fig. 1) with prob-
ability less than ε, where the coalition I is subject to the constraint |I| ≤ κ.
Similarly, (t, ε, q, κ)-security against existential forgery is defined as (t, ε, q)-
security against existential forgery where the coalition size |I| is limited by κ.
Note that for κ = n, these notions are exactly the same as those defined in
Section 2; when κ < n, the security requirements are strictly weaker.
We show in this section that a (t, ε, q, κ)-secure MMAC with output length

less than

log2

κ
∑

i=0

(

n

i

)

gives rise to a signature scheme of nearly equivalent security.
Let (key-gen, mac-gen, mac-ver) be a MMAC that is (t, ε, q, κ)-secure against

selective forgery under an adaptive chosen message attack. Define the derived
signature scheme (skey-gen, sig-gen, sig-ver) as in Section 3, with the modification
that skey-gen(s, n) picks a random subset I ⊆ {1, . . . , n} subject to the constraint
|I| ≤ κ.
Suppose the length of the output of mac-gen(M) is bounded by

τ :=

[

log

κ
∑

i=0

(

n

i

)

]

−m

for all M . Then we show:

Theorem 3. The derived signature scheme (skey-gen, sig-gen, sig-ver) is (t, ε+
1

2m , q)-secure against selective forgery under an adaptive chosen message attack.

The proof follows that of Theorem 1. Because of the restriction on the size of
the coalition I, the following alternative to Lemma 1 is required.

Lemma 3. For any fixed message M ,

Pr[(M, I) is bad ] ≤
1

2m
.

where the probability is over the choice of a random coalition I ⊆ {1, . . . , n}
satisfying |I| < κ.
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Proof. For each tag T ∈ {0, 1}τ , there is exactly one set IT containing precisely
those receivers i for which mac-ver(M,T, rki) = ‘yes’. By definition, the pair
(M, IT ) is bad. The collection

{

(M, IT )
∣

∣ T ∈ {0, 1}τ
}

completely describes all bad pairs containing M in the first coordinate. Since
there are only 2τ possible values for T , this set is of size at most

2τ = 2−m

κ
∑

i=0

(

n

i

)

.

Since I is chosen independently of M , it follows that

Pr
I ⊆ {1, . . . , n}

|I| ≤ κ

[

(M, I) is bad
]

≤
2−m

∑κ
i=0

(

n
i

)

∑κ
i=0

(

n
i

) =
1

2m
,

establishing the lemma.

With this lemma in place, Theorem 3 follows just as Theorem 1.
An analogous theorem may be shown for security against existential forgery.

Let (key-gen, mac-gen, mac-ver) be a MMAC that is (t, ε, q, κ)-secure against
existential forgery under an adaptive chosen message attack. Define the derived
signature scheme (skey-gen, sig-gen, sig-ver) as in Section 3, with the modification
that skey-gen(k, n) picks a random subset I ⊆ {1, . . . , n} subject to the constraint
|I| ≤ κ.
Suppose the MMAC (key-gen, mac-gen, mac-ver) is (t, ε, q)-secure against

existential forgery under an adaptive chosen message attack, and suppose the
length of the output of mac-gen(M) is bounded by τ = (log

∑κ
i=0

(

n
i

)

) − m
for all M . Furthermore assume that H is a collision-resistant hash function with
security parameter εH . Then one can show

Theorem 4. The derived signature scheme (skey-gen, sig-gen, sig-ver) is (t, ε+
1

2m−h + εH , q)-secure against selective forgery under an adaptive chosen message

attack.

The proof is similar to the proof of Theorem 2 with the appropriate modification
to Lemma 2.

6 Conclusions

We gave precise definitions for Multicast MACs (MMACs) secure against se-
lective and existential forgeries. Our main results show that a short collusion-
resistant multicast MAC can be easily converted into a signature scheme. This
shows a gap between the cryptographic resources needed for two party MACs
(where signatures are not needed) and the resources needed for Multicast MACs.
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Our bounds justify the recent effort into designing signature schemes for a mul-
ticast environment [5, 12, 10, 7, 12]. Such schemes require minimal buffering on
the sender’s side and resist packet loss. We also note the constructions of [10,
11] that provide a short MMAC without non-repudiation by using some weak
timing assumptions.
For small values of κ, our lower bound for κ-secure MMACs asymptotically

matches the upper bound construction of Canetti et al. [1]. Hence, the Canetti et
al. construction has optimal length (up to a small constant factor) for a MMAC
that is based purely on pseudorandom functions.
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