
The Bit Security of Paillier’s Encryption Scheme

and its Applications ?

Dario Catalano1, Rosario Gennaro2 and Nick Howgrave-Graham2

1 Dipartimento di Matematica e Informatica
Università di Catania. Viale A. Doria 6, 95125 Catania.

Email: catalano@dmi.unict.it.
2 IBM T.J.Watson Research Center

PO Box 704, Yorktown Heights, New York 10598, USA.
Email: {rosario,nahg}@watson.ibm.com

Abstract. At EuroCrypt’99, Paillier proposed a new encryption scheme
based on higher residuosity classes. The new scheme was proven to be
one-way under the assumption that computing N -residuosity classes in
Z∗
N2 is hard. Similarly the scheme can be proven to be semantically secure

under a much stronger decisional assumption: given w ∈ Z∗
N2 it is hard

to decide if w is an N -residue or not.
In this paper we examine the bit security of Paillier’s scheme. We prove
that, if computing residuosity classes is hard, then given a random w it
is impossible to predict the least significant bit of its class significantly
better than at random. This immediately yields a way to obtain semantic
security without relying on the decisional assumption (at the cost of
several invocations of Paillier’s original function).
In order to improve efficiency we then turn to the problem of simulta-
neous security of many bits. We prove that Paillier’s scheme hides n− b

(up to O(n)) bits if one assumes that computing the class c of a ran-
dom w remains hard even when we are told that c < 2b. We thoroughly
examine the security of this stronger version of the intractability of the
class problem.
An important theoretical implication of our result is the construction of
the first trapdoor function that hides super-logarithmically (up to O(n))
many bits. We generalize our techniques to provide sufficient conditions
for a trapdoor function to have this property.

1 Introduction

At EuroCrypt’99 Paillier [10] proposed a new encryption scheme based on higher
residuosity classes. It generalized previous work by Okamoto and Uchiyama
[9]. Both works are based on the problem of computing high-degree residuos-
ity classes modulo a composite of a special form (in Paillier’s the modulus is N 2

where N is a typical RSA modulus, while in [9] the modulus is N = p2q where
p, q are large primes.)

? The first author’s research was carried out while visiting the Computer Science
Department of Columbia University.

The Bit Security of Paillier’s Encryption Scheme and its Applications 229

The mathematical details are described below, but for now let us sketch
the basics of Paillier’s scheme. It can be shown that Z∗

N2 can be partitioned
into N equivalence classes generated by the following equivalence relationship:
a, b ∈ Z∗

N2 are equivalent iff ab−1 is an N -residue in Z∗
N2 . The N -residuosity

class of w ∈ Z∗
N2 is the integer c = Class(w) such that w belongs to the cth

residuosity class (in a well specified ordering of them). The conjectured hard
problem is: given a random w, compute c. It can be shown that computing
c = Class(w) is possible if the factorization of N is known.
Thus Paillier suggests the following encryption scheme: To encrypt a message

m ∈ ZN , the sender sends a random element w ∈ Z∗
N2 such that Class(w) = m

(this can be done efficiently as it is shown later). The receiver who knows the
factorization of N , given w can compute m.
If we assume that computing residuosity classes is hard, then this scheme is

simply one-way. Indeed even if computing the whole of m is hard, it is possible
that partial information about m can be leaked.
What we would like to have is instead a semantically secure scheme. Seman-

tic security (introduced by Goldwasser and Micali in [7]) basically says that to
a polynomial time observer the encryption of a message m should look indis-
tinguishable from the encryption of a different message m′. Paillier’s scheme is
semantically secure if we assume a stronger decisional assumption: given a ran-
dom element w ∈ Z∗

N2 it is impossible to decide efficiently if w is an N -residue
or not.

Hard-Core Bits. The concept of hard-core bits for one-way functions was
introduced by Blum and Micali in [4].
Given a one-way function f : {0, 1}n → {0, 1}n we say that π : {0, 1}n →

{0, 1} is a hard-core predicate for f if given y = f(x) it is hard to guess π(x)
with probability significantly higher than 1/2. Another way of saying this is that
if x is chosen at random then π(x) looks random (to a polynomial time observer)
even when given y = f(x).
Blum and Micali showed the existence of a hard-core predicate for the dis-

crete logarithm function. Later a hard-core bit for the RSA/Rabin functions was
presented in [1]. Goldreich and Levin in [6] show that any one-way function has
a hard-core predicate.
The concept can be generalized to many hard bits. We say that k predicates

π1, . . . , πk are simultaneously hard-core for f if given f(x) the collection of bits
π1(x), . . . , πk(x) looks random to a polynomial time observer.

Our Result: In this paper we investigate the hard core bits of Paillier’s new
trapdoor scheme. We first prove that the least significant bit of the c = Class(w)
is a hard-core bit if we assume computing residuosity classes is hard. In other
words we show that given a random w ∈ Z∗

N2 , if one can guess lsb(Class(w))
better than at random, then one can compute the whole Class(w) efficiently.
Let n = |N |. The result above can be generalized to the simultaneous hard-

ness of the least O(log n) bits using standard techniques. We then show that by
slightly strengthening the assumption on computing residuosity classes we are
able to extract many more simultaneously hard-core bits. More precisely, for any

230 Dario Catalano, Rosario Gennaro and Nick Howgrave-Graham

ω(log n) ≤ b < n we show that Paillier’s scheme hides the n− b least significant
bits, if we assume that computing residuosity classes remain hard even if we are
told that the class is smaller than 2b.

The residuosity class problem seems to remain hard even in this case. Ac-
tually we see no way to exploit knowledge of the bound (i.e. the fastest known
algorithm to compute c even in this case is to factor N). We discuss this further
in section 3.4.

An interesting feature of our construction is that the number of bits hidden
by the function is related to the underlying complexity assumption that one is
willing to make. The smaller the bound is (i.e. the stronger the assumption), the
more bits one can hide.

A Theoretical Implication. If f is a trapdoor permutation that simultane-
ously hides k bits, then we can securely encrypt k bits with a single invocation
of f (as originally described in [7]).

However, for all previously known trapdoor functions (like RSA) f : {0, 1}n →
{0, 1}n we only know how to prove that k = O(log n) bits are simultaneously
hard-core. Thus to securely encrypt m bits one needs to invoke the function
Ω(m/ log n) times.

Another way to look at our result is that we show a candidate trapdoor
function that hide up to O(n) bits. To our knowledge this is the first example of
trapdoor problems with a super-logarithmic number of hard-core predicates.

We also generalize our construction to a large class of trapdoor functions by
giving sufficient conditions for a trapdoor function to hide super-logarithmically
many bits1.

Decisional Assumptions. As we mentioned earlier, the scheme of Paillier [10]
can also be proven to be semantically secure under a decisional problem involving
residuosity classes. In other words if assuming that deciding N -residuosity is
hard, then his scheme hide all n input bits.

Notice however the difference with our result. We prove that these two
schemes hide many bits, under a computational assumption, about computing
residuosity class.

Decisional assumptions are very strong. Basically a decisional problem is a
true/ false question which we assume the adversary is not able to solve. Con-
versely computational assumptions (only) require that the adversary cannot
compute the full solution of a computational problem. Thus, whenever possi-
ble, computational assumptions should be preferred to decisional ones.

The goal of this paper is to show example of trapdoor functions that hides
several bits without resorting to true/false questions.

1 The above discussion implicitly rules out iterated functions. Indeed [4] shows that if
f(x) is a one-way function and π(x) is a hard-core predicate for it, then the iterated
function fk(x) is clearly also one-way and it simultaneously hide the following k bits:
π(x), π(f(x)), ..., π(fk−1(x)). We are interested in functions that hide several bits in
a single iteration.

The Bit Security of Paillier’s Encryption Scheme and its Applications 231

Applications. The main application of our result is the construction of a new
semantically secure encryption scheme based on Paillier’s scheme. Assuming that
Paillier’s function securely hides k bits, we can then securely encrypt an m-bit
message using only O(m/k) invocations; k is of course a function of n, the
security parameter of the trapdoor function. We can do this without resorting
to the decisional assumption about N -residuosity, but simply basing our security
on the hardness of computing residuosity classes.

Today we can assume that n = 1024. Also in practice public-key cryptogra-
phy is used to exchange keys for symmetric encryption. Thus we can then assume
that m = 128. With a reasonable computational assumption we can encrypt the
whole 128-bit key with a single invocation of Paillier’s scheme. The assumption
is that computing the class is hard even when we are promised that c < N .875.

We discuss this new scheme and make comparisons with existing ones in
Section 5.

1.1 Related Work

Computing high-degree residuosity classes is related to the original work of Gold-
wasser and Micali [7] who suggested quadratic residuosity in Z∗

N as a hard trap-
door problem (where N is an RSA modulus). Later Benaloh [2] generalized this
to deciding s-residuosity where s is a small prime dividing φ(N). In Benaloh’s
scheme, s is required to be small (i.e. |s| = O(log n)) since the decryption pro-
cedure is exponential in s. By changing the structure of the underlying field,
Okamoto-Uchiyama in [9] and Paillier in [10] were able to lift this restriction
and consider higher degree residuosity classes.

The idea of restricting the size of the input space of a one-way function in
order to extract more hard bits goes back to Hastad et al. [8]. They basically
show that the ability to invert f(x) = gx mod N when x is a random integer
x < O(

√
N) is sufficient to factor N . Then they show that discrete log mod-

ulo a composite must have n/2 simultaneously hard bits, otherwise the above
restricted-input function can be inverted (i.e. we could factor N). [8] shows the
first example of one-way function with a superlogarithmic number of hard-core
bits. No such examples was known for trapdoor function.

Building on ideas from [8], Patel and Sundaram in [11] show that if one
assumes that f(x) = gx mod p (with p prime) remains hard to invert even when
x < B, then discrete logarithm simultaneously hide k− b bits (k = |p|, b = |B|).
In their case, as in ours, one must make an explicit computational assumption
about the hardness of inverting the function with small inputs. There is an
important difference between [11] and our computational assumption though.
In [11] we know that there exist algorithms to find x < B given y = gx, which
run in O(

√
B) steps. In our case , as discussed in section 3.4, an attack with a

similar complexity is not known.

232 Dario Catalano, Rosario Gennaro and Nick Howgrave-Graham

1.2 Paper Organization

In Section 3 we describe in detail the scheme based on Paillier’s function. In
Section 4 we generalize our result to a larger class of trapdoor functions, giving
sufficient conditions for a trapdoor function to hide super-logarithmically many
bits. We then discuss applications to public-key encryption and comparisons to
other schemes in Section 5. Our work raises some interesting open problems
which we list at the end in Section 6.

2 Definitions

In the following we denote with N the set of natural numbers and with R+

the set of positive real numbers. We say that a function negl : N → R+ is
negligible iff for every polynomial P (n) there exists a n0 ∈ N s.t. for all n > n0,
negl(n) ≤ 1/P (n). We denote with PRIMES(k) the set of primes of length k.
If A is a set, then a← A indicates the process of selecting a at random and

uniformly over A (which in particular assumes that A can be sampled efficiently).

Trapdoor Permutations. Let fn : {0, 1}n → {0, 1}n be a family of permuta-
tions. We say that fn is a trapdoor family if the following conditions hold:

– fn can be computed in polynomial time (in n)
– fn can be inverted in polynomial time only if given a description of f

−1
n . I.e.

for any probabilistic polynomial time Turing Machine A we have that

Pr[x← {0, 1}n;A(fn, fn(x)) = x] = negl(n)

The above notion can be generalized to probabilistic functions where each fn :
{0, 1}n × {0, 1}r → {0, 1}n+r is a permutation, but we look at the second ar-
gument as a random string and we assume that given y ∈ {0, 1}n+r we cannot
compute the first argument, i.e. for any probabilistic polynomial time Turing
Machine A we have that

Pr[x← {0, 1}n; s← {0, 1}r;A(fn, fn(x, s)) = x] = negl(n)

Hard-Core Bits. A Boolean predicate π is said to be hard for a function
fn if no efficient algorithm A, given y = f(x) guesses π(x) with probability
substantially better than 1/2. More formally for any probabilistic polynomial
time Turing Machine A we have that

∣

∣

∣

∣

Pr[x← {0, 1}n;A(fn, fn(x)) = π(x)]− 1
2

∣

∣

∣

∣

= negl(n)

For one-way functions fn, a possible way to prove that a predicate π is hard is to
show that any efficient algorithm A that on input y = fn(x) guesses π(x) with
probability bounded away from 1/2 can be used to build another algorithm A′

that on input y computes x with non-negligible probability.

The Bit Security of Paillier’s Encryption Scheme and its Applications 233

Simultaneously Hard Bits. A collection of k predicates π1, . . . , πk is called
simultaneously hard-core for fn if, given y = fn(x), the whole collection of bits
π1(x), . . . , πk(x) looks “random”. A way to formalize this (following [14]) is to
say that it is not possible to guess the value of the jth predicate even after seeing
fn(x) and the value of the previous j − 1 predicates over x. Formally, for every
j = 1, . . . , k, for every probabilistic polynomial time Turing Machine A we have
that:

∣

∣

∣

∣

Pr[x← {0, 1}n;A(fn, fn(x), π1(x), . . . , πj−1(x)) = πj(x)]−
1

2

∣

∣

∣

∣

= negl(n)

Here too, a proof method for simultaneously hard-core bits is to show that an
efficient algorithm A contradicting the above equation can be used to build
another efficient algorithm A which inverts fn with non-negligible probability.

3 Bit Security of Paillier’s Scheme

In this section we present our candidate trapdoor function which is based on
work by Paillier [10]. Readers are referred to [10] for details and proofs which
are not given here.

Preliminaries. Let N = pq be an RSA modulus, i.e. product of two large
primes of roughly the same size. Consider the multiplicative group Z∗

N2 .
Let g ∈ Z∗

N2 be an element whose order is a non zero multiple of N . Let
us denote with B the set of such elements. It can be shown that g induces a
bijection

Eg : ZN × Z∗
N → Z∗

N2

Eg(x, y) = gxyN mod N2

Thus, given g, for an element w ∈ Z∗
N2 there exists an unique pair (c, z) ∈

ZN × Z∗
N such that w = gczN mod N2. We say that c is the class of w relative

to g. We may also denote this with Classg(w).
We define the Computational Composite Residuosity Class Problem as the

problem of computing c given w and assume that it is hard to solve.

Definition 1. We say that computing the function Classg(·) is hard if, for every
probabilistic polynomial time algorithm A, there exists a negligible function
negl() such that

Pr

p, q ← PRIMES(n/2); N = pq;
g ← Z∗

N2 s.t. ord(g) > N ;
c← ZN ; z ← Z∗

N ; w = gczN mod N2;
A(N, g, w) = c

= negl(n)

It can be shown that if the factorization of N is known then one could solve
this problem: indeed let λ = lcm(p− 1, q − 1) then

Classg(w) =
L(wλ mod N2)

L(gλ mod N2)
mod N (1)

234 Dario Catalano, Rosario Gennaro and Nick Howgrave-Graham

where L is defined as the integer2 L(u) = (u− 1)/N .
An interesting property of the class function is that it is homomorphic: for

x, y ∈ Z∗
N2

Classg(xy mod N
2) = Classg(x) + Classg(y) mod N

It is also easy to see that Classg(·) induces an equivalence relationship (where
elements are equivalent if they have the same class) and thus for each c we have
N elements in Z∗

N2 with class equal to c.

3.1 The Least Significant Bit of Class is Hard

As we said in the introduction, Goldreich and Levin [6] proved that any one-way
function has a hard-core bit. Clearly their result applies to Paillier’s scheme as
well. Here, however, we present a direct and more efficient construction of a
hard-core bit.
Consider the function Classg(·) defined as in the previous section. We show

that, given w = gcyN mod N2, for some c ∈ ZN and y ∈ Z∗
N , computing the

predicate lsb(c) is equivalent to computing Classg(w), i.e. lsb(c) is hard for
Classg. We start with the following Lemma.

Lemma 1. Let N be a random n-bit RSA modulus, y ∈ Z∗
N , c an even element

of ZN and g an element in B. Then, denoting z = 2−1 mod N ,

(gcyN)z = g
c
2 y′N mod N2

for some y′ ∈ Z∗
N

Proof. Since z = 2−1 mod N , there exist an integer k such that 2z = 1 + kN .
Now

(gcyN)z = g2z c
2 yzN mod N2 = g

c
2 (g

ck
2 yz)N mod N2

Observe that, being the group ZN2 isomorphic to Z∗
N ×ZN (for g ∈ B) [10], this

is enough to conclude the proof. ut

Theorem 1. Let N be a random n-bit RSA modulus, and let the functions Eg(·, ·)
and Classg(·) be defined as above. If the function Classg(·) is hard (see Defini-
tion 1), then the predicate lsb(·) is hard for it.

Proof. The proof goes by reductio ad absurdum: we suppose the given predicate
not to be hard, and then we prove that if some oracle O for lsb(·) exists, then
this oracle can be used to construct an algorithm that computes the assumed
intractable function, in probabilistic polynomial time. In other words, given w ∈
Z∗
N2 such that w = Eg(c, y), and an oracle O(g, w) = lsb(c), we show how to
compute, in probabilistic polynomial time, the whole value c = Classg(w).
For the sake of clarity we divide the proof in two cases, depending on what

kind of oracle is given to us. In the first case we suppose to have access to a

2 It is easy to see that both wλ and gλ are ≡ 1 mod N .

The Bit Security of Paillier’s Encryption Scheme and its Applications 235

perfect oracle, that is an oracle for which Prw[O(g, w) = lsb(c)] = 1. Then we
will show how to generalize the proof for the more general case in which the
oracle is not perfect, but has some non negligible advantage in predicting the
required bit. In this last case we will suppose Prw[O(g, w) = lsb(c)] ≥ 1

2 + ε(n)
where ε(n) > 1

p(n) , for some polynomial p(·). For convenience we will denote ε(n)
by simply ε in the following analysis.

The Perfect Case. The algorithm computes c, bit by bit starting from lsb(c).
Denote c = cn . . . c2c1 the bit expansion of c. It starts by querying O(g, w) which
by assumption will return c1 = lsb(c). Once we know c1 we can “zero it out” by
using the homorphic properties of the function Class. This is done by computing
w′ = w · g−c1 . Finally we use Lemma 1 to perform a “bit shift” and position c2
in the lsb position. We then iterate the above procedure to compute all of c. A
detailed description of the algorithm follows(where () denotes the empty string
and α|β is the concatenation of the bit strings α and β):
ComputeClass(O, w, g,N)
1. z = 2−1 mod N
2. c = ()
3. for i = 0 to n = |N |
4. x = O(g, w)
5. c = c|x
6. if (x==1) then
7. w = w · g−1 mod N2 (bit zeroing)
8. w = wz mod N2 (bit shifting)
9. return c

The Imperfect Oracle. In this case the above algorithm does not work,
because we are not guaranteed that x is the correct bit during any of the itera-
tions. We need to use randomization to make use of the statistical advantage of
the oracle in guessing the bit. This is done by choosing randomly r ∈R ZN and
s ∈R Z∗

N , considering ŵ = w ·gr ·sN and querying O(g, ŵ) on several randomized
ŵ’s.
Notice that if c+r < N the oracle returns as output c1+r1 mod 2, and since

we know r1 we can compute c1. A majority vote on the result of all the queries
will be the correct c1 with very high probability.
In order to ensure that c + r < N , we somewhat “reduce” the size of c. We

guess the top γ = 1− log ε bits of c, and zero them accordingly, i.e.

w′
d = g2n−γdw

for all 2γ choices of d (note that is is a polynomial, in n, number of choices).
Of course if we guessed incorrectly the actual top bits of w′

d will not be
zeroed, however for one of our guesses they will be, and this guess will yield the
correct answer.
Observe that, since we zeroed the leading γ bits of c, the sum r+ c can wrap

around N only if the γ most significant bits of r are all 1. Thus the probability

236 Dario Catalano, Rosario Gennaro and Nick Howgrave-Graham

of r+ c > N is smaller that 2−γ = ε/2. We can add this probability to the error
probability of the oracle. Consequently the oracle is now correct with probability
1
2 +

ε
2 . This simply implies that we need to increase the number of randomized

queries accordingly.
Once c1 is known, we zero it and we perform a shift to the right as before.

We then repeat the process for the remaining bits. Since the correct d is still
unknown, we obtain a (polynomially sized) set of candidate values for c. Notice
that we cannot check, given w, which one of the c’s is the correct one. However
this still implies an algorithm to output c correctly with probability 1/poly,
which contradicts Definition 1. ut

3.2 Simultaneous Security of Many Bits

It is not hard to show that Classg(·) hides O(log n) bits simultaneously (this can
be shown using standard techniques). In this section we show that by slightly
strenghtening the computational assumption about computing residuosity class
then we can increase the number of simultaneously secure bits, up to O(n).
What we require is that Classg(·) is hard to compute even when c is chosen

at random from [0..B] where B is a bound smaller than N . More formally:

Definition 2. We say that computing the function Classg(·) is B-hard if, for
every probabilistic polynomial time algorithm A, there exists a negligible func-
tion negl() such that

Pr

p, q ← PRIMES(n/2); N = pq;
g ← Z∗

N2 s.t. ord(g) > N ;
c← [0..B]; z ← Z∗

N ; w = gczN mod N2;
A(N, g, w) = c

= negl(n)

Clearly in order for the Classg to be B-hard, it is necessary that the bound
B be sufficiently large. If we had only a polynomial (in n) number of guesses,
then the definition would be clearly false. Thus when we assume that Classg is
B-hard we implicitly assume that b = logB = ω(log n).

Theorem 2. Let N be a random n-bit RSA modulus; B = 2b. If the function
Classg(·) is B-hard (see Definition 2) then it has n− b simultaneously hard-core
bits.

3.3 Proof of theorem 2

In order to prove Theorem 2 we first need to show that the bits in positions
1, 2, . . . , n− b are individually secure. Then we prove simultaneous security.

Individual Security. Let i be an integer 1 ≤ i ≤ n − b and assume that we
are given an oracle Oi which on input N, g and u ∈R Z∗

N2 computes correctly
the ith-bit of Classg(u) with a probability (over u) of 1/2 + ε(n), where again
ε(n) > 1/poly(n).

The Bit Security of Paillier’s Encryption Scheme and its Applications 237

In order to show that Classg(·) is not B-hard, we will show how to build an
algorithm A which uses Oi and given w ∈ Z∗

N2 with Classg(w) < B, computes
c = Classg(w). Let γ = 1− log ε = O(log n).
We split the proof in two parts: the first case has 1 ≤ i < n − b − γ. The

second one deals with n− b− γ ≤ i ≤ n− b.

If 1 ≤ i < n − b − γ the inversion algorithm works as follows. We are given
w ∈ Z∗

N2 where w = gcyN mod N2 and we know that c = Classg(w) < B. We
compute c bit by bit; let ci denote the i-th bit of c. To compute c1 we square w, i
times computing wi = w2i mod N2. This will place c1 in the i-th position (with
all zeroes to its right). Since the oracle may be correct only slightly more than
half of the times, we need to randomize the query. Thus we choose r ∈R ZN
and s ∈R Z∗

N and finally query the oracle on ŵ = wig
rsN mod N2. Notice the

following:

– Given the assumptions on B and i we know that wi = w2i = g2icz2iN and
2ic is not taken modN since it will not “wrap around”.

– Classg(ŵ) = 2
ic+ r mod N . But since 2ic has at least γ leading zeroes the

probability (over r) that 2ic+ r wraps around is ≤ ε/2.
– Since c1 has all zeroes to its right, there are no carrys in the i-th position
of the sum. Thus by subtracting ri to the oracle’s answer we get c1 unless
2ic+ r wraps around or the oracle provides a wrong answer.

In conclusion we get the correct c1 with probability 1/2+ ε/2, thus by repeating
several (polynomially many) times the process and taking majority we get the
correct c1 with very high probability.
Once we get c1, we “zero” it in the squared wi by setting wi ← wig

−c12
i

mod
N2. Then we perform a “shift to the right” using Lemma 1, setting wi ← wz

i mod
N2 where z = 2−1 mod N . At this point we have c2 in the oracle position and we
can repeat the randomized process to discover it. We iterate the above process
to discover all the bits of c 3.
Since each bit is determined with very high probability, the value c = cb . . . c1

will be correct with non-negligible probability.

If n − b − γ < i < n − b the above procedure may fail since now 2ic does not
have γ leading zeroes anymore. We fix this problem by guessing the γ leading
bits of c (i.e. cb−γ , . . . , cb). This is only a polynomial number of guesses.
For each guess, we “zero” those bits (let α be the γ-bit integer corresponding

to each guess and set w ← wg−2b−γα mod N2). Now we are back in the situation
we described above and we can run the inversion algorithm. This will give us a
polynomial number of guesses for c and we output one of them randomly chosen
which will be the correct one with non-negligible probability. Notice that we are
not able to verify if the solution is the correct one, but in any case the algorithm
violates our security assumption (see Definition 2.)

3 We note that Lemma 1 is necessary to perform “shifts to the right” only for the
bits in position i = 1, . . . , b. For the other ones we can shift to the right by simply
“undoing” the previous squaring operations.

238 Dario Catalano, Rosario Gennaro and Nick Howgrave-Graham

Simultaneous Security. Notice that in the above inversion algorithm, every
time we query Oi with the value ŵ we know all the bits in position 1, . . . , i− 1
of Classg(ŵ). Indeed these are the first i− 1 bits of the randomizer r. Thus we
can substitute the above oracle with the weaker one Ôi which expects ŵ and the
bits of Classg(ŵ) in position 1, . . . , i− 1. ut

3.4 Security Analysis

We note here that the class problem can be considered a weaker version of a
composite discrete log problem. Let d = gcd(p− 1, q− 1) and let Cm denote the
cyclic group of m elements, then for any t dividing λ we have

Z∗
N2 ' Cd × Cλ/t × CNt.

Let g2, g1, g ∈ Z∗
N2 be the preimages, under such an isomorphism, of generators

of Cd, Cλ/t and CNt respectively. Thus we can represent any element of Z
∗
N2

uniquely as ge22 ge11 ge, where e2 ∈ Zd, e1 ∈ Zλ/t and e ∈ ZNt. For a given
g, g1, g2 ∈ Z∗

N2 the composite discrete logarithm problem we consider is to find
these e, e1, e2 for any given w ∈ Z∗

N2 . For a given g, the class problem is to find
just e mod N for any given w ∈ Z∗

N2 .
Obviously if one can solve the composite discrete logarithm problem, one can

solve the class problem; in particular

w ≡ ge22 ge11 ge ≡ ge22 ge11 glN+x ≡ gx
(

gk2e2
2 gk1e1

1 gl
)N

≡ gxyN mod N2

where k2 = N−1 mod d, and k1 = N−1 mod λ/t, where we note we can make
sure x ∈ {0 . . . N} by a suitable choice of l, and we can force y ∈ Z∗

N since
(y + kN)N ≡ yN mod N2.
However there is a very important distinction between the class problem and

the discrete log problem. In the composite discrete logarithm problem, if we are
given g, g1, g2, e, e1, e2 and w we can verify (in polynomial time) that we do
indeed have the discrete logarithm of x. A fascinating and open question in the
class problem, is to determine the complexity of an algorithm that verifies the
class is correct given only g, e mod N and w. Equation 1 shows that this is no
harder than factoring, but nothing more is presently known.
Assuming that the function Classg is hard to compute even in the case that

c < B may seem a very strong requirement. It is in some way non-standard.
In order to partially justify it, we notice that not even a trivial exhaustive

search algorithm (running in time O(B)) seems to work, since even if one is
given a candidate c there is no way to verify that it is correct. Verification is
equivalent to determining if one has an N ’th residue modulo N 2, and this seems
a hard problem.
Of course if one did have a verification algorithm that ran in timeM then the

trivial exhaustive search method would take time O(MB) and there may well
be a baby-step, giant-step extension of the method that took time O(M

√
B).

The Bit Security of Paillier’s Encryption Scheme and its Applications 239

Without an efficient verification algorithm it seems hard to exploit the fact that
c < B.
Of course because this is a new assumption we are not able to make any

stronger claim on its security. Further research in this direction will either vali-
date the security assumption or lead us to learn and discover new things about
the residuosity class problem. Though we note that our main theorem still holds
(because we can choose B to be large enough to prevent O(

√
B) attacks) even

if there were an efficient verification algorithm.

4 A general result

In this section we briefly show how to generalize the results from the previous
section to any family of trapdoor functions with some well defined properties.
We show two theorems: the first is a direct generalization of Theorem 2; the
second theorem holds for the weaker case in which we do not know the order of
the group on which the trapdoor function operates. In this case we are able to
extract less hard-core bits.

Theorem 3. Let M be an m-bit odd integer, and G a group with respect to the
operation of multiplication. Let f : ZM → G be a one-way, trapdoor isomorphic
function (i.e. such that f(a + b modM) = f(a) · f(b) ∈ G). Then, under the
assumption that f remains hard to invert when its input belongs to the closed
interval [0 . . . B], with B = 2b, it follows that f has m − b simultaneously hard
bits.

It is not hard to see that the techniques of the proof of Theorem 2 can be
extended to the above case.
The above theorem assumes that M is exactly known. Let us now consider

the case in which M is not known, but we have a very close upper bound on

it. I.e. we know M̂ > M such that M̂−M
M = negl(m). Moreover we assume that

f is computable on any integer input (but taken modM), i.e. we assume that
there is an efficient algorithm A that takes as input any integer x and returns
as output A(x) = f(x modM).

Theorem 4. Under the assumption that f remains hard to invert when its in-
put belongs to the closed interval [0 . . . B], with B = 2b <

√
M , f has m − 2b

simultaneously hard bits.

Proof. The proof follows the same outline of the proof of Theorem 2 except that
in this case we are not able to perform “shifts to the right” as outlined in Lemma
1 since we do not know M exactly. Thus the proof succeeds only for the bits in
location b+ 1, . . . ,m− b Notice that this implies b < m/2, i.e. B <

√
M .

Again, we first show that each bit is individually secure. We then extend this to
prove simultaneous hardness.

Individual Security. Let i be an integer b ≤ i ≤ n − b and assume that
we are given an oracle Oi which on input M and u ∈R G computes correctly

240 Dario Catalano, Rosario Gennaro and Nick Howgrave-Graham

(f−1(u))i with probability 1/2+ ε(m) where ε(m) > 1/poly(m). As in the proof
of theorem 2 prove the statement by providing an algorithm A which uses Oi
and given w ∈ G with f−1(w) < B, computes c = f−1(w).

The inversion algorithm works almost as the one proposed in the proof of theorem
2. The main difference is that, this time we cannot use lemma 1 to perform
shifts to the right. However, in order to let the proof go through, we adopt
the following trick: once ci is known we “zero” it in the original w by setting
w ← wf(−2i−1ci modM). We then repeat the process with the other bits. The
only differences with the above process when computing cj are that:

– we need to square w only i − j + 1 times (actually by saving the result of
the intermediate squarings before, this is not necessary).

– to zero cj once we found it we need to set w ← wf(−2j−1cj modM)

Since each bit is determined with very high probability, the value c = cb . . . c1
will be correct with non-negligible probability.

The simultaneous security of the bits in position b, b+1, . . . , n− b easily follows,
as described in the proof of theorem 2. Details will appear in the final version of
this paper.

5 Applications to Secure Encryption

In this section we show how to construct a secure encryption scheme based on
our results.
For concreteness let us focus on fixed parameters, based on today’s computing

powers. We can assume that n = 1024 is the size of the RSA modulus N and
m = 128 (the size of a block cipher key) to be the size of the message M that
has to be securely exchanged.

Our solution. Using Paillier’s Classg(·) function with our proof methods, it is
possible to securely hide the messageM with a single invocation of the function.
In order to encrypt 128 bits we need to set n−b > 128, which can be obtained for
the maximum possible choice of b = 896 (i.e. the weakest possible assumption).
In other words we need to assume that Classg is hard to invert when c < N .875.
To encrypt M one sets c = r1|M where r1 is a random string, chooses

y ∈R Z∗
N and sends w = gcyN . This results in two modular exponentiation for

the encryption and one exponentiation to decrypt (computations are done mod
N2). The ciphertext size is 2n.

RSA. In the case of plain RSA we can assume also that the RSA function hides
only one bit per encryption (see [5]). In this scenario to securely encrypt (and
also decrypt) the message we need 128 exponentiations mod N . The size of
the ciphertext is mn =128 Kbit. Encryption speed can be much improved by
considering RSA with small public exponent. In any case our scheme is better
for decryption speed and message blow-up.

The Bit Security of Paillier’s Encryption Scheme and its Applications 241

Blum-Goldwasser. Blum and Goldwasser in [3] show how to encrypt with the
RSA/Rabin function and pay the O(m/ log n) penalty only in encryption. The
idea is to take a random seed r and apply the RSA/Rabin function m times to
it and each time output the hard bit. Then one sends the final result re

m

and
the masked ciphertext M ⊕B where B is the string of hard bits. It is sufficient
to compute r from re

m

to decrypt and this takes a single exponentiation. The
size of the ciphertext is n+m.
Using the Rabin function this costs only 128 multiplications to encrypt and

a single exponentiation to decrypt. We clearly lose compared to this scheme.

Remark: It is worth to notice that even if the proposed solution is less efficient,
in practice, than the Blum-Goldwasser one, it remains asymptotically better. As
a matter of fact, we need only O(m/k) (where k = ω(log n) is the number of
simultaneously hard bits produced) invocations of the trapdoor function, while
all previously proposed schemes require many more invocations (in general, the
number of invocations, has order O(m/ log n)). Basically for longer messages we
may “catch up” with the other schemes.
The observed slow down, solely depends on the fact that the function used is

less efficient than RSA or Rabin. It would be nice to come up with more efficient
trapdoor functions that also hides many bits.

6 Conclusions

In this paper we presented the bit security analysis of the encryption scheme
proposed by Paillier at Eurocrypt’99 [10]. We prove that the scheme hides the
least significant bit of the N -residuosity class. Also by slightly strenghtening the
computational assumption about residuosity classes we can show that Paillier’s
encryption scheme hides up to O(n) bits.
An interesting theoretical implication of our results is that we presented the

first candidate trapdoor functions that hide many (up to O(n)) bits. No such
object was known previously in the literature.
There are several problems left open by this research. Are there trapdoor

functions that hide ω(log n) bits and are comparable in efficiency to RSA/Rabin?
In the case of RSA/Rabin can we come up with a “restricted input assumption”
that will allow us to prove that they also hide ω(log n) bits? Regarding our new
assumptions: is it possible to devise an algorithm to compute Classg(·) < B
that depends on B?

References

1. W. Alexi, B. Chor, O. Goldreich and C. Schnorr. RSA and Rabin Functions:

Certain Parts are as Hard as the Whole. SIAM J. Computing, 17(2):194–209,
April 1988.

2. J.C. Benaloh. Verifiable Secret-Ballot Elections. Ph.D. Thesis, Yale University,
1988.

242 Dario Catalano, Rosario Gennaro and Nick Howgrave-Graham

3. M. Blum and S. Goldwasser. An efficient probabilistic public-key encryption
scheme which hides all partial information. Proc. of Crypto ’84, LNCS vol. 196,
pages 289-302

4. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, No. 4:850-864, 1984

5. R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Rabin Bits.
J. of Cryptology, 13(2):221–244, Spring 2000.

6. O. Goldreich and L. Levin A hard-core predicate for all one-way functions. Proc.

21st ACM Symposium on Theory of Computing, 1989
7. S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, 28(2):270–299, April

1984.
8. J. Hastad, A. W. Schrift and A. Shamir. The Discrete Logarithm Modulo a Com-

posite Hides O(n) Bits. JCSS Vol. 47, pages 376-404, 1993.
9. T. Okamoto and S. Uchiyama. A New Public-Key Cryptosystem as Secure as

Factoring In Advances in Cryptology - Eurocrypt ’97, LNCS vol. 1233, Springer,
1997, pages 308-318.

10. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Advances in Cryptology - Eurocrypt ’99, LNCS vol. 1592, Springer,
1997, pages 223-238.

11. S. Patel and G. S. Sundaram. An Efficient Discrete Log Pseudo Random Generator.
In Advances in Cryptology - CRYPTO ’98, LNCS vol. 1492, Springer, 1998, pages
304-315.

12. M. Rabin. Digital Signatures and Public Key Encryptions as Intractable as Fac-
torization. MIT Technical Report no. 212, 1979

13. R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature
and Public Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120–126

14. A. Yao. Theory and Applications of Trapdoor Functions. IEEE FOCS, 1982.

