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Abstract. NTRU is a fast public key cryptosystem presented in 1996
by Hoffstein, Pipher and Silverman of Brown University. It operates in
the ring of polynomials Z[X]/(XN − 1), where the domain parameter N
largely determines the security of the system. Although N is typically
chosen to be prime, Silverman proposes taking N to be a power of two to
enable the use of Fast Fourier Transforms. We break this scheme for the
specified parameters by reducing lattices of manageably small dimension
to recover partial information about the private key. We then use this
partial information to recover partial information about the message or
to recover the private key in its entirety.

1 Introduction

NTRU is a fast public key cryptosystem that operates in the ring of truncated
polynomials given by Z[X]/(XN−1), where the domain parameter N largely de-
termines the security of the system. Typically N is chosen to be a prime number
(not for security reasons, but because having N prime maximizes the probability
that the private key has an inverse with respect to a specified modulus [?]). Re-
cently, however, Silverman has proposed taking N to be a power of two to allow
the use of Fast Fourier Transforms when computing the convolution product of
elements in the ring [?].
In this paper, we present lattice-based attacks that are especially effective

when N is composite. We show how to use low-dimensional lattices to find a
folded version of the private key, where the folded private key has d coefficients
with d dividing N . This folded private key can be used either to obtain a folding
of the plaintext message, or as partial information to help us recover the entire
private key. Using this attack, we were able to recover entire private keys for the
NTRU-256 scheme proposed by Silverman in an average of about 3 minutes.

2 Notation

We denote the ring of integers by Z, and the ring of integers modulo q by Zq,
which are taken in the interval (− q

2 ,
q
2 ]. The polynomial ring Zq[X]/(X

n − 1)
contains all polynomials with degree less than n and coefficients in Zq. The



inverse of a polynomial f ∈ Zq[X]/(X
n − 1) is denoted by f−1

q . A polynomial
may be described as a row vector:

f = (f0, f1, . . . , fn−1) =

n−1
∑

i=0

fiX
i .

Concatenation of f and g is denoted by (f, g). The convolution f ∗ g of two
vectors is analogous to ordinary polynomial multiplication over Z[X]/(Xn − 1):

(f ∗ g)k =
∑

i+j=k mod n

figj .

When d divides n, the d-dimensional folded version of f is defined by:

f(d) = (

0≤i<n
∑

i=0 mod d

fi,

0≤i<n
∑

i=1 mod d

fi, . . . ,

0≤i<n
∑

i=d−1 mod d

fi) .

In algebraic terms, f(d) may be described as the image of f under the canonical

mapping from Z[X]/(Xn − 1) to Z[X]/(Xd − 1). The ith term of f(d) will be
denoted f(d),i. The circulant matrix associated with f is given by F , where:

Fij = fj−i mod n .

Fi will denote the ith row vector of F . F(d) will denote the circulant associ-
ated with f(d), and F(d),i will denote its ith row vector. I(d) will refer to the
d-dimensional identity matrix.

3 The NTRU Cryptosystem

Public Parameters The basic objects of the NTRU Cryptosystem are polyno-
mials from the ring Z[X]/(XN − 1), where N is a public parameter. Also public
are two moduli, p and q, with g.c.d.(p, q) = 1 and p ¿ q. For example, (N ,
p, q) = (167, 3, 128) has been proposed as a high security parameter set [?].
Additional public parameters include Sf , Sg, Sm, and Sφ, which describe the
space of allowable polynomials for private keys f and g, the plaintext message
m, and a random polynomial φ that the sender uses in encrypting the message.
These spaces are designed to limit f , g, m, and φ to vectors that have short
Euclidean length (in practice, less than

√
N) and that typically are also very

short in the l∞-norm — i.e., the magnitudes of the individual coefficients are
typically very small in relation to q. For example, in NTRU-167, Sf might limit
f to those polynomials having exactly 61 coefficients equal to 1, 60 coefficients
equal to -1, and 46 coefficients equal to 0 [?]. Sm always restricts the coefficients
of m to Zp.

Key creation Choose random f ∈ Sf and g ∈ Sg. Compute f−1
q and publish

the polynomial

h = f−1
q ∗ g (mod q)

as the public key. Both f and g are private, with f serving as the private key.



Encryption Choose random φ in Sφ and compute the ciphertext:

e = m+ pφ ∗ h (mod q) .

Decryption Compute

f ∗ e = f ∗m+ pφ ∗ f ∗ h (mod q)

= f ∗m+ pφ ∗ g (mod q) ,

where the second equality follows from the definition of h. Assuming Sf , Sm,
Sφ, and Sg are chosen wisely, such that the coefficients of f , m, φ, and g are
very small in relation to q, then, with high probability, we get

f ∗m+ pφ ∗ g (mod q) = f ∗m+ pφ ∗ g ,

which is to say that reduction modulo q has no effect. This is because the co-
efficients of f ∗m + pφ ∗ g, with high probability, already lie in (− q

2 ,
q
2 ] before

reduction modulo q. Possessing the unreduced value of f ∗m + pφ ∗ g, we can
compute

f ∗m+ pφ ∗ g (mod p) = f ∗m (mod p) ,

and then

f−1
p ∗ f ∗m (mod p) = m (mod p) .

4 Previous Lattice Attacks on NTRU

Lattice attacks on NTRU (including our attack) have focused primarily on the
following “key recovery” problem: find the private key f using only the public
key h and public information about how f and g are chosen (Sf and Sg).

1 By
the definition of h, we know that f ∗ h = g (mod q), but this information alone
is clearly insufficient to recover f . Indeed, the set of pairs u, v ∈ ZN that satisfy
u ∗ h = v (mod q) is an additive abelian group of infinite cardinality. Even if we
limit ourselves to pairs u, v ∈ ZN

q , we are still left with q
N distinct (u, v) pairs

corresponding to the qN distinct values that u can assume. How do we find the
pair (f, g) from among these qN possibilities?
We know that, to enable error-free decoding, the coefficient vectors of f and

g each have short Euclidean length (less than
√
N in current NTRU implementa-

tions). They are considerably shorter than the typical “random” N -dimensional
vector with coefficients in Zq, which has an expected length of more than

q
4

√
N .

1 Non-lattice-based cryptanalysis of NTRU includes a meet-in-the-middle attack found
by Odlyzko [?] and a chosen-ciphertext attack presented by Jaulmes and Joux [?],
which exploited NTRU’s inappropriate use of OAEP-like padding. We under-
stand that NTRU now uses the hybridization method presented by Fujisaki and
Okamoto [?] to obviate chosen-ciphertext attacks.



Also, one can show that it is extremely unlikely that the abelian group gener-
ated by a “randomly” chosen h′ has a (u, v) pair as short as (f, g).2 These facts
may lead us to hypothesize that (f, g) is, in fact, the shortest nonzero vector
(u, v) ∈ Z2N such that u ∗ h = v (mod q). If this hypothesis is true, and if we
can find an efficient way to find the shortest vector belonging to the group of
(u, v) pairs, we can recover the private key. This provides the motivation for
representing the group of (u, v) pairs as a “lattice,” and then using “lattice basis
reduction.”
A “lattice” is a discrete additive subgroup of Rn. For example, Zn is a lattice.

Also, the set of (u, v) pairs is a lattice, being an additive subgroup of Z2N .
An equivalent, but more concrete, definition is that a lattice L consists of all
integer linear combinations of some set of m linearly independent vectors B =
{b0, b1, . . . , bm−1}, bi ∈ Rn. Here, m is the “dimension” of L, and B is called a
“basis” of L. The basis B can be compactly represented by an m × n matrix
where the ith row is the “basis vector” bi, in which case L consists of the vectors
that can be expressed as integer linear combinations of the rows of B. Bases for
a lattice are not unique, but are related by unimodular transformations — i.e., if
U is an integral m×m matrix with determinant ±1, then UB is an equally valid
basis for L. Typically, the goal of “lattice basis reduction” is to find a basis B ′

for L in which the basis vectors are as short as possible (usually in the Euclidean
sense), with the basis vector b′0 being the shortest nonzero vector in the entire
lattice (allowing for possible ties).
Coppersmith and Shamir [?] give us the following explicit basis for the lattice

of (u, v) pairs (recall that H denotes the circulant matrix corresponding to the
public key h):

LCS =

[

I(N) H
0 qI(N)

]

.

To see that any pair (u, v) ∈ Z2N for which u∗h = v (mod q) is contained in the
lattice generated by LCS , let a ∈ ZN be such that u ∗ h = v + qa. Then, if we
left-multiply LCS by (u, −a), we obtain (u, v). As a consequence, the private key
pair (f, g) is an integer linear combination of the rows of LCS . If (f, g) is actually
the shortest vector in the generated lattice, as we have reason to believe,3 then
an “SVP-oracle” — a magical device which gives us the answer to the “shortest
vector problem” in a reasonable (polynomial) amount of time — would give us
the private key when given LCS as input.
For the attacker, the problem is that actual lattice basis reduction algorithms,

such as LLL and its variants, do not behave like SVP-oracles. The original LLL
algorithm terminates in time polynomial in the dimension n of the lattice, but
it is only guaranteed to find a vector that is no more than 2(n−1)/2 times —
2(2N−1)/2 times, in the case of LCS — as long as the shortest vector. Obviously,
such an algorithm is useless to us, considering that it is trivial to find vectors
only about q

4 times as long as (f, g), as suggested above, and even these are
far too long to be useful for decryption. Variants of LLL exist that find shorter

2 See Appendix ??.
3 See Appendix ??.



vectors, but they naturally have greater time-complexity. In particular, Schnorr
defines a family of LLL-variants whose performances depend on a parameter
called the “blocksize.” Little is known about the average-case complexity of
these variants, but it appears, based on numerous experiments by the authors
of NTRU using Shoup’s NTL library [?], that the time necessary to find (f, g)
in the lattice grows at least exponentially in N (because the block size required
for LLL to find (f, g) grows roughly linearly in N [?], and the running time of
LLL is exponential in the block size [?]). The authors of NTRU estimate that,
for N > 90, it takes current lattice reduction algorithms e.2002N−7.608 seconds to
find (f, g) on a 400 MHz machine, which translates into 4.607×1014 MIPS-years
to break NTRU-263 [?].4

5 Cryptanalysis of NTRU-Composite

The problem with previous lattice-based attacks is that the dimension of the
lattices involved is too high, given that the running time of LLL to return the
target vector of these lattices is empirically exponential in the lattice dimension.
Ideally, we would like to construct much smaller (and more easily reduceable)
lattices whose shortest vectors contain at least some useful cryptanalytic infor-
mation. We can do this if N is composite.

Theorem 1. Let N be composite, and d be a nontrivial divisor. The mapping
θ : Z[X]/(XN − 1)→ Z[X]/(Xd − 1) given by

θ(f) = f(d)

is a ring homomorphism.

Although this is a basic algebraic result, arising from the fact that (Xd − 1)
divides (XN−1) when d divides N , we prove multiplication in a concrete fashion.
Proof.

g(d),k =

0≤i<N
∑

i=k mod d

gi

=

0≤i<N
∑

i=k mod d





0≤x,y<N
∑

x+y=i mod N

fxhy





=

0≤x,y<N
∑

x+y=k mod d

fxhy

=

0≤v,w<d
∑

v+w=k mod d





(

0≤x<N
∑

x=v mod d

fx

)





0≤y<N
∑

y=w mod d

hy









4 Refinements to LCS by May [?] have made it possible to recover an NTRU-107
private key in 12 to 24 hours on a single 400 MHz machine [?], but do not seriously
affect the security estimates for higher security levels, such as NTRU-167 [?].



=

0≤v,w<d
∑

v+w=k mod d

f(d),vh(d),w .

This gives us f(d) ∗ h(d) = g(d), which is what we wanted. ut

5.1 A Smaller Version of LCS

With the equation f(d) ∗ h(d) = g(d) in mind, we construct the following 2d-
dimensional analog of LCS (recall that H(d) is the circulant corresponding to
h(d)):

L(d) =

[

I(d) H(d)

0 qI(d)

]

.

This lattice contains the vector (f(d), g(d)). Notice that if N/d is not too large,
then the smallness of the coefficients of f and g ensures that the coefficients
of f(d) and g(d), each of which is a summation of N/d coefficients of f and g
respectively, are also small. Assuming (f(d), g(d)) is the shortest vector in L(d),
we can find it using lattice reduction. We can then recover significant partial
information about the private key by reducing a lattice whose dimension is only
a fraction of the dimension of the lattice generated by LCS .
In Appendix ??, we give a tight upper bound on the length of (f(d), g(d))

and show that, assuming f and g are “random” in a specified way, the expected
length of (f(d), g(d)) is equal to the length of (f, g) (once certain modifications are

made to these vectors). This leads us to conclude that, at least when d >
√
N ,

(f(d), g(d)) is almost certainly the shortest vector in L(d) for the same reasons
that (f, g) is almost certainly the shortest vector in LCS .
Remark: In the discussion above, we have limited our focus to homomor-

phisms of the form θ : Z[X]/(XN − 1)→ Z[X]/(Xd − 1) and the folded lattices
derived therefrom, but this need not be the case. More generally, we could con-
sider homomorphisms of the form α : Zq[X]/(X

N − 1)→ Zq[X]/s(X) given by
α(f) = f+ < s(X), q >, where s(X)t(X) = (XN − 1) (mod q) for some t(X).
However, such homomorphisms appear to be useful only when (α(f), α(g)) is a
short vector that can be found using lattice basis reduction, and (α(f), α(g)) is
always short only if s(X) is an extremely short vector, preferably with a minimum
of high degree coefficients (e.g., (Xd − 1)). Useful alternative homomorphisms
therefore appear to be rare.

5.2 Message Attacks

Once we find f(d), we can make immediate use of it to recover the folded plain-
text. Since folding is a ring homomorphism, we get:

f(d) ∗ e(d) = f(d) ∗m(d) + pφ(d) ∗ f(d) ∗ h(d) = f(d) ∗m(d) + pφ(d) ∗ g(d) (mod q).

We then proceed through the steps of decryption in the usual way until we
obtain m(d). If N/d = 2, for example, knowing m(d) is tantamount to knowing



mi+mi+d for 0 ≤ i < d, where themi are coefficients from the original plaintext.
This could be useful information.
However, folding entails an increased likelihood of decryption errors, since

the expected magnitudes of the coefficients of f(d) ∗m(d)+ pφ(d) ∗ g(d) are larger
than those of f ∗m+pφ∗g by a factor of

√

N/d. So, this message attack appears
to be practical only for very small values of N/d.

5.3 Key Recovery Attacks

Alternatively, we can use f(d) to help us recover f . The basic concept behind
this attack is the Chinese Remainder Theorem, which tells us, for example,
that f is completely determined by the values of f (mod Xd − 1) and f (mod
(XN − 1)/(Xd − 1)).5 Instead of using the lattice corresponding to f (mod
(XN − 1)/(Xd − 1)), however, we use a different lattice with a shorter target
vector.
Supposing, for example, that N/d = 2, we obtain linear equations of the form

fi+d = f(d),i − fi, so that we have

f = (f0, f1, . . . , fd−1, f(d),0 − f0, f(d),1 − f1, . . . , f(d),d−1 − fd−1).

Recall that in the lattice generated by LCS , the target vector

(f, g) =

N−1
∑

i=0

fi(Ii, Hi) (mod q) ,

where (Ii, Hi) denotes the concatenation of the ith rows of the identity matrix
and the circulant H. Using the dependencies in f , we obtain

(f, g) =
d−1
∑

i=0

fi(Ii, Hi)−
d−1
∑

i=0

fi(Ii+d, Hi+d) +
d−1
∑

i=0

f(d),i(Ii+d, Hi+d) (mod q)

=
d−1
∑

i=0

fi(Ii − Ii+d, Hi −Hi+d) +
d−1
∑

i=0

f(d),i(Ii+d, Hi+d) (mod q) .

Notice that we already know all of the terms in the second summation; let
(s, t) be this known vector. If we denote by u the d-dimensional vector with
coefficients equal to the first d coefficients of f , then (u, g) is in the following
(N + d+ 1)× (N + d) lattice:

Lug =





0 t
I(d) H(N),i −H(N),i+d

0 qI(N)



 ,

5 More generally, f is determined by {f (mod s1), f (mod s2), . . ., f (mod sz)},
0 6= si ∈ Z[X], when (k(X))(XN − 1) = L.C.M.(s1, s2, . . . , sz) (mod q) for some
k(X) ∈ Z[X].



where H(N),i − H(N),i+d is a d × N matrix formed by pairing rows, and the
top third of the lattice consists only of a single row. Now, if we wish, we may
discard the last d columns, obtaining a (2d+1)× (2d) lattice with target vector
(u, v), where v consists of the first d coefficients of g. Clearly, (u, v) is a short
vector, most likely the shortest vector in this lattice. Once we obtain (u, v), this
information can be combined with (f(d), g(d)) to completely recover (f, g). We
thereby obtain the private key without ever having to reduce a 2N -dimensional
lattice. When N/d > 2, we can decrease the dimension of LCS by about 2d in
a similar fashion. This 2d reduction in lattice dimension should reduce LLL’s
running time by a factor exponential in 2d.

6 NTRU-256

Silverman [?] proposes choosing N to be a power of 2, because then convolution
products can be computed rapidly using Fast Fourier Transforms. In particular,
he suggests (N , p, q) = (256, 2, 127) as an advantageous choice of parameters.
We found that an NTRU-256 private key can be recovered in about 3 minutes
using the folding technique described above.
In our experiments, we used a three-staged approach in recovering the private

key. First, we recovered (f(64), g(64)) by reducing the lattice generated by L(64) - a
128-dimensional matrix withH(64) in upper right quadrant. Second, we recovered
(f(128), g(128)) by reducing the 129× 128 lattice constructed as described above.
Finally, we took advantage of the modulo p structure of the private keys to
create an over-defined system of linear equations. For example, upon computing
that f(128),i = 0, we know that fi = fi+128 = 0, because fi ∈ [0, 1] for all i.
Similarly, f(128),i = 2 implies fi = fi+128 = 1. When p = 2, this trick most likely
results in more than half of g’s coefficients being known, and less than half of f ’s
coefficients being unknown, so that we may solve for the unknown coefficients in
f . We thereby recover the entire private key (f, g) using lattices one-fourth the
size of LCS .
Since the Sf and Sg parameters were not specified for NTRU-(256,2,127),

we used those for NTRU-(263,2,127) - specifically, f and g both have 35 1’s,
the rest 0’s [?]. Using the NTL’s implementation of LLL with a block size of
10 for both reductions, the 3 stages took an average of 40, 43 and 3 seconds,
respectively.6 Out of 20 trials, the correct key was recovered every time. We also
tested the case when f has 75 1’s and g has 65 1’s, which is more challenging
cryptanalytically, both in terms of the lattice reduction (since the target vector
is longer) and the linear system (since there are more equations to solve). To
avoid errors, the block size for the second reduction was increased to 12. The

6 For these particular values of Sf and Sg, we could even have begun by recovering
(f(32), g(32)), which, heuristically, is recoverable even though N/d is somewhat large.
After finding (f(64), g(64)), it is probable that at least half of the coefficients of each
of f(64) and g(64) are zero, and that, consequently, over half of the coefficients of each
of f and g are known to be zero. If such is the case, we can proceed directly to the
third stage without having to reduce a lattice larger than 65× 64.



three stages took an average of 84, 94 and 12 seconds, respectively. Out of 10
trials, the correct key was recovered 9 times.
Some gimmicks were required to pick the target vector from among other

short, but useless, vectors. For example, in the first reduction, we searched for
rather than (f⊥(64), g

⊥
(64)) rather than (f(64), g(64)), where f

⊥
(64) is the projection of

f orthogonal to 1N , the vector having every coefficient equal to 1. This technique,
originated by Coppersmith and Shamir [?], prevents LLL from returning the
short, but cryptanalytically useless vector (1N , 0N ). Also in the first reduction,
LLL would often return other trivial vectors. For example, (1±, 1±) is a trivial
vector that can arise in L(64), where 1

± is the vector consisting of alternating
1’s and -1’s. We simply skipped over these trivial vectors manually, continuing
on to the next vector in the lattice until the desired nontrivial one was obtained.
This process certainly could have been automated.

7 Remarks on NTRU-Prime

As we noted in the introduction, the domain parameter N is typically chosen
to be prime not, apparently, for security reasons, but because it maximizes the
probability that a randomly chosen private key f has inverses modulo q and p,
these inverses being necessary for public key generation and decryption, respec-
tively [?]. In terms of security, NTRU’s typical use of a prime domain parameter
appears to be merely fortuitous.
Folding does not work when N is prime — e.g., f(d) ∗ h(d) does not equal

g(d) when d does not divide N . However, we can say that if f ∗ h = g, and if h
has a period of c in the sense that hi = hi+c for 0 = i < N − c, then the first
N coefficients of g′ = (f, 0) ∗ h′ (where (f, 0) is f followed by c zeros and h′ is
h followed by the c coefficients of h’s period) are precisely the N coefficients of
g. (Proof omitted.) For example, suppose N = 263 and h has a period of 37 —
i.e., h0 = h37, . . . , h225 = h262. Then, we obtain (f, 0) by appending 37 zeros to
f and obtain the last c coefficients of h′ by the relations h263 = h226, . . . , h289 =
h262. This will give us (f, 0) ∗ h′ = (g, w), where the coefficients of w are not
necessarily small. Since (f, 0), h′ and (g, w) have dimension 263 + 37 = 300,
a composite number, we can fold them to dimension, say, 100, obtaining the
relation (f, 0)(100) ∗ h′(100) = (g, w)(100). All of the coefficients of (f, 0)(100) will
be small, and 100 - 37 = 63 of the coefficients of (g, w)(100) will be small, so we
can construct a lattice of dimension 163 that may give us partial information
about f and g. Although this approach works well in the rare case that h has a
small period, it does not appear to lead to an attack against NTRU-prime that
works in general.
Circulant lattices have a rather interesting property - namely, given an n-

dimensional lattice generated by circulant matrix C, one can construct an b n+1
2 c-

dimensional lattice Chalf that contains a C-vector no more than twice as long as
the shortest vector in C. This is a consequence of the fact that for any vectors b
and c, ‖b ∗ c‖ = ‖brev ∗ c‖, where brev is the reverse of b given by brev,i = bn−i.
Now, if we suppose that the matrix C consists of cyclic rotations of the vector



c, and that the shortest vector in the lattice generated by C is obtained through
left-multiplication by b — i.e., the shortest vector is b ∗ c — we get

‖(b+ brev) ∗ c‖ ≤ ‖b ∗ c‖+ ‖brev ∗ c‖ = 2‖b ∗ c‖.

Since (b + brev) is a palindrome — i.e., (b + brev)i = (b + brev)n−i for all i —
(b + brev) has at most bn+1

2 c distinct coefficients, so that the rows of C can
be paired together. This property of circulant lattices does not appear to allow
one to cut the dimension of LCS (a block -circulant lattice) in half, unless h is a
palindrome.

8 Summary and Conclusion

We have shown that choosing N to be a composite number, especially one with
a small factor, significantly reduces the security of the NTRU cryptosystem.
Also, we have shown that it is possible to recover entire NTRU private keys
using lattices of much smaller dimension than was previously thought. To avoid
the presented attacks, N should be chosen to be prime, or to have only large
nontrivial factors.
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A Appendix

A.1 Probability of Very Short (u, v) Pair

Assume we choose h′ from ZNq with uniform distribution; what is the expected
length of the shortest nonzero pair (f ′, g′), f ′, g′ ∈ ZNq , that satisfies f ′ ∗ h′ = g′

(mod q)? We begin with the (admittedly heuristic) observation that the choices
for h′ essentially partition the set of (u, v) pairs according to whether u ∗ h′ = v
(mod q). In other words, it is rare that the set of (u, v) pairs for h′1 and those for
h′2 overlap such that the equalities u

′ ∗h′1 = v′ (mod q) and u′ ∗h′2 = v′ (mod q)
are simultaneously satisfied for some (u′, v′). This notion could be made more
precise, but we will make do with the heuristic observation.

Assuming that the (u, v) pairs are, in fact, partitioned among the choices for
h′, the probability that a randomly chosen h′ has a vector of length less than R
is less than or equal to V (R)/qN , where V (R) is the volume of a 2N -dimensional
ball of radius R, and qN is the number of (u, v) pairs that belong to h′. Using
Stirling’s Formula for the volume of an n-dimensional ball, we find that the
probability that h′ has a (u, v) pair shorter than

√

Nq/2πe is negligibly small.

Since the probability of a random h′ having a (u, v) pair as short as (f, g) is
extremely small, we have some basis for concluding that it is very unlikely that
h has a (u, v) pair unrelated to (f, g) that is as small as (f, g). This conclusion
comes with caveats, the most important being that the trivial vector (1N , 0N ),
where 1N is the vector having all N elements equal to 1, is typically a (u, v) pair
for h, and may very well be shorter than (f, g). This is not a serious problem,
because, as shown in Appendix ??, the group of (u, v) pairs can be slightly
modified to exclude this trivial vector.

A.2 Length of f(d)

We can establish an upper bound on the Euclidean norm of (f(d), g(d)) as follows:

Theorem 2. ‖(f(d), g(d))‖ ≤
√

N/d‖(f, g)‖ .



Proof. Let b = (1 + Xd + · · · + X(N/d−1)d), vf = f ∗ b and vg = g ∗ b. Since
‖(f ∗Xi, g ∗Xi)‖ = ‖(f, g)‖ for all i, we have

‖(vf , vg)‖ ≤ N/d‖(f, g)‖

by the triangle equality, with equality holding when f = f ∗ Xd = · · · = f ∗
X(N/d−1)d and g = g ∗Xd = · · · = g ∗X(N/d−1)d. Notice that the ith coefficient
of vf is equal to f(d),i mod d). In other words, the coefficients of vf are precisely
the coefficients of f(d), repeated N/d times. The same goes for vg. Thus,

‖(vf , vg)‖ =
√

N/d‖(f(d), g(d))‖ ,

from which the desired inequality follows. ut

For the expected length of (f(d), g(d)), recall that we have ‖(f(d), g(d))‖ =
√

N/d‖(f, g)‖ only when

f = f ∗Xd = · · · = f ∗X(N/d−1)d, g = g ∗Xd = · · · = g ∗X(N/d−1)d

— i.e., when the coefficients of f and g have a period of d. Of course, parameters
Sf and Sg can be chosen to require f and g to be periodic, or nearly periodic,
but this would reduce the keyspace and invite other attacks.
We can use ideas of Coppersmith and Shamir to obtain a better approxima-

tion of the length of the target vector of L(d) when f and g behave like random

vectors. Let f⊥ denote the projection of f orthogonal to 1N , the vector in which
all N elements are equal to 1. We find that v⊥f — i.e., the projection of vf or-

thogonal to 1N — is equal to f⊥ ∗ b. Then, following Coppersmith and Shamir,
we get:

‖v⊥f ‖2 =
∑

k

(f⊥ ∗ b)2k

=

(

∑

i

(f⊥i )
2

)(

∑

l

b2l

)

+
∑

j 6=0

(

∑

i

f⊥i f
⊥
i+j

)(

∑

l

blbl+j

)

= (N/d)‖f⊥‖2 +
∑

j 6=0

(

∑

i

f⊥i f
⊥
i+j

)(

∑

l

blbl+j

)

.

Since bl is nonzero only when l = 0 (mod d), each term blbl+j must be zero, and
thus the entire rightmost summation must be zero, unless j = 0 (mod d). When
j = 0 (mod d), the rightmost summation is equal to N/d. Thus, we obtain:

‖v⊥f ‖2 = (N/d)‖f⊥‖2 +
∑

j 6=0,j=0 mod d

(N/d)

(

∑

i

f⊥i f
⊥
i+j

)

.

If f behaves like a random vector, then, for each j, we would expect
∑

i f
⊥
i f

⊥
i+j

to be less than
∑

i f
⊥
i f

⊥
i = ‖f⊥‖2 by a factor of about 1/

√
N . Since the terms



have random sign, we would also expect some cancellation to occur. Thus, if
N/d is not too large (there are N/d − 1 terms in the first summation), such as
when d >

√
N , then we can expect that

‖(v⊥f , v⊥g )‖ ≈
√

N/d‖(f⊥, g⊥)‖ .

Since, as before, the coefficients of v⊥f are precisely the coefficients of f
⊥
(d) re-

peated N/d times, where f⊥(d) denotes the projection of f(d) orthogonal to 1
d, we

get:

‖(f⊥(d), g⊥(d))‖ ≈ ‖(f⊥, g⊥)‖ .

Coppersmith and Shamir have shown that (f⊥, g⊥) is the optimal target vector
for LCS (ignoring their additional ”balancing constant” refinement”). Similarly,
(f⊥(d), g

⊥
(d)) is the optimal target vector for L(d). Thus, when N/d is not too large,

we can expect the target vector of L(d) to be about the same length as the target
vector of LCS .
Applying the techniques used in Appendix ??, we find that that while ‖(f⊥(d), g⊥(d))‖ ≈

‖(f⊥, g⊥)‖, the expected length of the shortest vector in L(d) is less than that

of LCS by a factor of
√

N/d. One might think that this tightening of the ratio
between the expected length of the shortest vector to the length of the target
vector would make the target vector more difficult for LLL to find, but, empir-
ically, the small reduction in this ratio does not even come close to offsetting
the exponential reduction in running times obtained by decreasing the lattice
dimension.


