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Abstract. In this paper we present an algorithm for counting points
on elliptic curves over a finite field Fpn of small characteristic, based on
Satoh’s algorithm. The memory requirement of our algorithm is O(n2),
where Satoh’s original algorithm needs O(n3) memory. Furthermore, our
version has the same run time complexity of O(n3+ε) bit operations, but
is faster by a constant factor. We give a detailed description of the algo-
rithm in characteristic 2 and show that the amount of memory needed
for the generation of a secure 200-bit elliptic curve is within the range of
current smart card technology.
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1 Introduction

In 1985 Schoof [12] described a polynomial time algorithm for counting the num-
ber of points on an elliptic curve E defined over a finite field Fq, with q = pn. The
run time of the algorithm is O(log5+ε q) bit operations using fast arithmetic and
the memory requirements are O(log2 q). Improvements by Elkies [6] and Atkin [1]
led to the so called Schoof-Elkies-Atkin algorithm with a run time of O(log4+ε q)
bit operations and further work by Couveignes [2, 3] and Lercier [9] extended
this SEA-algorithm to work in small characteristic. Csirik [4] implemented a
reduced memory version of the algorithm. Recently Satoh [11] described a new
algorithm for small characteristic p ≥ 5 with run time O(n3+ε) and memory com-
plexity O(n3). Skjernaa [14] and Fouquet, Gaudry and Harley [7] independently
extended Satoh’s algorithm to characteristic 2.

In this paper we present a new version of Satoh’s algorithm which still runs
in O(n3+ε) bit operations, but only needs O(n2) memory. The algorithm works
for all small characteristics and is even faster than the original algorithm by a
constant factor of about 1.5. Furthermore, the algorithm can be easily paral-
lelized. We give a detailed description in the characteristic 2 case and present
run times and memory usages of our implementation for elliptic curves in the
range of interest to cryptography. The given data show that it now becomes
feasible to compute the group order of a 200-bit elliptic curve on a smart card.

? F.W.O. research assistant, sponsored by the Fund for Scientific Research - Flanders
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The remainder of the paper is organized as follows: after a brief review of
Satoh’s original algorithm in section 2, we outline our O(n2) memory version
in its most general form in section 3. In section 4 we specialize this algorithm
to the characteristic 2 case and give ready to implement pseudo-code. Section 5
discusses details of our implementation and contains run times and memory
usages for field sizes relevant to cryptographical applications.

2 Satoh’s Algorithm

Let E be an elliptic curve over Fq, with q = pn. The number of points #E(Fq)
satisfies the well known relation #E(Fq) = q + 1− t, where t is the trace of the
Frobenius endomorphism F : E −→ E : (x, y) 7→ (xq, yq). By Hasse’s theorem [8]
we have |t| ≤ 2

√
q.

The basic idea of Satoh’s algorithm is to lift both the curve E and the
Frobenius endomorphism F to the valuation ring R of a degree n unramified
extension K of the p-adic field Qp. Since this lifting is done in a canonical way,
the trace of the lifted Frobenius F equals the trace of Frobenius t. However,
the Frobenius endomorphism F itself is difficult to lift because it is inseparable.
Therefore one actually works with the dual of the Frobenius endomorphism F ,
called the Verschiebung F̂ . This Verschiebung is separable if and only if E is
non-supersingular and can be lifted explicitly by lifting its kernel. Analyzing the
action of the lift F̂ of F̂ on the formal group of the canonical lift E , we obtain
an expression for the trace of F̂ which equals the trace of Frobenius t.

2.1 The Canonical Lift of an Elliptic Curve

The main step in Satoh’s algorithm is lifting the curve E and the Verschiebung F̂
to the valuation ring R of a degree n unramified extension K of Qp. Among the
many possible lifts of E from Fq to R there is one which has particularly nice
properties, called the canonical lift. The canonical lift E of a non-supersingular
elliptic curve E over Fq is an elliptic curve over K which satisfies the following
two properties: the reduction modulo p of E equals E and End(E) ∼= End(E)
as a ring. Deuring [5] has shown that the canonical lift E always exists and is
unique up to isomorphism. Furthermore, a theorem by Lubin, Serre and Tate [10]
provides an effective, but slow algorithm to compute the j-invariant of E given
the j-invariant of E.

Theorem 1 (Lubin-Serre-Tate) Let E be a non-supersingular elliptic curve

over Fq with j-invariant j(E) ∈ Fq \Fp2 . Denote with Σ the Frobenius substitu-

tion on R and with Φp(X,Y ) the p-th modular polynomial. Then the system of

equations

Φp(X,Σ(X)) = 0 and X ≡ j(E) mod p, (1)

has a unique solution J ∈ R, which is the j-invariant of the canonical lift E
of E.
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Note that it is possible to solve the system of equations (1) directly, but this
would lead to a slow algorithm because of the explicit computation of Σ. A
detailed description of the Frobenius substitution Σ and its computation can be
found in [13].

The hypothesis j(E) 6∈ Fp2 in Theorem 1 is necessary to ensure that a certain
partial derivative of Φp does not vanish modulo p. This condition is necessary to
guarantee the uniqueness of the solution of equation (1). The case j(E) ∈ Fp2

can be handled very easily using Weil’s theorem: since j(E) ∈ Fp2 there exists
an elliptic curve E′ defined over Fpm with m = 1 or m = 2, which is isomorphic
to E over Fq. Let tk = pmk + 1 − #E′(Fpmk) then tk+1 = t1tk − pmtk−1 with
t0 = 2 and therefore #E(Fq) = pn + 1− tn/m. So in the remainder of the paper
we can assume j(E) 6∈ Fp2 and in particular that E is non-supersingular.

Let σ : E −→ Eσ : (x, y) 7→ (xp, yp) be the p-th power Frobenius morphism,
where Eσ is the curve obtained by raising each coefficient of E to the p-th power
and let σ̂ be the dual of σ. Repeatedly applying σ̂ gives rise to the following
cycle

E0 E1 · · · En−1 E0 ,- - - -σ̂0 σ̂1 σ̂n−2 σ̂n−1

with E(n−i) = Eσi

and σ̂i the dual of σi : Ei+1 −→ Ei : (x, y) 7→ (xp, yp).

Composing these, we see that F̂ = σ̂n−1◦σ̂n−2◦. . .◦σ̂0. Instead of lifting E and F̂
directly, the crucial insight of Satoh was to lift the whole cycle (E0, E1, . . . , En−1)
simultaneously leading to the diagram

E0 E1 · · · En−1 E0,- - - -σ̂0 σ̂1 σ̂n−2 σ̂n−1

E0 E1 · · · En−1 E0- - - -Σ̂0 Σ̂1 Σ̂n−2 Σ̂n−1

6 6 6 6

(2)

with Ei the canonical lift of Ei and Σ̂i the corresponding lift of σ̂i. The theorem
of Lubin, Serre and Tate implies that the j-invariants of Ei satisfy

Φp(j(Ei), j(Ei+1)) = 0 and j(Ei) ≡ j(Ei) mod p, (3)

for i = 0, . . . , n− 1. Define Θ : Rn −→ Rn by

Θ(x0, x1, . . . , xn−1) = (Φp(x0, x1), Φp(x1, x2), . . . , Φp(xn−1, x0)), (4)

then clearly we have Θ(j(E0), j(E1), . . . , j(En−1)) = (0, 0, . . . , 0). Using a multi-
variate Newton iteration on Θ, we can lift the cycle (j(E0), j(E1), . . . , j(En−1))
to Rn with arbitrary precision. The iteration step is given by

(J0, J1, . . . , Jn−1)← (J0, J1, . . . , Jn−1)− ((DΘ)−1Θ)(J0, J1, . . . , Jn−1), (5)
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with DΘ the Jacobian matrix

(DΘ)(J0, J1, . . . , Jn−1) =




∂Φp
∂X

(J0, J1)
∂Φp
∂Y

(J0, J1) · · · 0

0
∂Φp
∂X

(J1, J2) · · · 0

...
...

...

0 0 · · · ∂Φp
∂Y

(Jn−2, Jn−1)

∂Φp
∂Y

(Jn−1, J0) 0 · · · ∂Φp
∂X

(Jn−1, J0)




.

(6)
The p-th modular equation satisfies the Kronecker relation

Φp(X,Y ) ≡ (Xp − Y )(X − Y p) mod p (7)

and since j(Ei) 6∈ Fp2 and j(Ei) ≡ j(Ei+1)
p mod p, this leads to the following

equations





∂Φp
∂X

(j(Ei), j(Ei+1)) ≡ j(Ei+1)
p2 − j(Ei+1) 6≡ 0 mod p,

∂Φp
∂Y

(j(Ei), j(Ei+1)) ≡ j(Ei+1)
p − j(Ei+1)

p ≡ 0 mod p.

(8)

The above equations imply that the Jacobian matrix (DΘ)(J0, J1, . . . , Jn−1) is
invertible over R and therefore we see ((DΘ)−1Θ)(J0, J1, . . . , Jn−1) ∈ Rn. Since
Newton iteration has quadratic convergence, we can compute Ji ≡ j(Ei) mod pN

with logN iterations.

2.2 The Trace of Frobenius

The canonical lift E of a non-supersingular elliptic curve E over Fq has the
property that End(E) ∼= End(E). Therefore we have Tr(F ) = Tr(F), where F
is the Frobenius endomorphism on E and F the image of F under the ring
isomorphism End(E) ∼= End(E). Furthermore, the trace of an endomorphism

equals the trace of its dual, so Tr(F ) = Tr(F̂ ) = Tr(F) = Tr(F̂). The following

proposition by Satoh [11] gives a very simple relation between the trace of F̂ and

the leading coefficient of the endomorphism induced by F̂ on the formal group
of E .

Proposition 1 (Satoh) Let E be an elliptic curve over K and let f ∈ EndK(E)
be of degree d. Denote with τ the local parameter of E at O and assume that

the reduction π(f) of f modulo p is separable and that f(Ker(π)) ⊂ Ker(π). Let

f̃(τ) = cτ +O(τ2) be the homomorphism induced by f on the formal group of E,
then Tr(f) = c+ d

c .

Since the Frobenius endomorphism F is inseparable, we cannot apply the above
proposition to F . However, for a non-supersingular curve the Verschiebung F̂
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is separable and we have Tr(F ) = Tr(F̂) = c + q
c with

˜̂F(τ) = cτ + O(τ2).

Diagram (2) shows that F̂ can be written as F̂ = Σ̂n−1 ◦ Σ̂n−2 ◦ · · · ◦ Σ̂0 and
therefore we can compute c as the product of the leading coefficients of the
morphisms induced by Σ̂i. More precisely, let ci be defined by τi+1 ◦ Σ̂i =
ciτi + O(τ2

i ), with τi the local parameter of Ei at O, then c =
∏

0≤i<n ci. Since

F̂ is separable, c will be non-zero modulo p and we conclude

Tr(F ) ≡
∏

0≤i<n

ci mod q. (9)

The final step in Satoh’s algorithm is to compute the coefficients ci, based on
the equations for Ei and Ei+1 and the kernel of Σ̂i, using Vélu’s formulae [15].
The equations for Ei and Ei+1 can be easily computed via a univariate Newton

iteration, since we already know their j-invariants. The isogenies σ̂i and Σ̂i are
separable and of degree p, so σ̂i can be explicitly lifted to Σ̂i by lifting its kernel.
This kernel is a subgroup of the p-torsion group of E. The case p ≥ 5 is discussed
in [11] and proceeds by lifting a factor of the p-th division polynomial using a
Hensel lift. The cases p = 2, 3 can be found in [7, 14] and are handled by lifting
a single non-trivial torsion point using a Newton iteration.

2.3 Complexity

According to Hasse’s theorem we have |t| ≤ 2
√
q. Therefore it suffices to lift all

the data with precision N ' n/2. Since elements ofRmod pN can be represented
as degree n polynomials with coefficients in Z/pNZ and since N = O(n), every
element will take O(n2) memory for fixed p. For each curve Ei with 0 ≤ i < n
we need O(1) such elements, so the total memory required is O(n3). To lift
the cycle of j-invariants with precision N , we need logN iterations. Working
with the lowest possible precision in every iteration, the lifting of the cycle of
j-invariants amounts to O(nM(n2)) bit operations, where M(m) is the time to
multiply two m-bit objects. The computation of one coefficient ci needs O(1)
multiplications, so to compute all ci we also need O(nM(n2)) bit operations.
Therefore the total run time of Satoh’s algorithm is O(nM(n2)) bit operations
or O(n3+ε) using fast multiplication techniques.

3 An O(n2) Memory Algorithm

In this section we present a new version of Satoh’s algorithm, which requires
only O(n2) memory and still runs in O(n3+ε) bit operations. The basic idea is
very simple: the trace of Frobenius t can be computed as t ≡ ∏

0≤i<n ci mod q
and the ci only depend on Ei and Ei+1. So the main problem of Satoh’s original
algorithm is that it lifts all j-invariants simultaneously, instead of lifting one
j-invariant at a time. Note however that lifting all j-invariants simultaneously is
exactly what makes Satoh’s algorithm efficient, because this avoids slow Frobe-
nius computations in R. Thus if we would like our algorithm to run in O(n3+ε)



6 Frederik Vercauteren, Bart Preneel, and Joos Vandewalle

bit operations and only use O(n2) memory, we have to find a method to lift one
j-invariant without using Frobenius computations.

Our strategy is as follows: the j-invariants j(Ei) and j(Ei+1) satisfy the fol-
lowing relations

Φp(j(Ei), j(Ei+1)) = 0, j(Ei) ≡ j(Ei) mod p and j(Ei+1) ≡ j(Ei+1) mod p.
(10)

Suppose we have Ji+1 ≡ j(Ei+1) mod pN to our disposal, then we can compute
Ji ≡ j(Ei) mod pN using a univariate Newton iteration on Φp(X, Ji+1). This
iteration is given by

Ji ← Ji −
Φp(Ji, Ji+1)
∂Φp

∂X (Ji, Ji+1)
, (11)

and we can use j(Ei) ≡ j(Ei) mod p as an initial approximation. Since Φp(X,Y )

satisfies the Kronecker relation,
∂Φp

∂X (Ji, Ji+1) will be invertible in R. Note that

we are forced to walk backwards in the cycle, since
∂Φp

∂Y (Ji, Ji+1) ≡ 0 mod p.
Applying this method repeatedly, one easily sees that it suffices to compute one
j-invariant with precision N , e.g. J0 ≡ j(E0) mod pN . To solve this last problem,
we analyze in detail the properties of a bivariate polynomial, which satisfies the
same relations as Φp(X,Y ).

Proposition 2 Let K be an unramified extension of Qp and denote with R its

valuation ring. Let g ∈ R[X,Y ] and assume x0, y0 ∈ R such that

g(x0, y0) ≡ 0 mod p,
∂g

∂X
(x0, y0) 6≡ 0 mod p and

∂g

∂Y
(x0, y0) ≡ 0 mod p.

(12)
Then the following properties hold:

1. For every y ∈ R with y ≡ y0 mod p there exists a unique x ∈ R such that

x ≡ x0 mod p and g(x, y) = 0.

2. Let y′ ∈ R with y ≡ y′ mod pM , M ≥ 1 and let x′ ∈ R be the unique element

with x′ ≡ x0 mod p and g(x′, y′) = 0. Then x′ ≡ x mod pM+1.

Proof:

1. Define h ∈ R[X] by h(X) = g(X, y). Then h(x0) ≡ 0 mod p and h′(x0) ≡
∂g
∂X (x0, y0) mod p. Therefore, h′(x0) 6≡ 0 mod p and Hensel’s lemma guar-
antees the existence of a unique x ∈ R such that h(x) = g(x, y) = 0 and
x ≡ x0 mod p. Furthermore, given y, one can compute x with arbitrary
precision using a univariate Newton iteration on g(X, y) with x0 mod p as
an initial approximation.
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2. Define δx = x′ − x and δy = y′ − y. Clearly δx ≡ δy ≡ 0 mod pM . Writing
out the Taylor series of g(X,Y ) =

∑
i,j gi,jX

iY i leads to

0 = g(x′, y′) = g(x+ δx, y + δy)

=
∑

i,j

gi,j(x+ δx)
i(y + δy)

j

=
∑

i,j

gi,j(x
i + ixi−1δx + δ2

xRx(x))(y
j + jyj−1δy + δ2

yRy(y)),

(13)

with Rx, Ry polynomials with coefficients in R. Since δ2
x ≡ δ2

y ≡ 0 mod p2M

and M ≥ 1 we get

0 ≡ ∂g

∂X
(x, y)(x− x′) +

∂g

∂Y
(x, y)(y − y′) mod pM+1. (14)

The above equation implies x ≡ x′ mod pM+1, since δy ≡ 0 mod pM ,
∂g
∂Y (x, y) ≡ 0 mod p and ∂g

∂X (x, y) 6≡ 0 mod p. ¤

Repeatedly applying Proposition 2 leads to a very simple iterative algorithm to
compute J0 ≡ j(E0) mod pN . Starting with JN−1 ≡ j(EN−1) mod p, we compute
JN−2 ≡ j(EN−2) mod p2 using a Newton iteration on Φp(X, JN−1), similar to
equation 11. More generally, given JN−i+1 ≡ j(EN−i+1) mod pi−1, we determine
JN−i ≡ j(EN−i) mod pi. After N − 1 steps we reach J0 ≡ j(E0) mod pN .
Combining these ideas finally leads to algorithm Satoh Low Memory.

Algorithm 1 (Satoh Low Memory)

IN: A j-invariant j ∈ Fpn \ Fp2 of an elliptic curve E.

OUT: The trace of Frobenius t = q + 1−#E(Fq) of E.

1. Compute J ≡ j(E) mod pN with N > n/2 + 1 from JN−1 ≡ j(EN−1) mod p
with N − 1 Newton iterations 11;

2. Set c2 = 1;

3. For i = 1 To n Do

3.1. Compute J ′ ≡ j(En−i) mod pN using a Newton iteration 11 on Φp(X, J);

3.2. Compute the square c2n−i mod pN of coefficient cn−i mod pN ;

3.3. Set c2 = c2 × c2n−i and J = J ′;

4. Compute c ≡
√
c2 mod pN with the correct sign;

5. Return t ≡ c mod pN .
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The memory requirement of algorithm Satoh Low Memory isO(n2) for p fixed:
every element in R mod pN takes O(n2) memory, and the algorithm needs O(1)
such elements. Therefore, the total memory required is O(n2).

Lifting one j-invariant to precision N and computing one coefficient ci can
be done with O(M(n2)) bit operations, so the loop in step 3 takes O(nM(n2))
bit operations. Since the j-invariant in step 1 is computed using N Newton
iterations with varying precision i = 2, . . . , N , the total cost of step 1 is trivially
bounded by O(nM(n2)) bit operations. We therefore conclude that our version
still runs in O(nM(n2)) bit operations or O(n3+ε) using fast arithmetic.

4 Algorithms in Characteristic 2

In this section we specialize the O(n2) memory algorithm of the previous sec-
tion to the characteristic 2 case, which from a practical point of view is most
important.

Let E be an elliptic curve over a finite field Fq, with q = 2n and j(E) 6∈ F4.
It is well known that either E or its quadratic twist is isomorphic over Fq with
an elliptic curve given by an equation of the form y2 +xy = x3 +a, with a ∈ F∗q .
Therefore, we can restrict ourselves to this case.

Let K be a degree n unramified extension of Q2 and R its valuation ring.
Then R is isomorphic to Z2[T ]/(f(T )), with f ∈ Z2[T ] a monic polynomial of
degree n such that its reduction modulo 2 is irreducible in F2[T ]. In practice all
computations are carried out in the ring R mod 2N , which can be represented
as (Z/2NZ)[T ]/(f(T )).

4.1 Lifting the j-invariants

For 1 ≤ i < n define the elliptic curve Ei by the equation y2 + xy = x3 + a2n−i

and let Ei be the canonical lift of Ei. Using Proposition 2 we can compute
Ji ≡ j(Ei) mod 2N , starting from Ji+1 ≡ j(Ei+1) mod 2N−1, using a univariate
Newton iteration on the polynomial Φ2(X, Ji+1), with

Φ2(X,Y ) =X3 + Y 3 −X2Y 2 + 1488(XY 2 +X2Y )− 162000(X2 + Y 2)

+ 40773375XY + 8748000000(X + Y )− 157464000000000.
(15)

Algorithm Lift Previous J Invariant computes coefficients A,B,C ∈ R mod
2N , such that

Φ2(X, Ji+1) ≡ X3 +AX2 +BX + C mod 2N , (16)

and then calls the recursive algorithm Lift Previous J Invariant Rec which
performs the Newton iteration on the cubic polynomial X3 + AX2 + BX + C.
With every call of algorithm Lift Previous J Invariant we gain 1 bit of
precision, so if we would like to compute J0 ≡ j(E0) mod 2N then it suffices to
start with j(EN−1) ≡ j(EN−1) mod 2 and iterate this algorithm N − 1 times,
which immediately leads to algorithm Lift First J Invariant.
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Algorithm 2 (Lift Previous J Invariant)

IN: Ji+1 ∈ R mod 2N with Ji+1 ≡ j(Ei+1) mod 2N−1 and a precision N .

OUT: Ji ∈ R mod 2N with Ji ≡ j(Ei) mod 2N .

1. A ≡ −J2
i+1 + 1488Ji+1 − 162000 mod 2N ;

2. B ≡ 1488J2
i+1 + 40773375Ji+1 + 8748000000 mod 2N ;

3. C ≡ J3
i+1 − 162000J2

i+1 + 8748000000Ji+1 − 157464000000000 mod 2N ;

4. Ji = Lift Previous J Invariant Rec(Ji+1, A, B, C, N);

5. Return Ji.

Algorithm 3 (Lift Previous J Invariant Rec)

IN: Elements Ji+1, A,B,C ∈ R mod 2N with Ji+1 ≡ j(Ei+1) mod 2N−1,

Φ2(X, Ji+1) ≡ X3 +AX2 +BX + C mod 2N and a precision N .

OUT: An element Ji ∈ R mod 2N with Ji ≡ j(Ei) mod 2N .

1. If N = 1 Then

1.1. Ji = J2
i+1 mod 2;

2. Else

2.1. N ′ =
⌈

N
2

⌉
;

2.2. Ji = Lift Previous J Inv Rec(Ji+1, A, B, C, N ′);

2.3. Ji ≡ Ji −
J3

i +AJ2
i +BJi + C

3J2
i + 2AJi +B

mod 2N
;

3. Return Ji.

Algorithm 4 (Lift First J Invariant)

IN: A j-invariant j0 ∈ F2n \ F4 and a precision N .

OUT: J0 ∈ R mod 2N with J0 ≡ j0 mod 2 and Φ2(J0, Σ(J0)) ≡ 0 mod 2N .

1. J0 ≡ j2
(n−N+1)

0 mod 2;

2. For i = 2 To N Do

2.1. J0 = Lift Previous J Invariant(J0, i);

3. Return J0.
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4.2 Computing the Trace

In this section we give an explicit formula for the first coefficient ci of the formal
group expression of Σ̂i. This suffices to compute the trace of Frobenius t, since
t ≡∏n−1

i=0 ci mod q.

The following proposition gives an expression for c2
i in terms of the j-invariant

of Ei and the x-coordinate of the non-trivial point in Ker(Σ̂i). Since Σ̂i is sepa-
rable and of degree 2, its kernel is a subgroup of order 2 of the 2-torsion points
and therefore contains exactly one non-trivial point. The proposition is adapted
from [14]: the proof is exactly the same, but the given formulae have been sim-
plified as much as possible.

Proposition 3 Let τi = −X/Y be the local parameter of Ei at O and let ci be

defined as τi+1 ◦ Σ̂i = ciτi + O(τ2
i ). Denote the non-trivial point in Ker(Σ̂i) by

Qi = (xi, yi) and let zi = xi/2 and ti = (12z2
i + zi)(j(Ei)− 1728)− 36, then

c2i =
j(Ei)− (504 + 12096zi)ti

j(Ei) + 240ti
. (17)

Algorithm 5 (Compute Trace)

IN: A j-invariant j ∈ F2n \ F4 of an elliptic curve E.

OUT: The trace of Frobenius t = q + 1−#E(Fq) of E.

1. N =
⌈

n
2

⌉
+ 13; M = N − 10;

2. J = Lift First J Invariant(j, N);

3. CN = 1; CD = 1;

4. For i = 0 To n− 1 Do

4.1. J ′ = Lift Previous J Invariant(J , N);

4.2. Z = − (J2 + 195120J + 4095J ′ + 660960000)/212

(J2 + J(563760− 512J ′) + 372735J ′ + 8981280000)/29
;

4.3. T = (12Z2 + Z)(J ′ − 1728)− 36;

4.4. CN = CN × (J ′ − (504 + 12096Z)T );

4.5. CD = CD × (240T + J ′);

4.6. J = J ′;

5. t = Sqrt(CN/CD, 1, M) mod 2M−1;

6. If t > 2
√
q Then t = t− 2M−1;

7. Return t.
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Thus to compute c2i , we need an expression for half the x-coordinate of the

non-trivial point Qi ∈ Ker(Σ̂i). Again we follow [14], but considerably simplify
the formula for zi.

Proposition 4 Let Qi = (xi, yi) be the non-trivial point in Ker(Σ̂i) and let

zi = xi/2, then

zi = −
(j(Ei+1)

2 + 195120j(Ei+1) + 4095j(Ei) + 660960000)/212

(j(Ei+1)2 + j(Ei+1)(563760− 512j(Ei)) + 372735j(Ei) + 8981280000)/29
.

(18)

Combining the above propositions we can compute c2 =
∏n−1

i=0 c2i . Since
the trace of Frobenius t satisfies t ≡ c mod q and |t| ≤ 2

√
q, we have t ≡

c mod 2dn+4
2 e. The 2-adic square root can be found via a Newton iteration for

the inverse square root, i.e. via a Newton iteration on s(X) = c2X2− 1. Clearly,
we have s(1/c) = 0 and s′(1/c) ≡ 0 mod 2. Furthermore, c ≡ 1 mod 4, since
E has a point of order 4 and thus s′(1/c) 6≡ 0 mod 4. The vanishing of s′(1/c)
modulo 2 means that we lose exactly one bit of precision in the computation

of the square root and therefore we need to compute c2 modulo 2dn+6
2 e. Substi-

tuting the expressions for zi and ti in c2i , we see that we have to determine the

j-invariants j(Ei) with precision 2dn
2 e+13. This finally leads to the main algo-

rithm Compute Trace. In step 5 we use the function Sqrt, which computes the
2-adic square root of c2 with precision M , such that c ≡ 1 mod 4.

5 Implementation

In this section we give practical run times and memory usages of both the original
Satoh lifting-algorithm combined with the simplified formulae taken from [14]
and our O(n2) memory version for elliptic curves in the range of interest to
cryptography. Both algorithms have been implemented in the C programming
language on a AMD Thunderbird 1 GHz PC with 384 MB of main memory,
running Linux Redhat 6.2. All programs were compiled using the gcc compiler,
version 2.7.2.3. Before giving the actual results we make some comments on our
implementation.

Since efficiency was our main goal, we have written the basic operations on
multiple precision integers in assembly. These include: addition and subtraction,
shift left/right and the multiplication of a multi-precision integer by a word. To
minimize the loop overhead for small multiple precision integers, i.e. integers
which fit in four words or less, we implemented unrolled versions of the above-
mentioned operations.

Elements of F2n are represented with respect to a standard polynomial basis,
i.e. as polynomials over F2 modulo a degree n irreducible polynomial f . By choos-
ing f as a trinomial or a pentanomial, reduction modulo f becomes very efficient.
The same polynomial f is used to construct R mod 2N as (Z/2NZ)[T ]/(f(T )).
Multiplication of two elements in R mod 2N is implemented using Karatsuba’s
trick in the polynomial dimension and classical multiplication for the coefficients.
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In Table 1 we compare the characteristic 2 version of Satoh’s original algo-
rithm with our O(n2) memory version for finite fields F2n relevant to crypto-
graphical applications. The data in this table show that our algorithm is faster
by a constant factor of about 1.5 and that the memory requirements are con-
siderably lower than for Satoh’s original algorithm. We note that our current
implementation is more optimized towards speed than it is towards minimizing
memory usage. Therefore it would be possible to lower the memory requirements
by another 30%. Since a smart card typically has 32 KB of memory (in the near
future this will be 64 KB), it becomes feasible to generate secure elliptic curves
on a smart card.

Table 1. Run times and memory usage of Satoh’s algorithm versus the O(n2) memory
version on an AMD 1 GHz

Field size n
Original Satoh O(n2) memory version

Time (s) Memory (KB) Time (s) Memory (KB)
160 5.43 315 3.17 30
180 9.11 534 5.64 44
200 11.8 650 7.41 48
220 15.4 790 9.83 54
240 28.1 1162 15.8 73
260 36.0 1371 20.3 80
280 44.1 1574 25.1 86
300 64.3 2180 39.2 109
340 88.7 2790 55.3 125
380 133 4052 82.7 162
420 195 5643 123 197
460 244 6756 154 224
500 400 8964 225 275

6 Conclusion

In this paper we have presented a new version of Satoh’s algorithm which only
needs O(n2) memory, where the original algorithm needs O(n3) memory. Fur-
thermore, we showed that our algorithm still runs in O(n3+ε) bit operations,
which equals the run time complexity of Satoh’s original algorithm. Our version
relies on univariate Newton iterations where Satoh also uses multivariate New-
ton iterations. In our implementation, this resulted in a speed-up of a factor of
about 1.5. As a result of the O(n2) memory complexity, it now becomes feasible
to generate secure elliptic curves on a smart card.
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