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Abstract. Recently a powerful cryptanalytic tool—the slide attack—
was introduced [3]. Slide attacks are very successful in breaking iterative
ciphers with a high degree of self-similarity and even more surprisingly
are independent of the number of rounds of a cipher. In this paper we
extend the applicability of slide attacks to a larger class of ciphers. We
find very efficient known- and chosen-text attacks on generic Feistel ci-
phers with a periodic key-schedule with four independent subkeys, and
consequently we are able to break a DES variant proposed in [2] using
just 128 chosen texts and negligible time for the analysis (for one out of
every 216 keys). We also describe known-plaintext attacks on DESX and
Even-Mansour schemes with the same complexity as the best previously
known chosen-plaintext attacks on these ciphers. Finally, we provide new
insight into the design of GOST by successfully analyzing a 20-round
variant (GOST⊕) and demonstrating weak key classes for all 32 rounds.

1 Introduction

The slide attack is a powerful new method of cryptanalysis of block-ciphers
introduced in [3]. The unique feature of this new cryptanalytic attack is its
independence of the number of rounds used in the cipher of interest: when a
slide attack is possible, the cipher can be broken no matter how many rounds are
used. This capability is indispensable in a study of modern iterative block ciphers
and hash functions. As the speed of computers grows, it is natural to use more
and more rounds, which motivates our study of attacks that are independent
of the number of rounds. While addition of a few rounds usually stops even a
very sophisticated cryptanalytic attack (such as a differential or linear attack), in
contrast a cipher vulnerable to slide attacks cannot be strengthened by increasing
the number of its rounds. Instead, one must change the key-schedule or the design
of the rounds.
In [3] it was shown that slide attacks exploit the degree of self-similarity of

a block cipher and thus are applicable to iterative block-ciphers with a periodic
key-schedule. It was also shown that slide attacks apply to auto-key ciphers
(where the choice of the round subkeys is data-dependent). As an example an
attack was presented on modified Blowfish [17], a cipher based on key-dependent
S-boxes which so far had resisted all the conventional attacks.
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Table 1. Summary of our attacks on various ciphers.

Cipher (Rounds) Key bits Best Previous Attack Our Attack
Data Type Time Data Type Time

2K-DES (∞) 96 232 KP 250 232 KP 233

2K-DES (∞) 96 232 KP 250 217 CP/CC 217

4K-Feistel (∞) 192 — – — 232 KP 233

4K-Feistel (∞) 192 — – — 217 CP/CC 217

4K-DES∗ (∞) 192 — – — 217 CP/CC 217

Brown-Seberry-DES∗ (∞) 56 — – — 128 CP/CC 27

DESX (16) 184 2m CP 2121−m 232.5 KP 287.5

DESX (16) 184 2m CP 2121−m 232.5 CO 295

Even-Mansour (—) 2n 2n/2 CP 2n/2 2n/2 KP 2n/2

GOST⊕ (20) 256 — – — 233 KP 270

CO — ciphertext-only, KP — known-plaintext, CP — chosen-plaintext, CP/CC —
chosen plaintext/ciphertext. ∗ – Our attack on 4K-DES and Brown-Seberry-DES works
for 1/216 of all keys. Note that attacks on 2K-DES work for all the keys.

The existence of attacks which are independent of the number of rounds is
perhaps counter-intuitive. To illustrate this consider a quote from [15]:

“Except in a few degenerate cases, an algorithm can be made arbitrarily
secure by adding more rounds.”

Slide attacks force us to revise this intuition, and this motivates our detailed
study of advanced sliding techniques.
In this paper we introduce advanced sliding techniques—sliding with a twist

and the complementation slide—that result in a more efficient slide attacks and
allow to attack new classes of ciphers. We illustrate these techniques on generic
Feistel constructions with two- or four-round self-similarity as well as a Luby-
Rackoff construction and also the example ciphers 2K-DES and 4K-DES, which
differ from DES only by having 64 rounds, a 96- or 192-bit key, and a simplified
(periodic) key-schedule. Analysis of these ciphers is of independent interest since
it demonstrates the dangers of some ways to extend DES. Specifically we show
a very efficient attack on a variant of DES proposed in [2]: our attack uses only
128 chosen texts and negligible time of analysis (for a 2−16 fraction of all keys).
We then apply the newly developed methods to the DESX and Even-Mansour

schemes, and we show known-plaintext slide attacks with the same complexity as
the best previously known chosen-plaintext attacks. We also apply slide attacks
to the GOST cipher (a Russian equivalent of DES) obtaining insights on its
design.
See Table 1 for a summary of our results. For each cipher a number of rounds

that our attack is able to cover is presented;∞ is shown if our attack is indepen-
dent of the number of rounds of a cipher. The block size in bits is denoted by n,
and the ‘Key bits’ column denotes the number of secret key bits of the cipher.
This paper is organized as follows: In Section 2 we briefly describe conven-

tional slide attacks. We develop several advanced sliding techniques in Section 3,
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illustrating them on generic Feistel ciphers with periodic key-schedules. As a side
effect we receive a distinguishing attack on the Ψ(f, g, f, g, . . . , f, g) Luby-Rackoff
construction (see the end of Section 3.2). We then apply the newly developed
techniques to the analysis of DESX and Even-Mansour schemes in Section 4.
In Section 5 we turn advanced slide attacks to the analysis of GOST. Finally
Section 6 summarizes some related work and Section 7 outlines some possible
directions for further research.

2 Conventional Slide Attacks

Earlier work [3] described a simple form of slide analysis applicable to ciphers
with self-similar round subkey sequences or autokey ciphers. We briefly sketch
those ideas here; see [3] for full details and cryptanalysis of a number of ciphers,
and Section 6 for other related work.
In the simplest case, we have an r-round cipher E whose rounds all use the

same subkey, so that E = F ◦ F ◦ · · · ◦ F = F r. Note that if the key schedule
of a cipher is periodic with period p, we can consider F to be a “generalized”
round consisting of p rounds of the original cipher. We call such ciphers p-round
self-similar. Let 〈P,C〉 be a known plaintext-ciphertext pair for E. The crucial
observation is

P ′ = F (P ) implies C ′ = E(P ′) = F r(F (P )) = F (F r(P )) = F (C).

In a standard slide attack, we try to find pairs 〈P,C〉, 〈P ′, C ′〉 with P ′ = F (P );
we call such a pair a slid pair, and then we will get the extra relation C ′ = F (C)
“for free.”

K
f

f
K

K
f

f
K

RL

M N
K

f

f
K

K
f

f
K

L′ R′

N ′M ′

R′

N

Encryption

Encryption

L′

M

Fig. 1. A conventional slide attack on a generic Feistel cipher with one-round self-
similarity. If L′ = R and R′ = L ⊕ f(K ⊕ R), the texts shown above will form a slid
pair, and we will have M ′ = N and N ′ =M ⊕ f(K ⊕N).

Slide attacks provide a very general attack on iterated product ciphers with
repeating round subkeys. The only requirement on F is that it is very weak
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against known-plaintext attack with two pairs (we are able to relax this require-
ment later, in Section 3.5). More precisely, we call Fk(x) a weak permutation if
given the two equations Fk(x1) = y1 and Fk(x2) = y2 it is “easy” to extract the
key k. Such a cipher (with a n-bit block) can be broken with only 2n/2 known
texts, since then we obtain 2n possible pairs 〈P,C〉, 〈P ′, C ′〉; as each pair has a
2−n chance of forming a slid pair, we expect to see one slid pair which discloses
the key.

Feistel ciphers form an important special case for sliding, since the attack
complexity can be substantially reduced from the general case. We depict in
Figure 1 a conventional slide attack on a Feistel cipher with repeating round
subkeys. The Feistel round structure gives us an n-bit filtering condition on slid
pairs, which lets us reduce the complexity of analysis to about 2n/2 time and
space, a significant improvement over the 2n work required for the general attack
listed above. Furthermore, there is a chosen-text variation which works against
Feistel ciphers with about 2n/4 chosen plaintexts: we may simply use structures
to ‘bypass the first round’. See [3] for details.

In this paper, we focus on generalizing the slide attack to apply to a broader
range of constructions.

3 Advanced Sliding Techniques

In this section we show several ways of extending the basic slide attack to apply
to larger classes of ciphers. In the following subsections we introduce two new
methods: the complementation slide and sliding with a twist.

We will describe these new techniques by applying them first to a generic Feis-
tel cipher with a 64-bit block and self-similar round subkeys. (See Figure 1 for an
example of such a cipher, where the subkeys exhibit one-round self-similarity. In
this section, we consider up to four-round self-similarity.) For ease of illustration
we will show graphically ciphers with only a small number of rounds, but we
emphasize that the attacks described in this section apply to ciphers with any
number of rounds. After describing the basic attack techniques we will show how
to extend them to real ciphers.

3.1 The Complementation Slide

First we show a method to amplify self-similarity of Feistel ciphers with two-
round self-similarity by exploiting its complementation properties, thus allowing
for much better attacks. We call this approach the complementation slide.

In the conventional attack, to deal with two-round self-similarity one must
slide by two rounds (thus achieving a perfect alignment of rounds with K0 and
K1), but this yields inefficient attacks. In contrast, we suggest to slide by only one
round. This introduces the difference ∆ = K0 ⊕K1 between slid encryptions in
all the rounds. Notice that we have effectively amplified the self-similarity of the
cipher from 2-round to 1-round self similarity. However together with amplified
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Fig. 2. A complementation slide attack on a Feistel cipher with two-round self-
similarity. If L′ = R ⊕ ∆ and R′ = L ⊕ f(K0 ⊕ R) ⊕ ∆, the texts shown above
will form a slid pair, and we will have M ′ = N ⊕∆ and N ′ =M ⊕f(K1⊕N ⊕∆)⊕∆,
where ∆ = K0 ⊕K1.

self-similarity we have introduced differences between rounds of encryption in a
slid pair. How can the attack proceed?
Our answer is to choose a slid pair so that the plaintext differences will cancel

the difference between the subkeys. Instead of searching for plaintexts with slid
difference zero, we search for plaintexts with slid difference 〈∆,∆〉. (Note: We
say that a pair of plaintexts P, P ′ has slid difference d if F (P )⊕ P ′ = d.) Such
a slid difference will propagate with probability one through all the rounds, and
thus will appear at the ciphertext. See Figure 2 for a pictorial illustration of the
attack.
The slid pairs can be found in a pool of 232 known plaintexts, as before. If

we denote the plaintext by P = 〈L,R〉 and the ciphertext by C = 〈M,N〉, we
get the following slid equations:

〈L′, R′〉 = 〈R,L⊕ f(K0 ⊕R)〉 ⊕ 〈∆,∆〉
〈M ′, N ′〉 = 〈N,M ⊕ f(K1 ⊕N ⊕∆)〉 ⊕ 〈∆,∆〉.

Thus we have L′ ⊕ M ′ = R ⊕ N which is a 32-bit condition on a slid pair.
Moreover the second equation suggests a 32-bit candidate for ∆ = K0 ⊕K1; if
we have several slid pairs, this value should coincide for all of them (although
we do not need the latter property in our attack). Thus the S/N ratio of this
attack is very high. As soon as one slid pair is found, we derive ∆ = K0 ⊕K1.
Then, if the round function f is weak enough, we will be able to derive the keys
K0 and K1 themselves from the first and second equations. We will only need to
examine 231 pairs (due to the 32-bit filtering condition) and each pair suggests
at most one candidate key, so the work-factor of the attack is very low.
To summarize, this gives a known plaintext attack on a generic Feistel cipher

with two-round self-similarity. The complexity of the attack is quite realistic: we
need just 232 known texts and at most 232 light steps of analysis. However, see
Section 3.2 for an even better attack.



600 Alex Biryukov and David Wagner

K1
f

f

K1
f

f
K0

L

M N

K0

R

Encryption

N ′

N

Decryption

f

f

f

f
K0

K1

K0

K1

N ′M ′

L′ R′

M ′

M

Fig. 3. Sliding with a twist, applied to a Feistel cipher with two-round self-similarity.
If N ′ = R and M ′ = L⊕ f(K0 ⊕ R), the texts shown above will form a (twisted) slid
pair, and we will have R′ = N and L′ =M ⊕ f(K0 ⊕N).

Even more interestingly: We can consider a variant with four independent
subkeys, K0, K1, K2, K3, so that the key size is 128 bits. If we slide by two
rounds we find that the xor differences between subkeys are 2-round self-similar!
A modified version of the above attack works, although the S/N ratio is not as
high as before. Complementation sliding thus provides a powerful technique for
amplifying self-similarity in iterated ciphers.

3.2 Sliding with a Twist

We next describe a novel technique of sliding with a twist on a Feistel cipher
with two-round self-similarity. This allows for even better attacks than those
presented above. See also our attack on DESX in Section 4 for an important
application of sliding with a twist.
If we ignore the final swap for the moment, then decryption with a Feistel

cipher under key K0,K1 is the same as encryption with key K1,K0
1. Of course,

Feistel encryption with key K0,K1 is very similar to encryption with key K1,K0:
they are just out of phase by one round. Therefore, we can slide by one round
a decryption process against an encryption process (the twist). This provides us
with a slid pair with an overlap of all rounds except for one round at the top
and one round at the bottom. Notice that due to the twist these rounds both
use the same subkey K0. See Figure 3 for a graphical depiction.
The attack begins by obtaining a pool of 232 known texts, so that we expect

to find one slid pair. For a slid pair, we have

〈M ′, N ′〉 = 〈L⊕ f(K0 ⊕R), R〉 〈L′, R′〉 = 〈M ⊕ f(K0 ⊕N), N〉

which gives us a 64-bit filtering condition on slid pairs (namely N ′ = R and
R′ = N). Thus the slid pair can be easily found with a hash table and 232 work,
and it immediately reveals the subkey K0.

1 In [3] such cipher, based on DES was called 2K-DES.



Advanced Slide Attacks 601

The rest of the key material can be obtained in a second analysis phase with
a simplified conventional sliding (by two rounds and without a twist) using the
same pool of texts and with less than 232 work. Pick a ciphertext from a pool,
partially encrypt it with K0 and search the pool of ciphertexts for one with
coinciding 32 bits. If such a ciphertext is found perform a similar check on their
plaintexts. If both conditions hold this is a slid pair that provides us with K1.
This attack requires just 232 known texts and 233 work.
Moreover, there is a chosen-plaintext/ciphertext variant that allows us to

reduce the number of texts down to 217 with the use of structures. We generate
a pool of 216 plaintexts of the form (Li, R) and obtain their encryptions. Also,
we build a pool of 216 ciphertexts of the form (M ′

j , N
′) and decrypt each of them,

where the value N ′ = R is fixed throughout the attack. This is expected to give
one slid pair, and then the analysis proceeds as before.
This demonstrates that sliding with a twist is capable of attacking any n-bit

Feistel block cipher with a two-round periodic key-schedule with 2n/2 known
plaintexts and about 2n/2 time, or with about 2n/4 chosen plain-ciphertexts
and about 2n/4 time. Also, sliding with a twist can be used to distinguish a
Luby-Rackoff [13] construction with two alternating pseudo-random functions
f and g and with an arbitrary number of rounds (an accepted notation is
Ψ(f, g, f, g, . . . , f, g)) from a random permutation with about 2n/2 known plain-
texts and similar time (given that the block size is n bits), or with about 2n/4

chosen plaintext/ciphertext queries and similar time.

3.3 Better Amplification of Self-Similarity: Four-Round Periodicity

In this section we combine the complementation slide and sliding with a twist

to amplify the self-similarity of round subkeys even further. Consider a Feistel
cipher with key schedule that repeats every four rounds, using independent sub-
keys K0, K1, K2, K3, and suppose these keys are xored at the input of the
f -function. We call this generic cipher a 4K-Feistel cipher.
One may naively slide by two rounds to amplify self-similarity, like this:

K0 K1 K2 K3 K0 K1 . . .
K0 K1 K2 K3 K0 K1 . . .

Then one may use a complementation slide technique using the slid difference
〈K1 ⊕K3,K0 ⊕K2〉. However, there doesn’t seem to be any way to make this
attack work with less than 2n/2 texts, and the analysis phase is hard.
Better results are possible if one applies sliding with a twist. At a first glance,

the twist may not seem to be applicable, but consider combining it simultane-
ously with the complementation slide, like this:

K0 K1 K2 K3 K0 K1 K2 K3 K0 . . .
K3 K2 K1 K0 K3 K2 K1 K0 K3 . . .

The top row represents an encryption, and the bottom represents a decryption
(or, equivalently, encryption by K3,K2,K1,K0, due to the similarity between
encryption and decryption in Feistel ciphers).
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Fig. 4. Combining the complementation slide and sliding with a twist techniques in a
single unified attack against a Feistel cipher with four-round self-similarity.

Now note that the odd rounds always line up, but the even rounds have the
constant difference K1 ⊕K3 in the round subkeys. Therefore, we can apply the
complementation slide technique, if we can get texts with a slid difference of
〈0,K1 ⊕K3〉. Then we get the attack shown in Figure 4.
Combining the two advanced sliding techniques provides a number of sig-

nificant benefits. First, we obtain an n-bit filtering condition, so detecting slid
pairs becomes easy. Consequently, the analysis phase is straightforward. Also,
the combined approach makes it easier to recover key material from a slid
pair. Finally, perhaps the most important improvement is that now we can re-
duce the data complexity of the attack to just 2n/4 texts, in the case where
chosen-plaintext/ciphertext queries are allowed. Neither advanced sliding tech-
nique can—on its own—provide these advantages; in this respect, the whole is
greater than the sum of the parts.

3.4 Attack on DES with Brown-Seberry Key-schedule

In [2] an alternative key-schedule for DES was proposed. This key-schedule was
supposed to be “as effective as that used in the current DES” and was “suggested
for use in any new algorithm” [2]. This variant of DES was already studied
in [1] resulting in a related-key attack on it. In this section we show a chosen
plaintext/ciphertext slide attack on this variant of DES, which uses only 128
chosen texts and negligible time for analysis. The attack works for 240 out of 256

keys.
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To remind the reader: the DES key-schedule consists of two permuted-choice
permutations PC1 and PC2, and a rotation schedule. The first permuted choice
PC1 is used to reduce the key-size from 64 bits to 56 bits. Then the result is
divided into two 28-bit registers C and D. Each round we cyclicly rotate both
registers by one or two bits to the left. Permuted choice PC2 is applied to the
result, which picks 24 bits from each 28-bit register and thus forms a 48-bit
round subkey.
In [2] a key-schedule that rotates by 7 bits every round was proposed (instead

of the irregular 1,2-bit rotations used in DES). Due to a larger rotation amount
which spreads bits between different S-boxes the PC2 permutation was simplified
to become an identity permutation which just discards the last 4 bits of each 28-
bit register. We claim that for 1/216 of the keys, this variant can be broken with
our sliding with a twist techniques as follows: the known-plaintext attack will
require 232.5 texts, time and space; the chosen-plaintext/ciphertext, however,
will require only 27 texts!
First of all notice that since the new rotation amount (7 bits) divides the size

of the key-schedule registers (28 bits) the registers C,D return to their original
state every four rounds. This results in a key-schedule with a period of four, which
can be analyzed by the methods that we developed in the previous sections for
the four-round self-similar Feistel ciphers. We will extend the standard attack
even further by noticing that DES key-schedule is used and not four independent
round subkeys as in our previous model. However, DES-like ciphers introduce
one small complication: the DES round function xors the subkey against the
48-bit expanded input rather than the raw 32-bit input, so the complementation
slide only works if the 48-bit subkey difference is expressible as the expansion of
some 32-bit text difference.
Let Ji = 〈C ≪ 7i,D ≪ 7i〉 so that Ki = PC2(Ji). For the sliding with

a twist to work in the case of DES we need K1 ⊕ K3 to have an ‘expandable’
form in order to pass through the 32 to 48 expansion of the DES round function.
Note also that if J1 = 〈u, v, u′, v′〉 where u, v, u, v′ are all 14-bit quantities, then
J3 = 〈v, u, v′, u′〉 in a Brown-Seberry key-schedule, and thus for Z = J1 ⊕ J3 we
have Zi = Zi+14 for i ∈ {0, 1, . . . , 13, 28, 29, . . . , 41}. The PC2 just discards Zi

for i ∈ {24, 25, . . . , 27, 52, 53, . . . , 55} to get the 48-bit quantity Y = PC2(Z) =
K1 ⊕K3.
If we insist Y = Expansion(X) for some X, we get 16 constraints on Y :

namely, Yi = Yi+2 for i = 6j + k, j ∈ {0, . . . , 7}, k ∈ {4, 5} where subscripts are
taken modulo 48. Thus we have

Zi = Zi+2 for i ∈ {4, 5, 10, 11, 16, 17, 32, 33, 38, 39, 44, 45};
and Zi = Zi+6 for i ∈ {22, 23, 50, 51}. Therefore Y = K1 ⊕K3 is expandable if
and only if Z = J1 ⊕ J3 has the form

Z = 〈abcdcd cdefgh ghabcd cdcdef ghgh efklkl klabmn mnefkl klklab mnmn〉
where a, b, .., n are 12 arbitrary bits. we see that there are exactly 212 expandable
values of K1 ⊕K3 that satisfy the required constraints. Moreover, for each ex-
pandable value of K1⊕K3, there are 2

28 possible values of J1 for which K1⊕K3
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has the given value (since we may choose u and u′ arbitrarily, setting v and v′

as required to ensure that 〈u⊕ v, u⊕ v, u′ ⊕ v′, u′ ⊕ v′〉 has an appropriate value
for J1 ⊕ J3).

This shows that there are 240 values of J1 that lead to four-round self-
similarity with an expandable value for K1 ⊕K3. In other words, 1/2

16 of the
keys are breakable with our standard attack. Note that the standard attack for
the case of four independent round subkeys uses 232.5 known texts, time and
space, or 217 chosen texts, time and space. However, we may use the special
structure of K1 ⊕ K3 to significantly reduce the complexity of the chosen-text
attack.

In particular, we choose 26 plaintexts of the form 〈Li, R〉 and 26 ciphertexts
of the form 〈M ′

j , N
′〉, where R = N ′ is fixed throughout the attack and

Li = 〈bcdc def0 0abc dcde f000 0ab0 0ef0 000a〉
M ′

j = 〈0000 000g h000 0000 0klk l00m n00k lkl0〉, so that
Li ⊕M ′

j = 〈bcdc defg habc dcde fklk labm nefk lkla〉

and thus Expansion(Li ⊕M ′
j) = K1 ⊕K3 for some i, j, which immediately gives

us a slid pair. (We assume for ease of description that the cipher includes the
final swap and no IP or FP, so that Figure 4 in Section 3.2 applies.) We can
recognize the slid pair by a 64-bit filtering condition on 〈M,N〉, 〈L′, R′〉, and so
the analysis phase is easy.

To sum up, this provides an attack on the cipher that breaks 1/216 of the
keys with 27 chosen texts, time and space.

3.5 Generalizations for a Composition of Stronger Functions

In Section 2 we have seen how a typical slide attack may work. However, in many
cases this approach is too restrictive, since it may be desirable to analyze ciphers
which decompose into a product of stronger functions; in particular, the round
function may be strong enough that multiple input/output pairs are required to
recover any key material. In this section we show several techniques to handle
this situation.

One approach is to use a differential analysis. Denote by n the block size of
the cipher. Suppose there is a non-trivial differential characteristic ∆X → ∆Y
of probability p for the round function. We associate to each plaintext P the
plaintext P ⊕∆X and to each plaintext P ′ another plaintext P ′ ⊕∆Y . Then, if
P ′ = F (P ), we will also have P ′ ⊕∆Y = F (P ⊕∆X) with probability p (thanks
to the characteristic ∆X → ∆Y ), which provides two slid pairs. In this way we
may obtain four known input/output pairs for the function F . We can generate
a set of 3 · 2n/2p−1/2 chosen plaintexts such that for plaintext P in the chosen
set the plaintexts P ⊕∆X and P ⊕∆Y are also in the set; then we will expect
to see one pair P, P ′ satisfying both the slide and the differential patterns.

The second approach (which is probably the simplest) works like this. Sup-
pose to recover the key we need N known texts for the round function F . For
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each plaintext P , we suggest to get the encryption E(P ) of P , and the double-
encryption E2(P ) = E(E(P )) of P , and so on, until we have obtained E2N (P ).
Then, if P ′ = F (Ei(P )), we find 2N − i slid pairs “for free” by the relation
Ej(P ′) = F (Ej+i(P )) for j = 1, .., 2N − i. With 2(n+1)/2N1/2 chosen texts,
we expect to find about N slid pairs in this way (probably all in the same
batch formed from a single coincidence of the form P ′ = F (Ei(P ))). To locate
the batch of slid pairs, one could naively try all 2n+2 possible pairings of texts
(though in practice we would search for a more efficient approach); each pairing
that gives N or more known texts for F will suggest a key value that can then
be tested2.

Normally this last attack would be classified as an adaptive chosen-plaintext
attack. However, note that in many modes (CBC, CFB) it can be done with a
non-adaptive chosen-plaintext attack. Furthermore, in the case of OFB mode,
a known plaintext assumption suffices. However, these comments assume that
re-encryption preserves the sliding property, which is not always the case.

Another possible generalization is in the case of Feistel-ciphers. In this case
one can detect slid pairs even before trying to find the correct secret key k. In the
case of a balanced Feistel cipher with block size n we have an n/2-bit condition on
the ciphertexts of a slid pair. This increases the S/N ratio considerably, filtering
out most of the incorrect pairs even before we start the analysis. This property
allows an attacker to accumulate sufficient number of slid pairs before he starts
an attack on a round-reduced variant of a cipher.

Notice also that if we use a technique for receiving many slid pairs in the
case of a Feistel-cipher, we would need only 2 · 2n/4N chosen texts, and the S/N
ratio will be excellent by comparing several halves of the ciphertexts.

Furthermore if N1/2 > 2n/4, an absolutely different idea can be used. Choose
a random starting point P . About 2n/2 times iterate the following operation s◦E,
where s denotes swap of the halves (the swap is needed only if E has no final swap
at the last round). This way one can obtain more than 2n/2−log r slid pairs (here
r denotes the number of rounds of a cipher). The S/N ratio is again excellent.
The idea is that we essentially search for a symmetric point (A,A) of a round
function, which happens after about 2n/2 rounds (2n/2−log r encryptions). This
does not necessarily happen in the middle of a cipher, so we may have to perform
up to r times more encryptions before we reach a fixed point for E. In half of the
cases (if the first symmetric point happened at an even round) we will receive
an orbit “slidable” by two rounds, and in other half of the cases (symmetric
point at odd rounds) an orbit will be “slidable” by one round. Even if an orbit
is “slidable” only by two, and thus n/2-bit filtration will be unreachable to us,
the encryption fixed point that ends our orbit helps us slide the orbit correctly
(at most r/2 possibilities).

2 If E were behaving like a random function, it would be enough to take 2n/2 + N
encryptions, from an orbit of some arbitrarily chosen element P , but since E is
expected to behave like a random permutation, an orbit of P will be a part of
usually a very large cycle, leaving no place for collisions. Considering a few more
orbits will not help either.
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4 Cryptanalysis of DESX and Even-Mansour Schemes

DESX is an extension of DES proposed by Rivest in 1984. It makes DES more
resistant to exhaustive search attacks by xoring two 64-bit keys: one at the
input and another at the output of the DES encryption box3. See [10, 16] for
theoretical analysis of DESX.
In this section we show the unexpected result that the DESX construction

contains just enough symmetry to allow for slide attacks. These results are ac-
tually generally applicable to all uses of pre- and post-whitening (when applied
using self-inverse operations like xor), but for convenience of exposition we will
focus on DESX.
The attacks presented here are another example of an application of the pow-

erful new sliding with a twist technique. Our attacks on DESX are significantly
better than the best previously known attacks: we need just 232.5 known texts
and 287.5 time for the analysis, while the best generic attack reported in the lit-
erature is a chosen-plaintext attack with comparable complexity [10, 16]4. Thus,
sliding techniques allow one to move from the chosen-text attack model to the
more realistic known-text attack model. Even more unexpectedly, our attack can
also be converted to a ciphertext-only attack.
We briefly recall the definition of DESX. Let Ek(x) denote the result of DES-

encrypting the plaintext x under the key k. Then we define DESX encryption
under the key K = 〈k, kx, ky〉 as EXK(p) = ky ⊕ Ek(p ⊕ kx). To set up the
necessary slide relation, we imagine lining up a DESX encryption against a
slid DESX decryption, as shown in Figure 5. More specifically, we say that the
two known plaintext pairs 〈p, c〉 and 〈p′, c′〉 form a slid pair if c ⊕ c′ = ky.
Consequently, for any slid pair, we will have

p′ = kx ⊕ E−1
k (c′ ⊕ ky) = kx ⊕ E−1

k (c)

as well as p = kx ⊕ E−1
k (c′). Combining these two equations yields kx = p ⊕

E−1
k (c′) = p′ ⊕ E−1

k (c). As a result, we get a necessary property of slid pairs:
they must satisfy

E−1
k (c)⊕ p = E−1

k (c′)⊕ p′. (∗)

To get a single slid pair, we obtain 232.5 known plaintexts 〈pi, ci〉 and search
for a pair which satisfies the sliding condition (∗). The pairs can be recognized
efficiently with the following technique. We guess the DES key k. Next, we insert
E−1

k (ci)⊕ pi into a lookup table for each i; alternatively, we may sort the texts
by this value. A good slid pair 〈p, c〉, 〈p′, c′〉 will show up as a collision in the
table. Also, each candidate slid pair will suggest a value for kx and ky as above

3 Note that an idea to use simple keyed transformations around a complex mixing
transform goes back to Shannon [18, pp.713].

4 One may apply differential or linear cryptanalysis to DESX, but then at least 260–
261 texts are needed [11]. In contrast, slide attacks allow for a generic attack with a
much smaller data complexity.
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Fig. 5. Sliding with a twist, applied to DESX.

(e.g., ky = c ⊕ c′ and kx = p ⊕ E−1
k (c′)), so we try the suggested DESX key

〈k, kx, ky〉 immediately on a few known texts. With 232.5 known texts, we expect
to find one false match (which can be eliminated quickly) per guess at k, as well
as one correct match (if our guess at k was correct). If this attack sketch is not
clear, see the algorithmic description in Figure 6.

In total, the average complexity of our slide attack on DESX is 287.5 offline
trial DES encryptions, 232.5 known texts, and 232.5 space. The slide attack is eas-
ily parallelized. Compare this to the best attack previously reported in the open
literature, which is a chosen-plaintext attack that needs 2121−m time (average-
case) when 2m texts are available [10, 16]. Therefore, our attack converts the
chosen-plaintext assumption to a much more reasonable known-plaintext as-
sumption at no increase in the attack complexity.

Ciphertext-only attacks. Note that in many cases our slide attack on DESX
can even be extended to a ciphertext-only attack. We suppose (for simplicity)
that most plaintext blocks are composed of just the lowercase letters ‘a’ to ‘z’,
encoded in ASCII, so that 24 bits of each plaintext are known5. For each i we
calculate 24 bits of E−1

k (ci) ⊕ pi and store the result in a lookup table. Due to
the weak filtering condition, by the birthday paradox we expect to find about
22·32.5−1/224 = 240 collisions in the table. Each collision suggests a value for ky

(as ky = c⊕c′) and for 24 bits of kx, which we immediately try with a few DESX
trial decryptions on other known ciphertexts. Therefore, for each guess of k the
workfactor is 240 DES operations.

This provides a simple ciphertext-only attack needing about 232.5 ciphertexts
and 295 offline DES operations. The work-factor can be reduced somewhat to
295 simple steps (where each step is much faster than a trial decryption), if 233

5 The attack degrades gracefully if our model of the plaintext source is only proba-
bilistic: for instance, if half of the texts follow the model, the attack will need only√
2 times as many ciphertexts and only twice as much work.
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Attack:
1. Collect 232.5 known plaintexts 〈pi, ci〉.
2. For each k ∈ {0, 1}56, do
3. Insert 〈E−1

k (ci)⊕ pi, i〉 into a hash table keyed by the first component.
4. For each i 6= j with E−1

k (ci)⊕ pi = E−1
k (cj)⊕ pj , do

5. Set ky = ci ⊕ c′j and kx = pi ⊕ E−1
k (ci ⊕ ky).

6. Test the validity of the guessed key 〈k, kx, ky〉 on a few more known texts.

Fig. 6. The DESX slide attack, in full detail. It is clear that—once discovered—the
attack may be described without reference to sliding, but the sliding with a twist
methodology made it possible to find the attack in the first place.

known ciphertexts are available, by considering candidate slid pairs two at a
time and filtering on the suggested value of ky, since then the correct value of
ky will be suggested at least twice and can therefore be recognized in this way
before doing any trial decryptions. Note that these ciphertext-only attacks are
applicable not only to ECB mode but also to most of the standard chaining
modes, including CBC and CFB modes.

Cryptanalysis of the Even-Mansour Scheme. In [7], Even and Mansour
studied a simple n-bit block cipher construction based on a fixed pseudo-random
permutation and keyed n-bit xors at the input and at the output. Due to the
generic nature of our previous attack on DESX it can also be used to analyze the
Even-Mansour construction6. In the case of Even-Mansour we replace Ek with
an unkeyed mixing transformation E on n-bit blocks, so our slide attack succeeds
with just 2(n+1)/2 known plaintexts and 2(n+1)/2 work. This provides a known-
plaintext attack with the same complexities as the best previously-known chosen
plaintext attack [6] and within a factor of

√
2 away from the Even-Mansour lower

bound.

5 Analysis of GOST

GOST, the Russian encryption standard [19], was published in 1989.7 Even
after considerable amount of time and effort, no progress in cryptanalysis of the
standard was made in the open literature except for a brief overview of a GOST
structure in [4] and a related key attack in [9]. In this section we apply slide
techniques to GOST and thus are able to produce cryptanalytic results that
shed some light on its internal structure.
The GOST encryption algorithm is a block cipher with 256-bit keys and a

64-bit block length. GOST is designed as a 32-round Feistel network, with 32-bit
round subkeys. See Figure 7 for a picture of one round of GOST.

6 Of course, these attacks will apply with the same complexity to DESX when the
DES key k is known somehow.

7 It was translated into English in 1993 and since then became well known to open
cryptographic community.
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Fig. 7. One round of a GOST cipher.

The key schedule divides the 256-bit key into eight 32-bit words K0, . . . ,K7,
and then uses those key words in the order K0, . . . ,K7, K0, . . . ,K7, K0, . . . ,K7,
K7,K6, . . . ,K0. Notice the ‘twist’ in the last 8 rounds.

The Analysis of GOST. GOST looks like a cipher that can be made both ar-
bitrarily strong or arbitrarily weak depending on the designer’s intent since some
crucial parts of the algorithm are left unspecified. A huge number of rounds (32)
and a well studied Feistel construction combined with Shannon’s substitution-
permutation sequence provide a solid basis for GOST’s security. However, as in
DES everything depends on the exact choice of the S-boxes and the key-schedule.
This is where GOST conceptually differs from DES: the S-boxes are not speci-
fied in the standard and are left as a secondary key common to a “network of
computers”8.
The second mystery of GOST is its key-schedule. It is very simple and pe-

riodic with the period of eight rounds except for the last eight rounds where
a twist happens. It is intriguing to find a reason for the twist in the last eight
rounds of the key schedule. Moreover, in many applications we may wish to use
shorter 64- or 128-bit keys, yet it is not clear how to extend these to a full 256-bit
GOST key securely (fill the rest with zeros, copy the bits till they cover 256 bits,
copy bits in a reversed order?).

Why the Twist? Consider a GOST cipher with a homogeneous key schedule,
i.e., omitting the final twist (let us denote it GOST-H). Is this cipher less se-
cure than GOST? We argue that, if one takes into account the slide attacks, it
is. GOST-H can be decomposed into four identical transforms, each consisting
of eight rounds of GOST. Furthermore, if one assumes that the round subkey
is xored instead of being added, the cipher will have 2128 weak keys of the
form 〈A,B,C,D,A,B,C,D〉 (here each letter represents a 32-bit GOST sub-
key). These keys are weak since they allow for a sliding with a twist attack.

8 Contrary to common belief, the standard does not even require the S-boxes to be
permutations.
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There is a known plaintext attack with 232 texts and time, and a chosen plain-
text attack with 216 texts and time; see Section 3.3 for more details.
Notice that the 2128 keys of the form 〈A,B,C,D,D,C,B,A〉 are also weak

since GOST-H with these keys is an involution and thus double encryption will
reveal the plaintext. Since these keys are invariant under a twist the same prop-
erty holds for GOST itself. Also, there are 232 fixed points for each key of this
form, which demonstrates that there may be problems with using GOST to build
a secure hash function.

The Attack on 20 rounds of GOST⊕. Suppose again that the round sub-
key is xored instead of being added, (we will denote this variant of GOST as
GOST⊕). Here we show an application of sliding with a twist which results in
an attack on the last 20 rounds of GOST⊕.
Applying sliding with a twist, we get a picture that looks like this:

K4 K5 K6 K7 K0 K1 K2 K3 K4 K5 K6 K7 K7 K6 K5 K4 K3 K2 K1 K0

K0 K1 K2 K3 K4 K5 K6 K7 K7 K6 K5 K4 K3 K2 K1 K0 K7 K6 K5 K4.

Let F denote 4 rounds of GOST⊕ with key K4, . . . ,K7. With a pool of 2
33

known texts, we expect to find two slid pairs, and each slid pair gives two in-
put/output pairs for F . Breaking F with two known texts is straightforward,
and can be performed in time comparable to about 29 evaluations of 4-round
GOST (equivalent to 25 20-round trial encryptions). Thus in our attack we ex-
amine all 265 text pairs; each pair suggests a value for 128 bits of key material,
which we store in a hash table (or sorted list). The right key will be suggested
twice, so we expect to be able to recognize it easily. By the birthday paradox,
there will be only about two false matches, and they can be eliminated in the
next phase.
Once we have recovered K4, . . . ,K7, it is easy to learn the rest of the key in a

second analysis phase. For example, we can peel off the first four rounds and look
for fixed points in the same pool of texts. Since the round subkeys are palindromic
in the last sixteen rounds of GOST, there are 232 fixed points, and each has the
value 〈x, x〉 before the last eight rounds of encryption. Thus, given a fixed point,
we can try the 232 values of 〈x, x〉, encrypt forward and backward eight rounds,
and obtain two candidate input/output pairs for 4 rounds of GOST⊕ with key
K0, . . . ,K3, so that a value for K0, . . . ,K3 is suggested after 2

5 work; then the
suggested 256-bit key value is tried on another known text pair.
In all, this gives an attack on the last 20 rounds of GOST⊕ that needs 233

known texts, 270 work, and 265 space to recover the entire 256-bit key. Note
that this attack is generic and works for any set of (known) S-boxes. The large
memory requirements make the attack highly impractical, but we view it as a
first step towards a better understanding of the GOST design.

6 Related Work

The first step in the “sliding” direction can be dated back to a 1978 paper by
Grossman and Tuckerman [8], which has shown how to break a weakened Feistel
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cipher9 by a chosen plaintext attack, independent of the number of rounds.
We were also inspired by Biham’s work on related-key cryptanalysis [1], and
Knudsen’s early work [12].
Some related concepts can be found in Coppersmith’s analysis of fixed points

in DES weak keys and cycle structure of DES using these keys [5]. This analysis
was continued further by Moore and Simmons [14]. For a DES weak key, all
round subkeys are constant, and so encryption is self-inverse and fixed points are
relatively common: there are precisely 232 fixed points. Note that this property
will also be found in any Feistel cipher with palindromic round key sequences,
so the slide attack is not the only weakness of ciphers with self-similar round
subkey sequences.

7 Discussion

In this section we discuss possible extensions of slide attacks presented in this
paper and possible directions of future research.
The most obvious type of slide attack is usually easy to prevent by destroying

self-similarity in iterative ciphers, for example by adding iteration counters or
fixed random constants. However more sophisticated variants of this technique
are harder to analyze and to defend against. This paper is a first step towards
advanced slide attacks which can penetrate more complex cipher designs.
One promising new direction is the differential slide attack. By sliding two

encryptions against each other, we obtain new differential relations which in
some cases are not available in the conventional differential analysis of a cipher.
These might be very powerful, since they might for example violate the subtle
design constraints placed on the system by its designer and thus result in unex-
pected differential properties. If key-scheduling is not self-similar or symmetric,
differences in subkeys can cause constant xor values to be introduced in the
middle of the encryption process when slid pairs are considered. (In many cases,
one can slide by different numbers of rounds and thus control the differences
to some extent.) The drawback of this method is the same as in conventional
methods: its complexity increases fast with the number of rounds, contrary to
the general sliding technique, which works for arbitrary number of rounds.
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