
How to Break a Practical MIX

and Design a New One

Yvo Desmedt1,2? and Kaoru Kurosawa3

1 Department of Computer Science, Florida State University
PO Box 4530, 206 Love Building
Tallahassee, FL 32306-4530, USA

desmedt@cs.uwm.edu
2 Dept. of Mathematics, Royal Holloway,

University of London, UK
3 Dept. of Electrical and Electronic Engineering,

Faculty of Engineering, Tokyo Institute of Technology
2–12–1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

kurosawa@ss.titech.ac.jp

Abstract. A MIX net takes a list of ciphertexts (c1, · · · , cN) and out-
puts a permuted list of the plaintexts (m1, · · · ,mN) without revealing
the relationship between (c1, · · · , cN) and (m1, · · · ,mN). This paper first
shows that the Jakobsson’s MIX net of Eurocrypt’98, which was believed
to be resilient and very efficient, is broken. We next propose an efficient
t-resilient MIX net with O(t2) servers in which the cost of each MIX
server is O(N). Two new concepts are introduced, existential-honesty
and limited-open-verification. They will be useful for distributed compu-
tation in general.

1 Introduction

1.1 Background

In his extensive work to achieve anonymity, Chaum introduced the concept of a
MIX net [6]. MIX nets have found many applications in anonymous communi-
cation [6], election schemes [6, 11, 19, 24] and payment systems [14]. A MIX net
takes from each user a ciphertext and outputs a permuted list of the plaintexts
without revealing who has sent which plaintext, i.e., which plaintext corresponds
to which ciphertext. This aspect of a MIX net is also known as privacy. Although
Pfitzmann-Pfitzmann [21] showed an attack against the RSA implementation of
Chaum’s MIX scheme, the concept itself was not broken but it was refined. The
original MIX net given by Chaum [6] satisfies privacy only under the condition
that all the senders are honest. To address this issue, one needs robustness. A
topic that was studied prior to robustness is verifiability , to allow to detect that

? A part of this research was done while the author visited the Tokyo Institute of Tech-
nology, March 4-19, 1999. He was then at the University of Wisconsin – Milwaukee.
A part of his research was funded by NSF CCR-9508528.

564 Yvo Desmedt and Kaoru Kurosawa

the output of the MIX net is incorrect. If an outsider can verify this, the scheme
is called universally verifiable.

Before surveying robustness and verifiability, another problem of Chaum’s
MIX net based on RSA should be pointed out, which is that the size of each
ciphertext ci is long, i.e., proportional to the total number of MIX servers. Park
et al. overcame this problem by using the ElGamal encryption scheme so that the
size of each ci became independent of the number of MIX servers [19]. Almost all
MIX nets proposed from then on are based on the ElGamal encryption scheme.

A general method to achieving verifiability is to have each MIX server prove
that it behaved correctly in zero knowledge. Sako and Kilian [24] showed such
an efficient proof system for Park et al.’s MIX net. The above MIX nets are,
however, not robust. If at least one MIX server stops, then the entire system
stops. Ogata et al. showed the first MIX net satisfying privacy, verifiability and
robustness [18]. We call a scheme satisfying all these properties resilient.

For comparison, we focus on the random permutation stage of the MIX net
because almost all known resilient MIX nets consist of two stages, a random
permutation stage and a threshold decryption stage. Also, there are some cases
where we want a permutation, but not a decryption. If a MIX net does a per-
mutation only, it is possible that the MIX servers do not need to know the
decryption key, which is an advantage.

Now in Ogata et al.’s MIX net, the computational cost of each MIX server
is O(κtN), where N is the number of users, κ is the security parameter and t
stands for the threshold number of untrusted MIX servers. Subsequently, Abe
showed a more efficient resilient MIX net which is also universally verifiable in
which the external verifier’s cost is reduced to O(κN) [1].

At the same time, Jakobsson showed a very efficient resilient MIX net at
Eurocrypt ’98 [13] (but not universally verifiable). Later, he showed a more
efficient MIX net at PODC’99 [15]. In these schemes, the computational cost of
each MIX server is O(tN).

Recently Abe [2, 3] showed his second resilient MIX net which is efficient for a
small number of users. In this MIX net, the complexity isO(tN logN). Jakobsson
and Juels showed a MIX net which has the same advantage [16]. In their MIX
net, the cost of each MIX server is O(tN log2 N). Since these complexities grow
faster in N than the other schemes, these schemes suit small N .

1.2 Our Contribution

This paper first shows that the Jakobsson’s first MIX net (presented at Euro-
crypt’98) [13], which was believed to be resilient and very efficient, is not robust.
We present an attack such that at least one malicious MIX server can prevent
computing the correct output. We exploit a homomorphic property of Jakobs-
son’s Eurocrypt ’98 scheme to attack it. Observe that we make no claims about
other MIX networks, such as the PODC’99 Jakobsson paper [15].

We also propose a new and very efficient resilient MIX net (but it is not
universally verifiable). To obtain this scheme, we introduce three new concepts:

How to Break a Practical MIX and Design a New One 565

Work-sharing-MIX in which (significantly) more MIX servers are being used
than one trusts. In threshold schemes a tradeoff is used between reliability
and privacy. The motivation of work-sharing-MIX is to have a tradeoff be-
tween the number of MIX severs and the computational effort per MIX sever.
When N is large (as in national elections), and one wants a sufficiently high
security (i.e., a large t), then the computational effort of existing schemes
may be prohibitive. We share the computational effort over several machines
while maintaining the requirements as privacy, robustness and verifiability.

Existential-honesty divides the MIX servers into blocks of which we can guar-
antee that one is free of dishonest MIX servers, assuming the number of
dishonest MIX servers is bounded by t.

Limited-open-verification is the opposite of zero-knowledge. To prove that a
computation has been done correctly the party that did the computation in
a block will open the secret it used. However, she will only open this to the
members in the same block.

More details are given later on. Those concepts may be useful in other contexts
such as secure distributed computation. We achieve 100% robustness in contrast
with prior schemes (i.e. the probability of the failure of robustness is 0).

Although the total computational cost of our scheme is comparable to the
one of Jakobsson’s MIX net of PODC’99 [15] (i.e. O(t2N)), the computational
cost of each MIX server is significantly smaller (i.e. O(N)) in ours versus the
one in Jakobsson’s scheme (O(tN)). To achieve this we need O(t2) MIX servers
rather than the usual O(t). This introduces several open problems, which we
discuss in Sect. 6.

Other details, such as the computational complexity assumptions we need to
prove privacy are discussed later on.

2 Model of MIX Net

2.1 Model and Definitions

In the model of MIX nets, there exist three types of participants: users, a bulletin
board, and the MIX servers.

1. The users post encrypted messages (c1, · · · , cN) to the bulletin board.
2. After the bulletin board fills up, or after some other triggering event oc-

curs, the mix servers compute a randomly permuted list of decryptions
(m1, · · · ,mN) of all valid encryptions posted on the bulletin board.

MIX nets must satisfy privacy, verifiability and robustness. Suppose that at
most t among v MIX servers and at most N −2 among N senders are malicious.
Then we say that a MIX net satisfies :

– t-privacy if the relationship between (c1, · · · , cN) and (m1, · · · ,mN) is kept
secret.

566 Yvo Desmedt and Kaoru Kurosawa

– t-verifiability if an incorrect output of the MIX net is detected with over-
whelming probability.

– t-robustness if it can output (m1, · · · ,mN) correctly with overwhelming
probability.

We say that a MIX net is t-resilient if it satisfies t-privacy, t-verifiability and
t-robustness.

2.2 ElGamal Based Encryption Scheme for Users

ElGamal based encryption scheme was commonly used in some of the previous
robust MIX nets [18, 1, 13]. Let p be a safe prime, i.e., p, q be primes such that
p = 2q + 1, and g be a generator of Gq. Let y = gx mod p, where x is a secret
key. The public key is (p, q, g, y).

The MIX servers share a secret key x using a (t+1, v) threshold scheme [27],
where v denotes the number of MIX servers.

To encrypt a value m ∈ Gq, a random number γ ∈u Zq is chosen and the ci-
phertext (a, b) = (gγ ,myγ) is calculated. For decryption, m = b/ax is calculated
by a threshold decryption scheme [?,20, 12]

As pointed out by Jakobsson, to guarantee that m ∈ Gq, we should let
m = (M | p)M for an original message M ∈ [1 . . . (p − 1)/2], where (M | p) is
the Jacobi symbol of M .

2.3 Non-malleable ElGamal

Malicious users may post copies or correlated ciphertexts of some encrypted
messages of honest users (repeated ciphertext attack). They can then determine
(with some probability) what the decryption of the attacked message was, by
counting repeats or correlations in the output list. Therefore, it is necessary
to use a non-malleable encryption scheme. A public key cryptosystem is said
to be non-malleable [9] if there exists no probabilistic polynomial time (p.p.t.)
adversary such that given a challenge ciphertext c, he can output a different
ciphertext c′ such that the plaintexts m,m′ for c, c′ are meaningfully related.
(For example, m′ = m+ 1.)

Tsiounis and Yung [28], and independently Jakobsson [13], showed a non-
malleable ElGamal encryption scheme by combining Schnorr’s signature scheme
[25] with ElGamal encryption scheme under some cryptographic assumption in
the random oracle model. Jakobsson used the non-malleable ElGamal encryption
scheme in his MIX net for users’ encryption to prevent the repeated ciphertext
attack [13]. (For a detailed study of the security consult [26].) We also use this
scheme in our MIX net of Sect. 4.

3 An Attack for Jakobsson’s Practical MIX

In this section, we show how to break the Jakobsson’s MIX net of Eurocrypt’98
[13], which was believed to be t-resilient and very efficient.

How to Break a Practical MIX and Design a New One 567

Jakobsson first showed that a MIX net is obtained by using MIXEXP which
takes a list of items µ̄ = (c1, . . . , cN) and robustly computes a permutation
(cδ1, . . . , c

δ
N). To avoid cut and choose methods, Jakobsson [13] developed a sub-

protocol in which each MIX server proves that the product of his input elements
and the product of his output elements satisfy a certain relation. However, this
does not imply proving that each MIX server behaved correctly even if the sub-
protocol is combined with his other subprotocols. We show an attack such that
all the output elements of a MIX server can be affected in a proper way. We also
exploit a homomorphic property of his scheme to attack it.

His MIX net is not robust if the MIXEXP is not robust. Therefore, the details
of MIXEXP are given in Sect. 3.1. Our attack is given in Sect. 3.2.

If the reader is not interested or is already familiar with his scheme, he can
go directly to Sect. 3.2.

3.1 Structure of the Scheme Attacked [13]

Let
∆j = gδj (1)

be the public information of a MIX server j, where δj is his secret. Define

δ
4
=
∏

j∈Q

δj , (2)

where Q denotes a quorum. MIXEXP takes a list of items µ̄ = (c1, . . . , cN) and
robustly computes a permutation (cδ1, . . . , c

δ
N).

Jakobsson then showed an efficient implementation of MIXEXP. It consists
of four protocols, Blinding I, Blinding II, Unblinding I and Unblinding II. For
simplicity, let Q = {1, 2, · · · , t+1}. For a list ξ̄ = (d1, . . . , dN) and e ∈ Zq, define

ξ̄e
4
= (de1, . . . , d

e
N).

Let κ be a security parameter.

1 2µ̄ −→

−→ πI11
(µ̄ρI11)−→

−→πIκ1
(µ̄ρIκ1)−→

−→ πI12
◦ πI11

(µ̄ρI12ρI11) −→ · · ·

−→ πIκ2
◦ πIκ1

(µ̄ρIκ2
ρIκ1) −→ · · ·

...
...

Fig. 1. Blinding I

568 Yvo Desmedt and Kaoru Kurosawa

Blinding I: (see Fig. 1) For 1 ≤ λ ≤ κ,
1. MIX server 1 chooses a random number ρIλ1

and a random permutation
πIλ1

. He then computes

πIλ1
(c
ρIλ1

1 , c
ρIλ1

2 , · · · , c
ρIλ1

N).

2. MIX server 2 chooses a random number ρIλ2
and a random permutation

πIλ2
. He then computes

πIλ2
◦ πIλ1

(c
ρIλ1

ρIλ2

1 , c
ρIλ1

ρIλ2

2 , · · · , c
ρIλ1

ρIλ2

N),

and so on.
The final output (in Blinding I) from MIX server t+ 1 is:

µ̄Iλ
4
= πIλ(c

ρIλ
1 , cρIλ2 , · · · , cρIλN), (3)

where

πIλ
4
=
∏

j∈Q

πIλj , ρIλ
4
=
∏

j∈Q

ρIλj .

That is, MIXEXP outputs µ̄I1, · · · , µ̄Iκ on input µ̄ in Blinding I.

1 2

µ̄I1 →

µ̄Iκ →

→ πII11
(µ̄

δ1ρII1
I1) →

→ πIIκ1
(µ̄

δ1ρII1
Iκ)→

→ πII12
◦ πII11

(µ̄
δ2ρII2

δ1ρII1
I1) → · · ·

→ πIIκ2
◦ πIIκ1

(µ̄
δ2ρII2

δ1ρII1
Iκ)→ · · ·

...
...

...

Fig. 2. Blinding II

Blinding II: (see Fig. 2) For 1 ≤ λ ≤ κ,
1. MIX server 1 chooses a random number ρII1 and a random permutation

πIIλ1
. He then computes

πIIλ1
(µ̄

δ1ρII1
Iλ) = πIIλ1

◦ πIλ((c
ρIλ
1)δ1ρII1 , (cρIλ2)δ1ρII1 ,

· · · , (cρIλN)δ1ρII1)

from µ̄Iλ. Note that ρII1 is independent of λ while ρIλ1
depends on λ.

2. MIX server 2 chooses a random number ρII2 and a random permutation
πIIλ2

. He then computes

πIIλ2
◦ πIIλ1

◦ πIλ((c
ρIλ
1)δ1ρII1δ2ρII2 , (cρIλ2)δ1ρII1δ2ρII2 ,

· · · , (cρIλN)δ1ρII1δ2ρII2)

and so on.

How to Break a Practical MIX and Design a New One 569

The final output (in Blinding II) of MIX server t+ 1 is:

σ̄IIλ
4
= πIIλ ◦ πIλ(c

ρIλδρII
1 , cρIλδρII2 , · · · , cρIλδρIIN), (4)

where δ is defined in eq. (2) and

πIIλ
4
=
∏

j∈Q

πIIλj , ρII
4
=
∏

j∈Q

ρIIj .

That is, MIXEXP outputs σ̄II1, · · · , σ̄IIκ on input µ̄I1, · · · , µ̄Iκ in Blinding II.
From eq. (4), we see that

σ̄
1/ρIλ
IIλ = πIIλ ◦ πIλ(c

δρII
1 , . . . , cδρIIN).

Note that (cδρII1 , . . . , cδρIIN) of the right hand side is independent of λ. Therefore,

σ̄
1/ρIλ
IIλ must be equal for 1 ≤ λ ≤ κ if each list πIIλ ◦ πIλ(c

δρII
1 , . . . , cδρIIN) is

sorted. Unblinding I, based on this observation, is described as follows.

Unblinding I:

1. Each MIX server j publishes {ρIλj} for 1 ≤ λ ≤ κ.
2. Each MIX server computes ρIλ =

∏

j∈Q ρIλj and

σ̄Iλ
4
= σ̄

1/ρIλ
IIλ = πIIλ ◦ πIλ(c

δρII
1 , . . . , cδρIIN) (5)

for 1 ≤ λ ≤ κ.
3. The lists σ̄Iλ with 1 ≤ λ ≤ κ are sorted and compared. If they are all

equal, and no element is zero, then the result is labeled valid, otherwise
invalid.

Next in Blinding II for λ = 1, let Mj denote the product (modulo p) of all
the elements constituting the input to MIX server j. Similarly, Sj denotes the
product of all the output elements of MIX server j. Then it must hold that

Sj = M
δjρIIj
j . (6)

On the other hand, from eq. (1), we have ∆
ρIIj
j = gδjρIIj . Therefore, it holds

that

Sj = Mz
j and ∆

ρIIj
j = gz

for z = δjρIIj . Unblinding II, based on this observation, is described as follows.

Unblinding II: (for valid results only)

1. The MIX servers publish {πI1j}j∈Q.
2. The computation of µ̄I1 in “Blinding I” is verified.
3. The MIX servers publish {ρIIj}j∈Q.

570 Yvo Desmedt and Kaoru Kurosawa

4. Each MIX server j proves that

Sj = Mz
j and ∆

ρIIj
j = gz. (7)

holds for some z by using one of the methods of [7, 25].

5. The MIX servers compute σ̄1 = σ̄
1/ρII
I1 , and output σ̄1. Note that σ̄1 is

a permutation of (cδ1, . . . , c
δ
N) from eq. (5).

Jakobsson claims that the final output σ̄1 is a permutation of (cδ1, . . . , c
δ
N) if

the above protocol (MIXEXP) ends successfully.

3.2 Our Attack

We show that Jakobsson’s MIXEXP is not robust. This means that his MIX net
is not robust. Our attack succeeds if at least one MIX server is malicious.

We exploit a homomorphic property. A dishonest MIX server will first mul-
tiply the received inputs. The data is then organized to prevent detection. We
now describe the details.

For simplicity, suppose that the last MIX server t + 1 of Q is malicious. In
Blinding II, let her input be (dλ1, . . . , dλN) for 1 ≤ λ ≤ κ. Let

Xλ
4
= dλ1 ∗ · · · ∗ dλN .

In our attack, she first chooses random numbers α1, · · · , αN such that

α1 + α2 + · · ·αN = 1 mod q.

Next she outputs

σ̃IIλ = (X
α1δt+1ρIIt+1

λ , X
α2δt+1ρIIt+1

λ , . . . , X
αNδt+1ρIIt+1

λ) (8)

for 1 ≤ λ ≤ κ.
We next show that the MIXEXP ends successfully and our cheating is not

detected.

Theorem 1. The check of Unblinding I is satisfied.

Proof: In Blinding II, the output of MIX server t+ 1 is σ̄IIλ of eq. (4) if she is
honest. Therefore, her input must be

(dλ1
, . . . , dλN) = π−1

IIλt+1
(σ̄

1/δt+1ρIIt+1

IIλ)

= θλ(c
ρIλδρII/δt+1ρIIt+1

1 , . . . , c
ρIλδρII/δt+1ρIIt+1

N)

for some permutation θλ for 1 ≤ λ ≤ κ. Therefore,

Xλ = dλ1
∗ · · · ∗ dλN = (c1 ∗ · · · ∗ cN)ρIλδρII/δt+1ρIIt+1 = ZρIλδρII/δt+1ρIIt+1 ,

How to Break a Practical MIX and Design a New One 571

where Z
4
= c1 ∗ · · · ∗ cN . Then eq. (8) is written as

σ̃IIλ = (Zα1ρIλδρII , . . . , ZαNρIλδρII).

Finally, at Step 2 of Unblinding I, each MIX server computes

σ̃Iλ = σ̃
1/ρIλ
IIλ = (Zα1δρII , . . . , ZαNδρII) (9)

for 1 ≤ λ ≤ κ. Note that (Zα1δρII , . . . , ZαNδρII) is independent of λ. Therefore,
we see that σ̃I1 = σ̃I2 = · · · = σ̃Iκ. This means that the check of Unblinding I is
satisfied. ut

Theorem 2. The check of Unblinding II is satisfied.

Proof: Note that Mt+1 = X1 and St+1 is the product of all the elements of
eq. (8) for λ = 1. Therefore, we have

St+1 = X
α1δt+1ρIIt+1

1 ∗ · · · ∗X
αNδt+1ρIIt+1

1 = (X
δt+1ρIIt+1

1)α1+···+αN

= (Mt+1)
δt+1ρIIt+1 .

Thus, eq. (6) is satisfied. Hence, eq. (7) is satisfied for some z. ut
Finally, from eq. (9) and Step 5 of Unblinding II, the output of the MIXEXP

becomes as follows.

σ̃1 = σ̃
1/ρII
I1

= (Zα1δ, · · · , ZαNδ)

= ((c1 ∗ · · · ∗ cN)α1δ, · · · , (c1 ∗ · · · ∗ cN)αNδ).

This is clearly different from a permutation of (cδ1, . . . , c
δ
N). (See Step 5 of Un-

blinding II.) Therefore, the MIXEXP does not compute the correct output with-
out being detected.

4 Proposed MIX Net

In this section, we show an efficient t-resilient MIX net by using a certain com-
binatorial structure over the set of MIX servers.

In Sect. 4.1, we introduce two new concepts, existential-honesty and limited-
open-verification. They will be useful for distributed computation in general.
We also define a combinatorial structure which guarantees that our scheme is
t-resilient.

Our scheme is given in Sect. 4.2 and Sect. 4.3. We further show an efficient
construction of the combinatorial structure by using covering [29] in Sect. 4.4.
Covering has recently been used in another cryptographic application: robust
secret sharing by Rees et al. [23].

572 Yvo Desmedt and Kaoru Kurosawa

4.1 Existential-Honesty and Limited-Open-Verification

A set system is a pair (X,B), where X
4
= {1, 2, . . . , v} and B is a collection of

blocks Bi ⊂ X with i = 1, 2, . . . , b. First, we define (v, b, t)-verifiers set systems.

Definition 1. We say that (X,B) is a (v, b, t)-verifiers set system if

1. |Bi| = t+ 1 for i = 1, 2, . . . , b and

2. for any subset F ⊂ X with |F | ≤ t, there exists a Bi ∈ B such that F∩Bi = ∅.

Let (X,B) be a (v, b, t)-verifiers set system. We identify X with the set of MIX
servers. Therefore, Bi is a subset of MIX servers of size t+1. We choose Pi ∈ Bi

arbitrarily for 1 ≤ i ≤ b. Pi is called a prover. The other MIX servers of Bi are
called verifiers.

We introduce two new concepts in this paper,

– Existential-honesty and

– t-open-verification

which we now describe.

Existential honesty follows from Definition 1. Although, existential honesty
is not limited to applications in the MIX context, and may be useful in other
distributed computation, we focus on its MIX application. In each block one
designated party will mix the ciphertexts. As long as one block of MIX servers
is free of dishonest machines, the goal of mixing has been achieved. Now we do
not know which block satisfies this property. However, Definition 1 guarantees
that there always exists one block of honest parties. So, we let each block mix
the ciphertexts (i.e. the designated party of that block). What do we do when
the designated party of a block Bj is dishonest? Since a block has t+1 parties, it
must be detected. Indeed, there are at most t dishonest parties. If it is detected,
then we ignore the output and proceed with the output of block Bj−1 (or an
even earlier one if the designated party in Bj−1 was dishonest). Now, what
happens when one of the verifiers falsely accuses the mixing party of having
been dishonest. Then we know that this block is not free of dishonest parties,
and therefore the block under consideration is not the one of Definition 1, so we
can just ignore the output of the block. In other words, we do not have to decide
whether the one who mixed it was honest or not.

We now explain t-open-verification. In many secure distributed computation
protocols zero-knowledge is used to prove that the computation was done cor-
rectly. In our approach we do not need zero-knowledge, the prover will reveal
the secrets he used. However, he will only do this to t parties. The existential
honesty guarantees that all parties in at least one of the blocks of MIX servers
will all be honest. So, the prover can reveal the secret he used. This speeds up
the verification dramatically.

We now formally describe the scheme in full detail.

How to Break a Practical MIX and Design a New One 573

4.2 Initialization

Let y(= gx mod p) be a public key of the ElGamal scheme as shown in Sect. 2.2.
We assume that the secret key x is distributed among v MIX servers by using
Shamir’s (t + 1, v) secret sharing scheme. Actually, we use a robust (t + 1, v)
threshold ElGamal decryption scheme. (See the end of the next subsection for
more details.)

1. Each user i computes a ciphertext ci = (ai, bi, auxi, sigi) by the non-malleable
ElGamal encryption scheme [28] as shown in Sect. 2.3. That is, (ai, bi) =
(gγi ,miy

γi) is the ciphertext of the usual ElGamal scheme, auxi is the aux-
iliary information and sigi is the Schnorr’s signature of (ai, bi, auxi) such
that ai is a public key and γi is the secret key.

2. Each user i posts his ciphertext ci to the bulletin board.
3. ci is discarded if the signature is not valid.

4.3 Main Protocol

We assume that all MIX servers of Bi share a common key ei for 1 ≤ i ≤ b. We
extract (ai, bi) from a valid ciphertext ci. Let

A0 = ((a1, b1), . . . , (aN , bN)).

We wish to produce a random permutation of the list (m1, . . . ,mN), where
mi = bi/a

x
i is the plaintext of (ai, bi). A prover of a block Bi first publishes A1

which is a randomly permuted list of reencrypted ciphertexts of A0. He then
privately broadcasts the secret random string Ri he used to the verifiers in the
same block Bi. Each verifier of Bi checks the validity of A0 by using Ri.

For j = 1, . . . , b, do:

Step 1. Let

A0 = ((â1, b̂1), . . . , (âN , b̂N)).

The prover Pj of block Bj chooses random numbers s1, . . . , sN and a random
permutation πj . She computes

A1 = πj((â1g
s1 , b̂1y

s1), . . . , (âNg
sN , b̂Ny

sN)).

and then publishes A1. (A1 is commonly used for all the verifiers of Bj .)
Step 2. Pj encrypts s1, . . . , sN and πj by the key ej of block Bj . Then Pj publishes

these ciphertexts. (Pj is broadcasting s1, . . . , sN and πj secretly to all the
verifiers of Bj .)

Step 3. Each verifier of block Bj decrypts the above ciphertexts and checks whether
A1 is computed correctly by using s1, . . . , sN and πj . He outputs “ACCEPT”
if A1 is computed correctly and “REJECT” otherwise.

Step 4. If some verifier of block Bj outputs “REJECT”, then A1 is ignored. Other-
wise, let A0 := A1.

574 Yvo Desmedt and Kaoru Kurosawa

Let the final result be A0 = ((ĉ1, d̂1), . . . , (ĉN , d̂N)).

Next any (t+1) MIX servers decrypt each (ĉi, d̂i) by using a robust (t+1, v)
threshold ElGamal decryption scheme. Finally, we obtain a random permutation
of the list (m1, . . . ,mN).

Gennaro et al. showed a robust threshold RSA signature scheme in [12]. A
robust (t + 1, v) threshold ElGamal decryption scheme is easily obtained by
applying their technique to ElGamal decryption.

4.4 Construction of the Set System

Let v = (t + 1)2, b = t + 1, X = {1, 2, · · · , (t + 1)2} and Bi = {(i − 1)(t +
1) + 1, · · · , i(t + 1)} for 1 ≤ i ≤ b. Then it is easy to see that (X,B) is a
((t+ 1)2, t+ 1, t)-verifiers set system.

We next show a more efficient (v, b, t)-verifiers set system. A set system (X,B)
is called a (v, k, t)-covering if [29]

1. |Bi| = k for 1 ≤ i ≤ b and
2. every t-subset of X is included in at least one block.

From [17], we have the following proposition. (We learned about proposition
1 from [23].)

Proposition 1. Suppose that k = even and

3 ≤ s ≤
t+ 3

2
,

k

(

t−
s− 3

2

)

≤ v < k

(

t−
s− 4

2

)

.

Then there exists a (v, v−k, t)-covering such that b = t+s. Further, each element
a ∈ X is included in at most two blocks.

See [17, 23] for the construction.
We next borrow the following lemma from [23] in which the lemma was used

for robust secret sharing schemes. The proof will be clear.

Lemma 1. (X,B) is a (v, b, t)-verifiers set system if and only if the set system

(X,Bc) is a (v, v − t− 1, t)-covering, where Bc
4
= {X\Bi | Bi ∈ B}.

Then we obtain a (v, b, t)-verifiers set system as follows.

Corollary 1. For t = odd, there exists a (v, b, t)-verifiers set system such that

v =
3

4
(t+ 1)2 and b =

3

2
(t+ 1). (10)

Further, each element a ∈ X is included in at most two blocks.

How to Break a Practical MIX and Design a New One 575

Proof: In Proposition 1, let k = t+ 1 and s = (t+ 3)/2. ut
The fact that each MIX server is included in at most two blocks is primordial

to understand the efficiency analysis described further on.
We show a small example of Corollary 1. Let t = 3, b = 6, v = 12 and

B1 = (1, 2, 3, 4), B2 = (3, 4, 5, 6), B3 = (5, 6, 1, 2),

B4 = (7, 8, 9, 10), B5 = (9, 10, 11, 12), B6 = (11, 12, 7, 8)

Then it is easy to see that this is a (12, 6, 3)-verifiers set system which satisfies
Corollary 1.

4.5 Efficiency

In the (v, b, t)-verifiers set system of Corollary 1, each MIX server is included in
at most two blocks. Therefore, each MIX server acts as a prover at most twice
and acts as a verifier at most twice.

In Step 1 and Step 2, each prover computes A1 and encrypts s1, · · · , sN
and πj . This computation cost is O(N). He publishes A1 and the ciphertexts of
s1, · · · , sN and πj . This communication cost is O(N). Therefore, the total cost of
the prover is O(N). In Step 3, each verifier decrypts the ciphertexts of s1, · · · , sN ,
πj and checks the validity of A1. This computation cost is O(N). He publishes
“ACCEPT” or “REJECT”. This communication cost is O(1). Therefore, the
total cost of the verifier is O(N). In the end, the total cost of each MIX server
is O(N).

An alternative method to compute the computation cost per user is to analyze
the total cost and then divide by the total number of MIX servers. One needs
then to take into account that the number of MIX servers is O(t2), compared to
O(t) in previous work.

5 Security of the Protocol

5.1 Verifiability

Suppose that the prover Pj of Bj is malicious and A1 is not correctly computed.
Then there exists at least one honest verifier in Bj because |Bj | = t+1 and there
exist at most t malicious MIX servers. The honest verifier outputs “REJECT”
at Step 3. Therefore, A1 is ignored at Step 4.

5.2 Robustness

For any t malicious MIX servers, there exists at least one Bi in which all MIX
server are honest from Def.1. This Bi computes A1 correctly. On the other hand,
any invalid A1 is ignored from the verifiability. Therefore, our protocol outputs
a random permutation of (m1, . . . ,mN) correctly even if there are at most t
malicious MIX servers.

576 Yvo Desmedt and Kaoru Kurosawa

5.3 Privacy (Sketch)

The ElGamal based encryption scheme of [28] is known to be non-malleable un-
der adaptive chosen ciphertext attack. Let c1, c2 be two ciphertexts and m1,m2

be the plaintexts. Then by using the result of [4], we can show that there exists
no probabilistic polynomial time (p.p.t.) Turing machineD (distinguisher) which
can distinguish (c1, c2,m1,m2) and (c1, c2,m2,m1) with meaningful probability.
This is the minimum requirement that any MIX net of this type must satisfy. We
also assume that it satisfies plaintext awareness [5] which means that no p.p.t.
adversary can create a ciphertext c without knowing its underlying plaintext m.

Now consider an adversary M0 who can control at most t MIX servers and
at most N − 2 out of the N users posting encrypted messages. It is the goal
of the adversary M0 to match each one of the two plaintexts m1,m2 to their
corresponding ciphertexts c1, c2 that he does not control. In other words, M0

wishes to distinguish (c1, c2,m1,m2) and (c1, c2,m2,m1).

Suppose that there exists a p.p.t. adversary M0 who can distinguish (c1, c2,
m1,m2) and (c1, c2,m2,m1) with meaningful probability. For simplicity, suppose
that M0 controls users 3, · · · , N .

We will show a distinguisher D. The input to D is (c1, c2, z1, z2), where
(z1, z2) = (m1,m2) or (m2,m1). D first gives c1, c2 toM0 and runs the users part
of M0. Then M0 outputs c3, · · · , cN . From the plaintext awareness assumption,
M0 knows the plaintexts m3, · · · ,mN for c3, · · · , cN . Therefore, D knows the set
of {m1,m2,m3, · · · ,mN}.

D next runs the main body of our protocol in such a way that D simulates
the part of honest MIX servers faithfully and uses M0 for the part of malicious
MIX servers. Let the output of the main body be A0 = ((ĉ1, d̂1), . . . , (ĉN , d̂N)).
Note that A0 is a random permutation of randomized ciphertexts c1, · · · , cN
from Sect. 5.2.

Let π be a random permutation. Let m̂i denote the plaintext of (ĉi, d̂i) for

1 ≤ i ≤ N . Then we can show that M0 cannot distinguish (ĉi, d̂i, m̂i) and

(ĉi, d̂i,mπ(i)) under the decision Diffie-Hellman assumption. D finally generates
a view of M0 for the robust (t+1, n) threshold ElGamal decryption scheme with

(ĉi, d̂i,mπ(i)) by using the technique of [8, 12] for 1 ≤ i ≤ N .

ThenM0 can distinguish (c1, c2,m1,m2) and (c1, c2,m2,m1) with meaningful
probability from our assumption onM0. Hence,D can distinguish (c1, c2,m1,m2)
and (c1, c2,m2,m1) with meaningful probability. However, this is a contradic-
tion.

6 Open Problems

This paper introduces several open problems, in particular:

– whether the new tools of existential-honesty and limited-open-verification
can be used in other secure distributed computation.

How to Break a Practical MIX and Design a New One 577

– whether there are other choices of v. Indeed, when t is large the required
number of MIX servers only grows quadratic. Although this is reasonable for
a theoretician, from a practical viewpoint, the question is worth addressing.

– is O(N) the minimum required effort per MIX server while maintaining t-
privacy, t-verifiability, and t-robustness, in a network with O(t2) servers.

Acknowledgement

The authors thank Prof. Stinson for providing in August 1999 the second au-
thor of the paper with a preliminary copy of their Rees et al. paper [23]. The
authors are grateful for the many comments received from the referee and from
Dr. Jakobsson who shepherded the rewriting of the paper. Many of these com-
ments have significantly contributed to increase the readability of the text.

References

1. M. Abe, “Universally verifiable mix-net with verification work independent of the
number of mix-centers,” Eurocrypt ’98, pp. 437–447.

2. M. Abe, “A mix-network on permutation networks,” ISEC Technical report 99-10
(in Japanese) (May, 1999)

3. M. Abe, “Mix-networks on permutation networks,” Asiacrypt ’99, pp. 258–273.
4. M. Bellare, A. Desai, D. Poincheval, P. Rogaway, “Relations among notions of

security for public key encryption schemes,” Crypto ’98, pp. 26–45.
5. M. Bellare, P. Rogaway, “Optimal asymmetric encryption - How to encrypt with

RSA,” Eurocrypt ’94, pp. 92–111.
6. D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Communications of the ACM, Vol. 24, 1981, pp. 84-88.
7. D. Chaum, H. Van Antwerpen, “Undeniable signatures,” Crypto ’89, pp. 212-216.
8. Y. Desmedt, Y. Frankel, “Threshold cryptosystems,” Crypto ’89, pp. 307–315.
9. D. Dolev, C. Dwork, M. Naor, “ Non-malleable cryptography,” STOC ’91, pp. 542-

552.
10. T. ElGamal, “A public-key cryptosystem and a signature scheme based on discrete

logarithms,” Crypto ’84, pp. 10-18.
11. A. Fujioka, T. Okamoto, K. Ohta, “A practical secret voting scheme for large scale

elections,” Auscrypt ’92, pp. 244-251.
12. R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, “Robust and efficient sharing of

RSA functions,” Crypto ’96, pp. 157–172.
13. M. Jakobsson, “A practical MIX,” Eurocrypt ’98, pp. 448–461.
14. M. Jakobsson, D. M’Raihi, “Mix-based electronic payments,” SAC’98, pp. 157–173.
15. M. Jakobsson, “Flash mixing,” PODC’99, pp. 83–89.
16. M. Jakobsson, A. Juels “Millimix: Mixing in small batches,” DIMACS Technical

report 99-33 (June 1999)
17. W. H. Mills, “Covering design I: coverings by a small number of subsets,” Ars

Combin. 8, (1979), pp. 199–315.
18. W. Ogata, K. Kurosawa, K. Sako, K. Takatani, “Fault tolerant anonymous chan-

nel,” ICICS ’97, pp. 440-444.
19. C. Park, K. Itoh, K. Kurosawa, “All/nothing election scheme and anonymous chan-

nel,” Eurocrypt ’93, pp. 248-259.

578 Yvo Desmedt and Kaoru Kurosawa

20. T. P. Pedersen, “A threshold cryptosystem without a trusted party,” Eurocrypt ’91,
pp. 522-526.

21. B. Pfitzmann, A. Pfitzmann. “How to break the direct RSA-implementation of
MIXes,” Eurocrypt ’89, pp. 373-381.

22. D. Pointcheval, J. Stern, “Security proofs for signature schemes,” Eurocrypt ’96,
pp. 387-398.

23. R. Rees, D. R. Stinson, R. Wei, G. H. J. van Rees, “An application of covering
designs: Determining the maximum consistent set of shares in a threshold scheme,”
Ars Combin. 531 (1999), pp. 225–237.

24. K. Sako, J. Kilian, “Receipt-free mix-type voting scheme,” Eurocrypt ’95, pp. 393-
403.

25. C. P. Schnorr, “Efficient signature generation for smart cards,” Crypto ’89, pp. 239–
252.

26. C. P. Schnorr, M. Jakobsson, “Security of discrete log cryptosystems in the random
oracle + generic model,” http://www.bell-labs.com/user/markusj/

27. A. Shamir, “How to share a secret,” Communications of the ACM, Vol. 22, 1979,
pp. 612-613

28. Y. Tsiounis, M. Yung, “On the security of ElGamal based encryption,” PKC’98,
pp. 117–134.

29. Edited by C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Design,
CRC Press (1996)

