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Abstract. Voting schemes that provide receipt-freeness prevent voters
from proving their cast vote, and hence thwart vote-buying and coer-
cion. We analyze the security of the multi-authority voting protocol of
Benaloh and Tuinstra and demonstrate that this protocol is not receipt-
free, opposed to what was claimed in the paper and was believed before.
Furthermore, we propose the first practicable receipt-free voting scheme.
Its only physical assumption is the existence of secret one-way communi-
cation channels from the authorities to the voters, and due to the public
verifiability of the tally, voters only join a single stage of the protocol,
realizing the “vote-and-go” concept. The protocol combines the advan-
tages of the receipt-free protocol of Sako and Kilian and of the very
efficient protocol of Cramer, Gennaro, and Schoenmakers, with help of
designated-verifier proofs of Jakobsson, Sako, and Impagliazzo.

Compared to the receipt-free protocol of Sako and Kilian for security
parameter ` (the number of repetitions in the non-interactive cut-and-
choose proofs), the protocol described in this paper realizes an improve-
ment of the total bit complexity by a factor `.

1 Introduction

1.1 Background

Secret-ballot voting protocols are one of the most significant application of
cryptographic protocols. The most efficient secret-ballot voting protocols can
be categorized by their approaches into three types: Schemes using mix-nets
[Cha81,PIK93,SK95,OKST97,Jak98,Abe99], schemes using homomorphic encryp-
tion [CF85,CY86,Ben87,BT94,SK94,CFSY96,CGS97], and schemes using blind
signatures [FOO92,Sak94,Oka97]. The suitability of each of these three types
varies with the conditions under which it is to be applied.
In a model with vote-buyers (or coercers), a voting scheme must ensure not

only that a voter can keep his vote private, but also that he must keep it private.
In other words, the voter should not be able to prove to a third party that he has
cast a particular vote. He must neither obtain nor be able to construct a receipt
proving the content of his vote. This property is referred to as receipt-freeness.

? Supported by the Swiss National Science Foundation, project no. SPP 5003-045293.
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The concept of receipt-freeness was first introduced by Benaloh and Tuinstra
[BT94]. Based on the assumption of a voting booth that physically guarantees
secret communication between the authorities and each voter, they proposed
two voting protocols using homomorphic encryptions. The first one is a single-
authority voting protocol which, while being receipt-free, fails to maintain vote
secrecy. Then they extend this protocol to the second protocol, which is a multi-
authority scheme achieving vote secrecy. However, we show that this scheme is
not receipt-free, as opposed to what is claimed in the paper.
Another receipt-free voting protocol based on a mix-net channel was proposed

by Sako and Kilian [SK95]. In contrast to [BT94], it assumes only one-way secret
communication from the authorities to the voters. The heavy processing load
required for tallying in mix-net schemes, however, is a significant disadvantage
of this protocol.
Finally, a receipt-free voting scheme using blind signatures was given by

Okamoto [Oka97]. Here, the assumption was of anonymous one-way secret com-
munication from each voter to each authority. Achieving communication that is
both secret and anonymous would, however, be extremely difficult. Also, this
scheme requires each voter to be active in three rounds (authorization stage,
voting stage, and claiming stage), which is not acceptable in practice.
Another stream of research which relates to receipt-freeness is incoercible

multi-party computation. Without any physical assumption, deniable encryp-
tion [CDNO97] allows an entity to lie later how the ciphertext decrypts, and
this technique is used to achieve incoercible multi-party computation [CG96].
However, the concept of incoercibility is weaker than receipt-freeness. It would
allow a voter to lie about his vote, but it cannot help against a voter who wants
to make his encryption undeniable, and hence cannot prevent vote-buying.

1.2 Contributions

In this paper, we first demonstrate that the multi-authority protocol of Benaloh
and Tuinstra [BT94] is not receipt-free, opposed to what was claimed in the
paper and was believed before. We then present a novel generic construction
for introducing receipt-freeness into a voting scheme based on homomorphic
encryption by assuming some additional properties of the encryption function.
This construction also includes a solution for the case that an authority does
not send correct information through the untappable channel.1 Moreover, as
opposed to previous receipt-free protocols, we disable vote-buying even in cases
where some authorities are colluding with the voter-buyer. The security of these
protocols is specified with respect to a threshold t, where the correctness of the
tally is guaranteed as long as at least t authorities remain honest during the
whole protocol execution, and privacy is guaranteed as long as no t or more
curious authorities pool their information.

1 Due to the untappability of the channel the voter cannot prove that the received
information is incorrect. In previous protocols, this problem was ignored, and the
situation of a voter complaining about an authority would have lead to a deadlock.
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Our construction gives a receipt-free voting protocol which runs as follows:
For each voter the authorities jointly generate a randomly ordered list with an
encryption of each valid vote, along the lines of [SK95]. The ordering of the
list is secretly conveyed and proven to the voter by deploying the technique of
designated-verifier proofs [JSI96], and the voter points to the encryption of his
choice. Tallying of votes is performed using the homomorphic property of the
encryption function.
By applying this generic construction to the voting protocol of Cramer, Gen-

naro, and Schoenmakers [CGS97], we obtain an efficient receipt-free voting pro-
tocol based on homomorphic encryption.
The efficiency achieved by our protocol compared to the protocol of Sako

and Kilian [SK95] with security parameter ` in the case of 1-out-of-2 voting is as
follows: The communication through the untappable channels and through the
public channels are reduced by a factor of `/4 and 3`/2, respectively. Altogether,
this results in a speedup by a factor of `. As an example, for M = 1, 000, 000
voters,N = 10 authorities, aK = 1024 bit group, and security parameter ` = 80,
the protocol of [SK95] communicates 102GB (gigabyte) over the untappable
channels and 924GB over the public channels, whereas the protocol of this paper
communicates 5GB over untappable channels and 8GB over public channels.

1.3 Organization of the Paper

The paper is organized as follows: In Sect. 2, we analyze the receipt-freeness of
the protocol with multiple voting authorities of Benaloh and Tuinstra [BT94]
and demonstrate its non receipt-freeness by showing how a voter can construct a
receipt for the vote he casts. In Sect. 3, we present a generic receipt-free protocol
for 1-out-of-L voting based on homomorphic encryptions, and in Sect. 4 we apply
these techniques to the protocol of Cramer, Gennaro, and Schoenmakers [CGS97]
and obtain an efficient receipt-free voting scheme. Finally, in Sect. 5, we even
improve the efficiency of our protocol by tailoring it to 1-out-of-2 voting.

2 Analysis of the Benaloh-Tuinstra Protocol

The notion of receipt-freeness was first introduced by Benaloh and Tuinstra in
[BT94]. They present two protocols that are claimed to be receipt-free. In the
single-authority protocol, the authority learns how each vote was cast. This is
of course far from satisfactory. In this section, we analyze the receipt-freeness
of their protocol with multiple voting authorities and show how a voter can
construct a receipt for the vote he casts.

2.1 Key Ideas of the Protocol

The basic idea of the multiple-authority protocol [BT94] is to have every voter
secret-share his vote among the authorities (using Shamir’s secret-sharing scheme
[Sha79]), who then add up the shares and interpolate the tally. This idea works
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due to the linearity of the secret-sharing scheme. There are two major tasks to
solve: First, the voter must send one share to each authority in a receipt-free
manner, and second, the voter must prove that the secret (the vote) is valid.
We concentrate on the second task: In order to secret-share the vote, the voter

selects a random polynomial P of appropriate degree, such that P (0) ∈ {0, 1} is
his vote. The share for the j-th authority is hence P (j). Clearly, it is inherently
important that the vote is valid, i.e. P (0) ∈ {0, 1}, since otherwise the tally will
be incorrect. Hence, the voter must provide a proof of validity for the cast vote.
For the sake of the proof of validity, the voter wishing to cast a vote v0

submits a bunch of n + 1 vote pairs, where n is a security parameter. That is,
the voter submits the votes (v0, v

′
0), . . . , (vn, v

′
n), and each pair (vi, v

′
i) of votes

must contain one 0-vote and one 1-vote in random order. For each pair (vi, v
′
i)

but the first, a coin is tossed and the voter is either asked to open the pair and
show that indeed there is a 0-vote and a 1-vote, or he is asked to prove that
either vi = v0 and v′i = v′0 is satisfied, or that vi = v′0 and v′i = v0 is satisfied.
If the voter passes these tests, then with probability at least 1− 2−n, v0 is valid
and is accepted as the voters vote.

2.2 How to Construct a Receipt

This cut-and-choose proof of validity offers an easy ability to prove a particular
vote: In advance, the voter commits to the ordering of each pair of votes (i.e. he
commits to the bit string v0, . . . , vn). In each round of the cut-and-choose proof,
one can verify whether the revealed data is consistent with this commitment. If
no inconsistencies are detected while proving the validity of the vote, then with
probability at least 1−2−n the voter has chosen the ordering as committed, and
also v0 is as announced.
In order to obtain a receipt, the voter could select an arbitrary string s, and

set the string (v0, . . . , vn) as the bitwise output of a known cryptographic hash
function (e.g. MD5 or SHA) for that string s. Then, s is a receipt of the vote v0.

3 Generic Receipt-Free Protocol

In this section, we present a novel and general construction for converting a
voting protocol based on homomorphic encryption (with additional properties
of the encryption function) into a receipt-free voting protocol. Receipt-freeness
means that the voter cannot prove to a third party that he has cast a particular
vote. The reason why most classical voting schemes are not receipt-free is simple:
Each encrypted vote is published, and the voter himself can prove the content
of his vote by revealing the randomness he used for encrypting. When a scheme
requires the voter to choose randomness, then often the voter can exploit this
to construct a receipt, for example by using the hash of a predetermined value
(cf. Sect. 2). Therefore, in the protocol of this paper, the authorities jointly
generate an encryption of each valid vote in random order, and each voter only
points to the encrypted vote of his choice. The ordering of the encrypted valid
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votes is proven to the voter in designated verifier manner through the untappable
channel, so that the voter cannot transfer this proof to a vote-buyer.

3.1 Model and Definitions

Entities. We consider a model with N authorities A1, . . . , AN and M voters.
A threshold t denotes the lower bound on the number of authorities that is
guaranteed to remain honest during the complete protocol execution.

Communication. Communication takes place by means of a bulletin board
which is publicly readable, and which every participant can write to (into his
own section), but nobody can delete from. The bulletin board can be consid-
ered as public channels with memory. Furthermore, we assume the existence of
untappable one-way channels from the authorities to the voters. The security
of these channels must be physical, in such a way that even the voter cannot
demonstrate what was sent over the channel (of course, the voter can record all
received data, but he must not be able to prove to a third party that he received
a particular string). Even a coercer who is physically present at the voter’s place
must not be able to eavesdrop the untappable channels. Note that some physical
assumption seems to be inevitable for achieving receipt-freeness.2 Indeed, untap-
pable one-way channels from the authorities to the voters (as assumed in this
paper and in [SK95]) are the weakest physical assumption for which receipt-free
voting protocols are known to exist.

Key infrastructure. To each voter, a secret key and a public key is associ-
ated, where it must be ensured that each voter knows the secret key according
to his public key. This assumption is very natural and typically used for voter
identification in any voting protocol. For the purpose of receipt-freeness, the
knowledge of his own key is essential. If a voter can prove that he does not know
his own secret key, then he can obtain a receipt (this holds for this protocol as
well as for the protocol in [SK95]). We assume that the underlying public-key
infrastructure guarantees that each voter knows his own key, but nevertheless
we present a verification protocol (see Appendix A). Note that the receipt-free
property is still achieved even if a voter discloses his secret key to the vote-buyer.

Generality. The protocol is a 1-out-of-L voting scheme, where each entitled
voter may submit one vote from the set V of valid votes, |V| = L (e.g. L = 2
and V = {−1, 1}). The goal of the protocol is to securely compute the tally as
the sum of the cast votes. Note that the restriction on a discrete set of valid
votes is necessary in any receipt-free voting scheme. Voting schemes that allow
the voter to cast an arbitrary string as his vote cannot ensure receipt-freeness,
because they allow the voter to tag his vote.

2 If the coercer is able to tap all communication channels between the voter and the
authorities, then apparently the voter’s private information (including secret key
and randomness) is a receipt of the vote he has cast. The model for incoercible
multi-party computation [CG96] does not assume physically secure channels, but
participants who want to prove a certain behavior can do so in this setting, thus
receipt-freeness is not achieved.
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Security. The security of the protocol comprises that the correctness of the
computed tally is guaranteed as long as at least t authorities remain honest
during the whole protocol execution (correctness); that any set of less than t
authorities cannot decrypt any cast vote (privacy); and that a voter cannot prove
to a third party which particular vote he has cast (receipt-freeness). In general,
we assume that authorities do not collude with the vote-buyer, respectively the
coercer (as assumed in all previous papers considering receipt-freeness). However,
under certain circumstances some colluding can be tolerated. This is discussed
in detail in Section 3.5.

3.2 Protocol Overview

The basic idea of the voting phase is illustrated in Fig. 1: First, each valid vote is
encrypted in some deterministic way (e.g., by using the encryption function with
“randomness” 0). This list of encrypted votes is publicly known (on the very left
in the figure). Then, the first authority picks this list, shuffles it, and hands it
to the next authority. To shuffle the list means to re-randomize each entry and
to permute the order of the entries. In the figure, encryption is illustrated in
terms of drawing a circle around the secret, and re-randomization is illustrated
by rotating the secret. Then, the next authority picks the list, shuffles it, and
so on. In addition to this shuffling, each authority must secretly reveal to the
voter how the list was reordered yet in a privately verifiable manner through a
secure untappable channel. This allows the voter to keep track of the ordering
of the encrypted entries, and once each authority has shuffled the list, he can
point to the encrypted vote of his choice. In order to prevent a voter who is
colluding with an authority from casting an invalid vote, each authority must
publicly prove that she shuffled correctly (without revealing the reordering, not
shown in the figure). Votes cast this way are receipt-free: due to the private
verifiability of how shuffling was performed, the voter has no way to convince a
third party of the content of his vote. This property will be achieved by using
designated-verifier proof technique [JSI96].

3.3 Requirements for the Basic Protocol

We assume a basic (non receipt-free) voting protocol based on homomorphic
encryption for the stated model, and we require some extra properties of its
encryption function. Let E be the (probabilistic) encryption function, and let
E(v) denote the set of encryptions for a vote v. An encryption e of vote v is one
particular encryption of v, i.e. e ∈ E(v). We require the following properties to be
satisfied. The properties 1–3 are straightforward requirements for the encryption
function of any voting scheme. The properties 4–6 are required exclusively in
order to introduce the receipt-free property.

1. encryption secrecy

For any group of less than t authorities it must be infeasible to decrypt any
encryption e.
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Fig. 1. Constructing a vote in V = {1, 2, 3} with 3 authorities.

2. homomorphic property

We assume that the encryption function is homomorphic, that is, given the
encryptions e1 ∈ E(v1) and e2 ∈ E(v2), the addition of these encryptions
yields an encryption e = e1 ⊕ e2 that encrypts the sum vote, i.e. e ∈ E(v1 +
v2). We require that this addition can be computed efficiently without any
secrets.

3. verifiable decryption
We require an efficient protocol for verifiably decrypting an encrypted sum
vote, that is given any encryption e ∈ E(T ) the authorities can provide the
sum of votes T and a proof that e indeed decrypts to T . This decryption
and the proof must also work if up to N − t authorities refuse cooperation or
even misbehave maliciously. This protocol must not reveal any information
that could weaken Property 1 (secrecy) of other encryptions.

4. random re-encryptability

We require an algorithm for random re-encryption of any encryption e.
Given e ∈ E(v) (where typically v is unknown), there is a probabilistic
re-encryption algorithm R that outputs e′ ∈ E(v), where e′ is uniformly
distributed over E(v). We call the randomness used for generating e′ the
witness.

5. existence of a 1-out-of-L re-encryption proof

Based on the random re-encryptability property, we assume the existence of
an efficient protocol that given an encryption e, a list e1, . . . , eL of encryp-
tions, and a witness that ei is a re-encryption of e (for a given i), proves that
indeed ei is a re-encryption of e, without revealing i. This proof is called
1-out-of-L re-encryption proof.

6. existence of a designated-verifier re-encryption proof

We assume the existence of an efficient protocol that given encryptions e
and e′ and a witness for e′ being a re-encryption of e, proves the existence
of such a witness in a manner that only the designated verifier can verify
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its correctness [JSI96]. This proof is called designated-verifier re-encryption
proof.

3.4 Introducing Receipt-Freeness

Given a voting protocol for the stated model which satisfies the requirements
of the previous section, we can construct a receipt-free voting protocol. We first
show how votes are generated (by the authorities) and how the voter casts his
vote, then how tallying is performed.

Vote generation. Without loss of generality, assume that for each valid vote

vi ∈ V, there exists a standard encryption e
(0)
i , where it is clear which vi a given

encryption e
(0)
i belongs to.3 Hence, e

(0)
1 , . . . , e

(0)
L is a public list of all standard-

encrypted valid votes.

In turn, for each authority Ak (where k = 1, . . . , N):

1. Ak picks the list e
(k−1)
1 , . . . , e

(k−1)
L of encrypted valid votes (for the first

authority A1, this is the public list of standard-encrypted valid votes, and
for all succeeding authorities, this is the list of the previous authority). Then
the authority shuffles this list randomly, and hands it to the next authority.
To shuffle the list means to re-encrypt each encrypted vote (Property 4)
and to permute the order of the list. More precisely, the authority randomly
selects a permutation πk : {1, . . . , L} → {1, . . . , L}, computes a random
re-encryption of e

(k−1)
i and assigns it to e

(k)
πk(i) (for all i = 1, . . . , L).

2. Ak publicly proves that she honestly shuffled, namely by proving for each i,

there exists a re-encryption of e
(k−1)
i in the list e

(k)
1 , . . . , e

(k)
L without reveal-

ing which (1-out-of-L re-encryption proof, Property 5).
3. Ak secretly conveys to the voter the permutation πk she used for reordering
the encrypted votes and proves privately to him its correctness. More pre-
cisely, the permutation πk and a designed-verifier proof for each i = 1, . . . , L,

that e
(k)
πk(i) is a re-encryption of e

(k−1)
i (Property 6), is sent through the un-

tappable channel to the voter.
4. If the voter does not accept the proof, he publicly complains about the

authority. If the voter does so, then we set e
(k)
1 = e

(k−1)
1 , . . . , e

(k)
L = e

(k−1)
L ,

i.e. the shuffling of this authority is ignored. The voter may complain against
at most N − t authorities.

Casting a vote. The voter derives the position i of the encrypted vote e
(N)
i

of his choice, and publicly announces it.

Tallying. The chosen encrypted votes of all voters are then summed for tallying.
More precisely, they are added (using homomorphic addition ⊕, Property 2) to
achieve an encryption E(T ) of the sum T of the votes. The authorities decrypt
and output T and prove its correctness (Property 3).

3 One technique to generate such encrypted votes is to use the probabilistic encryption
algorithm E, and give as randomness the all-0 string. Such an encrypted vote e

(0)
i

can be decrypted by trying all valid votes v ∈ V.
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3.5 Security

Correctness. The correctness of the tally is guaranteed if all voters can cast
the vote they wish (i.e. can trace the permutations of the authorities, Property 6),
if they cannot cast invalid votes (Property 5), if the correct encrypted sum can
be publicly computed (Property 2), and if the decryption of the sum is verifiable
(Property 3).

Privacy. The privacy of each voter is guaranteed if an encrypted vote cannot
be decrypted by an outstanding person or by any group of less than t authorities
(Property 1). Also, given a list of encrypted votes and a shuffled list, it must
be infeasible to find out which vote in the original list was permuted to which
vote in the shuffled list (Property 4). Since at least t shufflings are performed
correctly (at most N − t shufflings can be skipped by a complaining voter), t− 1
colluding authorities cannot find out the reordering of the list.

Receipt-Freeness. The voter actively interacts at two points: First (in vote
generation), the voter can disable the shuffling of up to N − t authorities, and
second (in vote casting), the voter points to the encrypted vote of his choice.
Through the untappable channels, the voter receives the permutations πk and
the designated-verifier proofs for the correctness of each πk. Due to the non-
transferability of designated-verifier proofs (Property 6) and the untappability
of the channels used he can lie for any of these permutations πk, and this is
sufficient for not being able to prove the cast vote. Note that although the
proposed scheme is receipt-free, a coercer still can coerce a voter not to vote, or
can coerce a voter to vote randomly.
In case that authorities collude with a vote-buyer or a coercer, then appar-

ently receipt-freeness is still ensured as long as each voter knows at least one
authority not colluding with the vote-buyer (then the voter can lie for the per-
mutation πk of this authority Ak). If a voter does not know such an authority, he
can select one authority at random and lie for this permutation. In the context
of vote-buying this means that the voter can forge a receipt for a vote he did not
cast, and the vote-buyer accepts such a forged receipt with probability linear in
the number of authorities not colluding with him, which seems to be unaccept-
able for the vote-buyer. However, in the context of coercion, this means that the
probability of a lying voter to be caught is linear in the number of authorities
colluding with the coercer, and this seems to be unacceptable for the voter.

4 [CGS97] Made Receipt-Free

In this section, we construct a receipt-free 1-out-of-L voting scheme based on the
construction of Sect. 3 and on the protocol of Cramer, Gennaro, and Schoen-
makers [CGS97].

4.1 Homomorphic ElGamal Encryption

The encryption scheme is exactly the same as used in [CGS97]. Here a very
brief summary: The scheme is based on the ElGamal cryptosystem [E84]. Let
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G be a commutative group of order |G| = q, where q is a large prime. G can
be constructed as a subgroup of Z∗

p , where p is a large prime, but can also
be obtained from elliptic curves. In the sequel, all operations are meant to be
performed in G.
Let g be a generator of G, i.e. G = 〈g〉. The secret key z is chosen uniformly

from Zq, and the public key is h = gz. The key pair (z, h) is constructed in a way
that each authority receives a share zi of z in a (t,N)-threshold secret-sharing
scheme and is publicly committed to this share by hi = gzi [Ped91,CGS97]. Also,
γ is another (independent) generator of G. The set V of valid votes contains L
values in Zq. An encryption of a vote v ∈ V is given by

E(v) = (gα, γvhα),

where α ∈R Zq is a random number and γ
v is the “message” in the context of

ElGamal.4 We further let e
(0)
v = (1, γv) be the standard encryption of v.

4.2 Encoding of Votes

There are several ways of encoding L votes in Zq, such that the sum of several
votes yields the sum of each type of vote. If for example L = 2, then one could
set V = {+1,−1} and can derive how many 1-votes and how many (−1)-votes
were cast from the sum and the number of cast votes.
For particular cases with L > 2, one can still use a similar approach. For

example, if voters are allowed to cast “yes”, “no”, or “empty”, and we are only
interested in whether there are more “yes” or more “no” votes (disregarding the
number of “empty” votes), one can use the encoding 1 for “yes”, −1 for “no”,
and 0 for “empty”.
However, if it must be possible to derive the exact number of cast votes

for each choice, then more involved approaches are necessary. Along the ideas of
[CFSY96], one can set V = {1,M,M 2, . . . ,ML−1}, whereM denotes the number
of voters. One can easily compute the number of cast votes for each choice, once
the sum of the votes is computed.
We note that in any examples given in this subsection, decryption of the

tally requires computing the discrete logarithm of γT , where T is the sum of all

cast votes (as in [CGS97]). This can be done with complexity O(
√
M

L−1
), see

[CGS97] for more details.

4.3 Main Protocol

The main protocol is according to the generic protocol of Sect. 3. All we have
to show is that the above encryption scheme satisfies the required properties of
Sect. 3:

4 The original ElGamal scheme is homomorphic with respect to multiplication. In
order to achieve it to be homomorphic with respect to addition (Property 2), the
message is chosen as γv. Multiplication of two messages corresponds to addition of
the votes.
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1. (secrecy) The secret key z is shared among the authorities such that any
t − 1 authorities cannot compute z. Violating the secrecy of the scheme
would mean to either break ElGamal [E84] or the secret-sharing scheme
[Ped91].

2. (homomorphic property) Addition of two encryptions e1 = (x1, y1) and
e2 = (x2, y2) is defined as

e1 ⊕ e2 = (x1x2, y1y2) .

It is obvious that if e1 ∈ E(v1) and e2 ∈ E(v2), then (e1 ⊕ e2) ∈ E(v1 + v2).
3. (verifiable decryption) In order to decrypt T from e = (x, y) the authorities
first jointly compute, reveal and prove x̂ = xz. This can be achieved by hav-
ing every authority Ai compute x̂i = xzi , where zi is Ai’s share of the secret
key z, and then compute x̂ from x̂i. This is possible if at least t authorities
reveal and prove x̂i. More details can be found in [Ped91,CGS97]. Once x̂ is
known, one can compute

y

x̂
=

γT · hα
(gα)z

= γT .

Then, the authorities must find T . The computation complexity of this task
is discussed in Sect. 4.2

4. (re-encryptability) The re-encryption e′ = (x′, y′) of an encrypted vote
e = (x, y) is given by

(x′, y′) = (gξx, hξy)

for a random integer ξ ∈R Zq. Clearly, if ξ is chosen uniformly in Zq, then
(x′, y′) is uniformly distributed. This ξ serves as a witness of re-encryption.

5. (1-out-of-L re-encryption proof) An efficient witness indistinguishable pro-
tocol with which an authority can prove that a re-encryption of a given
encrypted vote e is contained in the list e1, . . . , eL will be given in Sect. 4.4.

6. (designated-verifier re-encryption proof) An efficient witness indistinguish-
able protocol with which an authority can prove privately that an encrypted
vote e′ is a re-encryption of e will be given in Sect. 4.5.

4.4 1-out-of-L Re-encryption Proof

We present a witness indistinguishable protocol with which a prover can prove
that for an encrypted vote (x, y), there is a re-encryption in the L encrypted votes
(x1, y1), . . . , (xL, yL) (1-out-of-L re-encryption proof). The protocol is based on
techniques presented in [CDS94,CFSY96,CGS97]. For this protocol, assume that
(xt, yt) is a re-encryption of (x, y), and the re-encryption randomness (the wit-
ness) is ξ, i.e. (xt, yt) = (g

ξx, hξy).

1. The prover selects d1, . . . , dL and r1, . . . , rL at random, and computes

ai =
(xi
x

)di

· gri and bi =

(

yi
y

)di

· hri (for i = 1, . . . , L)

and sends it to the verifier. Note that these values commit the prover to di
and ri for all i = 1, . . . , L except for i = t. at and bt only commit the prover
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to a value w = ξdt+rt, since at = gξdt+rt and bt = hξdt+rt . This means that
the prover still can change dt and rt after this round.

2. The verifier picks a random challenge c ∈R Zq and sends it to the prover.
3. The prover modifies dt such that c = d1 + . . . + dL, modifies rt such that

w = ξdt+ rt (both mod q) and sends d1, . . . , dL and r1, . . . , rL (with dt and
rt modified) to the verifier.

4. The verifier tests whether

c
?
= d1 + . . .+ dL (mod q)

ai
?
=
(xi
x

)di

· gri (for i = 1, . . . , L)

bi
?
=

(

yi
y

)di

· hri (for i = 1, . . . , L)

The proposed protocol is a 3-move witness-indistinguishable proof. Using the
Fiat-Shamir-heuristic [FS86] the proof can be converted to be non-interactive.
Using a technique of [CFSY96], we can even achieve a proof that only requires
the prover to send 2L elements of G. LetH denote a cryptographic hash function,
then

1. The prover computes ai and bi (for i = 1, . . . , L) as in the interactive proof.
2. Then the prover computes the challenge c = H(E‖a1‖ . . . ‖aL‖b1‖ . . . ‖bL),
where a‖b is the concatenation of a and b, and E = (x‖y‖x1‖x2‖ . . . ‖xL‖yL)
is the environment.

3. For this challenge, the prover computes di and ri (for i = 1, . . . , L). The
proof is the 2L-vector (d1, . . . , dL, r1, . . . , rL).

4. A verifier examines whether

d1 + . . .+ dL
?
= H

(

E
(

x1

x

)d1gr1 . . .
(

xL

x

)dLgrL

(

y1

y

)d1

hr1 . . .
(

yL

y

)dL

hrL

)

.

4.5 Designated-Verifier Re-encryption Proof

Each authority secretly conveys and proves to the voter how she reordered the
list of encrypted votes. Therefore, for each i = 1, . . . , L, the authority proves that

e
(k)
π(i) is a re-encryption of e

(k−1)
i . In the sequel, based on techniques from [JSI96],

we show how the authority can privately prove that (x′, y′) is a re-encryption
of (x, y), where ξ is the witness, i.e. (x′, y′) = (gξx, hξy). The voter’s secret key
is denoted as zv and the corresponding public key is given by hv = gzv . This
protocol relies on the voter’s knowledge of his secret-key. If this property is not
ensured by the underlying public-key infrastructure, a protocol for guaranteeing
it must be employed (see Appendix A).

1. The prover selects d,w and r at random, computes

a = gd , b = hd , and s = gwhrv ,

and sends it to the verifier. These values commit the prover to d,w and r.
However, s is a chameleon commitment for w and r, and the verifier can
use his knowledge of zv to open s to arbitrary values w′ and r′ satisfying
w′ + zvr

′ = w + zvr.
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2. The verifier picks a random challenge c ∈R Zq and sends it to the prover.
3. The prover computes u = d+ ξ(c+ w) and sends w, r, u to the verifier.
4. The verifier tests whether

s
?
= gwhrv

gu
?
=

(

x′

x

)c+w

· a

hu
?
=

(

y′

y

)c+w

· b

This protocol can be made non-interactive using Fiat-Shamir-heuristic [FS86]:

1. The prover computes a, b and s as in the interactive proof.
2. Then the prover computes the challenge c = H(E‖a‖b‖s), where a‖b‖smeans
the concatenation of a, b and s, and E = (x‖y‖x′‖y′) is the environment.

3. For this challenge, the prover computes u. The proof is the vector (c, w, r, u).5

4. A verifier tests whether

c
?
= H

(

E
gu

(

x′

x

)c+w
hu

(

y′

y

)c+w gwhrv

)

.

Now we show how that the verifier who knows the secret zv such that g
zv = hv

can generate the above proof for any (x, y) and (x̃, ỹ). The key is that the value s
does not stick the verifier to w and r. The verifier selects α, β and ũ at random,
and computes

c̃ = H
(

Ẽ
gũ
(

x̃
x

)α

hũ
(

ỹ
y

)α gβ

)

w̃ = α− c̃ (mod q)

r̃ =
β − w̃

zv
(mod q)

and sets (c̃, w̃, r̃, ũ) as the proof. It is easy to see that this proof passes the above
verification, i.e. for any (x̃, ỹ), the voter can “prove” that it is a re-encryption of
(x, y).

4.6 Communication-Complexity Analysis

In this section we analyze the communication complexity of the 1-out-of-L voting
scheme. We assume that there are N authorities and M active (participating)
voters. Let K denote the number of bits that are used to store an element of the
group G.

5 We note that this construction is slightly more efficient than the one presented in
[JSI96], where they require a 5-vector as proof.
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Both initialization of the ElGamal keys and revealment of the final result use
constant (in M) many messages and are thus ignored. The relevant costs are
related to shuffling and to the designated-verifier proofs. For each active voter,
in turn every authority shuffles the list of encrypted votes, posts the new list
to the bulletin board (2L group elements), posts a proof for honest shuffling
(L · 2L group elements), and secretly conveys and proves the reordering to the
voter (L log2 L bits for the permutation and L ·4 group elements for the proofs).
Finally, the voter posts the index of the encrypted vote of his choice to the
bulletin board (log2 L bits). In total, there are 2KLMN(L+ 1) +M log2 L bits
posted to the bulletin board, and LMN(4K + log2 L) bits transfered through
the untappable channels.
When the protocol for ensuring that each voter knows his own secret key

(cf. Appendix A) is considered as part of the protocol (and not as part of the
public-key infrastructure), then the number of bits posted to the bulletin board
is increased by MK(N + t), and the number of bits transfered through the
untappable channels is increased by MNK.

5 Efficient Receipt-Free 1-out-of-2 Voting

In this section we give a more efficient receipt-free protocol for 1-out-of-2 voting
based on the scheme of [CGS97]. We take advantage of the encryption scheme
that enables flipping of votes easily. That is, one can generate the opposite of
an encrypted vote e without knowing the vote.
We define the set of valid votes V = {−1,+1} and we use the same encryption

scheme as in Sect. 4. We define e(0) = (1, γ) be the standard encryption for the
vote 1.
Consider an encrypted vote (x, y) ∈ E(v) (where v ∈ V is unknown). One

can easily flip the vote by e = (x−1, y−1) which yields e ∈ E(−v). In other
words, for every encrypted vote, the encrypted opposite vote is implicitly defined.
Following we give an efficient receipt-free protocol for 1-out-of-2 elections that
makes extensive use of this flipping property.

In turn, for each authority Ak (where k = 1, . . . , N):

1. Ak picks e
(k−1), an encrypted 1-vote or (−1)-vote (for the first authority

A1, this is the standard encryption of the 1-vote, and for all succeeding
authorities, this is the encrypted vote of the previous authority). Then the
authority computes a random re-encryption of e(k−1) and either flips it or
not, and assigns the result to e(k).

2. Ak publicly proves that she honestly re-encrypted (and optionally flipped),

namely by proving that either e(k) or e(k) is a re-encryption of e(k−1). There-
fore, the proof of Sect. 4.4 is used, where L = 2.

3. Ak secretly conveys and proves privately to the voter whether she flipped
or not. This proof will be the same designated-verifier proof as given in
Sect. 4.5, where L = 2.

4. At mostN−t times the voter may not accept the proof and publicly complain
about the authority. Then e(k) = e(k−1).
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Finally the voter casts his vote by announcing whether his vote is e(N) or

e(N). This encrypted vote is then summed for tallying.
The analysis of this scheme gives that totally 6KMN +M bits are posted to

the bulletin board, and MN(4K+1) bits are sent over the untappable channels
(both quantities are almost half of the costs with the protocol of Sect. 4, where
L = 2).
A careful analysis of the receipt-free voting scheme of Sako and Kilian [SK95]

for security parameter ` (the number of rounds in the non-interactive cut-
and-choose proofs) reveals the complexity of that scheme: There are in total
(9K+ log2 M)MN` bits sent over the public channels and KMN` bits over the
untappable channels. This is more than 3`/2 times more on the public channels
and `/4 times more on the untappable channels than the scheme of this paper.
The costs of the protocol from Appendix A must be added to all quantities if
required.

6 Concluding Remarks

We have presented a generic construction of a receipt-free protocol from a given
basic voting scheme. By applying this generic construction to the voting protocol
of [CGS97] we obtain an efficient receipt-free 1-out-of-L voting protocol, and
by tailoring it to 1-out-of-2 voting this results in a protocol which is ` times
more efficient than the protocol of [SK95] with security parameter `. Due to the
protocol failure in [BT94], the constructions in this paper give the first receipt-
free voting scheme based on homomorphic encryptions.
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A Ensuring Knowledge of the Secret-Key

In a model providing receipt-freeness, it is essential that each voter knows his
own secret-key. We assume that this verification is part of the underlying public-
key infrastructure, but nevertheless we provide a protocol that ensures a voter’s
knowledge of his secret-key. This protocol may be performed as part of the key
registration (in the public-key infrastructure), or as part of the voting protocol
if the key infrastructure does not provide this property. This protocol requires a
secure one-way untappable channel as used in the vote generation phase.
The following protocol is based on Feldman’s secret-sharing scheme [Fel87].

It establishes that a voter v knows the secret key zv corresponding to his public
key hv (where g

zv = hv):

– The voter shares his secret key zv among the authorities by using Feldman’s
secret-sharing scheme [Fel87]: The voter v chooses a uniformly distributed
random polynomial fv(x) = zv + a1x + . . . + at−1x

t−1 of degree t − 1, and
secretly sends6 the share si = fv(i) to authority Ai (for i = 1, . . . , N). Fur-
thermore, the voter commits to the coefficient of the polynomial by sending
ci = gai for i = 1, . . . , t− 1 to the bulletin board.

– Each authority Ai verifies with the following equation whether the received
share si indeed lies on the committed polynomial fv(·):

gsi
?
= hv · ci1 · . . . · ci

t−1

t−1

(

= gzv · ga1i · · · . . . · · · gat−1i
t−1

= gfv(i)
)

.

6 Either the voter encrypts the share with the authority’s public-key, or alternatively
the authority first sends a one-time pad through the untappable channel, and the
voter then encrypts with this pad.
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If an authority detects an error, she complains and the voter is requested to
post her share to the bulletin board. If the posted share does not correspond
to the commitments, the voter is disqualified.

– Finally, every authority (which did not complain in the previous stage) sends
her share through the untappable channel to the voter.

In the above protocol, clearly after the second step, either the (honest) au-
thorities will have consistent shares of the voter’s secret key zv, or the voter will
be disqualified. However, so far it is not ensured that the voter indeed knows the
secret key, as the shares could have been provided by the coercer. In any case,
in the final step the voter learns zv. There are at least t honest authority who
either complained (and thus their share is published), or who sent their share to
the voter, and hence the voter can interpolate the secret key zv.


