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Abstract. This paper addresses the problem of obtaining new construc-
tion methods for cryptographically significant Boolean functions. We
show that for each positive integer m, there are infinitely many integers
n (both odd and even), such that it is possible to construct n-variable,
m-resilient functions having nonlinearity greater than 2n−1

− 2b
n
2
c. Also

we obtain better results than all published works on the construction of
n-variable, m-resilient functions, including cases where the constructed
functions have the maximum possible algebraic degree n−m− 1. Next
we modify the Patterson-Wiedemann functions to construct balanced
Boolean functions on n-variables having nonlinearity strictly greater than

2n−1
− 2

n−1
2 for all odd n ≥ 15. In addition, we consider the properties

strict avalanche criteria and propagation characteristics which are impor-
tant for design of S-boxes in block ciphers and construct such functions
with very high nonlinearity and algebraic degree.

1 Introduction

The following four factors are important in designing Boolean functions for
stream cipher applications.

Balancedness. An n-variable Boolean function f is said to be balanced if wt(f) =
2n−1, where wt(.) gives the Hamming weight and f is considered to be repre-
sented by a binary string of length 2n.

Nonlinearity. The nonlinearity of an n-variable Boolean function f , denoted
by nl(f), is the (Hamming) distance of f from the set of all n-variable affine
functions. We denote by nlmax(n) the maximum possible nonlinearity of n-
variable functions.

Algebraic Degree. An n-variable Boolean function f can be represented as a
multivariate polynomial over GF (2). This polynomial is called the Algebraic
Normal Form (ANF) of f . The degree of this polynomial is called the algebraic
degree or simply the degree of f and is denoted by deg(f). It is easy to see that
the maximum algebraic degree of an n-variable balanced function is n− 1.
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Correlation Immunity. An n-variable Boolean function f(Xn, . . . , X1) is said to
be correlation immune (CI) of order m if Prob(f = 1 | Xi1 = c1, . . . , Xim =
cm) = Prob(f = 1), for any choice of distinct i1, . . . , im from 1, . . . , n and
c1, . . . , cm belong to {0, 1}. A balanced m-th order correlation immune function
is called m-resilient. Siegenthaler [16] proved a fundamental relation between the
number of variables n, degree d and order of correlation immunitym of a Boolean
function : m+ d ≤ n. Moreover, if the function is balanced then m+ d ≤ n− 1.

The set of all n-variable Boolean functions is denoted by Ωn. We denote by
An(m) the set of all balanced n-variable functions which are CI of order m.
By an (n,m, d, x) function we mean an n-variable, m-resilient function having
degree d and nonlinearity x. By an (n, 0, d, x) function we mean an n-variable,
degree d, balanced function with nonlinearity x.

A good Boolean function must possess a ”good combination” of the above
properties to be used in stream ciphers. Previous works to construct such good
functions have proceeded in two ways.
1. In the first approach the degree is ignored and the number of variables and
correlation immunity are fixed. One then tries to get a function having as high
nonlinearity as possible. This approach has been considered in [15, 2] and we call
this the Type−A approach.
2. The second approach considers the degree. However, by Siegenthaler’s in-
equality, the maximum possible degree of an n-variable, m-resilient function is
n−m− 1. Functions achieving this degree have been called optimized [7]. As in
the first approach one then tries to get as high nonlinearity as possible for opti-
mized functions. Design methods for this class of functions have been considered
in [4, 7, 8, 18] and we call this the Type−B approach.

Previous efforts at obtaining resilient functions have sometimes employed
heuristic search techniques [4, 8]. In certain cases these have provided better re-
sults than constructive techniques [15, 7]. The list of all such known cases are as
follows : (a) (7, 0, 6, 56), (9, 0, 7, 240) and (9, 2, 6, 224) functions from [4] and (b)
(9, 1, 7, 236), (10, 1, 8, 480) and (11, 1, 9, 976) functions from [8]. These examples
are indicative of the inadequacies of the current constructive techniques. How-
ever, heuristic searches cannot be conducted for moderate to large number of
variables.

Here we provide a systematic theory for the design of resilient functions.
Our techniques are sharp enough to obtain general results which are better
than all the examples mentioned above. Corresponding to the list given above
we have (7, 0, 6, 56), (9, 0, 8, 240), (9, 2, 6, 232), (9, 1, 7, 240), (10, 1, 8, 484) and
(11, 1, 9, 992) functions. Also we are able to prove some difficult results on the
nonlinearity of resilient functions. Here for the first time we show that for each
order of resiliency m, there are infinitely many n (both odd and even), such that
it is possible to construct n-variable, m-resilient functions having nonlinearity
greater than 2n−1 − 2b

n
2 c. One consequence of this result is that it completely

disproves the conjecture on nonlinearity made in [8]. We use our techniques to
present design algorithms for optimized resilient functions and obtain superior
results to all known work in this area (see Section 6 for details). The functions
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constructed by our methods have a nice representation and though they have
quite complicated algebraic normal forms they can be implemented efficiently in
hardware. See [12] for details of the hardware implementation.

Next we describe the other contributions of this paper. In Section 7, we use
a randomized heuristic to construct for the first time balanced functions with
nonlinearity greater than 2n−1 − 2

n−1
2 for n = 15, 17, 19, 21, 23, 25, 27. We use

the functions provided in [9] as the basic input to our algorithm. Earlier these
functions [9] were used to obtain balanced functions with nonlinearity greater

than 2n−1 − 2
n−1

2 only for odd n ≥ 29 [14]. Also the functions we construct
posses maximum algebraic degree (n− 1).

S-boxes can be viewed as a set of Boolean functions [10, 6]. Propagation
Characteristic(PC) and Strict Avalanche Criteria(SAC) are important properties
of Boolean functions to be used in S-boxes. Preneel et al [10] provided basic
construction techniques for Boolean functions with these properties.

Propagation Characteristic and Strict Avalance Criteria. Let X be an n tuple
X1, . . . Xn and α ∈ {0, 1}

n. A function f ∈ Ωn is said to satisfy
(1) SAC if f(X)⊕ f(X ⊕ α) is balanced for any α such that wt(α) = 1.
(2) SAC(k) if any function obtained from f by keeping any k input bits constant
satisfies SAC.
(3) PC(l) if f(X)⊕ f(X ⊕ α) is balanced for any α such that 1 ≤ wt(α) ≤ l.
(4) PC(l) of order k if any function obtained from f by keeping any k input bits
constant satisfies PC(l).

In [10], it has been shown that for balanced SAC(k) functions on n variables,
deg(f) ≤ n − k − 1. Recently in [6], balanced SAC(k) functions on n variables
with deg(f) = n − k − 1 has been identified for n − k − 1 = odd. However,
construction of such functions for n − k − 1 = even has been left as an open
problem. In [6], balanced SAC(k) functions with high algebraic degree have been
proposed. However, balanced SAC(k) functions with both high algebraic degree
and high nonlinearity have not been studied. PC(l) of order k functions with
good nonlinearity and algebraic degree have been reported in [6].

In Section 8, first we improve the algebraic degree and nonlinearity results of
the PC(l) of order k functions reported in [6]. Then motivated by the construc-
tion methods of SAC(k) functions in [6], we introduce a new cryptographic crite-
rion called the restricted balancedness of Boolean functions and show that certain
types of bent functions satisfy this property. Also we modify the functions pro-
vided by Patterson and Wiedemann [9] to obtain restricted balancedness while
keeping the nonlinearity unchanged. For the first time we consider the prop-
erties of balancedness, SAC(k), algebraic degree and nonlinearity together. We
construct balanced (using the functions with restricted balancedness) SAC(k)
functions in Ωn with maximum possible algebraic degree n−k−1 and very high
nonlinearity for k ≤ n

2 − 1. This also shows that there exists balanced SAC(k)
functions on n variables with deg(f) = n− k− 1 = even, which was posed as an
open question in [6]. Also, we present an interesting result on resilient functions
satisfying PC(k). In a previous work [15], it was shown that resilient functions
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satisfy propagation characteristics with respect to a set of input vectors, but not
PC(k) for some k.

2 Preliminaries

The Hamming weight (or simply the weight) of a binary string s is denoted
by wt(s) and is the number of ones in the string s. The length of a string s is
denoted by | s | and the concatenation of two strings s1 and s2 is written as s1s2.
Given a string s, we define sc to be the string which is the bitwise complement
of s. The operation x⊕ y on two strings x, y performs the bitwise exclusive OR
of the strings x and y.
Let s1, s2 be two bit strings of length n each. Then #(s1 = s2) (resp. #(s1 6=

s2)) denotes the number of positions where s1 and s2 are equal (resp. unequal).
The Hamming distance between two strings s1 and s2, is denoted by d(s1, s2) and
is given by d(s1, s2) = #(s1 6= s2) = wt(s1⊕s2). The Walsh distance between the
strings s1 and s2 is denoted by wd(s1, s2) and is given by wd(s1, s2) = #(s1 =
s2) − #(s1 6= s2). The relation between these two measures is as follows. Let
s1, s2 be two binary strings of length x each. Then wd(s1, s2) = x− 2d(s1, s2).
Given a bit b and a string s = s0 . . . sn−1, the string b AND s = s′0 . . . s

′
n−1,

where s′i = b AND si. The Kronecker product of two strings x = x0 . . . xn−1 and
y = y0 . . . ym−1 is a string of length nm, denoted by
x ⊗ y = (x0 AND y) . . . (xn−1 AND y). The direct sum of two strings x and y,
denoted by x$y is given by x$y = (x⊗ yc)⊕ (xc ⊗ y). As an example, if f = 01,
and g = 0110, then f$g = 01101001. Note that both the Kronecker product and
the direct sum are not commutative operations. The following result will prove
to be important later.

Lemma 1. Let f1, f2 be strings of equal length and g a string of length n. Then
d(f1$g, f2$g) = n× d(f1, f2).

Four basic properties of direct sum of Boolean functions are given below
without proof (see also [9, 15]).

Proposition 1. Let f(Xn, . . . , X1) ∈ Ωn and g(Ym, . . . , Y1) ∈ Ωm, with
{Xn, . . . , X1} ∩ {Ym, . . . , Y1} = ∅. Then f$g is in Ωn+m and
(a) The ANF of f$g is given by f(Xn, . . . , X1)⊕ g(Ym, . . . , Y1).
(b) f$g is balanced iff at least one of f and g is balanced.
(c) Let f be k1-resilient and g be k2-resilient. Then f$g is max(k1, k2)-resilient.
Also f$g is m-resilient if at least one of f or g is m-resilient.
(d) nl(f$g) = 2nnl(g) + 2mnl(f)− 2nl(f)nl(g).

An n-variable Boolean function f(Xn, . . . X1) is said to be affine if the ANF of
f is of the form f(Xn, . . . , X1) =

⊕n
i=1 aiXi ⊕ b for ai, b ∈ {0, 1}. If b is 0, then

the function is said to be linear. Also f is said to be nondegenerate on t variables
if t out of n ai’s are 1 and rest are 0. Next we define the following subsets of
linear/affine functions.
1. The set Ln(k) (resp. Fn(k)) is the set of all n-variable linear functions (resp.
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affine functions) which are non-degenerate on exactly k variables.
2. ULn(k) = Ln(k) ∪ . . . ∪ Ln(n) and DLn(k) = Ln(1) ∪ . . . ∪ Ln(k).
3. UFn(k) = Fn(k) ∪ . . . ∪ Fn(n) and DFn(k) = Fn(1) ∪ . . . ∪ Fn(k).
4. Ln = Ln(0) ∪ Ln(1) ∪ . . . ∪ Ln(n) and Fn = Fn(0) ∪ Fn(1) ∪ . . . ∪ Fn(n).
The sets Ln and Fn are respectively the sets of all linear and affine functions of n
variables. The following result states three useful properties of affine functions.

Lemma 2. (a) Let l ∈ Fn(m) and k (1 ≤ k ≤ n) be an integer. Then l = l1$l2
for some l1 ∈ Ln−k(r) and l2 ∈ Fk(m− r) for some r ≥ 0.
(b) Let l1, l2 ∈ Fn. Then d(l1, l2) = 0, 2

n, 2n−1 (resp. wd(l1, l2) = 2
n,−2n, 0)

according as l1 = l2, l1 = lc2 or l1 6= l2 or l
c
2.

(c) If l is in UFn(m+ 1), then l is m-resilient.

Siegenthaler [16] was the first to define CI functions and point out its importance
in stream ciphers [17]. A useful characterization of correlation immunity based
on Walsh Transform was obtained in [5]. The following result translates the
Walsh transform characterization of correlation immunity to Walsh distances.

Theorem 1. A n-variable Boolean function f is correlation immune of order
m, iff wd(f, l) = 0, for all l ∈ DFn(m).

3 Construction Ideas for Resilient Functions

3.1 Basic Results

We first define two subsets of Ωn. Later we will provide construction methods
for certain subsets of these sets which have good cryptographic properties.

Definition 1.
1. Γ (n, k,m) = {f ∈ Ωn : f = f0 . . . f2n−k−1, fi ∈ Ak(m), wt(fi) = 2

k−1}.
2. Γ1(n, k,m) = {f ∈ Ωn : f = f0 . . . f2n−k−1, fi ∈ UFk(m+ 1)}.

Theorem 2. Γ (n, k,m) ⊆ An(m).

Proof : Observe that if f and g are resilient of order m then so is fg. The result
then follows from repeated application of this fact. ut
Since any function in UFk(m+1) is m-resilient, we have the following result.

Lemma 3. Γ1(n, k,m) ⊂ Γ (n, k,m).

The set Γ1 =
⋃

n≥3

⋃

1≤m≤n−1

⋃

m+1≤k≤n Γ1(n, k,m) was first obtained by
Camion et al in [1], though in an entirely different form. We will show that the
extension obtained in Theorem 2 is important and provides optimized functions
with significantly better nonlinearities.

Theorem 3. Let f ∈ Γ (n, k,m) be of the form f0 . . . f2n−k−1. Let the logical
AND of r variables, Xi1 . . . Xir (i1, . . . , ir ∈ {1, . . . , k}) be a term which occurs
in the ANF of an odd number of the fi’s. Then the term Xn . . . Xk+1Xi1 . . . Xir

occurs in the algebraic normal form of f .
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Corollary 1. Let f ∈ Γ1(n, k,m) be of the form f0 . . . f2n−k−1 and let Xi (i ∈
{1, . . . , k}) be a variable which occurs in an odd number of the fi’s. Then the
term Xn . . . Xn−k+1Xi occurs in the algebraic normal form of f and hence f is
of degree n− k + 1. Moreover, the maximum degree n−m− 1 is attained when
k = m+ 2.

Corollary 1 was obtained in [15] and it places a restriction on the value of k
for optimized functions in Γ1(n, k,m). However, this restriction can be lifted by
using Theorem 3.

Lemma 4. A degree optimized (n,m, n − m − 1, x) function is always nonde-
generate.

The ANF of the functions in Γ and Γ1 are not simple. This is important from
a cryptographic point of view. Given n,m, k, in most cases it is possible to choose
two functions f1 and f2, such that the ANF’s of both f1 and f2 are complicated
and f1⊕f2 is nondegenerate and has a complicated ANF. In particular, one can
choose f1 and f2, such that all three functions f1, f2 and f1 ⊕ f2 do not depend
linearly on any input variable. It is also possible to design functions such that
each variable occurs in a maximum degree term. This is possible by ensuring
each variable occurs an odd number of times as mentioned in Corollary 1.
In the next four subsections we present the ideas behind the basic construc-

tion techniques to be used in this paper. In the later sections we combine several
of these ideas to construct resilient functions with very high nonlinearities.

3.2 Method Using Direct Sum with Nonlinear Functions

We first consider the set Γ1(n, k,m). A function f in Γ1(n, k,m) is a concate-
nation of affine functions in UFk(m+ 1). Since there are 2

n−k slots to be filled

and a maximum of p =
(

k
m+1

)

+ . . . +
(

k
k

)

linear functions in ULk(m + 1), it

follows that at least one linear function and its complement must together be

repeated at least t = d 2n−k

p
e times. We call a linear function and its comple-

ment a linear couple. When we say that a linear couple is repeated t times, we
mean that the corresponding linear function and its complement are repeated t
times in total. Using Lemma 2, any affine function l in Fn can be considered
to be a concatenation of some linear couple in Fk. Thus if one is not careful in
constructing f , it may happen that f and l agree at all places for some linear
couple repeated t times in f . This means that the nonlinearity drops by t2k−1

and gives a lower bound of 2n−1 − t2k−1 on the nonlinearity of f . This is the
bound obtained in [15]. However, one can construct f ∈ Γ1(n, k,m) with signif-
icantly better nonlinearities. The following result is the key to the construction
idea.

Theorem 4. Let f ∈ Γ1(n, k,m) be of the form f1 . . . fp where, p = 2
n−k−r for

some r and for each i, fi is in Ωk+r and is of the form fi = gi$λi, where gi is a
maximum nonlinear function on r variables and λi is in ULk(m+ 1). Also the
λi’s are distinct. Then nl(f) = 2

n−1 − (2r − 2× nlmax(r))2k−1.
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Proof : By construction f is a concatenation of linear couples λi, λ
c
i from

UFk(m + 1). Let l be in Fn and is a concatenation of linear couple µ, µ
c for

some µ in Lk. If λi 6= µ for any i, then d(f, l) = 2n−1. On the other hand
if λi = µ, for some i, then d(f, l) = (2n−k − 2r)2k−1 + d(gi$λi, ηi$µ), for
some ηi in Fr. From Lemma 1, d(gi$λi, ηi$µ) = 2kd(gi, ηi) and so d(f, l) =
2n−1− (2r−2d(gi, ηi))2

k−1. Since gi is a maximum nonlinear function on r vari-
ables, nl(gi) = nlmax(r) and so nlmax(r) ≤ d(gi, ηi) ≤ 2

r − nlmax(r). Hence
we get, 2n−1 − (2r − 2nlmax(r))2k−1 ≤ d(f, l) ≤ 2n−1 + (2r − 2nlmax(r))2k−1.

This gives nl(f) = 2n−1 − (2r − 2× nlmax(r))2k−1. ut

3.3 Fractional Nonlinearity and its Effect

In the previous section we considered the case when each linear couple is re-
peated t times, where t is a power of 2. In general it might be advantageous to
repeat a linear couple t times even when t is not a power of 2. To see the advan-
tage we need to introduce the notion of nonlinearity of ”fractional functions”.
Let 2r−1 < t ≤ 2r. Given a string l of length 2r, let First(l, t) be a string con-
sisting of the first t bits of l. The (fractional) nonlinearity of a string g of length
t is denoted by fracnl(g) and defined as fracnl(g) = minl∈Fr

d(First(l, t), g).
Given a positive integer t, the maximum possible fractional nonlinearity at-
tainable by any string of length t is denoted by Fracnlmax(t) and defined
as Fracnlmax(t) = maxg∈{0,1}t fracnl(g). When t = 2r, Fracnlmax(t) =
nlmax(r). Also Fracnlmax(2r + 1) = nlmax(r) and Fracnlmax(2r − 1) =
nlmax(r) − 1. It is clear that Fracnlmax(t) is a nondecreasing function. If a
linear couple is repeated 2r times, then by Theorem 4, the fall in nonlinearity
is by a factor of (2r − 2 × nlmax(r)). Motivated by this we define Effect(t) =
t−2Fracnlmax(t) as the factor by which nonlinearity falls when a linear couple
is repeated t times. In the construction of a function f in Γ1(n, k,m) if the dis-
tinct linear couples are repeated t1, . . . , tp times then nl(f) = min1≤i≤p(2

n−1 −
2k−1Effect(ti)). The interesting point about Effect(t) is that it is not a monotone
increasing function. An important consequence of this is that the nonlinearity
may fall by a lesser amount when a linear couple is repeated more times.
1. Effect(2r−1) = 2r−1−2(nlmax(r)−1) = 2r+1−2nlmax(r) = Effect(2r+1) >
Effect(2r).
2. Effect(2r) ≥ Effect(2r−1) and Effect(2r) > Effect(2r−2 + 1).
3. If r is odd, Effect(2r) > Effect(2r−1 + 1).
4. If r is even, Effect(2r) < Effect(2r−1 + 1), assuming nlmax(r − 1) = 2r−2 −

2
r−2
2 . If r−1 ≥ 15, the calculations are more complicated because of the existence

of functions in [9].

One can also define fractional nonlinearity and Effect() for balanced strings
(provided t is even). We believe that the idea of fractional nonlinearity is im-
portant and to the best of our knowledge it has not appeared in the literature
before.
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3.4 Use of All Linear Functions

Here we show how to extend the set Γ1. To construct a function f ∈ Γ1(n, k,m)
we have to concatenate affine functions in UFk(m+1). However, it is possible to
use all the affine functions in Fk to construct n-variable, m-resilient functions.
Let l be a function in Lk which is nondegenerate on r (1 ≤ r ≤ m) variables.
Then llc is 1-resilient and repeating this procedure m − r + 1 times one can
construct a function g in ULk+m−r+1(m + 1). The linear couple g, g

c can then
be used in the construction of m-resilient functions. The importance of this
technique lies in the fact that it helps in reducing the repetition factor of linear
couples in UFk(m+ 1). However, one should be careful in ascertaining that the
loss in nonlinearity due to the use of affine functions from DFk(m) does not
exceed the loss in repeating linear couples from UFk(m+ 1). In Theorem 9 and
Theorem 10, we show examples of how this technique can be used to construct
optimized functions.

3.5 Use of Nonlinear Resilient Function

Here also we extend Γ1, though in a different way. Corollary 1 places a restric-
tion on the value of k in Γ1(n, k,m) for optimized functions : k = m + 2. This
in turn restricts the number of linear couples to be used in the construction to
m + 3, thus increasing the repetition factor. However, if we allow k > m + 2,
the problem is that the degree will fall. To compensate this we use one non-
linear m-resilient function on k variables and having degree k − m − 1 with
the maximum possible nonlinearity. By Theorem 3, the overall function will
have degree n −m − 1 but the number of available linear couples increases to
| UFk(m+ 1) | > | UFm+2(m+ 1) |. This reduces the repetition factor. In Sub-
section 5.2, we outline a design procedure for optimized functions based on this
idea. Also in Section 4, we show how all the above ideas can be combined to
disprove the conjecture of Pasalic and Johansson [8] for optimized functions.

4 Nonlinearity of Resilient Functions

A proper subset S of Γ1 was considered in [2], where only concatenation of lin-
ear (not affine) functions were used to construct functions in Γ1. In particular, it
was shown in [2] that the maximum possible nonlinearity for n-variable resilient
functions in S is 2n−1− 2b

n
2 c. In a more recent paper, Pasalic and Johansson [8]

have shown that the maximum possible nonlinearity of 6-variable, 1-resilient
functions is 24. The same paper conjectured that the maximum possible non-
linearity of n-variable, 1-resilient functions is 2n−1 − 2b

n
2 c. We provide infinite

counterexamples to this conjecture. In fact, we show that given a fixed order of
resiliency m, one can construct n-variable functions which are m-resilient and
have nonlinearity greater that 2n−1−2b

n
2 c. Moreover, the conjecture is disproved

for optimized functions as well as for functions in Γ1.
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Theorem 5. Let m be a fixed positive integer. Then there are infinitely many
odd positive integers no (resp. even positive integers ne), such that one can con-
struct functions f of no (resp. ne) variables which are m-resilient and nl(f) >

2no−1 − 2
no−1

2 (resp nl(f) > 2ne−1 − 2
ne
2 ).

Proof : First note that if we can prove the result for odd number of variables
and for all m ≥ 1, then the result is proved for even number of variables and all
m > 1. We also need a proof for even number of variables and m = 1. These we
proceed to do via the following sequence of results. ut

Theorem 6. Let m be a fixed positive integer. Choose ε, n1, n2 such that (a)
n1 + n2 is even, (b) n2 − n1 = εn1 = 2k, for some k ≥ 4, (c) 1

2 ≤ ε ≤ 1,

(d)
(

n1

m

)

+ . . . +
(

n1

0

)

≤ 2(1−ε)n1 − 1. Then it is possible to construct an m-
resilient function on n = n1 + n2 + 15 variables having nonlinearity greater

than 2n−1 − 2
n−1

2 . Moreover, it is possible to construct such functions having
maximum degree n−m− 1.

Proof : First we construct an m-resilient function g on q = n1 + n2 variables
having nonlinearity nl(g) = 2q−1− 2

q
2−1− 2n1−1. Then we let f = h$g, where h

is a function on 15 variables having nonlinearity nl(h) = 16276 = 214−108. This
h can be constructed using the method of [9]. The function f is m-resilient (from
Proposition 1) and the overall nonlinearity of f is obtained as nl(f) = nl(h)2q+

nl(g)215 − 2nl(h)nl(g). Simplifying, we get nl(f) = 2q+14 − 108(2
n2−n1

2 +1)2n1 .
Using n2 − n1 = 2k, this simplifies to nl(f) = 2

q+14 − 108(2k + 1)2n1 . On the
other hand, n−1

2 = 7 + n1 + k. Since 108(2k + 1) < 27+k for k ≥ 4, we get

nl(f) > 2n−1− 2
n−1

2 . Thus if we show how to construct g then the proof will be
complete.
The function g is in Γ1(q, n1,m) and is constructed in a way similar to that

in Theorem 4. Since g is to be m-resilient we are restricted to using linear cou-
ples from UFn1

(m + 1) and there are 2n1 − p linear couples in UFn1
(m + 1),

where, p =
(

n1

m

)

+ . . . +
(

n1

0

)

≤ 2(1−ε)n1 − 1 These have to be used to fill
up 2n2 slots and so the maximum repetition factor for each linear couple is
d 2n2

p
e = 2n2−n1 + 1 by choice of the parameters ε, n1, n2. Thus each linear

couple is repeated either 2n2−n1 + 1 times or 2n2−n1 times. Suppose a lin-
ear couples are repeated 2n2−n1 + 1 times and b linear couples are repeated
2n2−n1 times. Let λ1, . . . , λa be distinct linear functions from ULn1

(m+ 1) and
µ1, . . . , µb be distinct linear functions from ULn1

(m+1) which are also distinct
from λ1, . . . , λa. Let α1, . . . , αa and β1, . . . , βb be bent functions of n2−n1 vari-
ables. The function g is a concatenation of the following sequence of functions:
α1$λ1, . . . , αa$λa, β1$µ1, . . . , βb$µb, λ1, . . . , λa.

Using the same idea as in the proof of Theorem 4 one can show that nl(g) =
2q−1−(2

q
2−1+2n1−1). This completes the proof of the first part of the Theorem.

To obtain maximum possible degree n−m− 1 in the above construction we
do the following. In the constructed function f , replace the last 2n1 bits by an
n1-variable, m-resilient optimized function. Using Theorem 3 it follows that f

becomes optimized. Also nonlinearity remains greater than 2n−1 − 2
n−1

2 . ut
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Example: For m = 1, choose n1 = 10, n2 = 16 and ε =
3
5 . This provides 1-

resilient, 41-variable functions f with nonlinearity 240−220+52×210 > 240−220.
To obtain maximum degree 39, replace the last 2n1 = 1024 bits of such a function
f by a nonlinear 10-variable, 1-resilient, degree 8 function (see Theorem 9 later).
This provides (41, 1, 39, x) function with x > 240 − 220 + 51 × 210. For m = 2,
choose n1 = 16, n2 = 24 and ε =

1
2 . This provides 2-resilient, 55-variable func-

tions with nonlinearity 254−227+212×216. As before we can obtain (55, 2, 52, y)
functions with y > 254 − 227 + 211× 216.

Corollary 2. The functions f and g constructed in the proof of Theorem 6
belong to Γ1.

Corollary 3. For odd n, let f be an n-variable, m-resilient function having

nl(f) > 2n−1 − 2
n−1

2 and let g be a 2k-variable bent function. Then f$g is an

n + 2k-variable, m-resilient function with nl(f$g) > 2n+2k−1 − 2
n+2k−1

2 . Con-
sequently, if Theorem 6 holds for some odd n0, then it also holds for all odd
n > n0.

To prove Theorem 5, the only case that remains to be settled is m = 1 for even
number of variables.

Theorem 7. For each even positive integer n ≥ 12, one can construct 1-resilient
functions f of n-variables having nl(f) > 2n−1 − 2

n
2 . Moreover, f is in Γ1.

Proof : Let n = 2p and consider the set Γ1(2p, p − 1, 1). We show how to
construct a function in Γ1(2p, p−1, 1) having nonlinearity 2

2p−1−3×2p−2 which
is greater than 22p−1− 2p. Since we are constructing functions in Γ1(2p, p− 1, 1)
we have to use linear couples from the set UFp−1(2). The number of available
linear couples is 2p−1 − p. Since there are 2p+1 slots to be filled the maximum

repetition factor is d 2p+1

2p−1−p
e = 5. Thus the linear couples are to be repeated

either 5 times or 4 times. Then as in the construction of g in the proof of
Theorem 6, one can construct a function f having nonlinearity 22p−1−3×2p−2.
Since f is a concatenation of linear couples from UFp−1(2) it follows that f is
1-resilient. ut
The above constructions can be modified to get optimized functions also. We

illustrate this by providing construction methods for (2p, 1, 2p − 2, x) functions
with x > 22p−1 − 2p for p ≥ 6. The constructed functions are not in Γ1.

Theorem 8. For p ≥ 6, it is possible to construct (2p, 1, 2p − 2, x) functions
with x greater than 22p−1 − 2p.

Proof : As in the proof of Theorem 7, we write 2p = (p + 1) + (p − 1) and
try to fill up 2p+1 slots using 1-resilient (p− 1)-variable functions to construct a
function f ∈ Ω2p. As before we use linear couples from UFp−1(2), but here we
use these linear couples to fill up only 2p+1 − 1 slots. The extra slot is filled up
by a balanced (p− 1, 1, p− 3, y) function g. The repetition factor for each linear
couple is again at most 5 and the construction is again similar to Theorem 6. The
nonlinearity is calculated as follows. Let l be in F2p. The function g contributes
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at least y to d(f, l). Ignoring the slot filled by g, the contribution to d(f, l) from
the linear couples is found as in Theorem 4. This gives the following inequality
22p−1−2p+y ≤ d(f, l) ≤ 22p−1−y < 22p−1+2p−y. Hence d(f, l) = 22p−1−2p+y.
An estimate of y is obtained as follows. If p − 1 is odd we use Theorem 10. If
p− 1 is even, then we recursively use the above construction. ut

It is also possible to construct 1-resilient, 10-variable functions having non-
linearity 484 > 29 − 25. This construction for optimized function combines all
the construction ideas given in Section 3. The result disproves the conjecture of
Pasalic and Johansson [8] for 10-variable functions.

Theorem 9. It is possible to construct (10, 1, 8, 484) functions.

Proof : We write 10 = 6 + 4 and concatenate affine functions of 4 variables
to construct the desired function f . However, if we use only affine functions
then the degree of f is less than 8. To improve the degree we use exactly one
nonlinear (4, 1, 2, 4) function h. By Theorem 3, this ensures that the degree
of the resulting function is 8. This leaves 26 − 1 slots to be filled by affine
functions of 4 variables. If we use only functions from UF4(2), then the maximum
repetition factor is 6 and the resulting nonlinearity is low. Instead we repeat the
11 linear couples in UF4(2) only 5 times each. This leaves 2

6 − 1 − 55 = 8
slots to be filled up. We now use functions from F4(1). However, these are not
resilient. But for l ∈ F4(1), ll

c is resilient. Since there are exactly 4 functions in
F4(1) and each is repeated exactly 2 times, this uses up the remaining 8 slots.
Let g1, . . . , g11 be bent functions on 2 variables and let λ1, . . . , λ11 be the 11
linear functions in UL4(2). Also let µ1, . . . , µ4 be the 4 linear functions in L4(1).
Then the function f is concatenation of the following sequence of functions:
g1$λ1, . . . , g11$λ11, µ1µ

c
1, . . . , µ4µ

c
4, λ1, . . . , λ11h. The nonlinearity calculation of

f is similar to the previous proofs. Let l be in F10. The worst case occurs when
l is concatenation of λi and λc

i for some 1 ≤ i ≤ 11. In this case d(f, l) =
(26 − 1− 5)23 + 24 + 4 = 484. ut

The functions constructed by the methods of Theorem 9 and Theorem 8
are not in Γ1 and do not require the use of a 15-variable nonlinear function
from [9]. It is important to note that the nonlinearity of functions constructed
using Theorem 9 cannot be achieved using concatenation of only affine functions.
Moreover, in this construction it is not possible to increase the nonlinearity by
relaxing the optimality condition on degree, i.e., allowing the degree to be less
than 8.

The maximum possible nonlinearity of Boolean functions is equal to the cov-
ering radius of first order Reed-Muller codes. Patterson and Weidemann showed
that for odd n ≥ 15 the covering radius and hence the maximum possible nonlin-

earity of an n-variable function exceeds 2n−1 − 2
n−1

2 . Seberry et al [14] showed
that for odd n ≥ 29, it is possible to construct balanced functions with non-

linearity greater than 2n−1 − 2
n−1

2 . Theorem 6 establishes a similar result for
optimized resilient functions of odd number of variables n for n ≥ 41.
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5 Construction of Optimized Resilient Functions

Here we consider construction of optimized functions. We start with the following
important result.

Theorem 10. It is possible to construct (a) (2p + 1, 0, 2p, 22p − 2p) functions
for p ≥ 1, (b) (2p + 1, 1, 2p − 1, 22p − 2p) functions for p ≥ 2, (c) (2p, 1, 2p −
2, 22p−1− 2p) functions for p ≥ 2 and (d) (2p, 2, 2p− 3, 22p−1− 2p) functions for
p ≥ 3.

Proof : We present only the constructions (proofs are similar to Section 4).
(a) If p = 1, let f = X3 ⊕ X1X2. For p ≥ 2 consider the following construc-
tion. Let λ1, λ2, λ3 be the functions in UL2(1) and λ4 the (all zero) function in
L2(0). Let h1 be a bent function on 2p − 2 variables, h2 be a maximum non-
linear balanced function on 2p − 3 variables. If p = 2 let h3, h4 be strings of
length 1 each and for p ≥ 3 let h3, h4 be maximum nonlinear strings of length
22p−4 + 1 and 22p−4 − 1 respectively. Let f be a concatenation of the following
sequence of functions: h1$λ1, h2$λ4, h3$λ2, h4$λ3. It can be shown that f is a
(2p+ 1, 0, 2p, 22p − 2p) function.
(b) Let λ1, λ2, λ3, λ4 be the functions in UL3(2) and µ1, µ2, µ3 the functions in
L3(1). For p = 2, let f = λ1λ2λ3λ4. For p = 3, let f be the concatenation of the
following sequence of functions.
h1$λ1, h2$λ2, µ1µ

c
1, µ2µ

c
2, µ3µ

c
3, λ3, λ4, where h1 and h2 are 2-variable bent func-

tions. For p ≥ 4, we have the following construction. Let gi = µiµ
c
i , for 1 ≤ i ≤ 3,.

Let h1, h2 be bent functions of 2p − 4 variables, h3, h4, h5 be bent functions of
2p− 6 variables and h6, h7 be two strings of lengths 2

2p−6+1 and 22p−6− 1 and
(fractional) nonlinearity nlmax(2p− 6) and nlmax(2p− 6)− 1 respectively. Let
f be a concatenation of the following sequence of functions.
h1$λ1, h2$λ2, h3$g1, h4$g2, h5$g3, h6$λ3, h7$λ4. It can be shown that f is a (2p+
1, 1, 2p− 1, 22p − 2p) function.
(c) and (d) follow from (a) and (b) on noting that if f is a (2p+1,m, 2p−m,x)
function then ff c is a (2p+ 2,m+ 1, 2p−m, 2x) function. ut
Note that item (a), (b) of Theorem 10 can also be proved using different

techniques by modifying a special class of bent functions. See [13] for the detailed
construction methods.

5.1 Method Using Direct Sum with a Nonlinear Function

Here we consider the set Γ1(n, k,m) and show how to construct optimized func-
tions with very high nonlinearities in this set. We build upon the idea described
in Subsection 3.2. Since we consider optimized functions, Corollary 1 determines
k = m+2 and at least one variable in {Xk, . . . , X1} must occur in odd number of
the fi’s. We recall from Subsection 3.3, that Fracnlmax(2

r−1) = nlmax(r)−1,
Fracnlmax(2r + 1) = nlmax(r), Fracnlmax(2r) = nlmax(r) and Effect(t) =
t− 2Fracnlmax(t).
Given n and m, we construct an optimized function f in Γ1(n,m + 2,m).

We define a variable template to be a list of the form (s, (s1, t1), . . . , (sk, tk)),
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where
∑k

j=1 sj = s and
∑k

j=1 sjtj = 2
n−m−2. The value s is the number of

distinct linear couples to be used from the set UFm+2(m + 1) and for each j,
(1 ≤ j ≤ k), sj linear couples are to be used tj times each. While constructing
template one has to be careful in ascertaining that at least one variable occurs
in an odd number of functions overall. This gives rise to the various cases in
Algorithm A. Since an n-variable, (n− 2)-resilient function must have degree 1
and hence be linear, we consider only the cases 1 ≤ m < n− 2.

ALGORITHM A
input: (n,m) with 1 ≤ m < n− 2.
output: A (n,m, n−m− 1, x) function f . We determine x in Theorem 11.
BEGIN
1. Let p = m + 3 and 2r−1 < d 2n−m−2

m+3 e ≤ 2r. Let i = p − 2n−m−2−r, i.e.,

(p− i)2r = 2n−m−2. Now several cases arise.
2. r = 0, i > 0: Here f is the concatenation of (p − i − 1) functions containing
X1 and the one function not containing X1 from the set ULm+2(m+1). Output
f and STOP.
3. r = 0, i = 0, m+ 2 is odd: template = (p, (p, 1)).
4. r > 0, i = 0, r is even: template = (p, (p− 2, 2r), (1, 2r + 1), (1, 2r − 1)).
5. r > 0, i = 0, r is odd: template = ( p2 + 2, (

p
2 − 1, 2

r+1), (1, 2r), (1, 2r−1 +
1), (1, 2r−1 − 1)).
6. r = 1, i > 0: template = (p− i+ 1, (p− i− 1, 2), (2, 1)).
7. r = 2, i > 1: template = (p− i+ 2, (p− i− 1, 4), (1, 2), (2, 1)).
8. r ≥ 2, i = 1, r is even: template = (p, (p− 2, 2r), (1, 2r−1 + 1), (1, 2r−1 − 1)).
9. r ≥ 2, i = 1, r is odd:
template = ( p+3

2 , (p−3
2 , 2r+1), (1, 2r), (1, 2r−1 + 1), (1, 2r−1 − 1)).

10. r > 2, i > 1: template = (p − i + 2, (p − i − 1, 2r), (1, 2r−1), (1, 2r−2 +
1), (1, 2r−2 − 1)).
11. Let template = (s, (s1, t1), . . . , (sk, tk)). For each j, choose l

1
j , . . . , l

sj

j to be

distinct linear functions from ULm+2(m + 1) and g1
j , . . . , g

sj

j to be strings of
length tj and having maximum possible nonlinearity. (Note that the g’s may
be fractional strings.) Then f is the concatenation of the following sequence of
functions
g1
1$l

1
1, . . . , g

s1
1 $l

s1
1 , g1

2$l
1
2, . . . , g

s2
2 $l

s2
2 , . . . , g1

k$l
1
k, . . . , g

sk

k $l
sk

k .

END.

Theorem 11. Algorithm A constructs a (n, n−m− 1,m, x)-function f in
Γ1(n,m + 2,m), where the values of x in different cases (corresponding to the
line numbers of Algorithm A) are as follows. (2) 2n−1 − 2m+1 (3) 2n−1 − 2m+1

(4) 2n−1−2m+1Effect(2r+1) (5) 2n−1−2m+1Effect(2r+1) (6) 2n−1−2m+2 (7)
2n−1− 2m+2 (8) 2n−1− 2m+1Effect(2r−1+1) (9) 2n−1− 2m+1Effect(2r+1) (10)
2n−1 − 2m+1Effect(2r).

Example: Using Algorithm A it is possible to construct (9, 3, 5, 224) functions
having template = (6, (3, 4), (1, 2), (2, 1)).
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5.2 Use of Nonlinear Resilient Function

Here we use the idea of Subsection 3.5 to provide a construction method for
optimized resilient functions. The constructed functions are not in Γ1.

Let nla(n,m) be the nonlinearity of a function obtained by Algorithm A with
(n,m) as input. Similarly, let nlb(n,m) be the highest nonlinearity of a function
obtained using Algorithm B (described below) on input (n,m) and ranging c
from 1 to n−m− 2. We obtain an expression for nlb(n,m) in Theorem 12. Let
nlx(n,m) be the maximum of nla(n,m) and nlb(n,m).

ALGORITHM B
input : (n,m, c), with 1 ≤ m < n− 2 and 1 ≤ c ≤ n−m− 2.
output : A balanced (n,m, n −m − 1, xc) function fc. The value of xc is given
in Lemma 5.
BEGIN
1. If n <= 5, use Algorithm A with input (n,m) to construct a function f .
Output f and stop.

2. Let p =
(

m+c+2
m+1

)

+ . . . +
(

m+c+2
m+c+2

)

and 2r−1 < d 2n−(m+c+2)

p
e ≤ 2r. Let

i = p− 2n−(m+c+2)−r, i.e., (p− i)2r = 2n−(m+c+2).
3. i = 0, r = 0: template = (p− 1, (p− 1, 1)).
4. i > 0, r = 0: template = (p− i− 1, (p− i− 1, 1)).
5. i > 0, r = 1: template = (p− i, (p− i− 1, 2), (1, 1)).
6. i = 0, r > 0, r is even: template = (p, (p− 1, 2r), (1, 2r − 1)).
7. i = 0, r > 0, r is odd:
template = ( p2 + 2, (

p
2 − 1, 2

r+1), (1, 2r), (1, 2r−1), (1, 2r−1 − 1)).
8. i > 0, r = 2: template = (p+ 1, (p− 1, 4), (1, 2), (1, 1)).
9. i = 1, r > 2, r is even: template = (p, (p− 2, 2r), (1, 2r−1), (1, 2r−1 − 1)).
10. i = 1, r ≥ 2, r is odd:
template = ( p+3

2 , (p−3
2 , 2r+1), (1, 2r), (1, 2r−1), (1, 2r−1 − 1)).

11. i > 1, r > 2:
template = (p− i+ 2, (p− i− 1, 2r), (1, 2r−1), (1, 2r−2), (1, 2r−2 − 1)).
12. Using template and linear couples from UFm+c+2(m + 1), we first build a
string f1 as in Algorithm A. Then the function fc is f1g, where g is a (m+ c+
2,m, 1 + c, y) function, where y = nlx(m+ c+ 2,m).
END.

Note that the use of the function nlx(n,m) makes Algorithm B a recursive
function. Let the nonlinearity of a function fc constructed by Algorithm B on
input (n,m, c) be nlbs(n,m, c).

Lemma 5. Let fc be constructed by Algorithm B. Then fc is a balanced (n,m,
n − m − 1, xc) function, where xc = nlbs(n,m, c) and the values of xc in the
different cases (corresponding to the line numbers of Algorithm B) are as follows
: (3) 2n−1 − 2k + y (4) 2n−1 − 2k + y (5) 2n−1 − 3× 2k−1 + y (6) 2n−1 − (1 +
Effect(2r−1))2k−1+y (7) 2n−1−(1+Effect(2r+1))2k−1+y (8) 2n−1−3×2k−1+y
(9) 2n−1− (1+Effect(2r−1− 1))2k−1+ y (10) 2n−1− (1+Effect(2r+1))2k−1+ y
(11) 2n−1− (1+Effect(2r))2k−1+y where k = m+ c+2, y = nlx(m+ c+2,m).
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Algorithm B is used iteratively over the possible values of c from 1 to n−m−2
and the function with the best nonlinearity is chosen. The maximum possible
nonlinearity nlb(n,m) obtained by using Algorithm B in this fashion is given by
the following theorem.

Theorem 12. nlb(n,m) ≥ max1≤c≤n−m−2nlbs(n,m, c).

Example: Using Algorithm B one can construct (9, 2, 6, 232) functions in
Γ (9, 5, 2) having template (15, (15, 1)) and a (5, 2, 2, 8) function g is used to fill
the 16th slot.

6 Comparison to Existing Research

Here we show the power of our techniques by establishing the superiority of our
results over all known results in this area.
The best known results for Type−A approach follows from the work of [2].

However, they considered only a proper subset S of Γ1 and obtained a bound
of 2n−1 − 2b

n
2 c on the nonlinearity of resilient functions. Also in [8], it was

conjectured that this is the maximum possible nonlinearity of resilient functions.
All the results in Section 4 provide higher nonlinearities than this bound. In
particular, this bound is broken and hence the conjecture is disproved for the
set Γ1 as well as for optimized functions.

n m = 1 m = 2 m = 3 m = 4

[7] [8] Our [7] [4] Our [7] nla nlb [7] nla nlb

8 108 112 112a 88 - 112b 80 96 80 32 96 32

9 220 236 240b 216 224 232e 176 224 208 160 192 160

10 476 480 484c 440 - 480b 432 448 464 352 448 416

11 956 976 992b 952 - 984e 880 960 944 864 896 928

12 1980 - 1996d 1912 - 1984b 1904 1920 1968 1760 1920 1888

a:Algorithm A; b: Theorem 10; c: Theorem 9; d: Theorem 8; e: Algorithm B.

For the Type−B approach the best known results follow from the work of [15,
4, 7, 8, 18]. In [4], exhaustive search techniques are used to obtain (5, 0, 4, 12)
and (7, 0, 6, 56) functions. For 9 variables, they could only obtain (9, 0, 7, 240)
functions and not (9, 0, 8, 240) functions. Also such techniques cannot be used
for large number of variables. In contrast, Theorem 10 can be used to construct
(2p + 1, 0, 2p, 22p − 2p) functions for all p ≥ 1 and hence is clearly superior to
the results of [4].
In the Table, we compare the nonlinearities of optimized (n,m, n−m− 1, x)

functions. The columns nla and nlb are the nonlinearities obtained by Algorithm
A and Algorithm B respectively. We do not compare results with [15], since it is
clear that Algorithm A significantly improves on the lower bound on nonlinearity
obtained in [15].
The table clearly shows the superiority of our method compared to the pre-

vious methods. Also it can be checked that the nonlinearities obtained in The-
orem 11 are better than those obtained in [7] for all orders of resiliency. We
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can construct (9, 3, 5, 224) functions and (9, 2, 6, 232) functions using Algorithm
A and Algorithm B respectively. These improve over the (9, 2, 6, 224) functions
of [4] both in terms of order of resiliency and nonlinearity.

7 Nonlinearity of Balanced Functions

In this section we discuss the nonlinearity and algebraic degree for balanced
functions. Patterson and Wiedemann [9] constructed 15-variable functions with
nonlinearity 16276 and weight 16492. Seberry, Zhang and Zheng [14] used such
functions to construct balanced functions with nonlinearity greater than 2n−1−

2
n−1

2 for odd n ≥ 29. In [14], there was an unsuccessful attempt to construct
balanced 15-variable functions having nonlinearity greater than 16256 = 214−27.
First let us provide the following two technical results.

Proposition 2. Let f ∈ Ωn and f = f1f2, where f1, f2 ∈ Ωn−1. If wt(f) is odd
then algebraic degree of f is n. Moreover, if both wt(f1) and wt(f2) are odd then
the algebraic degree of f is n− 1.

Proposition 3. Given a balanced function f ∈ Ωn with nl(f) = x, one can
construct balanced f ′ ∈ Ωn with nl(f

′) ≥ x− 2 and deg(f ′) = n− 1.

Now, we identify an important result which is the first step towards con-
structing a balanced 15-variable function with nonlinearity greater than 16256.

Proposition 4. It is possible to construct f ∈ Ω15 with nonlinearity 16276 and
weight 16364.

Proof : Consider a function f1 ∈ Ω15 with nl(f1) = 16276 and wt(f1) = 16492.
From [9], we know that there are 3255 linear functions in L15 at a distance 16364
from f1. Let l be one of these 3255 linear functions. Define f = f1 ⊕ l. Then
f ∈ Ω15, nl(f) = nl(f1) = 16276 and wt(f) = wt(f1 ⊕ l) = d(f1, l) = 16364. ut
Next we have the following randomized heuristic for constructing highly non-

linear balanced functions for odd n ≥ 15.
Algorithm 1 : RandBal(n)
1. Let f be a function constructed using Proposition 4. Let n = 2k + 15, k ≥ 0
and let F ∈ Ωn be defined as follows. For k = 0, take F = f , and for k > 0, take
F = f(X1, . . . , X15) ⊕ g(X16, . . . , Xn), where g ∈ Ω2k is a bent function. Note

that nl(F ) = 2n−1 − 2
n−1

2 + 20× 2k and wt(F ) = 2n−1 − 20× 2k.
2. Divide the string F in Ωn into 20× 2

k equal contiguous substrings, with the
last substring longer than the rest.
3. In each substring choose a position with 0 value uniformly at random and
change that to 1. This generates a balanced function Fb ∈ Ωn.

4. If nl(Fb) > 2
n−1 − 2

n−1
2 , then report. Go to step 1 and continue.

We have run this experiment number of times and succeeded in obtaining
plenty of balanced functions with nonlinearities 214 − 27 + 6, 216 − 28 + 18,
218−29+46 and 220−210+104 respectively for 15, 17, 19 and 21 variables. It is
possible to distribute the 0’s and 1’s in the function in a manner (changing step
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2, 3 in Algorithm 1) such that weight of the upper and lower half of the function
are odd. This provides balanced functions with maximum algebraic degree (n−1)
and the same nonlinearity as before. Note that, running Algorithm 1 for large
n is time consuming. However, we can extend the experimental results in a
way similar to that in [9]. Consider a bent function g(Y1, . . . , Y2k) ∈ Ω2k and
f(X1, . . . , X21) with nonlinearity 2

20 − 210 + 104 as obtained from Algorithm
RandBal(). Let h ∈ Ω21+2k such that h = g ⊕ f . Then it can be checked that
nl(h) = 220+2k − 210+k + 104 × 2k. These functions can be modified to get
algebraic degree (n− 1) as in Proposition 3. Thus we get the following result.

Theorem 13. One can construct balanced Boolean functions on n = 15 + 2k

(k ≥ 0) variables with nonlinearity greater than 2n−1 − 2
n−1

2 . Moreover, such
functions can have algebraic degree (n− 1).

Dobbertin [3] provided a recursive procedure for modifying a general class of bent
functions to obtain highly nonlinear balanced Boolean functions on even number
of variables. A special case of this procedure which modifies Maiorana-McFarland
class of bent functions was provided in [14]. For even n, it is conjectured in [3]
that the maximum value of nonlinearity of balanced functions, which we denote
by nlbmax(), satisfies the recurrence: nlbmax(n) = 2n−1 − 2

n
2 + nlbmax(n2 ).

We next provide a combined interlinked recursive algorithm to construct
highly nonlinear balanced functions for both odd and even n. Note that for even
number of variables, Algorithm 2 uses a special case of the recursive construction
in [3]. Further we show how to obtain maximum algebraic degree. The input to
this algorithm is n and the output is balanced f ∈ Ωn with currently best known
nonlinearity.
Algorithm 2 : BalConstruct(n)
1. If n is odd
a) if 3 ≤ n ≤ 13 construct f using Theorem 10(a).
b) if 15 ≤ n ≤ 21 return f to be the best function constructed by RandBal(n).
c) if n ≥ 23
(i) Let h1 ∈ Ωn−21 be bent and g1 ∈ Ω21 be the best nonlinear function

constructed by RandBal(n).
Let f1 ∈ Ωn be such that f1 = h1 ⊕ g1.
(ii) Let h2 = BalConstruct(n− 15) and g2 ∈ Ω15 as in Proposition 4.
Let f2 ∈ Ωn be such that f2 = h2 ⊕ g2.
(iii) If nl(f1) ≥ nl(f2) return f1 else return f2.

2. If n is even
Let h = BalConstruct(n2 ). Let f be the concatenation of h followed by 2

n
2 −1

distinct nonconstant linear functions on n
2 variables. Return f .

End Algorithm.
The following points need to be noted for providing the maximum algebraic

degree n− 1.
1. For odd n ≤ 13, Theorem 10(a) guarantees degree (n− 1).
2. For odd n, 15 ≤ n ≤ 21, modification of algorithm RandBal() guarantees
algebraic degree (n− 1) without dropping nonlinearity.
3. For odd n ≥ 23, using Proposition 3, degree (n−1) can be achieved sacrificing
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nonlinearity by at most 2.
4. For even n, recursively ensure that algebraic degree of h (in Step 2 of
BalConstruct()) is n

2 − 1.
In this section we have shown how to heuristically modify the Patterson-

Wiedemann functions to obtain balancedness while retaining nonlinearity higher
than the bent concatenation bound. However, the question of mathematically
constructing such functions remains open. Also settling the conjecture in [3] is
an important unsolved question.

8 Propagation Characteristics, Strict Avalanche Criteria

In this section we provide important results on propagation characteristics and
strict avalanche criteria. The following is a general construction of Boolean func-
tions introduced in [6].
f(X1, . . . , Xs, Y1, . . . , Yt) = [X1, . . . , Xs]Q[Y1, . . . , Yt]

T ⊕ g(X1, . . . , Xs), (*)
where Q is an s× t binary matrix and g(X1, . . . , Xs) is any function.
Under certain conditions on Q, the function f satisfies PC(l) of order k (see [6]).
Moreover, according to the proof of [6, Theorem 16], nl(f) = 2tnl(g) and
deg(f) = deg(g). It is possible to significantly improve the results of [6] by
using functions constructed by the methods of Section 7.

Theorem 14. For odd s, it is possible to construct PC(l) of order k function f

such that (a) deg(f) = s− 1 and nl(f) ≥ 2t+s−1 − 2t+
s−1
2 for 3 ≤ s ≤ 13,

(b) deg(f) = s and nl(f) > 2t+s−1 − 2t+
s−1
2 for s ≥ 15.

Proof : For 3 ≤ s ≤ 13, s odd, we can consider g ∈ Ωs as the function available

from Theorem 10(a) with algebraic degree s−1 and nonlinearity 2s−1−2
s−1
2 . For

s ≥ 15, one can consider g ∈ Ωs with nonlinearity 2
s−1−2

s−1
2 +20×2

s−15
2 −1 and

algebraic degree s. This can be obtained by considering a function on s variables
with maximum known nonlinearity and then making wt(g) odd by toggling one
bit. This will provide the full algebraic degree and decrease the nonlinearity by
at most 1 only. ut
For odd s, the corresponding result in [6] is deg(f) = s−1

2 and nl(f) ≥

2t+s−1 − 2t+
s−1
2 which is clearly improved in Theorem 14.

Now we show how to obtain maximum algebraic degree in this construction
at the cost of small fall in nonlinearity. For odd s between 3 and 13, deg(g) can be
made s by changing one bit of g. This decreases nl(g) by one. The corresponding

parameters of f are deg(f) = s and nl(f) ≥ 2t+s−1−2t+
s−1
2 −2t. For even s, the

result in [6] is deg(f) = s
2 and nl(f) ≥ 2

t+s−1 − 2t+
s
2−1. As before by changing

one bit of g we can ensure deg(f) = s and nl(f) ≥ 2t+s−1 − 2t+
s
2−1 − 2t. Also

in [13], we show that it is possible to construct PC(1) functions with nonlinearity

strictly greater than 2n−1 − 2
n−1

2 for all odd n ≥ 15.
Next we turn to the study of SAC(k) combined with the properties of bal-

ancedness, degree and nonlinearity. This is the first time that all these properties
are being considered together with SAC(k). The proofs for the next few results
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are quite involved. Hence we present the constructions clearly and only sketch
the proofs.
In [6], (*) has been used for the construction of SAC(k) function by setting

s = n−k−1, t = k+1 andQ to be the (n−k−1)×(k+1) matrix whose all elements
are 1. Under these conditions the function f takes the form f(X1, . . . , Xn) =
(X1 ⊕ . . .⊕Xn−k−1)(Xn−k ⊕ . . .⊕Xn)⊕ g(X1, . . . , Xn−k−1). Moreover, it was
shown that f is balanced if | {X | g(X) = 0, XQ = 0} |=| {X | g(X) =
1, XQ = 0} | where X = (X1, . . . , Xn−k−1). It is important to interpret this
idea with respect to the truth table of g. This means that f is balanced if
#{X | g(X) = 0, wt(X) = even } = #{X | g(X) = 1, wt(X) = even }. Thus,
in the truth table we have to check for balancedness of g restricted to the rows
where the weight of the input string is even. In half of such places g must be
0 and in the other half g must be 1. Motivated by this discussion we make the
following definition of brEven (restricted balancedness with respect to inputs
with even weight) and brOdd (restricted balancedness with respect to inputs
with odd weight).

Definition 2. Let g ∈ Ωp, X = (X1, . . . , Xp). Then g is called brEven (resp.
brOdd) if #{g(X) = 0 | wt(X) = even} = #{g(X) = 1 | wt(X) = even} = 2p−2

(resp. #{g(X) = 0 | wt(X) = odd} = #{g(X) = 1 | wt(X) = odd} = 2p−2).

The next result is important as it shows that certain types of bent functions can
be brEven. This allows us to obtain balanced SAC(k) functions with very high
nonlinearity which could not be obtained in [6].

Proposition 5. For p even, it is possible to construct bent functions g ∈ Ωp

which are brEven.

Proof : First note that g is brEven iff gc is brEven. Let q = 2
p
2 . For 0 ≤ i ≤ q−1

let li ∈ L p
2
be the linear function a p

2
X p

2
⊕ . . .⊕a1X1, where a p

2
. . . a1 is the

p
2 -bit

binary expansion of i. We provide construction of bent functions g(X1, . . . , Xp)
which are brEven. Let X = (X1, . . . , Xp).
Case 1: p

2 ≡ 1 mod 2. Let g = l0f1 . . . fq−2lq−1, where
f1, . . . , fq−2 ∈ {l1, . . . , lq−2, l

c
1, . . . , l

c
q−2} and for i 6= j, fi 6= fj and fi 6= f c

j . It is
well known that such a g is bent [11]. We show that g is brEven. First we have
the following three results which we state without proofs.
(a) #{l0(X1, . . . , X p

2
) = 0 | wt(X1, . . . , X p

2
) = even } = 2

p
2−1 and

#{l0(X1, . . . , X p
2
) = 1 | wt(X1, . . . , X p

2
) = even } = 0.

(b) Since the fi’s are degenerate affine functions in L p
2
, it is possible to show

that individually they are both brEven and brOdd.
(c) Using the fact that q = p

2 is odd and lq−1 = X1 ⊕ . . .⊕X p
2
, it is possible to

show, #{lq−1(X1, . . . , X p
2
) = 0 | wt(X1, . . . , X p

2
) = even } = 0 and

#{lq−1(X1, . . . , X p
2
) = 1 | wt(X1, . . . , X p

2
) = even } = 2

p
2−1. Then using

wt(X1, . . . , Xp) = wt(X1, . . . , X p
2
) + wt(X p

2 +1, . . . , Xp) and the fact that g is
concatenation of l0, f1, . . . , fq−2, lq−1 it is possible to show that g is brEven.
Case 2: For p

2 ≡ 0 mod 2, the result is true for bent functions of the form
g = lc0f1 . . . fq−2lq−1. ut
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In [6, Theorem 32] it has been stated that for n− k − 1 = even, there exists
balanced SAC(k) functions such that deg(f) = n− k− 2. The question whether
such functions with algebraic degree n − k − 1 exists has been left as an open
question. The next result shows the existence of such functions which proves
that the bound on algebraic degree provided in [10] is indeed tight for k ≤ n

2 −1.

Theorem 15. Let (n − k − 1) ≥ (k + 1), i.e. k ≤ n
2 − 1 and n − k − 1 =

even. Then it is possible to construct balanced SAC(k) function f ∈ Ωn such

that deg(f) = n− k − 1. Moreover nl(f) = 2n−1 − 2
n+k−1

2 − 2k+1.

Proof : Use a bent function g ∈ Ωn−k−1 which is brEven. Out of the 2
n−k−1

bit positions in g (in the output column of the truth table), there are 2n−k−2

positions where wt(X1, . . . , Xn−k−1) = odd and the value of g at these positions
can be toggled without disturbing the brEven property. Since g is bent, wt(g) =
even. Thus we choose a row j in the truth table where wt(X1, . . . , Xn−k−1) =
odd and construct g′ by toggling the output bit. Thus wt(g′) = wt(g) ± 1 =
odd. Hence by Proposition 2, deg(g′) = n − k − 1. Thus, f(X1, . . . , Xn) =
(X1⊕ . . .⊕Xn−k−1)(Xn−k⊕ . . .⊕Xn)⊕g

′(X1, . . . , Xn−k−1) is balanced SAC(k)

with algebraic degree n−k−1. Also nl(g′) = nl(g)−1 = 2n−k−2−2
n−k−1

2 −1−1.

Now, it can be checked that nl(f) = 2k+1 × nl(g′) = 2n−1 − 2
n+k−1

2 − 2k+1. ut
Next we provide similar results for odd n − k − 1. The result is extremely

important in the sense that the functions constructed in [9] can be modified
to get restricted balancedness and hence can be used in the construction of
highly nonlinear, balanced SAC(k) functions. We know of no other place where
the functions provided by Patterson and Wiedemann [9] have been used in the
construction of SAC(k) functions.

Proposition 6. For p odd, it is possible to construct brEven g ∈ Ωp with non-

linearity (i) 2p−1−2
p−1
2 for p ≤ 13 and (ii) 2p−1−2

p−1
2 +20×2

p−15
2 for p ≥ 15.

Proof : For p ≤ 13, the idea of bent concatenation and similar techniques as in
the proof of Proposition 5 can be used. For p ≥ 15 the construction is different.
We just give an outline of the proof. Let f1 ∈ Ω15 be one of the functions
constructed in [9]. Note that nl(f1) = 2

14 − 27 + 20. Now consider the 32768
functions of the form f1⊕l, where l ∈ L15. We have found functions among these
which are brOdd (but none which are brEven). Let f2(X1, . . . , X15) be such a
brOdd function. It is then possible to show that f3(X1, . . . , X15) = f2(X1 ⊕
α1, . . . , X15 ⊕ α15) is brEven when wt(α1, . . . , α15) is odd. Note that nl(f2) =
nl(f3) = nl(f1). Let g(Y1, . . . , Y2k) be a bent function on 2k variables. Define
F ∈ Ω15+2k as follows. F = (Y1⊕ . . .⊕Y2k)(g⊕f2)⊕ (1⊕Y1⊕ . . .⊕Y2k)(g⊕f3).
It can be proved that F is brEven and nl(F ) = 214+2k − 27+k + 20× 2k. ut

Theorem 16. Let (n − k − 1) ≥ (k + 1), i.e. k ≤ n
2 − 1 and n − k − 1 =

odd. Then it is possible to construct balanced SAC(k) function f ∈ Ωn such that

deg(f) = n−k−1. Moreover, for 3 ≤ n−k−1 ≤ 13, nl(f) = 2n−1−2
n+k

2 −2k+1

and for n− k − 1 ≥ 15, nl(f) = 2n−1 − 2
n+k

2 + 20× 2
n+k−14

2 − 2k+1.
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This shows that it is possible to construct highly nonlinear balanced functions
satisfying SAC(k) with maximum possible algebraic degree n− k− 1. Functions
with all these criteria at the same time has not been considered earlier.
Now we present an interesting result combining resiliency and propagation

characteristics. In [15, Theorem 15], propagation criterion of m-resilient func-
tions has been studied. Those functions satisfy propagation criteria with a spe-
cific set of vectors. However, they do not satisfy even PC(1) as propagation
criteria is not satisfied for some vectors of weight 1. For n even, we present a
construction to provide resilient functions in Ωn which satisfy PC(

n
2 − 1).

Theorem 17. It is possible to construct 1-resilient functions in Ωn, n even,
with nonlinearity 2n−1− 2

n
2 and algebraic degree n

2 − 1 which satisfy PC(
n
2 − 1).

Proof : Let f ∈ Ωn−2 be a bent function, n even. Then it can be checked that
F (X1, . . . , Xn−1) = (1⊕Xn−1)f(X1, . . . , Xn−2)⊕Xn−1(1⊕f(X1⊕α1, . . . , Xn−2

⊕αn−2)) is balanced and satisfies propagation criterion with respect to all

nonzero vectors except (α1, . . . , αn−2, 1). Also nl(F ) = 2
n−2 − 2

n−2
2 .

Let G(X1, . . . , Xn) = (1⊕Xn)F (X1, . . . , Xn−1)⊕Xn(F (X1⊕β1, . . . , Xn−1⊕
βn−1)). Then it can be checked that G is balanced and satisfies propagation
criterion with respect to all nonzero vectors except α = (α1, . . . , αn−2, αn−1 =
1, αn = 0), β = (β1, . . . , βn−1, βn = 1) and α ⊕ β. Also G is balanced and
nl(G) = 2n−1 − 2

n
2 .

Take (α1, α2, . . . , αn−2) in the construction of F in Ωn−1 from f ∈ Ωn−2 so
that wt(α1, α2, . . . , αn−2) =

n
2 − 1.

Also G(X1, . . . , Xn) = (1⊕Xn)F (X1, . . . , Xn−1)⊕Xn(F (X1⊕ 1, . . . , Xn−1⊕ 1)
is correlation immune [1]. Since F is balanced, G is also balanced which proves
that G is 1-resilient. Now consider α = (α1, . . . , αn−2, αn−1 = 1, αn = 0), β =
(β1 = 1, . . . , βn+1 = 1, βn+2 = 1). Since wt(α) =

n
2 − 1 + 1 and wt(β) = n we

get, wt(α ⊕ β) = n
2 . Note that G satisfies propagation criterion with respect to

all the nonzero vectors except α, β, α⊕ β and hence G satisfies PC(n2 − 1).
Since f ∈ Ωn−2 is bent, it is possible to construct f with algebraic degree

n
2 − 1. It can be checked that deg(G) = deg(f). ut

9 Conclusion

In this paper we have considered cryptographically important properties of
Boolean functions such as balancedness, nonlinearity, algebraic degree, corre-
lation immunity, propagation characteristics and strict avalanche criteria. The
construction methods we propose here are new and they provide functions which
were not known earlier.
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