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Abstract. Given d independent pseudorandom permutations (PRPs)
πi, . . . , πd over {0, 1}n, it appears natural to define a pseudorandom func-
tion (PRF) by adding (or XORing) the permutation results: sum

d(x) =
π1(x)⊕· · ·⊕πd(x). This paper investigates the security of sum

d and also
considers a variant that only uses one single PRP over {0, 1}n.

1 Introduction

Cryptography requires an encryption function to be invertible: Someone know-
ing the (secret) key must be able to recover the plaintext from the cipher-
text. Accordingly, under a fixed key, a n-bit block cipher is a permutation
π : {0, 1}n → {0, 1}n. The classical security requirement is that π must behave
pseudorandomly, i.e. must be un-distinguishable from a random permutation
over {0, 1}n without knowing the secret key.
In practice, block ciphers are used in many different modes of operations, and

not all of them need an invertible cipher. Sometimes, being invertible can even
hinder the security of schemes using the cipher. One such example is the “cipher
block chaining” (CBC) mode, a standard mode of operation for block ciphers:
if more than about 2n/2 blocks are encrypted, the ciphertext leaks information
about the plaintext [2]. So why not simply use a dedicated pseudorandom func-
tion (PRF) instead of a pseudorandom permutation (PRP) in such cases? Two
reasons are:

– Applications may need both invertible ciphers and schemes where the cipher
better would not be invertible. Double-using one primitive to implement both
is less expensive in terms of memory or chip space.

– There exist quite a lot of “proven” block ciphers, i.e., block ciphers published
years ago, intensively cryptanalysed and widely trusted today. There are not
as many good candidates for dedicated PRFs.

Hence, instead of constructing pseudorandom functions from scratch, we con-
sider creating them using pseudorandom permutations as underlying building
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blocks. Recently, the question of how to do this has caught the attention of the
cryptographic community [5, 7]. Let π1, . . . , πd denote random permutations
over {0, 1}n and ⊕ the bit-wise XOR. Bellare, Krovetz and Rogaway [5] point
out that the construction sum

2(x) = π1(x)⊕ π2(x) has not (yet) been analysed.
In the current paper, we generalise this and analyse sum

d : {0, 1}n → {0, 1}n
with sum

d(x) = π1(x)⊕ · · · ⊕ πd(x).
Organisation of this Paper:
Section 2 and Section 3 present the notation and the basic definitions we use in
this paper and describe some previous research. Section 4 describes the security
of the PRF sum

d(x) =
⊕

1≤i≤d πd(x). In the following section, we analyse the

variant twin
d : {0, 1}n−dlog2(d)e → {0, 1}n with twin

d(x) = π(dx)⊕· · ·⊕π(dx+
d−1). Section 6 provides some comments and conclusions. For better tangibility,
the appendix considers the two-dimensional special case sum

2.

2 Preliminaries

We write Fm,n for the set of all functions {0, 1}m → {0, 1}n and Fn = Fn,n. For
choosing a random value x, uniformly distributed in a set M , we write x ∈

R
M .

A random function ψ ∈ Fm,n is a function ψ ∈R
Fm,n. If Sn is the set of all

permutations in Fn, a random permutation over {0, 1}n is a function π ∈R
Sn.

To measure the “pseudorandomness” of a function f ∈ Fm,n, chosen “some-
how randomly” but in general not uniformly distributed, we consider an adver-
sary A trying to distinguish between f and a random function R ∈

R
Fm,n. A has

access to an oracle Q. A chooses inputs x ∈ {0, 1}n; Q responds Q(x) ∈ {0, 1}n.
Q either simulates R ∈

R
Fm,n, or f . A’s output is A(Q) ∈ {0, 1}. We view A

as a probabilistic algorithm, hence the output A(Q) is a random variable over
{0, 1}. A(Q) depends on the random choice of f and the internal coin flips of A
and Q. We evaluate the (unsigned) difference of the probabilities pr[A(Q) = 1]
for Q = R and Q = f , i.e. A’s “PRF advantage” AdvFun

A,f with respect to f :

AdvFun
A,f = |pr[A(R) = 1]− pr[A(f) = 1]|.

A’s “PRP advantage” AdvPerm
A,π is defined similarly. Here, the oracle Q simulates

a random permutation P ∈
R
Sn and π ∈ Sn.

AdvPerm
A,π = |pr[A(P ) = 1]− pr[A(π) = 1]|.

Definition 1. A function f ∈ Fm,n is a (q, a)-secure PRF, if all adversaries

A asking at most q oracle queries are restricted to AdvFun
A,f ≤ a. Similarly, we

define a (q, a)-secure PRP π: AdvPerm
A,π ≤ a.

Note that “ideal” schemes are (∞, 0)-secure: a random function is a (∞, 0)-secure
PRF, and a random permutation is a (∞, 0)-secure PRP.
The notion of “(q, a)-security” is very strong, since the adversaries’ running

time is not limited. By simply searching the key-space, one could easily dis-
tinguish a block cipher from a random permutation. We claim that one can
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approximatively describe a practically secure block cipher under a random key
as an (∞, 0)-secure PRP, see Section 6.1.
We interchangeably view b-bit strings s = (sb−1, . . . , s0) ∈ {0, 1}b as b-bit

numbers s =
∑

0≤i<b si ∗ 2i.

3 Previous Work

3.1 Using a PRP as PRF

It is widely known that a random permutation over {0, 1}n is a (q, q2/2n)-secure
PRF. Since it nicely fits to our later results, we formalise this here:

Theorem 1. The random permutation π ∈ Fn is a (q, a)-secure PRF with a =
q2/2n+1. An adversary A∗ exists to distinguish π from a random function with
an advantage of AdvFun

A∗,π = θ(q2/2n).

Proof: [Sketch] If by chance a random function R behaves like a permutation,
i.e., for all q pairs (x1, R(x1)) no collision R(xi) = R(xj) with xi 6= xj occurs,
then no adversary can distinguish between R and a random permutation. On
the other hand, any collision proves that R is no permutation. With q inputs,
the probability to get a collision is 2−n

∑

1≤i<q i ≤ q2/2n+1 . ut
Theorem 1 justifies to use a block cipher (i.e. a PRP) as a PRF – if the

famous birthday bound q ¿ 2n/2 is observed. What about q > 2n/2? Note that
the function f⊕ with f⊕(x) = π(x)⊕ x is unlikely to be invertible, but is not a
better PRF since π(x) = f⊕(x)⊕ x [7, 5].

3.2 Using simple operations and PRFs as Building Blocks

Much research dealt with constructing complex cryptographic operations from
(seemingly) simple ones: Levin [8] constructed “pseudorandom bit generators”
from “one-way functions”, Goldreich, Goldwasser, and Micali [6] constructed
PRFs from “pseudorandom bit generators”, and Luby and Rackoff [9] con-
structed PRPs from PRFs. A lot of work has been done on improvements of
the Luby-Rackoff construction, some recent examples are [10–12]. Now we are
going into the opposite direction: We construct PRFs from PRPs.
Another direction of cryptographic research was how to construct PRFs from

smaller PRFs. Aiello and Venkatesan [1] presented a construction for PRFs over
{0, 1}2n using PRFs over {0, 1}n as building blocks.

3.3 Constructing a PRF from PRPs

“Data dependent re-keying” was proposed by Bellare, Krovetz, and Rogaway
[5]. Here, a block cipher E with k-bit keys is a family of 2k independent random
permutations. Set j := dk/ne. For keys K1, . . . , Kj ∈ {0, 1}k, the function
fBKR
K1,...,Kj

maps x ∈ {0, 1}n to fBKR
K1,...,Kj

(x) ∈ {0, 1}n by the following algorithm:
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K ′ := EK1
(x)|| · · · ||EKj

(x); (∗ Concatenate the values Eki
(x). ∗)

K ′′ := K ′ mod 2k; (∗ We only need k of nj ≥ k bits. ∗)

fBKR
K1,...,Kj

(x) := EK′′(x); (∗ Use the derived key K ′′ to encrypt the input. ∗)

In a formal model, data dependent re-keying is provably more secure than simply
using one PRP as a PRF [5]. The model is based on the adversary having access
to the block cipher E by asking additional oracle queries: choose keysK ∈ {0, 1}k
and texts T ∈ {0, 1}n and ask the oracle for EK(T ) and E−1(T ). [5, Theorem 5.2]
indicates that fBKR

K1,...,Kj
is a (t, q, a)-secure PRF with a ≈ 0 if t¿ min{24k/5, 2n}

and q ¿ min{24k/5, 2(n+k)/2}. A variation of this scheme speeds up counter mode
encryption: For a small constant d, the same K ′′ is used for 2d steps.

Hall et. al. [7] examine two constructions. Let d ∈ {0, . . . , n} and π be a
PRP over {0, 1}n. The “truncate” construction is defined by f tr

d : {0, 1}n →
{0, 1}n−d by f tr

d (x) = π(x) div 2d. The PRF f tr
d is provably secure if q ¿

min{2(n+d)/2, 22(n−d)/3} [7], i.e. if q ¿ 24n/7 for d ≈ n/7.
Given d ∈ {0, . . . , n} and a PRP π over {0, 1}n, the order construction re-

alizes a PRF ford
d : {0, 1}n−d → S2d . Here, S2d denotes the set of permutations

over 2d elements. The function ford
d maps x ∈ {0, 1}n−d to ford

d (x) ∈ S2l by sort-
ing the 2d values π(0 · · · 000||x), π(0 · · · 001||x), . . . , π(1 · · · 111||x).1 The order
construction provably preserves the full security of π: if π is a (∞, 0)-secure PRP,
then ford

d is a (∞, 0)-secure PRF. On the other hand, the order construction is
quite slow, since computing f ord

d (x) takes 2d invocations of π.

Recently, Bellare and Impagliazzo [3] described a general probabilistic lemma
to upper bound the advantage of an adversary in distinguishing between two
families of functions.2

As an example for applying their general technique, they consider converting
a PRP into a PRF. They analyse sum

2, the two-dimensional special case of
the sum

d-construction we consider in the current paper. They also apply their
general technique to analyse two more PRP→PRF constructions: the twin

2

variant of sum
2 (not using the name “twin

2”), and the truncate construction
from [7].

4 The Construction SUMd(x) =
⊕d

i=1
πi(x)

Consider d ≥ 1 permutations π1, . . . , πd, we define sum
d ∈ Fn by

sum
d(x) = π1(x)⊕ · · · ⊕ πd(x).

In the appendix, we regard the the two-dimensional special case sum
2. The

proof of Theorem 5 in the appendix is similar to the proof of Theorem 2 in this

1 In fact, [7] deals with a function ford∗
d : {0, 1}n−d → {0, 1}2

d
−1. Note that 22d

−1

is the largest power of two dividing (2d)! = |S2d | [7, Lemma 1]. Computing ford∗
d

requires 2d invocations of π and 2d − 1 comparisons.
2 When the current paper was originally written, its author was unaware of [3]. An
anonymous referee provided the reference.
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section, but requires less technical details. It may be instructive for the reader to
first skip to the appendix at page 488 and work through the proof of Theorem
5, and then to continue with the current section.

Theorem 2. For d ≥ 1 random permutations π1, . . . , πd ∈ Fn and q ≤ 2n−1/d
is the function sum

d a (q, a)-secure PRF with

a ≤ 2−d(n−1) ∗
∑

0≤i<q

id.

The proof of Theorem 2 requires some technical definitions and lemmas provided
below. Set N := {0, 1}n.

Definition 2. The set T ⊆ Nd is “fair”, if for every y ∈ N
∣

∣

∣

∣

{ (x1, . . . , xd) ∈ T |x1 ⊕ · · · ⊕ xd = y }
∣

∣

∣

∣

=
|T |
|N | =

|T |
2n

.

If (x1, . . . , xd) ∈R
T , then y = x1 ⊕ · · · ⊕ xd is a uniformly distributed random

value in N if and only if T is fair. To deal with sets that may be unfair, we also
define a measurement of being “almost fair”.

Definition 3. T ⊆ Nd is “z-fair”:

– If a set V ⊆ Nd exists with |V | = z and V ∩T = {}, such that V ∪T is fair.
We call V a “completion set” (short: “c-set”) for T .

– Or if a set U ⊆ T with |U | = z exists (an “overhanging set” or “o-set”),
such that T − U is fair. We also say: T is “z-overhanging-fair”.

Lemma 1.

(a) Consider the sets A ⊆ Na and B ⊆ N b. If either A or B or both are fair,
then A×B ⊆ Nab is fair, too.

(b) If the two sets B ⊆ A ⊆ Nd are fair, then so is A−B.
(c) If A is fair and B ⊆ A, then A−B is |B|-fair.
(d) If the two sets A ⊆ Nd and B ⊆ Nd are fair and |A| ≥ |B|, then A− B =

A ∩B is |B −A|-overhanging-fair.

Proof: The proofs of (a) and (c) are trivial. Regarding (b), note that A is
fair: | { (x1, . . . , xd) ∈ A |x1 ⊕ · · · ⊕ xd = y } | = |A|/2n for every y ∈ 2n.
Similarly: | { (x1, . . . , xd) ∈ B |x1 ⊕ · · · ⊕ xd = y } | = |B|/2n. Thus we get
| { (x1, . . . , xd) ∈ A | (x1, . . . , xd) 6∈ B and x1 ⊕ · · · ⊕ xd = y } | = |A − B|/2n,
hence A−B is fair.
To show (d), consider a fair set B∗ ⊆ A with |B∗| = |B|. B∗ contains the

elements x ∈ (A∩B), and, for every (x1, . . . , xd) ∈ (A∩B), the set B∗ contains
a unique representative (y1, . . . , yd) ∈ (A∩B) with x1⊕ · · ·⊕xd = y1⊕ · · ·⊕ yd.
Note that such a set B∗ exists since |B| = |B∗| ≤ |A| and both A and B are
fair. By R ⊆ B∗, we denote the set of such representatives, I.e., |R| = |A ∩ B|.
Since A−B∗ = (A−B)−R is fair, i.e., A−B is |R|-overhanging-fair. ut



The Sum of PRPs is a Secure PRF 481

Lemma 2. Consider the sets T ′ ⊆ Nd−1 and T ′′ ⊆ N . Let z′′ = 2n − |T ′′|
(hence T ′′ is z′′-fair). Let T = T ′ × T ′′ and |T | ≥ z′z′′. If T ′ is z′-fair, then T
is z′z′′-fair. More exactly:

(a) If V ′ ⊆ Nd−1 with |V ′| = z′ is a c-set for T ′, then an o-set U ⊆ T for T
exists with |U | = z′z′′.

(b) If U ′ ⊆ T ′ with |U ′| = z′ is an o-set for T ′, then a c-set V ⊆ Nd of size
|V | = z′z′′ exists for T .

Proof: Note that V ′′ = N − T ′′ is a c-set for T ′′ with |V ′′| = z′′.
For (a), let V ′ ⊆ Nd−1 with |V ′| = z′ be a c-set for T ′. Due to Lemma 1(a),

both sets T ′ × (T ′′ ∪ V ′′) and (T ′ ∪ V ′)× V ′′ are fair, and

T ′ × T ′′ = (T ′ × (T ′′ ∪ V ′′)) − ((T ′ ∪ V ′)× V ′′)
= (T ′ × T ′′) ∪ (T ′ × V ′′) − ((T ′ × V ′′) ∪ (V ′ × V ′′))
= (T ′ × T ′′) − (V ′ × V ′′).

Since |T ′ × T ′′| = |T | ≥ z′z′′ = |V ′ × V ′′| and thus |T ′ × (T ′′ ∪ V ′′)| ≥ |(T ′ ∪
V ′) × V ′′|, we can apply Lemma 1(d) and conclude: T ′ × T ′′ is |V ′ × V ′′|-fair,
and |V ′ × V ′′| = z′z′′. Also, an o-set of size |V ′ × V ′′| = z′z′′ exists for T ′ × T ′′.
Regarding (b), consider the o-set U ′ ⊆ T ′ with |U ′| = z′. As above, we argue

that the sets T ′ × (T ′′ ∪ V ′′) and (T ′ − U ′)× V ′′ are fair, and
(T ′ × T ′′) ∪ (U ′ × V ′′)

= (T ′ × (T ′′ ∪ V ′′)) − ((T ′ − U ′)× V ′′)
= (T ′ × T ′′) ∪ (T ′ × V ′′)− ((T ′ × V ′′)− (U ′ × V ′′)).

Since ((T ′ −U ′)× V ′′) ⊆ T ′× V ′′ ⊆ T ′× (T ′′ ∪ V ′′), we can apply Lemma 1(b):
the set (T ′ × T ′′) ∪ (U ′ × V ′′) is fair. By Lemma 1(c) we find that T ′ × T ′′ is
|U ′ × V ′′|-fair. Especially, U ′ × V ′′ is a c-set for T = T ′ × T ′′. ut
Proof: [of Theorem 2] Our adversary asks q ≤ 2n−1/d oracle queries. We write
x1, . . . , xq for the inputs chosen by the adversary and y1, . . . , yq for the or-
acle’s corresponding outputs. W. l. o. g., we assume xi 6= xj for i 6= j. Eval-
uating sum

d on these inputs may be thought of as choosing q values πk(x1),
. . . , πk(xq) for every k ∈ {1, . . . , d}. Since πk is a random permutation over
{0, 1}n, the values πk(x1), . . . , πk(xq) are random values in N = {0, 1}n, except
that πk(xi) 6= πk(xj) for i 6= j. We simply write πk,j for πk(xj). Now, gener-
ating the random values yi = sum

d(xi) may be thought of as choosing πk,i ∈R

N − {πk,1, . . . , πk,i−1} for k ∈ {1, . . . , d} and evaluating yi = π1,i ⊕ · · · ⊕ πd,i.
We may as well regard this as choosing the d-tuple π1,i, . . . , πd,i ∈R

Ti ⊆ Nd,
where Ti is the set of all d-tuples still avaliable, i.e., T1 = Nd and Ti+1 ⊆ Ti, or
exactly:

Ti+1 = Nd − ({π1,1, . . . , π1,i} ×Nd−1)
− (N × {π2,1, . . . , π2,i} ×Nd−2)
− · · ·
− (Nd−1 × {πd,1, . . . , πd,i})

(1)

Note that |Ti+1| ≥ 2dn − (di ∗ 2(d−1)n). We can simulate the generation of the
values yj as follows:
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For i := 1 to q: choose ti = (π1,i, . . . , πd,i) ∈R
Ti;

output yi = π1,i ⊕ · · · ⊕ πd,i.

The sets Ti+1 are i
d-fair:

We set j := i + 1 and show that if d is odd, a c-set Vj exists for Tj with
|Vj | = (j − 1)d, and, if d is even, an o-set Uj for Tj of size |Uj | = (j − 1)d exists.
We prove this by induction. If d = 1, Vj = {y1, . . . , yj−1} is a c-set for Tj

and |Vj | = (j − 1)1. For d > 1, we split the d-tuples (πj,1, . . . , πj,d) ∈ Tj up into
a (d − 1)-tuple (πj,1, . . . , πj,d−1) ∈ T ′j ⊆ Nd−1 and a single value πj,d ∈ T ′′j =
N − V ′′j with V ′′j = {πd,1, . . . , πd,j−1}. We know that T ′′j is (j − 1)-fair. Note
that j ≤ q ≤ 2n−1/d, hence |T ′j | ≥ (j − 1)d−1, |T ′′j | ≥ j − 1, and, by induction,
|Tj | ≥ (j − 1)d. This will allow us to apply Lemma 2.
Let d be even. Then d− 1 is odd. Assume that a c-set V ′j for T ′j exists of size

|V ′j | = (j − 1)d−1. The claim follows from Lemma 2(a).

Now, let d be odd. Assume that T ′j is (j−1)d−1-fair, and that an o-set U ′j ⊆ T ′j
exists with |U ′j | = (j − 1)d. The claim follows from Lemma 2(b).

Choosing the d-tuples (π1,i, . . . , πd,i) from fair sets:

Since we know that c-sets or o-sets of size (i− 1)d for Ti exist, we can simulate
the generation of the yi as described in Figure 1. Either, d is odd and a c-set Vi
for Ti exists, or d is even and an o-set Ui exists.

Even d:

Set bad := 0;
for i := 1 to q:

determine Ti and Ui;
choose ti = (π1,i, . . . , πd,i) ∈R

Ti;
if ti ∈ Ui then
bad := 1;

output yi := π1,i ⊕ · · · ⊕ πd,i;
output bad.

Odd d:

Set bad := 0;
for i := 1 to q:

determine Ti and Vi; Si := Ti ∪ Vi;
choose ti = (π1,i, . . . , πd,i) ∈R

Si;
if ti 6∈ Ti then
bad := 1;
choose ti = (π1,i, . . . , πd,i) ∈R

Ti;
output yi := π1,i ⊕ · · · ⊕ πd,i;

output bad.

Fig. 1. Two simulations for the PRF sum
d

When the output yi := π1,i ⊕ · · · ⊕ πd,i is generated, the d-tuple ti =
(π1,i, . . . , πd,i) is a uniformly distributed random value ti ∈R

Ti. The simula-
tion generates an additional value bad ∈ {0, 1}. If bad = 0, all ti are uniformly
distributed random d-tuples chosen from fair sets, and thus yi ∈R

N . Thus, the
advantage of every adversary is at most pr[bad = 1].

Evaluating pr[bad = 1]:
The simulation in Figure 1 outputs bad = 1 if and only if the then-clause is



The Sum of PRPs is a Secure PRF 483

executed at least once, i.e., pr[bad = 1] ≤
∑

1≤i≤q pr[then]. We get

pr[then] =

{

(i− 1)d/|Ti| for even d
(i− 1)d/(|Ti|+ (i− 1)d) for odd d

}

≤ (i− 1)
d

|Ti|

Since |Ti+1| ≥ 2dn − (di ∗ 2(d−1)n) and i ≤ q ≤ 2n−1/d, |Ti+1| ≥ 2dn − 2dn−1 =
2dn−1 and thus

(i− 1)d
|Ti|

≤ (i− 1)
d

2dn−1

⇒ pr[bad = 1] ≤
∑

1≤i≤q

pr[then] ≤
∑

1≤i≤q

(i− 1)d
2dn−1

≤ 1

2dn−1

∑

0≤i<q

id.

Hence a ≤ pr[bad = 1] ≤ 2−dn+1
∑

0≤i<q i
d. ut

Note that
∑

1≤i<q i
d = θ(id+1), hence AdvFun

A,sumd ≤ θ(qd+1/2nd). Depending on
d, we provide some examples. For every adversary A, we get:

d = 1:
∑

0≤i<q

i =
q(q − 1)
2

≤ q2

2
⇒ AdvFun

A,sum1 ≤ q2

2n
(2)

d = 2:
∑

0≤i<q

i2 =
2q3 − 3q2 + q

6
≤ q3

3
⇒ AdvFun

A,sum2 ≤ q3

3 ∗ 22n−1
(3)

d = 3:
∑

0≤i<q

i3 =
q2(q − 1)2

4
≤ q4

4
⇒ AdvFun

A,sum3 ≤ q4

23n+1
. (4)

In general, sum
d is secure against adversaries asking q ¿ d+1

√
2dn−1 queries. If a

pessimistic estimate of q gives a value q ¿ 2n, we can choose d accordingly. In
practice, d will be small, e.g., d ≤ 10.

5 The Construction TWINd(x) =
⊕d−1

i=0
π(dx + i)

The sum
d-construction requires d independent PRPs π1, . . . , πd. We may use

one block cipher running under d different keys to implement the πi. Depending
on our choice of block cipher and on hardware limitations, frequently changing
between encryption under d different keys may be costly, though. Can we con-
struct a secure PRF using a single PRP π over {0, 1}? Consider the function
twin

d : {0, 1}n−dlog2(d)e → {0, 1}n:

twin
d(x) = π(dx)⊕ · · · ⊕ π(dx+ d− 1).

(Recall that we interchangeably view b-bit strings s ∈ {0, 1}b as numbers s ∈
{0, . . . , 2b−1}. Thus, x ∈ {0, 1}n−dlog2(d)e represents a number x ≤ (2n−log2(d)−
1) = 2n/d− 1, the product dx is at most 2n − d, and hence dx+ d− 1 ≤ 2n − 1
can be written as an n-bit string.)
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Theorem 3. For d ≥ 1, a random permutation π ∈ Fn and q ≤ 2n−1/d2 is

twin
d(x) =

⊕d−1
i=0 π(dx+ i) a (q, a)-secure PRF with

a ≤ qd2

2n
+

1

2dn−1

∑

0≤i<q

id.

Proof: As in the proof of Theorem 2, the adversary asks q queries x1, . . . , xq,
w.l.o.g. xi 6= xj for i 6= j, and learns q responses yi = twin(xi). We define
πdi−d+1 = π(dxi), . . . , πdi = π(dxi + d− 1), N = {0, 1}n, and

C∗ = { (s1, . . . , sd) ∈ Nd|∃(i, j) : i 6= j, si = sj }.

Clearly, the d-tuples (πdi−d+1, . . . , πdi) are not in C
∗. Note that |C∗| = 2(d−1)n ∗

d(d − 1)/2 ≤ 2(d−1)nd2/2. Similar to Equation (1), we define a set T ∗i of the
d-tuples still avaliable: T ∗i = T ∗∗i − C∗, T ∗∗1 = Nd, and

T ∗∗i+1 = Nd − ({π1, . . . , πdi} ×Nd−1)
− (N × {π1, . . . , πdi} ×Nd−2)
− · · ·
− (Nd−1 × {π1, . . . , πdi}).

(5)

Note that |T ∗∗i+1| ≥ 2dn − (d2 ∗ i ∗ 2(d−1)n). We simulate generating the yi:

For i := 1 to q: choose (πdi, . . . , πdi+d−1) ∈R
T ∗i

output yi = πdi ⊕ · · · ⊕ πdi+d−1.

The sets T ∗∗i+1 are (di)
d-fair:

Compare Equations (1) and (5). Set j := di + 1 and show the (j − 1)d-fairness
of the sets T ∗∗j as in the proof of Theorem 2.

Choosing the d-tuples (πdi, . . . , πdi+d−1) from fair sets:

The sets T ∗∗i are (di− d)-fair, i.e., c-sets or o-sets of size (di− d)d for T ∗∗i exist.
We argue as in the proof of Theorem 2: If d is odd, then a c-set Vi for T

∗∗
i exists.

If d is even, an o-set Ui exists. Figure 2 describes the corresponding simulations.
In addition to Figure 1, the simulation in Figure 2 takes care that ti is in

T ∗i , not just in T
∗∗
i . If the last output is bad = 0, all d-tuples ti used to generate

the yi are uniformly chosen values from fair sets T ∗∗i − Ui or Vi ∪ T ∗∗i , hence
a ≤ pr[bad = 1].
Evaluating pr[bad = 1]:
We get bad = 1 if and only if one of the two then-clauses is executed at least
once. By B1

i we denote the event that the then-clause marked by (∗) is executed
in round i, B1 denotes the event that this clause is executed in any round
i ∈ {1, . . . , q}, i.e., pr[B1] ≤

∑q
i=1B

1
i . For the then-clause marked by (∗∗), we

define the similar events B2
i and B

2. Thus pr[bad = 1] ≤ pr[B1] + pr[B2]. We
start with pr[B1]:

pr[B1
i ] =

{

(di− d)d/|T ∗∗i | for even d
(di− d)d/(|T ∗∗i |+ (di− d)d) for odd d

}

≤ (di− d)
d

|T ∗∗i |
.
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Even d:

Set bad := 0;
for i := 1 to q:

determine T ∗∗
i and Ui;

ti = (πdi−d+1, . . . , πdi) ∈R
T ∗∗

i ;
if ti ∈ Ui then (∗)
bad := 1;

if t ∈ C∗ then (∗∗)

ti ∈R
T ∗∗

i ∩ C∗;
output yi := πdi−d+1 ⊕ · · · ⊕ πdi;

output bad.

Odd d:

Set bad := 0;
for i := 1 to q:

determine T ∗∗
i and Vi;

ti = (πdi−d+1, . . . , πdi) ∈R
T ∗∗

i ∪ Vi;
if t 6∈ T ∗∗

i then (∗)
bad := 1; choose ti ∈R

T ∗∗
i ;

if t ∈ C∗ then (∗∗)

ti ∈R
T ∗∗

i ∩ C∗;
output yi := πdi−d+1 ⊕ · · · ⊕ πdi;

output bad.

Fig. 2. Two simulations for twin
d

Since |T ∗∗i+1| ≥ 2dn − (d2 ∗ i ∗ 2(d−1)n) and i ≤ q ≤ 2n−1/d2, we get |T ∗∗i+1| ≥
2dn − 2dn−1 ≥ 2dn−1 and thus

(i− 1)d
|Ti|

≤ (i− 1)
d

2dn−1
⇒ pr[B1] ≤

∑

1≤i≤q

(i− 1)d
2dn−1

=
1

2dn−1

∑

0≤i<q

id.

Now we bound pr[B2]. Since |T ∗∗i | ≥ 2nd − (d2) ∗ i ∗ 2(d−1)n ≥ 2dn−1 for i ≤ q ≤
2n−1/d2 and |C∗| ≤ 2(d−1)n ∗ d2/2 we get

pr[B2
i ] ≤

|C∗|
|T ∗∗i |

≤ 2
(d−1)n ∗ d2

2

2dn−1
=
2(d−1)n ∗ d2

2dn
=
d2

2n

⇒ pr[B2] ≤
∑

1≤i≤q

pr[B2
i ] ≤

∑

1≤i≤q

d2

2n
=

q ∗ d2

2n

hence a ≤ pr[bad = 1] ≤ 2−dn+1
∑

0≤i<q i
d + q ∗ d2/2n. ut

Consider d ∈ {1, 2, 3}. Based on Equations (2)–(4), we get

d = 1: a ≤ q/2n + q2/2n

d = 2: a ≤ 4q/2n + q3/(3 ∗ 22n−1)
d = 3: a ≤ 9q/2n + q4/23n+1.

The (2−dn+1
∑

0≤i<q i
d)-term determines the maximum size of q, at least if d is

such small and for practically interesting n ≥ 64. We conclude: for small d, the
PRF-security of twin

d is close to the PRF-security of sum
d.

6 Final Comments

6.1 Practical Security

We presented constructions for PRFs from permutations, and we proved our
PRFs to be (q, a)-secure if the permutations are (∞, 0)-secure (or “ideal”) PRPs.
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In practice, our PRPs (i.e. block ciphers) are not ideal ones. What we actually
are interested in is a close relationship between the derivation of the underlying
permutations from being ideal (∞, 0)-secure PRPs, and the derivation of the
constructed PRF from being (∞, 0)-secure. This is quite straightforward, and
we exemplify this for the twin

d-construction:

Theorem 4. Let q and a be chosen such that twin
d is (q, a)-secure in the ideal

case. Let B be a (t, qd, δ)-secure PRP. The function f : {0, 1}n−dde → {0, 1}n
defined by

f(x) = B(dx)⊕ · · · ⊕B(dx+ d− 1) (6)

is (t− qt′, q, a+ δ)-secure. Here, t′, denotes the time to evaluate Expression (6).

Note that the function f is indeed an instantiation of the PRF twin
d using

the concrete (non-ideal) PRP B.
Proof: [of Theorem 4] Assume an adversary Af running at most t− qt′ units of
time, asking for q values f(x1), . . . f(xq), achieves an advantage Adv

Fun
Af ,f

> a+δ.
We describe an adversary AB for B, using Af as some kind of “subroutine”. The
performance of AB disproves the (t, qd, δ)-security of B.
Whenever Af chooses x ∈ {0, 1}n−dde and asks for f(x), AB asks for the

values B(dx), . . . , B(dx + d − 1) and evaluates Expression (6). AB uses the
output-bit produced by Af as its own output-bit.
Running AB requires the running time for Af plus the additional time qt

′ for
q evaluations of (6), and q queries for the f -oracle are translated into dq queries
for the B-oracle. Since twin

d is (q, a)-secure in the ideal case, and since Af is
assumed to achieve an advantage of more than a + δ, the advantage of AB in
distinguishing between B and an ideal block cipher exceeds δ. ut
Given an estimate of the number q of plaintext/ciphertext pairs the adversary

can learn, and given the block size n, the security architect must decide on
the size of the parameter d. Our analysis provides precise bounds (instead of
asymptotic estimates) to help her making a reasonable decision. This kind of
reasoning, the “concrete security analysis”, was initiated in [4].

6.2 Super Pseudorandom Permutations

Luby and Rackoff [9] introduced a distinction between super PRPs and (ordi-
nary) PRPs: For ordinary PRPs, the adversary may only choose values x and
ask the oracle Q for Q(x). Such adversaries are “chosen plaintext” adversaries.
On the other hand, super PRPs need to resist “combined chosen plaintext /
chosen ciphertext” adversaries, i.e., adversaries also able to choose y and ask for
Q−1(y). For our constructions we don’t need super PRPs – ordinary PRPs are
sufficient. This makes our results all the more meaningful.

6.3 Comparison and Conclusion

This paper deals with the construction of PRFs from PRPs. We propose two
constructions, sum

d : {0, 1}n → {0, 1}n and twin
d{0, 1}n−dlog2(d)e → {0, 1}n,

based on PRPs over {0, 1}n.
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Our constructions preserve the security of the underlying PRP better than
the truncate construction from [7] and are much more efficient than the order
construction, also from [7].
The truncate construction from [7] is re-considered in [3], claiming an im-

proved security analysis compared to [7]. Also, [3] deals with sum
2 and twin

2

– the two-dimensional variants of the constructions we scrutinise here. In short,
if the number q of oracle queries is q ¿ 2n/O(n), both the sum

2 and the twin
2

construction are claimed to be secure. (For twin
2, a short sketch of proof is

given.) Note that the results in claimed in [3] are significantly better than the
results provided in the current paper.
Now consider data dependent re-keying, (DDRK) [5]. If k is the key size of

the underlying block cipher, the result on the security of DDRK [5, Theorem
5.2] requires q ¿ 24k/5. In fact, that result depends on the assumption that
exhaustively searching 24k/5 keys is infeasible. If, say, k = 80, the effective key-
length guaranteed by the result is only 4∗80/5 bit = 64 bit. This is a disadvantage,
compared to our schemes. (Note though: [5] conjecture that the bound on q can
be improved to q ¿ 2k(1−ε).) Depending on which block cipher is used and
on hardware constraints, the very frequent key changes needed for DDRK can
constitute another disadvantage.
For some applications, e.g. on low-end smartcards, even the effort to switch

between only d fixed secret keys may be prohibitive. In this case, the twin
d

construction is superior to sum
d, if a PRF with only n− dlog2(d)e input bits is

acceptable.
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Appendix:
The 2-Dimensional Construction SUM2(x) = σ(x)⊕ τ (x)

To improve the tangibility of this paper, the abstract deals with a simple but
non-trivial special case of sum

d, the 2-dimensional variant

sum
2(x) = σ(x)⊕ τ(x),

depending on two permutations σ, τ{0, 1}n → {0, 1}n. Not surprisingly, sum
2 is

not a (∞, 0)-secure PRF. In fact, collisions are too probable. E.g., the probability
that the first two pseudorandom values y1 and y2 generated by using sum

2 to
collide is too high: pr[y1 = y2] > 2

−n. To see this, consider simulating sum
2.

Initially, there are 22n pairs (s, t) ∈ {0, 1}n to choose for (σ(x1), τ(x1)). For
every value y ∈ {0, 1}n, there exist exactly 2n pairs (s, t) with σ(x1)⊕τ(x1) = y1.

Let x2 6= x1. In the second step, a pair (s
′, t′) = (σ(x2), τ(x2)) is chosen with

s′ 6= s and t′ 6= t. There are 2n−1 values s′ 6= s and as much values t′ 6= t, hence
the number of such pairs is (2n−1)2. For every value s′ 6= s, exactly one value
t′ 6= t exists with s′⊕ t′ = s⊕ t, and y1 = y2 if and only if s

′⊕ t′ = s⊕ t. Hence,
exactly 2n − 1 of the (2n−1)2 possible pairs (s′, t′) induce y2 = y2, and thus

pr[y1 = y2] =
2n − 1
(2n − 1)2 =

1

2n − 1 .

If sum
2 where an ideal random function, we had pr[y1 = y2] = 2

−n. But how
good is the PRF sum

2 actually?

Theorem 5. For random permutations σ, τ ∈ Fn and q ≤ 2n−1, the function f
with f(x) = sum

2(x) = σ(x)⊕ τ(x) is a (q, a)-secure PRF with a = q3/22n−1.

7 Full version online: http://www.counterpane.com/publish-1998.html
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Proof: The set T ⊆ ({0, 1}n)2 is “fair”,8 if for every value y ∈ {0, 1}n

∣

∣{ (σ∗, τ∗) ∈ T |σ∗ ⊕ τ∗ = y }
∣

∣ =
|T |
2n

.

The adversary A asks q ≤ 2n−1 oracle queries x1, . . . , xq, w. l. o. g. xi 6= xj
for i 6= j. We write y1, . . . , yq for the corresponding oracle responses.

Consider evaluating sum
2 by choosing a pair (σi, τi) = (σ(xi), τ(xi)) and

computing yi = σi ⊕ τi. If all (σi, τi) where randomly chosen from a fair set and
uniformly distributed, then the sums yi = σi⊕τi would be uniformly distributed
random values – un-distinguishable from the output of a random function.

The remainder of this proof is organised as follows:

1. We describe the sets Ti ⊆ ({0, 1}n)2 the pairs (σi, τi) are chosen from, and
we specify fair subsets Ui ⊆ Ti with |Ui| = |Ti| − (i− 1)2.

2. We describe how to choose the pairs (σi, τi) from the fair sets Ui, except
when a “bad” event happens.

3. We calculate the probability of the “bad” event.

Let i 6= j. Since σ and τ are permutations, σi 6= σj and τi 6= τj . Thus, by
choosing the pair (σi, τi), all pairs (s, t) with s = σi or t = τi are “consumed”,
i.e., cannot be chosen for (σj , τj).

By Si, we denote the set of consumed pairs before the choice of (σi, τi). By
Ti = ({0, 1}n)2 − Si, we denote the set of un-consumed pairs. Note that (Ti is
fair) ⇔ (Si is fair). Since S1 = {}, both S1 and T1 are fair and y1 is a uniformly
distributed random value. Given (σ1, τ1), . . . , (σk, τk) we define Uk+1 ⊆ Tk+1.
Consider the following 2k fair sets of pairs:

{(σ1, τ∗) | τ∗ ∈ {0, 1}n}, . . . , {(σk, τ∗) | τ∗ ∈ {0, 1}n}
and {(σ∗, τ1) | σ∗ ∈ {0, 1}n}, . . . , {(σ∗, τk) | σ∗ ∈ {0, 1}n}.

Sk+1 is the union of the above 2k sets of pairs. If the above 2k sets were all
disjoint, Sk+1 would be fair. But actually, exactly k

2 pairs are contained in two
of the above sets, namely all pairs (σi, τj) with i, j ∈ {1, . . . , k}. We arbitrarily
choose k2 unique representatives (σ′i, τ

′
j) for (σi, τj) with (σ

′
i, τ

′
j) ∈ Tk+1 and

σ′i ⊕ τ ′j = σ′i ⊕ τ ′j . We define Uk+1 to be the set of all pairs in Tk+1 except for

the representatives (σ′i, τ
′
j). Hence |Uk+1| = |Tk+1| − k2. By induction one can

see that for every y ∈ {0, 1}n the set Uk+1 contains exactly 2
n−2k pairs (σs, τt)

with σs⊕ τt = y. Since k ≤ q ≤ 2n−1, it is possible run the simulation described
in Figure 3, especially, a set Ui exists.

The distribution of the values yi is as required for sum
2. The simulation

generates an additional value “bad”. If bad = 0, each of the pairs (σi, τi) is

8 This notion of fairness is the two-dimensional special case of Definition 2. If T is fair
and we choose (s, t) ∈

R
T , the sum y = s⊕ t is a uniformly distributed random value

in {0, 1}n.
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Set bad := 0;
for i := 1 to q: determine the sets Ti and Ui;

choose (σi, τi) ∈R
Ti;

if (σi, τi) 6∈ Ui then bad := 1;
output yi = σi ⊕ τi;

output bad.

Fig. 3. A simulation for the PRF sum
2

chosen from a fair set Ui, and the sums yi are un-distinguishable from the output
of a random function. Thus AdvFun

A,f ≤ pr[bad = 1] for every adversary A. Using

pr[(σi+1, τi+1) 6∈ Ui+1] =
|Ti+1| − |Ui+1|
|Ti+1|

=
i2

(2n − i)2 ,

we bound the probability pr[bad = 1]:

pr[bad = 1] ≤
∑

1≤i≤q

pr[(σi, τi) 6∈ Ui] =
∑

0≤i<q

i2

(2n − i)2

≤
∑

0≤i<q

i2

(2n − q)2 = (2n − q)−2 ∗
∑

0≤i<q

i2.

Since q ≤ 2n−1

pr[bad = 1] ≤ (2n−1)−2 ∗
∑

0≤i<q

i2. (7)

By using
∑

0≤i<q i
2 = (q(q − 1)(2q − 1))/6 ≤ 2q3/6 we get

pr[bad = 1] ≤ q3

3 ∗ (2n − q)2

and hence pr[bad = 1] ≤ q3/22n−1. ut
Note that Theorem 5 provides a marginally better bound than Theorem 2 for

d = 2. This is, because the Theorem 2 considers the general case (and because
the current author tried to avoid overcrowding its proof with too many technical
details). The general outline of the proofs of Theorems 2, 3, and 5 is quite similar.


