
A NICE Cryptanalysis
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Abstract. We present a chosen-ciphertext attack against both NICE
cryptosystems. These two cryptosystems are based on computations in
the class group of non-maximal imaginary orders. More precisely, the
systems make use of the canonical surjection between the class group
of the quadratic order of discriminant

√

−pq2 and the class group of
the quadratic order of discriminant

√−p. In this paper, we examine the
properties of this canonical surjection and use them to build a chosen-
ciphertext attack that recovers the secret key (p and q) from two cipher-
texts/cleartexts pairs.

1 Overview

In [5], Hartmann, Paulus and Takagi have presented a new public-key cryptosys-
tem based on ideal arithmetic in quadratic orders. This system was called NICE,
which stands for New Ideal Coset Encryption.

In [7], Hünhlein, Jacobson, Paulus and Takagi have presented a cryptosystem
analogous to ElGamal encryption [4] that uses the same properties of arithmetic
in imaginary quadratic orders than NICE. They called it HJPT.

The security of the NICE and HJPT cryptosystems is closely related to fac-
toring the discriminant of the quadratic order, which is a composite number of
the special form pq2. While there exists an algorithm that allows the factoriza-
tion of numbers of the form pqr, for large r (see [2]), no dedicated algorithm
is currently known to factor numbers with a square factor. Furthermore, for
appropriate sizes of the parameters, the currently known general factoring algo-
rithms are not applicable to a direct attack. In [8], the authors also give several
arguments to prove the security of their cryptosystem. Among these consider-
ations, they argue that the chosen-ciphertext attack is not applicable to their
cryptosystem.

Indeed, it seems that from a single chosen ciphertext, one cannot recover the
secret key. However, we show that with two well chosen ciphertexts, it is possible
to factor pq2, thus breaking the system.

This paper is organized as follows : we first give a brief reminder of the
properties of the class group of a quadratic order and recall the main ideas of
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the two cryptosystems. Then we present our chosen-ciphertext attack and finally
we give an example of this attack.

2 Theoretical Background

The NICE and HJPT cryptosystems rely on the canonical surjection between
the class group of a non-maximal order and the class group of the maximal order
in an imaginary quadratic field. We will first recall the properties of the class
groups and the surjection before presenting the algorithms.

2.1 Class Group of a Quadratic Order

An introduction to quadratic orders and their class groups can be found in [3].
In this section, we briefly recall the definition and main properties of the class
group of a quadratic order.

Definitions and Properties.

Quadratic Field. Let K = Q(
√
d) be a quadratic field with d 6= 1 squarefree. Let

∆1 be the discriminant of K. If d ≡ 1 mod 4, we can take 1, (1 +
√
d)/2 as an

integral basis for K and ∆1 = d, while if d ≡ 2 or 3 mod 4, we can take 1,
√
d

and we have ∆1 = 4d.

Fundamental Discriminant. An integer ∆1 is called a fundamental discriminant
if ∆1 is the discriminant of a quadratic field K. In other words, ∆1 6= 1 and
either ∆1 ≡ 1 mod 4 and is squarefree, or ∆1 ≡ 0 mod 4, ∆1/4 is squarefree and
∆1/4 ≡ 2 or 3 mod 4. In the NICE cryptosystem, we consider only ∆1 < 0 and
such that ∆1 ≡ 1 mod 4.

Order of a Quadratic Field. An order R in K is a subring of K which as a Z-
module is finitely generated and of maximal rank n = deg(K). Every element of
an order is an algebraic integer. If K is a quadratic field of discriminant ∆1, then
every order R of K has discriminant q2∆1, where q is a positive integer called
the conductor of the order. Conversely, if ∆q is any non-square integer such that
∆q ≡ 0 or 1 mod 4, then ∆q is uniquely of the form ∆q = q2∆1 where ∆1 is a
fundamental discriminant, and there exists an unique order R of discriminant
∆q.

Maximal Order. Let O∆q
be the order of discriminant ∆q. It can be written as

O∆q
= Z + wZ where w =

∆q+i
√

|∆q|

2 . O∆q
is related to O∆1

by the relation
O∆q

= Z+ qO∆1
and we have O∆q

⊂ O∆1
. We call O∆1

the maximal order. It
is the ring of integers of the quadratic field Q(

√
∆1).
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Ideals of a Quadratic Order. An ideal a of O∆q
can be written as

a = m

(

aZ+
b+ i

√

|∆q|
2

Z

)

where m ∈ Z, m > 0, a ∈ Z, a > 0, and b ∈ Z such that b2 ≡ ∆q mod 4a.
The norm of the ideal is defined as N(a) = ma. When m = 1, we say that a is
primitive and we represent it by the pair (a, b).

Two ideals a, b ∈ O∆q
are called equivalent if there exists α, β ∈ O∗

∆q
such

that αa = βb. We denote this relation by a ∼ b. For any element γ ∈ O∆q
the

ideal γO∆q
is called a principal ideal. If a and b are two principal ideals, they

are equivalent.
For a primitive ideal, we say that a = (a, b) is reduced if and if only |b| ≤

a ≤ c = (b2 −∆q)/4a and moreover b ≥ 0 when a = c or a = |b|. There exists a
unique reduced ideal in the equivalence class of an ideal a, denoted by Red∆q

(a).
An algorithm to compute Red∆q

(a) from a is described in [3, p238].
The reduction algorithm works as follows in the quadratic order of discrimi-

nant ∆ : We start with an ideal (a, b) with −a < b ≤ a and proceed by successive

steps. In each step, we replace (a, b) by (a′, b′) where a′ = b2−∆
4a and b′ satisfies

−b = b′+2a′k with −a′ < b′ ≤ a′. When it reaches a reduced ideal, the algorithm
stops.

For any reduced ideal a = (a, b), a <
√

|∆q|/3. Conversely, for a primitive

ideal, if a <
√

|∆q|/4, then a is reduced.

Class Group. The ideals of O∆q
, respectively O∆1

, whose norm is prime to f
form an Abelian group. They are called ideals prime to f . We denote this group
by I∆q

(f), respectively I∆1
(f). If q is a prime and

√

|∆1|/3 < q, then all the
reduced ideals in O∆1

have a norm prime to q. From now on, we will suppose
that this is the case.

In O∆q
, the principal ideals prime to q form a subgroup of I∆q

(q). We denote
it by P∆q

(q). The quotient group I∆q
(q)/P∆q

(q) is called the class group of O∆q

and denoted by Cl(∆q).
We can consider the following map :

ϕq : Cl(∆q)→ Cl(∆1)

a 7→ Red∆1
(aO∆1

)

ϕq is a surjective group morphism.
We can also defined a restricted inverse map, denoted ϕ−1

q .

ϕ−1
q (A,B) = (A,Bq mod 2A)

We have indeed ϕq(ϕ
−1
q (a)) = Red∆1

(a). Conversely, for an ideal a = (a, b) ∈
O∆q

such that a <
√

|∆1|/4, we have ϕ−1
q (ϕq(a)) = a. However, if a ≥

√

|∆1|/4,
we may have ϕ−1

q (ϕq(a)) 6= a. Our attack relies on this observation.
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How to Compute ϕq. Let Φq be the map between the primitive ideals of
O∆q

and the primitive ideals of O∆1
defined by Φq(a) = aO∆1

. We clearly
have ϕq = Red∆1

(Φq). To compute Φq(a) from a = (a, b), proceed as follows :
Φq(a, b) = (A,B) where A = a and bµ + abOν = 2ka + B with −a < B ≤ a,
bO = ∆q mod 2, 1 = µq+νa for µ,ν ∈ Z. To compute ϕq(a), we must then apply
to (A,B) the reduction algorithm described in section 2.1.

2.2 Description of the Cryptosystems

Description of NICE.

The Key Generation. The key generation consists in generating two random
primes p,q > 4 with p ≡ 3 mod 4 and

√

p/3 < q. We then let

∆1 = −p
∆q = −pq2,

and choose an ideal p in Cl(∆q), where ϕq(p) = 1Cl(∆1). To generate such a p,

proceed as follows : choose a number α ∈ O∆1
with norm less than

√

|∆q|/4,
compute the standard representation of the ideal αO∆1

and compute ϕ−1
q (αO∆1

).

Let k and l be the bit lengths of b
√

|∆1|/4c and q−
(

∆1

q

)

respectively, where
(

∆1

q

)

is the Kronecker symbol. The public key is (p,∆q, k, l) and the secret key

is (∆1, q). None of the maps Φq, ϕq, ϕ
−1
q are public.

Encryption and Decryption Proceedings. A message is represented by an ideal m,
where m is reduced in Cl(∆q) and log2 N(m) < k, which means that Φq(m) is also
reduced in Cl(∆1). The embedding of a message into an ideal that represents
it may be done as follows : let x be the message and t a random number of
length k − 2 − blog2 xc+ 1. We determine the smallest prime a larger than the

concatenation of x and t as bit strings with
(

∆q

a

)

= 1. Then we need to compute

b such that ∆q ≡ b2 mod 4a, −a < b ≤ a. Our message is finally encoded as
m = (a, b).

We encrypt the message by computing c = Red∆q
(mpr), where r is a random

l − 1 bit integer.

To decrypt, we compute k = ϕq(c).
Since

ϕq(mpr) = ϕq(m)ϕq(p
r) = ϕq(m),

the plaintext is then m = ϕ−1
q (k).

Note that this is a probabilistic encryption and the multiplication by pr

allows to choose a random pre-image of ϕq(m) by ϕq.
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Description of HJPT. In this cryptosystem, the encryption is done completely
analogous to ElGamal encryption [4] in the non-maximal order O∆q

. All ideals
are chosen prime to q. The public parameters are the discriminant ∆q, an ideal
g ∈ O∆q

, called the base ideal, and an ideal a ∈ O∆q
such that a = Red∆q

(ga),
where a is a random integer a ∈ [2, b

√
∆1c]. The secret key is a and q.

We embed the message in an ideal m ∈ O∆q
as in NICE, select an integer k

and compute (n1, n2) where n1, n2 are reduced ideals in O∆q
and

n1 = Red∆q
(gk)

n2 = Red∆q
(mak)

We require N(m) <
√

|∆1|/4 in order to uniquely decrypt the message m.

The decryption works in the maximal order O∆1
. We compute :

N1 = ϕq(n1)

N2 = ϕq(n2)

M = N2(N
a
1)

−1

m = ϕ−1
q (M)

m is the decoded message.

Security Considerations. The security of the cryptosystems depends on the
difficulty of factoring the discriminant ∆q. If it can be factored, the cryptosys-
tems are clearly broken.

To prevent a direct factorization of ∆q using general methods such as the
number field sieve or the elliptic curve method, the authors suggest that we
choose p and q larger than 256 bits. Although ∆q is of the special form pq2,
there exists no dedicated algorithm better than the general ones. They conclude
that their system is secure against attacks by factorization.

The authors also prove that nobody can compute Φq(a, b) without the knowl-
edge of the conductor q. That means that it is not possible to recover the message
from the coded ideal without the knowledge of the factors of ∆q.

Concerning NICE, Paulus and Takagi then argue that the knowledge of p

does not substantially help to factor ∆q. A possible attack would be to find an
ideal f power of p in O∆q

such that f2 ∼ 1 and f ¿ 1, however the only apparent
way to do that is to compute the order of p in the group Cl(∆q) which is much
slower to do than factoring ∆q with the available algorithms.

In [8], Paulus and Takagi also claim that the chosen-ciphertext attack is not
applicable to their cryptosystem and give a few observations .
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3 The Chosen-Ciphertext Attack

In this section, we study more precisely the question of the chosen-ciphertext
attack. As claimed in section 2.2, the knowledge of one coded message and
the corresponding decrypted message is indeed not sufficient for factoring ∆q.
However, we show that with two chosen ciphertexts, factoring ∆q becomes easy.

Both cryptosystems use the following property of the canonical surjection to
recover the message after encryption :

ϕ−1(ϕ(m)) = m if N(m) <
√

|∆1|/4.

Conversely, the attack uses the fact that

ϕ−1(ϕ(m)) 6= m if N(m) >
√

|∆1|/3.

3.1 Relation Involving a Single Chosen Ciphertext

The main idea behind our attack is to use a message m slightly longer than
proper messages and hope that in O∆1

the corresponding ideal will be a single
reduction step away from a reduced ideal. Note that after multiplication by
a power of p (in NICE) or a (in HJPT), there is no way for the deciphering
process to distinguish a correct ciphertext from an incorrect one, and thus to
detect this attack. Of course, if one add some verification bits to the message,
then it becomes feasible to make this distinction. This will be further discussed
in section 3.3. In order to attack the system we need to make explicit the relation
between the original message and the decoded message.

Let m = (m,n) ∈ Cl(∆q) be a message such that

ϕ−1
q (ϕq(m)) 6= m.

It means that Φq(m) is not reduced in O∆1
. If we further suppose that a single

reduction step is needed to reduce Φq(m), we can make precise the relation
between m and ϕ−1(ϕ(m)).

We apply the decryption algorithm and one reduction step as described in
section 2.1 to m and instead of finding m, we obtain m′ = (m′, n′) where (m′, n′)
satisfies :

{

m′ = N2−∆1

4m
n′ ≡ −Nq (mod 2m′)

and N is an integer that satisfies −m < N < m.

3.2 How to Find a Suitable Ciphertext

In order to be sure that a given message (m,n) will not be reduced in Cl(∆1)
we need to take m >

√

|∆1|/3. Moreover, from [3, p239], we know that if (m,n)

is an ideal of O∆1
such that −m < n ≤ m and m <

√

|∆1|. Then either (m,n)
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is already reduced, or the ideal (o, r) where o = n2−∆1

2m and −n = 2ko+ r with
−o < r ≤ o, obtained by one reduction step, will be reduced.

In order to be sure that our ciphertext will have the described properties, we
need to choose m as follows :

√

|∆1|/3 < m <
√

|∆1|.

Since we can estimate ∆1 to be approximately 3
√

|∆q|, m should be of the

size of 6
√

|∆q|. Moreover, the maximum size of possible messages, that is the bit

length of b
√

|∆1|/4c, is public, thus giving us the bit length of
√

|∆1|/3. With
this information, we need only two ciphertexts in the correct range to break
the system. However, if the given maximum size has been underestimated, it
may be that our first try for m we will still be in the allowed range of correct
decryption. We may thus have to decrypt a few more messages, multiplying steps
of
√
3 before finding a suitable m.

3.3 Using Two Chosen Ciphertexts

With only one pair (m,m′) we cannot find ∆1, but with two such pairs (m1,m
′
1)

, (m2,m
′
2), we have :

{

m′
1 =

N2
1−∆1

4m1

m′
2 =

N2
2−∆1

4m2

and then :
p = −∆1 = 4m1m

′
1 −N2

1 = 4m2m
′
2 −N2

2 .

We need to find N1,N2. That means we have to find an integer solution of the
equation :

4m1m
′
1 − 4m2m

′
2 = N2

1 −N2
2 .

Let X = N1 +N2, Y = N1 −N2 and k = 4m1m
′
1 − 4m2m

′
2, the equation now is

:
k = XY,

where k is known and X, Y unknown. Once X is found, we can easily compute
N1, N2 and p. Since X is a factor of k, it suffices to factor k and try every
divisor as a possible value for X. Since the number of factors of k is quite
small, the possible X can be tested in a reasonable amount of time. When
4m1m

′
1−N2

1 = 4m2m
′
2−N2

2 , there is a high probability that we have found the
correct X. We just need to check that this value of ∆1 divides ∆q.

The size of k is approximately the size of m2. As we choose m approximately
of size 6

√

|∆q|, the size of k is 3
√

|∆q|. With the parameters given in [8], p, q and
k all have 256 bits, thus k is easy to factor and the attack succeeds.

If we want to prevent the attack from succeeding, we need a size for k that
prevent its factorization. Since k is an ordinary number, it may well have many
small factors. Moreover, using more ciphertexts, we may choose between many
values of k one that factors easily. This means that, for the algorithms to be
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secure, k should have at the very least 768 bits. We would then have keys of
2304 bits.

To repair the cryptosystem, one could add redundancy to the plaintext, be-
fore encryption. If after decryption, the obtained message does not have this re-
dundancy, the output is discarded, thus preventing someone from feeding wrong
messages to the decryption algorithm. However, this should preferably be done
in a provably secure way. Ideas from the OAEP work of Bellare and Rogaway [1]
may be of use. However, as usual with this approach, it will decrease the number
of information bits in the message.

4 Example

The example described in this section is based on the NICE cryptosystem. In [8],
it is suggested that security should be assured for the factorization attack if p
and q are larger than 256 bits and if ∆q is larger than 768 bits. In our example,
we took ∆q of 770 bits, a p of 256 bits and a q of 257 bits.

Public key :

∆q = −100113361940284675007391903708261917456537242594667
4915149340539464219927955168182167600836407521987097

2619973270184386441185324964453536572880202249818566

5592983708546453282107912775914256762913490132215200

22224671621236001656120923

p = (a, b)

a = 570226877089425831816858843811755887130078318076

9995195092715895755173700399141486895731384747

b = −33612360405827547849585862980179491106487317456
05930164666819569606755029773074415823039847007

Messages used for the attack :

m1 = (m1, n1)

m1 = 580951478417429243174778727763020568653

n1 = 213263727465080837260496771081640651435

m2 = (m2, n2)

m2 = 580951478417429243174778727763020568981

n2 = 551063505588645995299391690184984802119

Decoded messages :

m′
1 = (m′

1, n
′
1)

m′
1 = 83456697103393374949726594537861474869

n′1 = 78671653231911323093405599718880172057
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m′
2 = (m′

2, n
′
2)

m′
2 = 83136382696910204396967308875383697767

n′2 = −79913230277300059043936659928820912889

That gives us a value for k :

k = 74434851201919726011132921747267789727706

6007928155103527580608870278064120

k is factored into :

k = 23 ∗ 3 ∗ 5 ∗ 11 ∗ 211 ∗ 557 ∗ 4111 ∗ 155153 ∗ 24329881
∗28114214269943 ∗ 413746179653057
∗26580133430529627286021

For the following values of X and Y :

X = 22 ∗ 5 ∗ 11 ∗ 211 ∗ 557 ∗ 4111 ∗ 155153 ∗ 24329881
∗413746179653057

= 166012950016425480566224036606412677340

Y = 2 ∗ 3 ∗ 28114214269943 ∗ 26580133430529627286021
= 4483677399537510200981356685786200818

We found :

p = 1866698912741534378741757081805032596542815931

03800953935381353078144162357587

5 Conclusion

Since the discrete logarithm problem in the class group of imaginary quadratic
order is a difficult problem (see [6]), it was tempting to build public key cryp-
tosystems on it. However, for performance sake, it was necessary to add more
structure, and make use of the canonical surjection from O∆q

to O∆1
. Unfor-

tunately, this additional structure opens a way to the chosen-ciphertext attack
that was described here.

Nonetheless, the discrete logarithm in class groups is an interesting problem
that might yet find other applications to public key cryptography.
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6. Hühnlein and Takagi. Reducing logarithms in totally non-maximal orders to loga-
rithms in finite fields. In ASIACRYPT’99, 1999.
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