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Abstract. One of the basic problems in cryptography is the generation
of a common secret key between two parties, for instance in order to com-
municate privately. In this paper we consider information-theoretically
secure key agreement. Wyner and subsequently Csiszár and Körner de-
scribed and analyzed settings for secret-key agreement based on noisy
communication channels. Maurer as well as Ahlswede and Csiszár gen-
eralized these models to a scenario based on correlated randomness and
public discussion. In all these settings, the secrecy capacity and the
secret-key rate, respectively, have been defined as the maximal achiev-
able rates at which a highly-secret key can be generated by the legitimate
partners. However, the privacy requirements were too weak in all these
definitions, requiring only the ratio between the adversary’s information
and the length of the key to be negligible, but hence tolerating her to ob-
tain a possibly substantial amount of information about the resulting key
in an absolute sense. We give natural stronger definitions of secrecy ca-
pacity and secret-key rate, requiring that the adversary obtains virtually
no information about the entire key. We show that not only secret-key
agreement satisfying the strong secrecy condition is possible, but even
that the achievable key-generation rates are equal to the previous weak
notions of secrecy capacity and secret-key rate. Hence the unsatisfactory
old definitions can be completely replaced by the new ones. We prove
these results by a generic reduction of strong to weak key agreement.
The reduction makes use of extractors, which allow to keep the required
amount of communication negligible as compared to the length of the
resulting key.

1 Introduction and Preliminaries

1.1 Models of Information-Theoretic Secret-Key Agreement

This paper is concerned with information-theoretic security in cryptography.
Unlike computationally-secure cryptosystems, the security of which is based on
the assumed yet unproven hardness of a certain problem such as integer factoring,
a proof without any computational assumption, based on information theory
rather than complexity theory, can be given for the security of an information-
theoretically (or unconditionally) secure system.
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A fundamental problem is the generation of a mutual key about which
an adversary has virtually no information. Wyner [18] and later Csiszár and
Körner [10] considered the natural message-transmission scenarios in which the
legitimate partners Alice and Bob, as well as the adversary Eve, are connected by
noisy channels. In Csiszár and Körner’s setting, Alice sends information (given by
the random variable X) to Bob (receiving Y ) and to the opponent Eve (who ob-
tains Z) over a noisy broadcast channel characterized by the conditional distribu-
tion PY Z|X . Wyner’s model corresponds to the special case where X → Y → Z
is a Markov chain.

The secrecy capacity CS(PY Z|X) of the channel PY Z|X has been defined as
the maximal rate at which Alice can transmit a secret string to Bob by using
only the given noisy (one-way) broadcast channel such that the rate at which the
eavesdropper receives information about the string can be made arbitrarily small.
More precisely, the secrecy capacity is the maximal asymptotically-achievable
ratio between the number of generated key bits and the number of applications
of the noisy broadcast channel such that Eve’s per-letter information about the
key is small.

As a natural generalization of these settings, Maurer [13] and subsequently
Ahlswede and Csiszár [1] have considered the model of secret-key agreement by
public discussion from correlated randomness. Here, two parties Alice and Bob,
having access to specific dependent information, use authentic public communi-
cation to agree on a secret key about which an adversary, who also knows some
related side information, obtains only a small fraction of the total information.
More precisely, it is assumed in this model that Alice and Bob and the adversary
Eve have access to repeated independent realizations of random variables X, Y ,
and Z, respectively. A special example is the situation where all the parties re-
ceive noisy versions of the outcomes of some random source, e.g., random bits
broadcast by a satellite at low signal power.

The secret-key rate S(X;Y ||Z) has, in analogy to the secrecy capacity, been
defined in [13] as the maximal rate at which Alice and Bob can generate a secret
key by communication over the noiseless and authentic but otherwise insecure
channel in such a way that the opponent obtains information about this key only
at an arbitrarily small rate.

Note that Maurer’s model is a generalization of the earlier settings in the
sense that only the correlated information, but not the insecure communication
is regarded as a resource. In particular, the communication can be interactive
instead of only one-way, and the required amount of communication has no in-
fluence on the resulting secret-key rate. These apparently innocent modifications
have dramatic consequences for the possibility of secret-key agreement.

1.2 The Secrecy Capacity and the Secret-Key Rate

The precise definitions of CS(PY Z|X) and of S(X;Y ||Z) will be given later, but
we discuss here some of the most important bounds on these quantities. Roughly
speaking, the possibility of secret-key agreement in Wyner’s and Csiszár and
Körner’s models is restricted to situations for which Alice and Bob have an
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initial advantage in terms of PY Z|X , whereas interactive secret-key generation
can be possible in settings that are initially much less favorable for the legitimate
partners.

It was shown [10] that CS(PY Z|X) ≥ maxPX
(I(X;Y ) − I(X;Z)), where

the maximum is taken over all possible distributions PX on the range X of
X, and that equality holds whenever I(X;Y ) − I(X;Z) is non-negative for all
distributions PX . On the other hand, it is clear from the above bound that if
U → X → Y Z is a Markov chain, then CS(PY Z|X) ≥ I(U ;Y )− I(U ;Z) is also
true. If the maximization is extended in this way, then equality always holds:

CS(PY Z|X) = max
PUX :U→X→Y Z

(I(U ;Y )− I(U ;Z)) (1)

is the main result of [10]. It is a consequence of equality (1) that Alice and Bob
can generate a secret key by noisy one-way communication exactly in scenarios
that provide an advantage of the legitimate partners over the opponent in terms
of the broadcast channel’s conditional distribution PY Z|X .

The secret-key rate S(X;Y ||Z), as a function of PXY Z , has been studied
intensively. Lower and upper bounds on this quantity were derived, as well as
necessary and sufficient criteria for the possibility of secret-key agreement [13],
[15]. The lower bound

S(X;Y ||Z) ≥ max [I(X;Y )− I(X;Z) , I(Y ;X)− I(Y ;Z) ] (2)

follows from equality (1) [13]. The important difference to the previous settings
however is that secret-key agreement can even be possible when the right-hand
side of inequality (2) is zero or negative. A special protocol phase, called ad-
vantage distillation, requiring feedback instead of only one-way communication,
must be used in this case. On the other hand, it was shown in [15] that

S(X;Y ||Z) ≤ I(X;Y↓Z) := min
PZ|Z

[I(X;Y |Z)]

holds, where I(X;Y ↓Z) is called the intrinsic conditional information between
X and Y , given Z. It has been conjectured in [15], based on some evidence, that
S(X;Y ||Z) = I(X;Y ↓Z) holds for all PXY Z , or at least that I(X;Y ↓Z) > 0
implies S(X;Y ||Z) > 0. Most recent results suggest that the latter is true if
|X |+ |Y| ≤ 5, but false in general [11].

1.3 Contributions of this Paper and Related Work

In all the mentioned scenarios, the conditions on the resulting secret key were
too weak originally. As it is often done in information theory, all the involved
quantities, including the information about the key the adversary is tolerated to
obtain, were measured in terms of an information rate, which is defined as the
ratio between the information quantity of interest and the number of indepen-
dent repetitions of the underlying random experiment. Unfortunately, the total
information the adversary gains about the resulting secret key is then, although
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arbitrarily small in terms of the rate, not necessarily bounded, let alone negli-
gibly small. The reason is that for a given (small) ratio ε > 0, key agreement
with respect to the security parameter ε is required to work only for strings of
length N exceeding some bound N0(ε) which can depend on ε. In particular,
N0(ε) · ε → ∞ for ε → 0 is possible. Clearly, this is typically unacceptable in
a cryptographic scenario. For instance, the generated key cannot be used for a
one-time-pad encryption if all parts of the message must be protected.

Motivated by these considerations, stronger definitions of the rates at which a
secret key can be generated are given for the different scenarios. More specifically,
it is required that the information the adversary obtains about the entire key be
negligibly small in an absolute sense, not only in terms of a rate. In the setting
of secret-key agreement by noiseless public discussion from common information
it is additionally required that the resulting secret key, which must be equal for
Alice and Bob with overwhelming probability, is perfectly-uniformly distributed.

The main result of this paper is a generic reduction from strong to weak
key agreement with low communication complexity. As consequences of this,
Theorems 1 and 2 state that both for the secrecy capacity and for the secret-
key rate, strengthening the security requirements does not reduce the achievable
key-generation rates. This is particularly interesting for the case of the secrecy
capacity because in this model, all the communication must be carried out over
the noisy channel. Recent advances in the theory of extractors allow for closing
the gap between weak and strong security in this case.

An important consequence is that all previous results on CS(PY Z|X) and
on S(X;Y ||Z), briefly described in Section 1.2, immediately carry over to the
strong notions although they were only proved for the weaker definitions. The
previous definitions were hence unnecessarily weak and can be entirely replaced
by the new notions.

A basic technique used for proving the mentioned reduction is privacy am-
plification, introduced in [3], where we use both universal hashing and, as a new
method in this context, extractors. A particular problem to be dealt with is
to switch between (conditional) Shannon-, Rényi-, and min-entropy of random
variables or, more precisely, of blocks of independent repetitions of random vari-
ables, and the corresponding probability distributions. A powerful tool for doing
this are typical-sequences techniques.

Similar definitions of strong secrecy in key agreement have been proposed
already by Maurer [14] (for the secret-key rate) and by Csiszár [9] (for the
secrecy capacity). The authors have learned about the existence of the paper [9]
(in Russian) only a few days before submitting this final version. In [14], the
lower bound (3) on a slightly weaker variant of the strong secret-key rate than
the one studied in this paper was proven. We present a substantially simplified
proof here. In [9], a result similar to Theorem 2 was shown, using methods
different from ours. More precisely, it was proved that the technique of [10]
actually leads to a stronger secrecy than stated. In contrast to this, we propose
a generic procedure for amplifying the secrecy of any information-theoretic key
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agreement, requiring an amount of communication which is negligible compared
to the length of the resulting key.

1.4 Entropy Measures and Variational Distance

We recall the definitions of some entropy measures needed in this paper. Let R
be a discrete random variable with range R. Then the (Shannon) entropy H(R)
is defined as1 H(R) := −

∑

r∈R PR(r) · log(PR(r)). The Rényi entropy H2(R)
is H2(R) := − log(

∑

r∈R P 2
R(r)). Finally, the min-entropy H∞(R) is H∞(R) :=

− logmaxr∈R(PR(r)). For two probability distributions PX and PY on a set
X , the variational distance between PX and PY is defined as d(PX , PY ) :=
(
∑

x∈X |PX(x)− PY (x)|)/2.

2 Secret-Key Agreement from Correlated Randomness

In this section we define a stronger variant of the secret-key rate of a distribution
PXY Z and show that this new quantity is equal to the previous, weak secret-
key rate as defined in [13]. The protocol for strong key agreement consists of
the following steps. First, weak key agreement is repeated many times. Then,
so-called information reconciliation (error correction) and privacy amplification
are carried out. These steps are described in Section 2.2. Of central importance
for all the arguments made are typical-sequences techniques (Section 2.3). The
main result of this section, the equality of the secret-key rates, is then proven in
Section 2.4.

2.1 Definition of Weak and Strong Secret-Key Rates

Definition 1 [13] The (weak) secret-key rate of X and Y with respect to Z,
denoted by S(X;Y ||Z), is the maximal R ≥ 0 such that for every ε > 0 and
for all N ≥ N0(ε) there exists a protocol, using public communication over an
insecure but authenticated channel, such that Alice and Bob, who receive XN =
[X1, . . . , XN ] and Y N = [Y1, . . . , YN ], can compute keys S and S′, respectively,
with the following properties. First, S = S ′ holds with probability at least 1− ε,
and second,

1

N
I(S;CZN ) ≤ ε and

1

N
H(S) ≥ R− ε

hold. Here, C denotes the collection of messages sent over the insecure channel
by Alice and Bob.

As pointed out in Section 1.3, the given definition of the secret-key rate is unsat-
isfactorily and, as shown later, unnecessarily weak. We give a strong definition
which bounds the information leaked to the adversary in an absolute sense and
additionally requires the resulting key to be perfectly-uniformly distributed.

1 All the logarithms in this paper are to the base 2, unless otherwise stated.
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Definition 2 The strong secret-key rate of X and Y with respect to Z, denoted
by S(X;Y ||Z), is defined in the same way as S(X;Y ||Z) with the modifications
that Alice and Bob compute strings SA and SB which are with probability at
least 1− ε both equal to a string S with the properties

I(S;CZN ) ≤ ε and H(S) = log |S| ≥ N · (R− ε) .

Obviously, S(X;Y ||Z) ≤ S(X;Y ||Z) holds. It is the goal of this section to
show equality of the rates for every distribution PXY Z . Thus the attention can
be totally restricted to the strong notion of secret-key rate.

2.2 Information Reconciliation and Privacy Amplification

In this section we analyze the two steps, called information reconciliation and
privacy amplification, of a protocol allowing strong secret-key agreement when-
ever I(X;Y )− I(X;Z) > 0 or I(Y ;X)− I(Y ;Z) > 0 holds. More precisely, we
show

S(X;Y ||Z) ≥ max { I(X;Y )− I(X;Z) , I(Y ;X)− I(Y ;Z) } . (3)

Assume I(X;Y ) > I(X;Z). The information-reconciliation phase of interac-
tive error correction consists of the following step. For some suitable function
h : XN → {0, 1}L, Alice sends h(XN ) to Bob for providing him (who knows Y N )
with a sufficient amount of information about XN that allows him to reconstruct
XN with high probability. The existence of such a function (in a fixed universal
class, see Definition 3) for L on the order of N ·H(X|Y ) is stated in Lemma 1,
a weaker variant of which was formulated already in [14]. Note that this type
of (one-way) information-reconciliation protocol is optimal with respect to the
amount of exchanged information and efficient with respect to communication
complexity, but not with respect to computational efficiency of Bob. There ex-
ist efficient interactive methods, which however leak more information to the
adversary (see [4] for various results on information reconciliation).

Definition 3 [7] A class G of functions g : A −→ B is universal if, for any
distinct x1 and x2 in A, the probability that g(x1) = g(x2) holds is at most 1/|B|
when g is chosen at random from G according to the uniform distribution.

Example 1. [7] Let 1 ≤ M ≤ N , let a be an element of GF (2N ), and interpret
x ∈ {0, 1}N as an element of GF (2N ) with respect to a fixed basis of the ex-
tension field over the prime field GF (2). Consider the function ha : {0, 1}N →
{0, 1}M assigning to an argument x the first M bits (with respect to this basis
representation) of the element ax of GF (2N ), i.e., ha(x) := LSBM (a · x). The
class {ha : a ∈ GF (2N )} is a universal class of 2N functions mapping {0, 1}N
to {0, 1}M .

Lemma 1 Let X and Y be random variables, and let [(X1, Y1), . . . , (XN , YN )]
be a block of N independent realizations of X and Y . Then for every ε > 0 and
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ε′ > 0, for sufficiently large N , for every L satisfying L/N > (1 + ε)H(X|Y ),
and for every universal class H of functions mapping XN to {0, 1}L, there exists
a function h in H such that XN = [X1, . . . , XN ] can be decoded from Y N and
h(XN ) with error probability at most ε′.

The proof of Lemma 1 is omitted. See [4] for the proof of a closely related result.
In the second protocol phase, privacy amplification, Alice and Bob compress

the mutual but generally highly-insecure string XN to a shorter string S with
virtually-uniform distribution and about which Eve has essentially no informa-
tion. (Note that Eve’s total information about XN consists of ZN and h(XN )
at this point.) Bennett et. al. [2] have shown that universal hashing allows for
distilling a virtually-secure string whose length is roughly equal to the Rényi
entropy of the original string in Eve’s view.

Lemma 2 [2] Let W be a random variable with range W, and let G be the
random variable corresponding to the random choice, according to the uniform
distribution, of a function out of a universal class of functions mapping W to
{0, 1}M . Then H(G(W )|G) ≥ H2(G(W )|G) ≥M − 2M−H2(W )/ ln 2.

Lemma 2 states that if Alice and Bob share a particular string S and Eve’s
information about S leads to the distribution PS|U=u (where u denotes the
particular value of her information U) about which Alice and Bob know nothing
except a lower bound t on the Rényi entropy, i.e., H2(S|U = u) ≥ t, then Alice
and Bob can generate a secret key S ′ of roughly t bits. More precisely, if Alice
and Bob compress S to a (t− s)-bit key for some security parameter s > 0, then
Eve’s total information about this key is exponentially small in s (see Figure 1).

A natural problem that arises when combining information reconciliation and
privacy amplification with universal hashing is to determine the effect of the
error-correction information (leaked also to the adversary) on the Rényi entropy
of the partially-secret string, given Eve’s information. The following result, which
was shown by Cachin [5] as an improvement of an earlier result by Cachin and
Maurer [6], states that leaking r physical bits of arbitrary side information about
a string cannot reduce its Rényi entropy by substantially more than r, except
with exponentially small probability.

Lemma 3 [5] Let X and Q be random variables, and let s > 0. Then with
probability at least 1− 2−(s/2−1), we have H2(X)−H2(X|Q = q) ≤ log |Q|+ s.

2.3 Typical Sequences

In the following proofs we will make use of so-called typical-sequences arguments.
Such arguments are based on the fact that if a large number of independent
realizations of a random variable U is considered, then the actual probability
of the particular outcome sequence is, with overwhelming probability, close to a
certain “typical probability.” There exist various definitions of typical sequences.
The definition given below corresponds to a weak notion of typicality, dealing
only with probabilities and not with the number of occurrences of the outcome
symbols of the original random variable U in the sequence.
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Definition 4 Let U be a random variable with probability distribution PU and
range U , and let N ≥ 0. Then a sequence u = (u1, u2, . . . , uN ) ∈ UN is called
(weakly) δ-typical if 2−N(H(U)+δ) ≤ PUN (u) ≤ 2−N(H(U)−δ).

Lemma 4 states that if N is large enough, then UN , distributed according to
PUN = PN

U which corresponds to N independent realizations of U , is δ-typical
with high probability. More precisely, the probability of the “non-typicality”
event tends to zero faster than 1/N 2. This follows immediately from Theo-
rem 12.69 in [8].

Lemma 4 [8] For all δ, ε > 0, we have N · (Prob [UN is not δ-typical ])1/2 < ε
for sufficiently large N .

As a first step towards proving equality of the secret-key rates with respect
to the weak and strong definitions, we show that the weak definition can be
extended by an additional condition requiring that the resulting key is close-to-
uniformly distributed. More precisely, Lemma 5 states that the condition

1

N
H(S) ≥ 1

N
log |S| − ε (4)

can be included into the definition of S(X;Y ||Z) without effect on its value.
(Note that the condition (4) is much weaker than the uniformity condition in
the definition of S(X;Y ||Z).)

Lemma 5 Let the uniform (weak) secret-key rate Su(X;Y ||Z) be defined simi-
larly to S(X;Y ||Z), but with the additional condition (4). Then Su(X;Y ||Z) =
S(X;Y ||Z) holds.

Proof. The idea is to carry out the key-generation procedure independently many
times and to apply data compression. More precisely, secret-key agreement with
respect to the definition of S(X;Y ||Z) is repeated M times. Clearly, we can
assume that the resulting triples [Si, S

′
i, (Z

NC)i] are independent for different
values of i and can be considered as the random variables in a new random
experiment. When repeating this experiment for a sufficient number of times
and applying data compression to the resulting sequence of keys, thereby using
that with high probability both [S1, S2, . . .] and [S′1, S

′
2, . . .] are typical sequences,

one finally obtains key agreement that ends up in a highly-uniformly distributed
key.

Let R := S(X;Y ||Z). We show that for any ε > 0 (and for a sufficiently
large number of realizations of the random variables) secret-key agreement at a
rate at least R− ε is possible even with respect to the stronger definition which
includes the uniformity condition (4).

For parameters ε′ > 0 and N > 0, both to be determined later, let secret-
key agreement (not necessarily satisfying the new condition) be carried out M
times independently. Let Si and S′i, i = 1, . . . ,M , be the generated keys, and
let Ci and (ZN )i be the corresponding collection of messages sent over the pub-
lic channel and the realizations of Z that Eve obtains, respectively. Then the
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triples [Si, S
′
i, (Z

NC)i], i = 1, . . . ,M , are statistically independent and identi-
cally distributed. According to the definition of S(X;Y ||Z), we can achieve for
every i

H(Si)/N ≥ R− ε′ , Prob [Si 6= S′i] < ε̃ , and I(Si; (Z
NC)i)/N < ε′ , (5)

where the constant ε̃ will be specified later. (Note that in order to make only ε̃
smaller and to leave ε′ unchanged, it is not necessary to increase N because the
second condition in (5) is stricter for larger N : The key can be subdivided into
smaller pieces at the end, and for every such piece, the error probability is at
most ε̃.)

Using the fact that for all α > 0 and δ > 0, the event E(δ) that the
sequence [S1, S2, . . . , SM ] is δ-typical has probability at least 1 − α for suffi-
ciently large M , we can transform the key vector [S1, . . . , SM ] into an almost-
uniformly distributed key T as follows. If E(δ) occurs, then let T := [S1, . . . , SM ],
otherwise T := ∆ for some failure symbol ∆. The key T ′ is computed from
[S′1, . . . , S

′
M ] analogously. Then, T and T ′ have the following properties. First,

log |T | ≤ M(H(S) + δ) + 1 and H(T ) ≥ (1 − α)M(H(S) − δ) follow from the
definitions of T and of δ-typical sequences. For the quantities occurring in the
definition of Su(X;Y ||Z), we hence obtain

H(T )/MN ≥ (1− α)(R− ε′ − δ/N) , (6)

Prob [T 6= T ′] < Mε̃ , (7)

I(T ; (ZNC)i=1,...,M )/MN < ε′ , (8)

(log |T | −H(T ))/MN ≤ αR + 2δ/N . (9)

Because of Lemma 4 one can choose, for every sufficiently large N , constants
α, δ, and ε′ such that Prob [E(δ)] < α (where E(δ) stands for the complementary
event of E(δ)) for this choice of M , and such that the expressions on the right-
hand sides of (8) and (9) are smaller than ε, whereas the right-hand side of (6) is
greater than R− ε. Finally, ε̃ can be chosen as ε/M , such that the condition (7)
is also satisfied.

We conclude that the uniform secret-key rate Su(X;Y ||Z) is at least R =
S(X;Y ||Z). This concludes the proof. 2

Lemma 6 links Rényi entropy with typicality of sequences (and hence Shan-
non entropy). More precisely, the conditional Rényi entropy of a sequence of
realizations of random variables is close to the length of the sequence times the
conditional Shannon entropy of the original random variables, given a certain
typicality event which occurs with high probability. Related arguments already
appeared in [12] and [5].

Lemma 6 Let PXZ be the joint distribution of two random variables X and
Z, let 0 < δ ≤ 1/2, and let N be an integer. The event F(δ) is defined as fol-
lows: First, the sequences xN and (x, z)N must both be δ-typical, and second,
zN must be such that the probability, taken over (x′)N according to the distri-
bution PXN |ZN=zN , that (x′, z)N is δ-typical is at least 1 − δ. Then we have
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N · Prob [F(δ)]→ 0 for N →∞, and H2(X
N |ZN = zN ,F(δ)) ≥ N(H(X|Z)−

2δ) + log(1− δ).

Proof. Because of Lemma 4, the event, denoted by E(δ), that both xN and
(x, z)N are δ-typical has probability at least 1 − δ2 for some N = N(δ) with

N(δ)·δ → 0. For this value of N , zN has with probability at least 1−
√

δ2 = 1−δ

the property that (x′, z)N is δ-typical with probability at least 1−
√

δ2 = 1− δ,
taken over (x′)N distributed according to PXN |ZN=zN . Hence the probability of

the complementary event F(δ) of F(δ) is at most δ2+δ, thus N ·Prob [F(δ)]→ 0.
On the other hand, given that zN and (x′, z)N are δ-typical, we can conclude

that

2−N(H(X|Z)+2δ) ≤ PXN |ZN ((x′)N , zN ) ≤ 2−N(H(X|Z)−2δ)

holds. For a fixed value zN , the Rényi entropy of XN , given the events ZN = zN

and F(δ), is lower bounded by the Rényi entropy of a uniform distribution
over a set with (1 − δ) · 2N(H(X|Z)−2δ) elements: H2(X

N |ZN = zN ,F(δ)) ≥
N(H(X|Z)− 2δ) + log(1− δ). 2

2.4 Equality of Weak and Strong Rates

In this section we prove the lower bound (3) on S(X;Y ||Z) and the first main
result, stating that the weak and strong secret-key rates are equal for every
distribution. A result closely related to Lemma 7 was proved as the main re-
sult in [14]. We give a much shorter and simpler proof based on the results in
Sections 2.2 and 2.3.

Lemma 7 For all PXY Z , S(X;Y ||Z) ≥ max { I(X;Y ) − I(X;Z) , I(Y ;X) −
I(Y ;Z) } holds.

Proof. We only prove that I(X;Y )−I(X;Z) = H(X|Z)−H(X|Y ) is an achiev-
able rate. The statement then follows by symmetry.

Let ε > 0, and let ∆ > 0 be determined later. We show that for the parameter
ε, and for sufficiently large N , there exists a protocol which achieves the above
rate (reduced by ε). Let δ < ε/4 and α < ∆/(2H(X)) be constants, and let F(δ)
be the event as defined in Lemma 6. Because of Lemma 6 we have for sufficiently
large N that N · Prob [F(δ)] < α. On the other hand,

H2(X
N |ZN = zN ,F(δ)) ≥ N · (H(X|Z)− 2δ) + log(1− δ)

holds.
The protocol now consists of two messages sent from Alice to Bob, one for

information reconciliation and the other one for privacy amplification (see Sec-
tion 2.2). Let β < ε/(2H(X|Y )) be a positive constant. According to Lemma 1
there exists for sufficiently large N a function h : XN → {0, 1}L, where L :=
d(1 + β)NH(X|Y )e, such that XN can be determined from Y N and h(XN )
with probability at least 1− ε/2 (using the optimal strategy). Clearly, the value
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h(XN ) reduces Eve’s uncertainty in terms of Rényi entropy about XN . We con-
clude from Lemma 3 for s := 2 log(2NH(X)/∆) + 2 that with probability at
least 1− 2−(s/2−1),

H2(X
N |ZN = zN , h(XN ) = h(xN ),F(δ)) (10)

≥ N · (H(X|Z)− 2δ) + log(1− δ)− [(1 + β) ·N ·H(X|Y ) + 1 + s]

= N · (H(X|Z)−H(X|Y ))− 2δN − βNH(X|Y )− 1− s+ log(1− δ)

=: Q .

Finally, Alice and Bob use privacy amplification to transform their mutual in-
formation XN into a highly-secret string S̃. Let r := dlogNe, and let M := Q−r
be the length of the resulting string S̃. If G is the random variable correspond-
ing to the random choice of a universal hash function mapping XN → {0, 1}M ,
and if S̃ := G(XN ), then we have H(S̃|ZN = zN , h(XN ) = h(xN ), G,F(δ)) ≥
M − 2−r/ ln 2 under the condition that inequality (10) holds. Hence we get for
sufficiently large N

H(S̃|ZN , h(XN ), G) ≥ (Prob [F(δ)]− 2−(s/2−1))(M − 2−r/ ln 2)

≥M − 2−r/ ln 2− (Prob [F(δ)] + 2−(s/2−1)) ·N ·H(X)

> log |S̃| −∆

by definition of r, α, and s. Let now S be a “uniformization” of S̃ (i.e., a random
variable S with range S = S̃ = {0, 1}M that is generated by sending S̃ over
some channel characterized by PS|S̃ , that is uniformly distributed, and that

minimizes Prob [S 6= S̃] among all random variables with these properties). For
C = [h(XN ), G] and sufficiently small ∆, we can then conclude that

I(S;ZNC) < ε , H(S) = log |S| , and Prob [S ′ 6= S] < ε

holds because of H(S̃) ≥ H(S̃|ZN , h(XN ), G). The achievable key-generation
rate with this protocol is hence at least

H(X|Z)−H(X|Y )− 2δ − βH(X|Y ) ≥ I(X;Y )− I(X;Z)− ε .

Thus we obtain S(X;Y ||Z) ≥ I(X;Y )−I(X;Z), and this concludes the proof. 2

Theorem 1 is the main result of this section and states that the strong secret-
key rate S(X;Y ||Z) is always equal to the weak secret-key rate S(X;Y ||Z).

Theorem 1 For all distributions PXY Z , we have S(X;Y ||Z) = S(X;Y ||Z).

Proof. Clearly, S(X;Y ||Z) ≤ S(X;Y ||Z) holds. Let R := S(X;Y ||Z), and let
ε > 0. According to the definition of the secret-key rate S(X;Y ||Z) (and because
of Lemma 5), there exists, for sufficiently large N , a protocol with the following
properties: Alice and Bob know, at the end of the protocol, strings S and S ′

such that H(S) ≥ NR −Nε, Prob [S 6= S ′] < ε, I(S;ZNC) ≤ Nε, and H(S) ≥
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log |S|−Nε hold. From these equations, we can conclude by Fano’s inequality [8]
that

I(S;S′) = H(S)−H(S|S′) ≥ H(S)− h(Prob [S 6= S′])− Prob [S 6= S′](H(S) +Nε)

> H(S)(1− ε)− h(ε)−Nε2 ≥ NR−NRε−Nε− h(ε)

holds (where h is the binary entropy function), hence I(S;S ′) − I(S;ZNC) ≥
NR−NRε−2Nε−h(ε). Let us now consider the random experiment [S, S ′, ZNC]
(where we assume that the realizations are independent). By applying Lemma 7
to the new distribution, we get

S(X;Y ||Z) ≥ S(S;S′||ZNC)/N ≥ (I(S;S′)− I(S;ZNC))/N ≥ R−Rε− 2ε− h(ε)/N

for every ε > 0, thus S(X;Y ||Z) ≥ S(X;Y ||Z). 2

3 Strengthening the Secrecy Capacity

This section is concerned with the model introduced by Wyner [18] and the gen-
eralization thereof by Csiszár and Körner [10], which served as a motivation for
Maurer’s [13] scenario treated in Section 2. In analogy to the weak definition of
the secret-key rate, the original definition of the secrecy capacity is not satisfac-
tory because the total amount of information about the resulting key that the
adversary obtains can be unbounded. We show that also the definition of the
secrecy capacity can be strengthened, without any effect on the actual value of
this quantity, in the sense that the total amount of information the adversary
obtains about the secret key is negligibly small. More precisely, we develop a
generic reduction of strong to weak key agreement by one-way communication
and such that the total length of the additional messages is negligible compared
to the length of the resulting string. The low-communication-complexity condi-
tion is necessary because in this model, in contrast to the model of Section 2, no
communication is “for free.” More precisely, the noisy broadcast channel must
be used for the entire communication (i.e., for the exchange of all the error-
correction and privacy-amplification information), which at first sight appears
to reduce the maximal achievable key-generation rate. However, the use of ex-
tractors (see Section 3.2) instead of universal hashing for privacy amplification
allows to keep the fraction of channel uses for communicating the error-correction
and privacy-amplification messages arbitrarily small.

3.1 Definition of the Secrecy Capacity CS(PY Z|X)

Assume that the parties Alice and Bob, and the adversary Eve, are connected
by a noisy broadcast channel with conditional output distribution PY Z|X [10].
(Wyner’s wire-tap channel corresponds to the special case where PY Z|X = PY |X ·
PZ|Y holds.) The ability of generating mutual secret information was quantified
as follows.
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Definition 5 [18], [10] Consider a memoryless broadcast channel character-
ized by the conditional joint distribution PY Z|X . The secrecy capacity CS(PY Z|X)
of the channel is the maximal real number R ≥ 0 such that for every ε > 0, for
sufficiently large N , and for K := b(R − ε)Nc, there exists a possibly prob-
abilistic (i.e., additionally depending on some random bits) encoding function
e : {0, 1}K → XN together with a decoding function d : YN → {0, 1}K such
that if S is uniformly distributed over {0, 1}K , we have for XN = e(S) and
S′ := d(Y N ) that Prob [S′ 6= S] < ε and

1

K
H(S|ZN ) > 1− ε (11)

hold.

3.2 Privacy Amplification with Extractors

In order to show that the notion of secrecy used in the definition of CS can be
strengthened without reducing the secrecy capacity of the broadcast channel, we
need a different technique for privacy amplification, requiring less information to
be transmitted, namely only an asymptotically arbitrarily small fraction of the
number of bits of the partially-secure string to be compressed. (Otherwise, the
channel applications needed for sending this message would reduce the achievable
key-generation rate.) We show that such a technique is given by so-called extrac-
tors. Roughly speaking, an extractor allows to efficiently isolate the randomness
of some source into virtually-random bits, using a small additional number of
perfectly-random bits as a catalyst, i.e., in such a way that these bits reappear
as a part of the almost-uniform output. Extractors are of great importance in
theoretical computer science, where randomness is often regarded as a resource.
They have been studied intensively in the past years by many authors. For an
introduction and some constructions, see [16], [17], and the references therein.

Recent results, described below, show that extractors allow, using only a
small amount of true randomness, to distill (almost) the entire randomness,
measured in terms of H∞, of some string into an almost-uniformly distributed
string. A disadvantage of using extractors instead of universal hashing for privacy
amplification is that a string of length only roughly equal to the min-entropy
instead of the generally greater Rényi entropy of the original random variable can
be extracted. However, this drawback has virtually no effect in connection with
typical sequences, i.e., almost-uniform distributions, for which all the entropy
measures are roughly equal.

Definition 6 A function E : {0, 1}N × {0, 1}d → {0, 1}r is called a (δ′, ε′)-
extractor if for any random variable T with range T ⊆ {0, 1}N and min-entropy
H∞(T ) ≥ δ′N , the variational distance of the distribution of [V,E(T, V )] to the
uniform distribution over {0, 1}d+r is at most ε′ when V is independent of T and
uniformly distributed in {0, 1}d.

The following theorem was proved in [17]. It states that there exist extractors
which distill virtually all the min-entropy out of a weakly-random source, thereby
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requiring only a small (i.e., “poly-logarithmic”) number of truly-random bits.
Note that Definition 6, and hence the statement of Lemma 8, is formally slightly
stronger than the corresponding definition in [17] because it not only requires
that the length of the extractor output is roughly equal to the min-entropy of
the source plus the number of random bits, but that these bits even reappear
as a part of the output. It is not difficult to see that the extractors described
in [17] have this additional property.

Lemma 8 [17] For every choice of the parameters N , 0 < δ′ < 1, and ε′ > 0,
there exists a (δ′, ε′)-extractor E : {0, 1}N ×{0, 1}d → {0, 1}δ′N−2 log(1/ε′)−O(1),
where d = O((log(N/ε′))2 log(δ′N)).

Lemma 9, which is a consequence of Lemma 8, is what we need in the proof
of Theorem 2. The statement of Lemma 9 is related to Lemma 2, where universal
hashing is replaced by extractors, and min-entropy must be used instead of Rényi
entropy (see Figure 1).
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Fig. 1. Privacy Amplification: Universal Hashing Versus Extractors

Lemma 9 Let δ′,∆1,∆2 > 0 be constants. Then there exists, for all sufficiently
large N , a function E : {0, 1}N × {0, 1}d → {0, 1}r, where d ≤ ∆1N and
r ≥ (δ′ − ∆2)N , such that for all random variables T with T ⊆ {0, 1}N and
H∞(T ) > δ′N , we have

H(E(T, V )|V ) ≥ r − 2−N1/2−o(1)

. (12)

Proof. Let ε′(N) := 2−
√
N/ logN . Then there exists N0 such that for all N ≥ N0

we have a (δ′, ε′)-extractor E, mapping {0, 1}N+d to {0, 1}r, where d ≤ ∆1N
(note that d = O(N/ logN) holds for this choice of ε′) and r ≥ (δ′ − ∆2)N .
By definition, this means that for a uniformly distributed d-bit string V and if
H∞(T ) ≥ δ′N , the distance of the distribution of [V,E(T, V )] to the uniform
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distribution Ud+r over {0, 1}d+r is at most ε′ = 2−
√
N/ logN . Because

d([V,E(T, V )], Ud+r) = EV [d(E(T, V ), Ur)] ≤ ε′

holds for uniformly distributed V , the distance of the distribution of E(T, v)
to the uniform distribution Ur (over {0, 1}r) is at most

√
ε′ with probability at

least 1−
√

ε′ over v, i.e.,

PV

[

d (E(T, V ), Ur) ≤ 2−
√
N/2 logN

]

≥ 1− 2−
√
N/2 logN . (13)

Inequality (12) follows from (13) in a straight-forward way. 2

Lemma 3 gives an upper bound on the effect of side information on the
Rényi entropy of a random variable, and thus links information reconciliation
and privacy amplification with universal hashing. We now need a similar result
with respect to min-entropy H∞. The proof of Lemma 10 is straight-forward
and therefore omitted.

Lemma 10 Let X and Q be random variables, and let s > 0. Then with proba-
bility at least 1− 2−s, we have H∞(X)−H∞(X|Q = q) ≤ log |Q|+ s.

3.3 The Strong Secrecy Capacity CS(PY Z|X)

In this section we show that the definition of secrecy capacity in Csiszár and
Körner’s, hence also in Wyner’s, model can be strengthened similarly to the
weak and strong notions of secret-key rate: Not the rate, but the total amount
of leaked information is negligible. Note that an additional uniformity condition
is not necessary here since already the definition of CS requires the key to be
perfectly-uniformly distributed. Theorem 2 is the main result of this section.

Definition 7 For a distribution PY Z|X , the strong secrecy capacity CS(PY Z|X)
is defined similarly to CS(PY Z|X), where the secrecy condition (11) is replaced
by the stronger requirement H(S|ZN ) > K − ε.

Theorem 2 For all distributions PY Z|X , we have CS(PY Z|X) = CS(PY Z|X).

Proof. The idea of the proof is to repeat the (weak) key generation a num-
ber of times and to compute from the block of resulting weak keys a secure
string satisfying the stronger definition of secrecy capacity. More precisely, this
is done by information reconciliation as described in Section 2.2, and by privacy
amplification with extractors. Since the parties have, in contrast to the public-
discussion model, no access to a noiseless public channel, all the error-correction
and privacy-amplification information must be sent over the noisy channel speci-
fied by the conditional marginal distribution PY |X(y, x) =

∑

z∈Z PY Z|X(y, z, x).
However, the use of extractors instead of universal hashing for privacy amplifica-
tion allows to keep the fraction of channel uses required for this communication
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negligibly small. This is precisely what is needed for showing equality of CS and
CS .

Let R := CS(PY Z|X). For a constant ε′ > 0 and integers M and N to be
determined later, assume that the key-generation procedure, with respect to
the (weak) secrecy capacity CS and parameters ε′ and N , is repeated indepen-
dently M times. Let SM := [S1, . . . , SM ] and (S′)M := [S′1, . . . , S

′
M ] be the

generated keys of Alice and Bob, respectively, and let K = b(R − ε′)Nc be the
length of (the binary strings) Si and S′i. From the fact that Prob [Si 6= S′i] < ε′

holds we conclude, by Fano’s inequality, H(Si|S′i) ≤ ε′K + 1 for all i, hence
H(SM |(S′)M ) ≤M(ε′K + 1).

For constants ∆1,∆2 > 0, we conclude from Lemma 1 that there exists an
error-correction-information function h : ({0, 1}K)M −→ {0, 1}d(1+∆1)M(ε′K+1)e

such that SM can be determined from (S′)M and h(SM ) with probability at least
1−∆2 for sufficiently large M . Hence d(1 +∆1)M(ε′K + 1)e message bits have
to be transmitted over the channel PY |X for error correction (see below).

According to the definition of the (weak) secrecy capacity CS , we have
H(Si|ZN

i ) ≥ K(1 − ε′). For δ > 0, let the event F(δ), with respect to the
random variables S and ZN , be defined as in Lemma 6. For every α > 0 we can
achieve, for arbitrarily large (fixed) N and M , MK · Prob [F(δ)] < α and

H∞(SM |(ZN )M = (zN )M ,F(δ)) ≥M(K(1− ε′)− 2δ) + log(1− δ) .

The reason is that the statement of Lemma 6 also holds for the min-entropy
H∞ instead of H2. The proof of this variant is exactly the same because it is
ultimately based on uniform distributions, for which H2 and H∞ (and also H)
are equal.

Let us now consider the effect of the error-correction information (partially)
leaked to the adversary. According to Lemma 10, we have for s > 0 with proba-
bility at least 1− 2−s

H∞(SM |(ZN )M = (zN )M , h(SM ) = h(sM ),F(δ))

≥ M(K(1− ε′)− 2δ) + log(1− δ)− d(1 +∆1)M(ε′K + 1)e − s

≥ MK(1−∆3) (14)

for some constant ∆3 that can be made arbitrarily small by choosing N large
enough, s := dlogMe, and ∆1 as well as ε′ small enough.

Let now for constants ∆4,∆5 > 0 and sufficiently large M an extractor
function E be given according to Lemma 9, i.e., E : {0, 1}MK×{0, 1}d → {0, 1}r
with d ≤ ∆4MK and r ≥MK(1−∆3 −∆5) such that, for S̃ := E(SM , V ), the
inequality

H(S̃|(ZN )M = (zN )M , h(SM ) = h(sM ), V,F(δ)) ≥ r − 2−(MK)1/2−o(1)

holds if V is uniformly distributed in {0, 1}d. Let S′ be the key computed in the
same way by Bob (where the random bits V are sent over to him by Alice using
the channel PY |X with an appropriate error-correcting code).
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The resulting key S̃ of Alice is now close-to-uniformly, but not perfectly-
uniformly distributed. Given the events F(δ) and that inequality (14) holds, we

have H(S̃) ≥ r − 2−(MK)1/2−o(1)

.
Let now, as in the proof of Lemma 7, S be the “uniformization” of S̃ (the

random variable which is uniformly distributed in {0, 1}r and jointly distributed
with S̃ in such a way that Prob [S 6= S̃] is minimized). It is clear that for any
∆6 > 0, Prob [S 6= S̃] < ∆6 can be achieved for sufficiently large M .

Let us finally consider the number of channel uses necessary for commu-
nicating the information for information reconciliation and privacy amplifica-
tion. The number of bits to be transmitted is, according to the above, at most
d(1 + ∆1)M(ε′K + 1)e+ ∆4MK. It is an immediate consequence of Shannon’s
channel-coding theorem (see for example [8]) that for arbitrary ∆7,∆8 > 0 and
sufficiently large M , the number of channel uses for transmitting these messages
can be less than

MK((1 +∆1)ε
′ +∆4) + (1 +∆1)M + 1

C(PY |X)−∆7

(where C(PY |X) is the capacity of the channel PY |X from Alice to Bob), keeping
the probability of a decoding error below ∆8. Note that C(PY |X) > 0 clearly
holds when CS(PY Z|X) > 0. (If C(PY |X) = 0, the statement of the theorem is
hence trivially satisfied.) Thus the total number of channel uses for the entire key
generation can be made smaller than MN(1 +∆9) for arbitrarily small ∆9 > 0
and sufficiently large N .

From the above we can now conclude that S is a perfectly-uniformly dis-
tributed string of length r = (1− o(1))RL, where L = (1+ o(1))MN is the total
number of channel uses. Furthermore, we have by construction Prob [S ′ 6= S] =
o(1) and finally

H(S|ZL) = H(S)− I(S;ZL) ≥ H(S)− I(S̃;ZL) (15)

= r − 2−(MK)1/2−o(1) − r · (2−s + Prob [F(δ)]) = r − o(1) .

The inequality in (15) holds because ZL → S̃ → S is a Markov chain and because
of the data-processing lemma [8]. Hence the achievable rate with respect to the
strong secrecy-capacity definition is of order (1−o(1))R = (1−o(1))CS(PY Z|X),

thus CS(PY Z|X) = CS(PY Z|X) holds. 2

4 Concluding Remarks

The fact that previous security definitions of information-theoretic key agree-
ment in the noisy-channel models by Wyner [18] and Csiszár and Körner [10]
and the correlated-randomness settings of Maurer [13] and Ahlswede–Csiszár [1]
are unsatisfactory is a motivation for studying much stronger definitions which
tolerate the adversary to obtain only a negligibly small amount of information
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about the generated key. We have shown, by a generic reduction with low commu-
nication complexity and based on extractor functions, that in all these models,
the achievable key-generation rates with respect to the weak and strong defi-
nitions are asymptotically identical. Therefore, the old notions can be entirely
replaced by the new definitions.
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