
Minimal-Latency Secure Function Evaluation

Donald Beaver ?

CertCo, Inc.

Abstract. Sander, Young and Yung recently exhibited a protocol for
computing on encrypted inputs, for functions computable in NC1. In
their variant of secure function evaluation, Bob (the “CryptoComputer”)
accepts homomorphically-encrypted inputs (x) from client Alice, and
then returns a string from which Alice can extract f(x, y) (where y is
Bob’s input, or e.g. the function f itself). Alice must not learn more
about y than what f(x, y) reveals by itself. We extend their result to
encompass NLOGSPACE (nondeterministic log-space functions).
In the domain of multiparty computations, constant-round protocols
have been known for years [BB89,FKN95]. This paper introduces novel
parallelization techniques that, coupled with the [SYY99] methods, re-
duce the constant to 1 with preprocessing. This resolves the conjecture
that NLOGSPACE subcomputations (including log-slices of circuit com-
putation) can be evaluated with latency 1 (as opposed to just O(1)).

1 Introduction

We consider variants of the now-classic problem raised by Yao [Y86] in which
Alice and Bob wish to compute f(x, y) while keeping their respective inputs x
and y private. Roughly speaking, their computation should be as “secure” as if a
trusted third party had accepted their inputs and provided nothing but the final
output. This problem, Secure Function Evaluation, has a rich history of investi-
gation, with a great deal of attention given to minimizing needed assumptions
and communication complexity.

CEI. One particular variant is that of Computing on Encrypted Inputs (CEI), in
which Alice provides Bob with encryptions of x (or its bits), and Bob must enable
Alice to determine C(x) without revealing his “program” C. Mathematically, C
can itself be encoded as an input to a universal circuit, hence this variant can be
subsumed in general secure function evaluation. But the ground rules for CEI are
somewhat different, in that Alice provides her input in the form of encryptions
rather than through an inventor’s flexibly chosen alternative (such as indirectly
through oblivious transfer [R81]).
This is somewhat different than the general 2-party setting, in which encryp-

tions can be used as an implementation tool but are not required. Moreover, the
encryptions used in “Yao gates” and other earlier techniques are usually meant
to encrypt random secrets that indirectly represent secret bits, as opposed to

? CertCo, 55 Broad St., New York, NY 10004; beaverd@certco.com.

Minimal-Latency Secure Function Evaluation 341

encrypting the secret bits themselves. (A concrete hint if this is confusing: Alice
often gets to learn one secret x0 or another secret x1, each of which is itself
random; but the actual value represented by this process is 0 if Alice learns x0,
or 1 if Alice learns x1.)

In the general SFE setting for two parties, preprocessing obviates the need
for “encrypted inputs” and other extra work, since a “scrambled universal cir-
cuit” can be prepared in advance and then applied in one round as soon as
the actual inputs become available. The challenge is therefore to achieve a one-
round protocol without preprocessing (other than public-key initialization and
the like).

Recently, Sander, Young and Yung provided a novel construction that enables
non-interactive computing on encrypted inputs for functions in NC1, namely
functions computed by bounded-fan-in log-depth circuits. (“Non-interactive”
means that Bob can complete his computation and return the result to Alice
without conversation beyond receiving the initial message from Alice; obviously,
Alice’s inputs must be communicated to Bob in some form.) Alice simply drops
off her input, Bob processes it, and Alice picks up the results. Dubbed “crypto-
computing” by [SYY99], this methodology has applications to mobile computing
and other settings.

Our contribution to non-interactive CEI (cryptocomputing) is to extend the
class of functions to NLOGSPACE, i.e. non-deterministic logspace, a superclass
of NC1. This extension relies on matrix techniques from Feige, Kilian and Naor
[FKN94], but also employs a newly contributed inversion-free reduction (§5.5)
to compute products of secret group elements in one pass. With these methods,
functions in NLOGSPACE can be evaluated in 1 round from scratch, answering
a challenge left open by [SYY99], namely whether complexity beyond NC1 is
attainable for non-interactive computing on encrypted inputs.

MSC. Another twist on Secure Function Evaluation introduces some number
n of parties, each holding a private input xi, who wish to compute some func-
tion f(x1, . . . , xn) [GMW86,GMW87,BGW88,CCD88]. This version, known as
Multiparty Secure Computation (MSC), has also been the subject of extensive
analysis.

When “computational” security is considered (as opposed to information the-
oretic), it is in fact possible to reduce any poly-depth circuit to a protocol with
O(1) rounds [BMR90]. With preprocessing and complexity-theoretic assump-
tions, those methods enable the results to be ready in one round after the inputs
are provided, as mentioned above for the 2-party case.

Instead, we focus on the challenge of information theoretic security. For ef-
ficient solutions (polynomial message size and local computation), the number
of rounds of communication is generally related to the circuit depth for f . Bar-
Ilan and Beaver introduced techniques to reduce the computation by log-factors
[BB89]; thus functions in NC1 can be computed in a constant expected num-
ber of rounds. In fact, the methods from [FKN94] extend this to functions in
NLOGSPACE. But the O(1) constants, while small, still exceed 1.

342 Donald Beaver

Unlike the CEI setting, we do focus here on minimizing the latency of the
computation, namely the number of rounds from when the inputs are supplied
to when the output is ready. In [B91] it was shown that 1-round latency for
secret multiplication (among other things, such as multiplicative inversion) is
achievable.

Applying that work in a brute-force fashion to the [BB89,FKN94] solutions
still gives a constant latency exceeding 1, because of the need to compute mul-
tiplicative inverses prior to evaluating components of a large product. We apply
the methods of [SYY99] to reduce the latency to 1 for NC1. The final construc-
tion provides a particularly elegant view of multiparty computation expressed
as a secret linear combination of inputs.

With the inversion-free reduction described in this work, we also show how
to achieve a latency of 1 for NLOGSPACE secret computations by avoiding the
two-phase process in earlier works. Especially attractive is the fact that, apart
from the preprocessing, no broadcast is needed. Thus a single dissemination
(broadcast message without agreement) from each honest participant suffices
for each NLOGSPACE-subcomputation.

2 Background and Definitions

We consider two different cases for function evaluation: the two-party case and
the multiparty case. In the two-party case, hidden values can be represented
through encryption, through oblivious transfer, or other such constructs. In the
multiparty case, values can be represented through encryption, of course, but
more interestingly through secret sharing [S79,B79].

It should be noted that the manipulations of these fundamental represen-
tations – encryptions or shares – are quite similar. Thus we may speak of “se-
cret addition” to mean a homomorphic encryption (e.g. E(a)E(b) = E(a ⊕ b))
or to mean a homomorphic additive sharing (e.g. h(x) = f(x) + g(x) from
h(i) = f(i) + g(i)). In general, “secret 〈operation〉” can be interpreted accord-
ing to context, whereby the representation of the result is calculated from the
representations of the inputs – be it encryption or sharing or otherwise.

Likewise, the “reconstruction” or “revelation” will refer to interpolation of
shares, or decrypting of values and propagation through trees, etc..

We note these observations explicitly to avoid doubling the size of the ex-
position, since, for example, the use of multiplicative inverses will be discussed
both in the context of encrypted-representations and shared-representations.

2.1 Secret Sharing and Multiparty Computation

We refer the reader to [S79,B79,GMW87,BGW88,CCD88] for more detailed ex-
position. A secret value x can be shared among n parties, at most t of whom
are colluding, by selecting t random coefficients at, . . . , a1 and defining f(u) =
atu

t + · · ·+ a1u+ x. Player i receives the share f(i). With t+1 correct shares,

Minimal-Latency Secure Function Evaluation 343

f(0) = x can be determined. With t or fewer shares, no information about x is
revealed.
If f(u) represents f(0) = x and g(u) represents g(0) = y, then h(u) = f(u)+

g(u) represents x + y, and shares h(i) are easily calculated without interaction
as f(i)+g(i). Multiplication protocols are more model-dependent, but generally
within a small number of rounds of interaction, a polynomial representation of
xy can be obtained as well.
There are a variety of models to which our results apply – for example,

t < n/2 covers one class, and t < n/3 covers another. (One can also withstand
general adversary structures such as “Q2” and “Q3.”) Broadcast is assumed (at
least for preprocessing), but we place no restrictions on the computational power
of attackers.
For simplicity, we consider t-adversaries who make a static choice of whom

they will corrupt at the outset, and we investigate independence rather than
simulatability. (Generalizations are possible.) Let f(x1, . . . , xn) be a function on
n inputs, each of sizem, producing a result of sizem, and described by a boolean
circuit family Cf . A multiparty protocol for f is a collection {P1, . . . , Pn} of
interactive Turing machines, each taking input m and a private m-bit argument
xi, and producing a final output yi. A t-adversary is allowed to substitute (and
coordinate) up to t of the programs. Two inputs are T -equivalent if they are
identical on inputs in T and evaluate under f to the same result.

Definition 1. A protocol Π = {P1, . . . , Pn} for f is (information theoretically)
t-secure if, for any coalition T ⊆ Π of size |T | ≤ t, and for any T -equivalent
input (x1, . . . , xn), the view obtained by T is identically distributed.

To complicate the analysis, we may allow the inputs xi to be supplied at
some round ρ after the protocol starts. The number of rounds of preprocessing
(independent of inputs) is then ρ, and the latency is the total number of rounds
less ρ. When considering protocols that divide the computation of f into “slices”
(i.e., subcomputations), we also consider the latency of computing each slice as
the maximal number of rounds from when the previous slice is completed to
when the current slice is done.

2.2 Computing on Encrypted Inputs

In CEI, we would like to capture the challenge of dropping off encrypted inputs
which are then manipulated in a somewhat black-box fashion to produce a re-
sult for the client. This requires a bit more than postulating a homomorphic
encryption scheme, as we now discuss.
One of the earliest and most fundamental techniques for two-party circuit

evaluation is due to Yao [Y86]. In this method, Bob prepares a scrambled circuit
in which each gate is represented by an encrypted table (called a “Yao gate”),
and each wire w is represented by a pair of hidden triggers, i.e. numbers w0 and
w1. The value of wire w is 0 if Alice discovers w0; it is w1 if Alice discovers w1;
in other cases it is undefined. By propagating the discovered triggers through
each encrypted table, Alice is able to calculate the trigger for the output wire

344 Donald Beaver

of the gate. She is not told how to interpret the triggers, i.e. to which bit the
trigger corresponds – except for the final output wire.

The needed interaction is minimal, on the same order as the [SYY99] set-
ting. Alice must obtain initial wire triggers that correspond to her secret input
bits. This is achieved through chosen-1-out-of-2 Oblivious Transfer [R81]: Bob
supplies wi0 and wi1 for an input wire wi; Alice learns precisely one, namely
wi,xi

; but Bob does not learn which Alice chose. Bob also sends Alice the scram-
bled circuit. Subsequently, Alice can calculate the output value without further
interaction.

Given a homomorphic encryption scheme, one quick way to implement the
OT is by way of a generalization of Den Boer’s method [dB90]. Alice sends E(c)
where c is a bit describing her choice. Bob responds with {E(b0), E(a)/E(b0)},
{E(b1), E(a)E(1)/E(b1)}, with sets and members permuted randomly. Given
proper behavior, Alice decrypts the sets to {0, 1} and {bc, bc}, hence she obtains
bc. The authors of [SYY99] invoke a variety of options to demonstrate good
behavior without introducing interaction; those options apply here as well. Note
that Bob can send the scrambled circuit along with his OT reply, making the
whole interaction non-interactive, so to speak.

Thus, if Bob can employ a homomorphic encryption secure against Alice, an
immediate solution is possible for any polynomial-time f , not just one in NC1.
This solution makes an end run around the spirit of the problem. Since it is hard
to provide a formal test that captures whether Bob’s computations are nothing
“more” than a manipulation of encrypted values (there are a lot of clever and
indirect things he can do), we turn to a simple requirement: the protocol must
be information-theoretically secure against Alice.

Definition 2. A CEI protocol for function f represented by circuit Cf is a
two-party protocol consisting of a message from Alice to Bob followed by one in
return. The protocol is correct if for all inputs (x, y), Alice’s output is f(x, y) ex-
cept with negligible probability. A CEI protocol is private if it is computationally-
private against Bob and information-theoretically private against Alice.

Concrete Examples of Encryptions A couple of common encryptions make
suitable candidates. One is the Goldwasser-Micali encryption [GM84] in which
N is a public Blum integer with a private key consisting of its factors P,Q. Bit b
is encrypted as (−1)br2 for a random r. This is secure assuming that quadratic
residues are indistinguishable from non-residues (the Quadratic Residuosity As-
sumption, or QRA).

A second candidate is a variant of El-Gamal encryption with primes P,Q
satisfying P = 2Q + 1, and a generator g of Z/QZ. Corresponding to private
key x is the public key y = gx. To encrypt message m taken from the space of
quadratic residues, compute {gr, yrm}. Encryption of 0 and 1 uses two fixed,
public quadratic residues m0, m1. The security of this method is equivalent to
Decision Diffie-Hellman [TY98,NR97].

Minimal-Latency Secure Function Evaluation 345

In each of these cases, given some E(b), it is easy to see how to sample
random encryptions uniformly from the set of all encryptions of b, or of 1 − b,
even without knowing b.

3 Pyramid Representation

The foundation for the recent 1-round protocol of Sander, Young and Yung is
an ingenious tree representation for a circuit output. We will build multiparty
protocols around their architecture, thus we give details here; the familiar reader
can skip to the next section.
Let us coin the term pyramid representation to describe the data structure

employed in [SYY99]: a complete 4-2 tree, i.e. a tree with degree 4 at root and
even-level nodes, and with degree 2 at all odd-level nodes. We take the root to
be level 2d and the leaves to be at level 0. There are 8d leaves.
There are three important aspects to the SYY construction. First, the nodes

can be evaluated in terms of a given circuit, resulting in the root being assigned a
value equal to the output of the circuit. Second, the pyramid representation can
be constructed from encrypted leaf values without knowing what the cleartext
bits are. Third, the pyramid representation can be randomized so that it appears
chosen uniformly at random from all such representations that evaluate to the
given root value.
The authors of [SYY99] refer to the construction and randomizing as inat-

tentive computing, suggesting that the party who performs the tasks need not
pay attention to the actual values themselves. The manipulations are oblivious
to the contents.

Decoding. In slightly more detail for completeness, we first summarize how
evaluation/decoding takes place, given bit assignments to the leaves. (Ultimately,
each leaf corresponds to an encryption, and the value of the leaf node is the
decrypted bit.) Propagating upward, a node at level 2k + 1 has two children,
(a, b), and is assigned the value a ⊕ b. A node at level 2k has four children
(a, b, c, d), and is assigned the value 0 if three are labelled 0 and one is 1, or
respectively 1 if three children are labelled 1 and one is 0. (All other cases are
syntactically unacceptable and are given an undef label.) This three-of-one-kind
representation is critical.

Construction. To construct a pyramid representation of the value of some
function f applied to input bits x1, . . ., one must apply the gates of a circuit
Cf for f to the nodes in the representation. Inputs and constants lie at the
leaves. Without loss of generality, express Cf as not and or gates. We briefly
summarize the SYY construction using the following procedures, which depend
on the level of the node in the tree:

– not(x:level 0) gives y:level 0.

• set y = x ⊕ 1. (Later, 0 and 1 may be encoded by (0, 1) and (1, 0), in
which case this is operation is instead a swap.)

346 Donald Beaver

– not(x:level 2k + 2) gives y:level 2k + 2.

• return ((not(a1), a2), (not(b1), b2), (not(c1), c2), (not(d1), d2)), where
x = ((a1, a2), (b1, b2), (c1, c2), (d1, d2)).

– or(x:level 2k,y:level 2k) gives z:level 2k + 2.

• return ((x, 0), (y, 0), (x, y), 1′) where 0 denotes a level 2k zero, and 1′

denotes a level 2k + 1 one.

The ingenious motivation behind the three-of-one-kind representation is now
more clear. Negating each individual bit in the multiset {0, 0, 0, 1} provides a
three-of-one-kind result {1, 1, 1, 0}, and vice versa. More importantly, the re-
sults of the or routine are always in a three-of-one-kind configuration, when
interpreted at a higher level. Explicitly:

x y (x, 0) (y, 0) (x, y) 1’ or

0 0 0’ 0’ 0’ 1’ {0’,0’,0’,1’}
0 1 0’ 1’ 1’ 1’ {0’,1’,1’,1’}
1 0 1’ 0’ 1’ 1’ {1’,0’,1’,1’}
1 1 1’ 1’ 0’ 1’ {1’,1’,0’,1’}

where the primed values are interpreted at the next layer up ((0, 0) and (1, 1)
are written 0’, etc.).

Randomization. [SYY99] show that the following straightforward method turns
a particular pyramid representation of some result z into a randomly-chosen valid
pyramid representation of z, thereby hiding the inattentive steps used to con-
struct the original representation. The randomization method is itself inattentive
to the contents of the pyramid.

– randomize(x:level 2k + 2) gives y:level 2k + 2.

• let x be ((x11, x12), (x21, x22), (x31, x32), (x41, x42));
• for i = 1..4 and j = 1..2, set bij ← randomize(xij);
• for i = 1..4, set ci by random choice to be (bi1, bi2) or (not(bi1),not(bi2));
• choose random permutation σ ∈ S4 and return (cσ(1), cσ(2), cσ(3), cσ(4)).

3.1 Non-Interactive Computing on Encrypted Inputs

In the [SYY99] paper, this construction is applied to encrypted inputs. That is,
Alice presents CryptoComputer Bob with encryptions E(xi) of each of her input
bits xi, along with their inverses E(1− xi). This enables Bob to create the level
0 leaf labels. Note that Bob can also encrypt his secret inputs xj , as well as any
known constants, thereby filling in any other needed labels.
Now, without knowing the contents of the encryptions, Bob can invoke the

not and or routines, and finally the randomize routine. The result is a pyramid
representation whose root value is f(x, y). Bob sends this to Alice.
Alice is able to decrypt the labels on the leaves and can subsequently evaluate

the root value.

Minimal-Latency Secure Function Evaluation 347

4 Multiparty Secure Computation

With the pyramid data structure in place, we are now ready to give a multiparty
secure computation for NC1.

4.1 Latency vs. Cost: Circuit Randomization

When calculating from scratch, our MSC results will generally incur a minimal
cost of one secret multiplication. While still better than previously published
results, this falls short of the most desirable bound of 1 round, period.
Instead, we focus on latency, defined as the number of rounds from when

the inputs to a computation phase are provided until the output (whether secret
or public) is complete. Preprocessing is acceptable (and likely required), but it
must be independent of the inputs to be used.
Latency is particularly important when evaluating a depth-D circuit using

(log n)-slices to speed up the number of rounds. A brute-force approach would
normally require CḊ/log n) multiplications with C much larger than 1 (and
even including our results below, it would be at least D/log n multiplications).
If, however, the later slices benefit from preprocessing that is performed during
the first slice, then the net running time can be drastically reduced. That is, one
multiplication plus D− 1 rounds is far better than D sequential multiplications.
One way to improve latency was shown by Beaver, using a technique called

circuit randomization [B91]. With appropriate preprocessing, this enables each
secret multiplication to finish in one round, an order of magnitude faster than
the cost of a secret multiplication from scratch.
The preprocessing is simple, consisting of computing secret products on se-

cret, random inputs. Thus, for example, secrets a, b, c with c = ab are created
in advance. When x and y are ready to be multiplied, the differences (“correc-
tions”) ∆x = x−a and ∆y = y− b are published. The “correction” to c, namely
∆z = xy − c, then becomes a straightforward linear combination with public
coefficients (the ∆x, ∆y values). The bottom line is that secret multiplication
has a latency of 1 round.
We shall see below that the same conclusion applies to NC1 (and to

NLOGSPACE): secret NC1 computations have a latency of 1 round. Interest-
ingly, the following result can be derived in different ways, with or without the
recent SYY methods.

Claim. Let f be represented by a circuit Cf of polynomial size. There exists a
secure MSC protocol to compute NC1 slices of Cf with a latency of 1 round.

4.2 NC1 Via Secret Quadratic Forms and SYY

The first of two ways to achieve Claim 4.1 employs [SYY99] with secretly shared
values in place of encrypted bits. The “inattentive” creation of a pyramid rep-
resentation on secrets is done as a multiparty computation in a straightforward
manner.

348 Donald Beaver

The calculation of not at level 0 is simple: non-interactively compute 1− x
secretly. Second, the randomize step can be calculated using a secret quadratic
form applied to the inputs – or in other words, a “linear” combination of input
values in which the coefficients are themselves secrets. These coefficients are
chosen randomly but with certain restrictions.
There are only two steps in randomize in which random choices are made.

In the 2-party Computing on Encrypted Inputs setting, the “CryptoComputer”
would make these choices and ensure that they remain secret. In the MSC ap-
plication, these choices are also kept secret. We must ensure that they can be
selected and applied efficiently.
Referring to §3, there are two main steps for applying random choices. First

is the choice between (bi1, bi2) and (not(bi1),not(bi2)). This choice can be ex-
ecuted by creating a new secret bit di, then setting (at leaves):

bi1 = dixi1 + (1− di)(1− xi1)

bi2 = dixi2 + (1− di)(1− xi2)

The manipulation at higher level nodes is similar: the multiplication by di is
propagated to the children.
Similarly, the random selection of a permutation from S4 can be modelled

by a secret permutation matrix A = [aij], so that the resulting quadruple is
(y1, y2, y3, y4) where yi =

∑

j aijcj .
At each odd-level node in the pyramid representation, then, a secret random

bit is generated. At each even-level node above 0, a secret random S4 permutation
is generated.
If these operations are composed, the result is a collection of coefficients

Cij such that leaf i is Ci0 +
∑

j Cijxj . These coefficients are products of the
coefficients assigned on the path down to leaf i. Thus they can be efficiently
calculated (secretly, of course) in a preprocessing phase.
Noting that [B91] enables quadratic forms on secrets to be evaluated with

1-round latency, Claim 4.1 is satisfied.

4.3 Some Details

For concreteness, here are some ugly programming steps for the protocol. The SYY
construction induces at each node a tree with formulas in it. One can apply a syntactic
NOT operation to a leaf label s by replacing s by 1 − s. One can apply a NOT to
a higher node by applying NOT recursively to each of the left grandchildren (as in
SYY). One can also perform linear combinations recursively on two trees of formulas
in a direct manner:

a((t1, t2), (t3, t4), (t5, t6), (t7, t8)) + b((u1, u2), (u3, u4), (u5, u6), (u7, u8)) =

((at1 + bu1, at2 + bu2), (at3 + bu3, at4 + bu4),

(at5 + bu5, at6 + bu6), (at7 + bu7, at8 + bu8)).

The first (non-interactive) preparation creates a raw tree of formulas:

1. Start with circuit Cf which is applied to input bits x1, . . . , xm.

Minimal-Latency Secure Function Evaluation 349

2. Create a raw pyramid program: Each node contains a tree of formulas using xi’s
and constants. Place xi’s and constants at the leaves according to Cf . Propagating
upward, create a formula tree at each node according to the Construction in 3.
(For example, at level 2, OR(NOT(x1),x2) would be labelled with the formula tree
((1− x1, 0), (x2, 0), (1− x1, x2), (0, 1).)

The second (non-interactive) preparation adds symbols that correspond to the ran-
domization:

1. For each odd-level node v, create symbol d(v). For each even-level node v, create
16 symbols a(v, i, j) for 1 ≤ i, j ≤ 4.

2. Create a randomized pyramid program: Propagating upwards from leaves, apply
randomization symbols.

2A. Replace the current T by T ′ = d(v)T + (1 − d(v))NOT (T). (This involves
recursively applying d(v) symbols and NOT’s; the result is a tree of formulas
over inputs, constants, and di’s.)

2B. Now say the current T is ((b11, b12), (b21, b22), (b31, b32), (b41, b42)). Replace bim

with
∑

j a(v, l, j)bjm. (Again, the a(v, l, j) symbols trickle to the leaves.)

The result is a pyramid of formulas in which each formula can be written as Ci0 +
∑

j Cijxj , where the C’s are formulas on the randomization symbols and constants
alone.

This gives an O(8d)-sized “program” for the preprocessing phase, where d is the
circuit depth of Cf . Generate random secret bits for each of the d(v) symbols. Generate
random secret permutation matrices for each set {a(v, i, j)}. Evaluate each Ci0 and Cij

secretly. The preprocessing takes constant rounds.
We now have a pyramid in which each leaf i contains an expression Ci0+

∑

j
Cijxj .

Following the approach of [B91], these results can be precomputed at random values
x̂i. When the xj inputs are provided, “corrections” (xi− x̂i) are announced, corrections
to the pyramid entries are disseminated (no broadcast/agreement needed), and each
player then calculates the entries himself. Each player then evaluates the pyramid
according to the instructions of [SYY99] (see §3).

Preparing the Coefficients We digress with a few remarks on alternatives
for obtaining the Cij coefficients. Several avenues present themselves:

– generation by precomputation;
– generation by Trusted Third Party (TTP) or Server;
– generation by composition.

The previous section considered precomputation.
In a hybrid model more akin to [SYY99], one can rely on a TTP who supplies

secret shares of the coefficients to the participants. While zero-knowledge proofs
can ensure correctness (i.e. the coefficients are a proper permutation), one must
trust that the TTP does not leak the coefficients. This trust model is similar to
the CryptoComputer model of [SYY99]; secrecy relies on maintaining secrecy of
the randomize step.
Finally, verified sets of coefficients from the TTP’s can be composed. This

corresponds to allowing each TTP to execute the randomize step. As long as

350 Donald Beaver

one TTP maintains discretion, the conclusions of [SYY99] will apply and the
results will be secure. Of course, if the TTP’s are taken to be the participants
themselves (eg. t+1 of them), then a secret matrix product on several matrices
is required, which gets us back to the initial problem.

5 Matrix Representations

We present a background for matrix-based computing and finish the section with
our new inversion-free reduction.

5.1 Secret Group Operations

The following subroutines are applicable to 2-party and to multiparty settings.
Note that the group need not be abelian, thus matrices are perfectly fine can-
didates. The costs are O(1) multiplications; hence if secret multiplication takes
O(1) rounds, the net cost is O(1) rounds. (As described later, secret multiplica-
tion generally has 1-round latency after preprocessing, so these routines are very
short in terms of latency.)

Inverses. The authors of [BB89] demonstrated how to compute a secret inverse
of a secret group element X in O(1) multiplications using the following trick:
choose secret element U ; secretly calculate Y = XU and reveal Y ; publicly
calculate Y −1; secretly multiply Z = UY −1. Clearly, Z = X−1, yet Y is dis-
tributed uniformly at random, revealing nothing about X (as long as U remains
uncompromised).

Polynomial-Length Products. Let M1, . . . ,MN be secret group elements.
The goal is to calculate M =

∏

iMi secretly. The following application (with
minor differences) arose in [K88,K90] and [BB89]:

M = R−1
0 R0M1R

−1
1 R1M2R

−1
2 · · ·RN−1MNR

−1
N RN

where R0, . . . , RN are secret, random, invertible group elements (R0 can be set to
the identity). Let Si = Ri−1MiR

−1
i . Then the set {Si}, if made public, reveals

nothing about {Mi}; it appears uniformly random, subject to producing the
same overall product.
A protocol that follows this structure (compute Ri’s and inverses, compute

and reveal Si’s) will incur O(1) multiplications plus the cost of generating ran-
dom invertible elements. It will nevertheless exceed 1 round.

5.2 3× 3 Products for NC1

Building on a result of Barrington [B86], Ben-Or and Cleve [BC88] showed that
NC1 computations are equivalent to products of polynomially-many 3× 3 ma-
trices. In their representation, inputs are supplied as an identity matrix with the

Minimal-Latency Secure Function Evaluation 351

top right (1, 3) zero replaced by the input value. The final result is also read
from the (1, 3) entry of a specified product of such “input” matrices interspersed
with certain constant matrices. In fact, the final product is simply an identity
matrix with the top right zero replaced by f(x1, . . . , xn).
Without going into further detail, we mention simply that the number of

matrices involved in a depth-d computation will be some N = O(4d), and that
each matrix is either a well-known constant or simply contains an input variable
(possibly negated) in the (1, 3) entry as above.

5.3 N ×N Products for NLOGSPACE

More recently, Feige, Kilian and Naor [FKN94] described how to formulate
NLOGSPACE computations as a product of N ×N matrices, where N is poly-
nomial in the input size. In their setup, the top right (1, N) entry of the final
product M indicates the final output: 0 if the entry is zero, or 1 if the entry is
nonzero.
Because [FKN94] used the N × N construction to solve a slighly different

task, in which Alice and Bob provide sufficient data to a Combiner so that the
Combiner can calculate f(x, y) without learning x and y, they also focused on
leaving f(x, y) (and nothing else) in the output. While this occurs automatically
in the 3 × 3 matrix case (for NC1), [FKN94] had to provide additional secret
matrices QL and QR to randomize the final product matrix. With QL and QR of
a particular, randomized form, they showed thatQLMQR was uniformly random
subject to the entry at (1, N) being either zero if the output was 0 or random
and nonzero if the output was 1.
It is not hard to verify that secret QL and QR matrices can be generated in

a constant expected number of rounds.

5.4 Direct Output or Slice Output

There is a distinction between producing the final result of a function in some
public fashion (known to one or more parties) and producing a secret repre-
sentation of the final result. The latter can be used to speed up larger circuit
evaluations by slicing them [K88,K90,BB89] into (for example) log-depth layers.
In any case, it is often simple to convert a direct-output computation to one

that preserves the output as a secret for input to further computation. Simply
create an additional secret r, directly output the result of f()− r, and implicitly
add the public value f()− r to the secretly represented r.
(This does not obviate the use of QL and QR in [FKN94], however, since there

are a host of other entries (N 2− 1 of them, in fact) whose public revelation may
compromise sensitive information. Their approach was to open the final matrix
completely.)

5.5 Multiplication Without Secret Inverses

One of the difficulties with using the matrix multiplication methods described
in §5.1 is that they are prima facie interactive in nature. To calculate an inverse,

352 Donald Beaver

one must publicly reveal the randomized product, which is then interactively fed
back into another pass. To calculate a long product of elements, one first reveals
the intermediate products of triples, then calculates their product and feeds it
back into another phase (multiplying by secrets on left and/or right).

Here, we propose an inversion-free reduction from a product to a list of
publicized matrices which can be combined to calculate the original product.
(While no inversions are needed in the reduction, some of the resulting matrices
must be inverted before multiplying them together.)

Starting with a polynomial-length product M =
∏

Mi, we create secret,
invertible elements R0, . . . , RN as before. But now, also create secret, invertible
elements R̂0, . . . , R̂N . Write:

M = (R̂0)(R0R̂0)
−1(R0M1R̂1)(R1R̂1)

−1(R1M2R̂2) · · ·

· · · (RN−1R̂N−1)
−1(RN−1MN R̂N)(RN R̂N)

−1(RN).

Let Si = Ri−1MiR̂i, and let Ŝi = RiR̂i. Then:

M = R̂0Ŝ
−1
0 S1Ŝ

−1
1 S2 · · · Ŝ

−1
N−1SN Ŝ

−1
N RN .

It is not hard to generalize [K88,K90,BB89] to show that each Si and Ŝi leaks
no information. Define S = Ŝ−1

0 S1Ŝ
−1
1 S2 · · · Ŝ

−1
N−1SN Ŝ

−1
N . Then M = R̂0SRN .

While inverses are applied to the public values (Ŝ−1
i), no inversion is required

to reduce the original product secretly to the list of public multiplicands.

6 Multiparty Secure Computation Revisited

6.1 Achieving NC1 for Multiparty Secure Computation

Claim 6.2 can now be demonstrated by an alternative approach. The inversion-
free reduction of §5.5 enables MSC protocols with 1-round latency for NC1

without relying on [SYY99], as the following indicates. Precompute the Ri and
R̂i matrices and reveal the Ŝi values.

Let I(i) be the index of the secret input variable appearing in matrix Mi

(if any). When each RiMiR̂i+1 product is expanded, each of the nine entries
{sikl}1≤k,l≤3 in Si is of the form αikl+βiklxI(i). (If no variable appears, βikl = 0.)
Secretly precompute the αikl and βikl values.

Finally, when the input variables are supplied, it remains to publish each
αikl + βiklxI(i) in order to reveal the Si matrices. This involves a single mul-
tiplication, which the methods of [B91] reduce to latency 1. (The product is
precomputed on random inputs; the single round consists of disseminating an
adjustment to the precomputed result.)

At this point, the Ŝi and Si matrices have been revealed. The overall result
can be evaluated without further interaction, or fed secretly into the next layer
of computation.

Minimal-Latency Secure Function Evaluation 353

6.2 Achieving NLOGSPACE for Multiparty Secure Computation

The generation of secret nonsingular N × N matrices, and appropriate secret
QL and QR matrices, can be done in expected O(1) rounds. Thus we find (as
already claimed in [FKN94]) that there is a secure multiparty protocol for any
NLOGSPACE function, using expected O(1) rounds. But we can now strengthen
that conclusion by applying the methods of the previous section to N × N
matrices:

Claim. Let f be represented by a composition of D NLOGSPACE-computable
functions each with output size polynomial in the size of f ’s input. There exists
a secure MSC protocol to compute each NLOGSPACE-computable subfunction
with a latency of 1 round. The overall protocol incurs D +O(1) rounds.

7 Two Parties: Computing on Encrypted Inputs

In the case of Computing on Encrypted Inputs, we do not have the flexibility
to allow preprocessing. Instead, we turn back to the [SYY99] for bootstrapping
the product of N ×N matrices.

The selection of random, secret, nonsingular matrices, and the individual
computation of each of the QL, QR, Si and Ŝi matrices can be performed in
NC1. Note that input bits and extra random bits are re-used in different, parallel
sub-executions.

Thus, on a higher level, the protocol for NLOGSPACE consists of some num-
berN of executions of variousNC1 calculations. These calculations provide Alice
with the values for QL, QR, Si and Ŝi, which in turn enable her to compute the
final bit. According to the proofs presented in [FKN94], these matrices provide
no extra information. More details are below.

7.1 Computing NLOGSPACE on Encrypted Inputs

For a given function f in NLOGSPACE, the construction in [FKN94] produces
a pair of adjacency matrices, A and B. The binary entries in A depend only
on Alice’s inputs (or on no inputs at all), and the entries in B depend only
on Bob’s inputs. The (1, N) entry of (AB)N will be nonzero if and only if the
result of f is 1; otherwise f is 0. To hide the other entries in (AB)N , which
may leak information, two extra secret matrices QL and QR are used, and the
desired product is M = QL(AB)

NQR. Bob will enable Alice to find the product
of these 2N + 2 N ×N matrices.

In our application, only Alice will learn the Si and Ŝi matrices. Unlike other
settings, this permits us to have Bob learn or set the randomizing matrices
himself, as long as Alice doesn’t.

1. For each input bit xi held by Alice, Alice encrypts and sends E(xi) to Bob.

354 Donald Beaver

2. Bob selects 2N +1 random Ri matrices and 2N +1 random R̂i matrices (set
R2N+2 = R̂2N+2 = I). Bob selects QL and QR at random according to the
constraints in [FKN94]. He sets matrix B according to the inputs to f that
he holds. Let M1 = QL, M2N+2 = QR, and for i = 1..N let M2i = A (values
unknown to Bob) and M2i+1 = B.

3. Bob invokes N instances of the [SYY99] protocol. In instance i he uses
Alice’s encryptions to evaluate (for Alice) the result S2i = R2i−1M2iR̂2i.
In addition, Bob directly sends the following results to Alice: S1 = QLR̂1,
S2N+2 = R2N+1QRR̂2N+2, S2i+1 = R2iBR̂2i+1 for 1 ≤ i ≤ N , and Ŝj =

RjR̂j for 1 ≤ j ≤ 2N + 2.
4. Alice receives pyramids for S2i (1 ≤ i ≤ N) and calculates S2i accordingly.
She then calculates M = S1Ŝ

−1
1 · · · Ŝ

−1
2N+1S2N+2Ŝ

−1
2N+2. If entry (1, N) in M

is nonzero, Alice outputs 1, else she outputs 0.

By inspection, the protocol takes one round. By arguments in [FKN94] and
[SYY99], Alice’s view of the pyramids and the direct matrices provides her no
greater knowledge than the final result itself (from which she can construct the
view). The product is clearly correct.

8 Closing Remarks

We have extended the reach of earlier results by applying new parallelization
constructs. Two results obtain. Multiparty Secure Computation can be speeded
up by creating subtasks of complexity NLOGSPACE, where the latency of com-
puting each subtask is not just O(1) but exactly 1. Likewise, Computing on En-
crypted Inputs can be achieved non-interactively for functions in NLOGSPACE,
not just NC1.
We presented two approaches to achieving NC1 computations for MSC with

1-round latency. One, based on [SYY99], has message size complexity of O(8d)
(where d is circuit depth). The other requires O(4d). On closer inspection, the
culprit seems to be the use of (0, 1)/(1, 0) representations. In the MSC applica-
tion, it can be removed, collapsing the SYY pyramid to size O(4d). It is remark-
able that two distinct constructions converge to the same complexity, which may
suggest a deeper relationship.

Acknowledgements The author gratefully acknowledges helpful discussions
and inspirations from Moti Yung. Several referees made extremely helpful com-
ments on content and presentation.

References

[BB89] J. Bar-Ilan, D. Beaver. “Non-Cryptographic Fault-Tolerant Computing in
a Constant Expected Number of Rounds of Interaction.” Proceedings of

PODC, ACM, 1989, 201–209.
[B86] D. Barrington. “Bounded Width Polynomial Size Branching Programs Rec-

ognize Exactly those Languages in NC1.” Proceedings of the 18th STOC,

ACM, 1986, 1–5.

Minimal-Latency Secure Function Evaluation 355

[B91] D. Beaver. “Efficient Multiparty Protocols Using Circuit Randomization.”
Advances in Cryptology – Crypto ’91 Proceedings, Springer–Verlag LNCS
576, 1992, 420–432.

[BMR90] D. Beaver, S. Micali, P. Rogaway. “The Round Complexity of Secure Pro-
tocols.” Proceedings of the 22nd STOC, ACM, 1990, 503–513.

[BC88] M. Ben-Or, R. Cleve. “Computing Algebraic Formulas Using a Constant
Number of Registers.” Proceedings of the 20th STOC, ACM, 1988, 254–257.

[BGW88] M. Ben-Or, S. Goldwasser, A. Wigderson. “Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation.” Proceedings of the

20th STOC, ACM, 1988, 1–10.
[CCD88] D. Chaum, C. Crépeau, I. Damgaard. “Multiparty Unconditionally Secure

Protocols.” Proceedings of the 20th STOC, ACM, 1988, 11–19.
[CDG87] D. Chaum, I. Damgard, J. van de Graaf. “Multiparty Computations Ensur-

ing Secrecy of Each Party’s Input and Correctness of the Output.” Advances

in Cryptology – Crypto ’87 Proceedings, Springer–Verlag LNCS 293, 1988.
[B79] G.R. Blakley. “Safeguarding Cryptographic Keys.” Proceedings of AFIPS

1979 National Computer Conference, NY 48, 1979, 313–317.
[dB90] B. den Boer. “Oblivious Transfer Protecting Secrecy.” Advances in Cryptol-

ogy – Eurocrypt ’90 Proceedings, Springer–Verlag LNCS 547, 1990, 31–45.
[FiSh86] A. Fiat, A. Shamir. “How to Prove Yourself: Practical Solutions to Identi-

fication and Signature Problems.” Proc. of Crypto ’86.
[FFS88] U. Feige, A. Fiat, A. Shamir. “Zero Knowledge Proofs of Identity.” J. Cryp-

tology 1:2, 1988, 77–94.
[FKN94] U. Feige, J. Kilian, M. Naor. “A Minimal Model for Secure Computation.”

Proceedings of the 26th STOC, ACM, 1994, 554–563.
[GMW86] O. Goldreich, S. Micali, A. Wigderson. “Proofs that Yield Nothing but their

Validity and a Methodology of Cryptographic Protocol Design.” Proceedings

of the 27th FOCS, IEEE, 1986. pages 174–187. IEEE, 1986.
[GMW87] O. Goldreich, S. Micali, A. Wigderson. “How to Play Any Mental Game, or

A Completeness Theorem for Protocols with Honest Majority.” Proceedings

of the 19th STOC, ACM, 1987, 218–229.
[GM84] S. Goldwasser, S. Micali. Probabilistic Encryption. JCCS, 28:2, 270–299,

1984.
[K88] J. Kilian. “Founding Cryptography on Oblivious Transfer.” Proceedings of

the 20th STOC, ACM, 1988, 20–29.
[K90] J. Kilian. Uses of Randomness in Algorithms and Protocols. Cambridge,

MIT Press, 1990.
[NR97] M. Naor, O. Reingold. “Number-Theoretic Consturctions of Efficient

Pseudo-Random Functions.” Proceedings of the 38th FOCS, IEEE, 1997.
[R81] M.O. Rabin. “How to Exchange Secrets by Oblivious Transfer.” TR-81,

Harvard, 1981.
[SYY99] T. Sander, A. Young, M. Yung. “Non-Interactive CryptoComputing for

NC1.” Proceedings of the 40th FOCS, IEEE, 1999.
[S79] A. Shamir. “How to Share a Secret.” Communications of the ACM, 22,

1979, 612–613.
[TY98] Y. Tsiounis, M. Yung. “On the Security of ElGamal-based Encryption.”

Proceedings of PKC ’98, LNCS, Springer-Verlag, 1998.
[Y82] A. Yao. “Protocols for Secure Computations.” Proceedings of the 23rd

FOCS, IEEE, 1982, 160–164.
[Y86] A. Yao. “How to Generate and Exchange Secrets.” Proceedings of the 27th

FOCS, IEEE, 1986, 162–167.

