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Abstract. We show that although unconditionally secure quantum bit
commitment is impossible, it can be based upon any family of quantum
one-way permutations. The resulting scheme is unconditionally conceal-
ing and computationally binding. Unlike the classical reduction of Naor,
Ostrovski, Ventkatesen and Young, our protocol is non-interactive and
has communication complexity O(n) qubits for n a security parameter.

1 Introduction

The non-classical behaviour of quantum information provides the ability to ex-
pand an initially short and secret random secret-key shared between a pair of
trusted parties into a much longer one without compromising its security. The
BB84 scheme was the first proposed quantum secret-key expansion protocol[3]
and was shown secure by Mayers [12, 14]. Secret-key expansion being incom-
patible with classical information theory indicates that quantum cryptography
is more powerful than its classical counterpart. However, quantum information
has also fundamental limits when cryptography between two potentially col-
laborative but untrusted parties is considered. Mayers [13] has proven that any
quantum bit commitment scheme can either be defeated by the committer or the
receiver as long as both sides have unrestricted quantum computational power.
Mayers’ general result was built upon previous works of Mayers [11] and Lo and
Chau [9].

However, the no-go theorem does not imply that quantum cryptography in
the two-party case is equivalent to complexity-based classical cryptography. For
example, quantum bit commitment schemes can be built from physical assump-
tions that are independent of the existence of one-way functions [16]. Moreover,
bit commitment is sufficient for quantum oblivious transfer [4, 19] which would
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be true in the classical world only if one-way functions imply trapdoor one-way
functions [8]. The physical assumption addressed in [16] restricts the size of the
entanglement the adversary’s quantum computer can deal with. Implementing
any successful attack was shown, for a particular protocol with security param-
eter n, to require a Ω(n)-qubits quantum computer. However, such a physical
assumption says nothing about the complexity of the attack. In this paper, we
construct an unconditionally concealing quantum bit commitment scheme which
can be attacked successfully only if the adversary can break a general quantum
computational assumption.

We show that similarly to the classical case [15], unconditionally concealing
quantum bit commitment scheme can be based upon any family of quantum
one-way permutations. This result is not the direct consequence of the classi-
cal construction proposed by Noar, Ostrovsky, Ventkatesen and Young (NOVY)
[15]. One reason is that NOVY’s analysis uses classical derandomization tech-
niques (rewinding) in order to reduce the existence of an inverter to a successful
adversary against the binding condition. In [18], it is shown that such a proof
fails completely in a quantum setting: if rewinding was possible then no quantum
one-way permutation would exist. Therefore, in order to show that NOVY’s pro-
tocol is conditionally binding against the quantum computer, one has to provide
a different proof.

We present a different construction using quantum communication in order
to enforce the binding property. In addition, whereas one NOVY’s commitment
requires Ω(n) rounds (in fact n − 1 rounds) of communication for some secu-
rity parameter n, our scheme is non-interactive. Whether or not this is possible
to achieve classically is still an open question. In addition, the total amount of
communication of our scheme is O(n) qubits which also improves the Ω(n2) bits
needed in NOVY’s protocol, as far as qubits and bits may be compared. Since
unconditionally concealing bit commitment is necessary and sufficient for Zero-
Knowledge arguments [5], using our scheme gives implementations requiring few
rounds of interaction with provable security based upon general computational
assumptions. Perfectly concealing commitment schemes are required for the secu-
rity of several applications (as in [5]). Using them typically forces the adversary
to break the computational assumption before the end of the opening phase,
whereas if the scheme was computationally concealing the dishonest receiver
could carry out the attack as long as the secret bit remains relevant. Any secure
application using NOVY as a sub-protocol can be replaced by one using our
scheme instead thus improving communication complexity while preserving the
security.

This work provides motivations for the study of one-way functions in a quan-
tum setting. Quantum one-way functions and classical one-way functions are not
easily comparable [6]. On the one hand, Shor’s algorithm [17] for factoring and
extracting discrete logs rules out any attempt to base quantum one-wayness upon
those computational assumptions. This means that several flexible yet useful
classical one-way functions cannot be used for computationally based quantum
cryptography.
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On the other hand, because the quantum computer evaluates some functions
more efficiently than the classical one, some quantum one-way functions might
not be classical one-way since classical computers could even not be able to com-
pute them in the forward direction. This suggests that quantum cryptography
can provide new foundations for computationally based security in cryptography.

Organization. First, we give some preliminaries and definitions in Sect.2.
Therein, we define the model of computation, quantum one-way functions, and
the security criteria for the binding condition. In Sect. 3, we describe our per-
fectly concealing but computationally binding bit commitment scheme. In Sect.
4, we show that our scheme is indeed unconditionally concealing. Then we model
the attacks against the binding condition in Sec. 5. Section 6 reduces the exis-
tence of a perfect inverter for a family of one-way permutations to any perfect
adversary against the binding condition of our scheme. In Sect. 7, we extend
the reduction by showing that any efficient adversary to the binding condition
implies an inverter for the family of one-way permutations working efficiently
and having good probability of success.

2 Preliminaries

After having introduced the basic quantum ingredients, we define quantum one-
way functions and the attacks against the binding condition of computationally
binding quantum commitment schemes. We assume the reader familiar with the
basics of quantum cryptography and computation.

2.1 Quantum Encoding

In the following, we denote the m-dimensional Hilbert space by Hm. The basis
{|0〉, |1〉} denotes the computational or rectilinear or “+” basis for H2. When the
context requires, we write |b〉+ to denote the bit b in the rectilinear basis. The
diagonal basis, denoted “×”, is defined as {|0〉×, |1〉×} where |0〉× = 1√

2
(|0〉 +

|1〉) and |1〉× = 1√
2
(|0〉 − |1〉). The states |0〉, |1〉, |0〉× and |1〉× are the four

BB84 states. For any x ∈ {0, 1}n and θ ∈ {+,×}n, the state |x〉θ is defined as
⊗n
i=1|xi〉θi

. An orthogonal (or Von Neumann) measurement of a quantum state
in Hm is described by a set of m orthogonal projections M = {Pi}mi=1 acting
in Hm thus satisfying

∑

i Pi = 11m for 11m denoting the identity operator in
Hm. Each projection or equivalently each index i ∈ {1, . . . ,m} is a possible
classical outcome for M. In the following, we write P0

+ = |0〉〈0|, P1
+ = |1〉〈1|,

P0
× = |0〉×〈0| and P1

× = |1〉×〈1| for the projections along the four BB84 states.
We also define for any y ∈ {0, 1}n the projection operators Py+n = ⊗n

i=1Pyi

+

and Py×n = ⊗n
i=1Pyi

× . Since the basis +n in H2n is the computational basis,
we also write Py = Py+n . In order to simplify the notation, in the following we
write θ(0) = + and θ(1) = ×. For any w ∈ {0, 1}, we denote by Mθ(w)n the
Von Neumann measurement {Pyθ(w)n}y∈{0,1}n . We denote by Mn for n ∈ N, the
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Von Neumann measurement in the computational basis applied on an n-qubit
register.

Finally, in order to indicate that |φ〉 ∈ H2r is the state of a quantum register
HR ' H2r we write |φ〉R. If HR ' H2r and HS ' H2s are two quantum
registers and |φ〉 =∑

x∈{0,1}r

∑

y∈{0,1}s γx,y|x〉⊗ |y〉 ∈ H2r ⊗H2s then we write

|φ〉RS =
∑

x∈{0,1}r

∑

y∈{0,1}s γx,y|x〉R⊗|y〉S to denote the state of both registers
HR and HS . Given any transformation UR that acts on a register HR and any
state |φ〉 ∈ HR ⊗ HOthers, where HOthers corresponds to other registers, we

define UR |φ〉
def
= (UR⊗11Others) |φ〉. We use the same notation when UR denotes

a projection operator.

2.2 Model of Computation and Quantum One-Wayness

Quantum one-way functions are defined as the natural generalization of classical
one-way functions. Informally, a quantum one-way function is a classical function
that can be evaluated efficiently by a quantum algorithm but cannot be inverted
efficiently and with good probability of success by any quantum algorithm. An
algorithm for inverting a one-way function is called an inverter. In this paper,
we model inverters (and adversaries against the binding condition) by quantum
circuits built out of the universal set of quantum gates UG = {CNot, H, RQ}, where
CNot denotes the controlled-not, H the one qubit Hadamard gate, and RQ is an
arbitrary one qubit non-trivial rotation specified by a matrix containing only
rational numbers [1]. A circuit C executed in the reverse direction is denoted C†.
The composition of two circuits C1, C2 is denoted C1 ·C2. If the initial state before
the execution of a circuit C is |Φ〉, the final state after the execution is C|Φ〉. To
compute a deterministic function f : {0, 1}n → {0, 1}m(n), we need a circuit
Cn on l(n) qubits and we must specify n ≤ l(n) input qubits and m(n) ≤ l(n)
output qubits. The classical input x is encoded in the state |x〉 of the n input
qubits. The other qubits, i.e. the non input qubits, are always initialized in the
fixed state |0〉. The random classical output of the circuit Cn on input x ∈ {0, 1}n
is defined as the classical outcome of Mm(n) on the m(n) output qubits at the
end of the circuit. A family C = {Cn}∞n=1 is an exact family of quantum circuits
for the family of deterministic functions F = {fn : {0, 1}n → {0, 1}m(n)}∞n=1 if
the the classical output of the circuit Cn on input |x〉 ⊗ |0〉 ∈ H2l(n) produces
with certainty fn(x) as output. This definition can be generalized the obvious
way in order to cover the non exact case and families of random functions.

The complexity of the circuit Cn is simply the number ‖Cn‖UG of elementary
gates in UG contained in Cn. Finally, the familyC is uniform if, given 1n as input,
there exists a (quantum) Turing machine that produces Cn ∈ C in (quantum)
polynomial time in n. The family C is non-uniform otherwise. Our results hold
for both the uniform and the non-uniform cases. The following definition is
largely inspired by Luby’s definitions for classical one-way functions [10]. Let xn
be a uniformly distributed random variable over {0, 1}n.
Definition 1 A family of deterministic functions F = {fn : {0, 1}n →
{0, 1}m(n)|n > 0} is R(n)–secure quantum one-way if
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– there exists an exact family of quantum circuits C = {Cn}n>0 for F such
that for all n > 0, ‖Cn‖ ≤ poly(n) and

– for all family of quantum circuits C−1 = {C−1
n }n>0 and for all n suffi-

ciently large, it is always the case that ‖C−1
n ‖UG/S(n) ≥ R(n) where S(n) =

Pr
(

fn(C−1
n (fn(xn))) = fn(xn)

)

.

Each family of quantum circuits C−1 is called an inverter and the mapping S(n)
is called its probability of success.

Note that whenever fn is a permutation, S(n) can be written as S(n) =
Pr
(

fn(C−1
n (yn)) = yn

)

where yn is a uniformly distributed random variable in
{0, 1}n.

2.3 The Binding Condition

In a non interactive bit commitment scheme, an honest committer A for bit w
starts with a system HAll = HKeep ⊗HOpen ⊗HCommit in the initial state |0〉,
executes a quantum circuit Cn,w on |0〉 returning the final state |Ψw〉 ∈ HAll

and finally sends the subsystem HCommit to B in the reduced state ρB(w) =
TrA(|Ψw〉〈Ψw|), where A’s Hilbert space is HA = HKeep ⊗ HOpen. Once the
system HCommit is sent away to B, A has only access to ρA(w) = TrB(|Ψw〉〈Ψw|),
where B’s Hilbert space is HB = HCommit. To open the commitment, A needs
only to send the system HOpen together with w. The receiver B then tests the
value of w by measuring the system HOpen ⊗HCommit with some measurement
that is fixed by the protocol in view of w. He obtains the outcome w = 0, w = 1,
or w =⊥ when the value of w is rejected.

An attack of the committer Ã must start with the state |0〉 of some system
HAll = HExtra ⊗ HA ⊗ HCommit. A quantum circuit Cn that acts on HAll is
executed to obtain a state |Ψ̃〉 and the subsystem HCommit is sent to the receiver.
Later, any quantum circuit On which acts on HExtra ⊗HKeep ⊗HOpen can be
executed before sending the subsystem HOpen to the verifier. The important
quantum circuits which act on HExtra⊗HKeep⊗HOpen are the quantum circuits
On
w, w = 0, 1, which respectively maximize the probability that the bit w = 0

and w = 1 is unveiled with success. Therefore, any attack can be modeled by
triplets of quantum circuits {(Cn,On

0 ,O
n
1 )}n>0.

The efficiency of an adversary is determined by 1) the total number of ele-
mentary gates T (n) = ‖Cn‖UG + ‖On

0‖UG + ‖On
1‖UG in the three circuits Cn,

On
0 and On

1 and 2) the probabilities Sw(n), w = 0, 1, that he succeeds to unveil
w using the associated optimal circuit On

w. The definition of Sw(n) explicitly re-
quires that the value of w, which the adversary tries to open, is chosen not only
before the execution of the measurement on HOpen ⊗ HCommit by the receiver
but also before the execution of the circuit On

w by the adversary.
In the classical world, one can always fix the adversary’s committed bit by

fixing the content of his random tape, that is, we can require that either the
probability to unveil 0 or the probability to unveil 1 vanishes, for every fixed value
of the random tape. This way of defining the security of a bit commitment scheme
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does not apply in the quantum world because, even if we fix the random tape,
the adversary could still introduce randomness in the quantum computation. In
particular, a quantum committer can always commit to a superposition of w = 0
and w = 1 by preparing the following state

|Ψ(c0)〉 =
√
c0 |0A〉 ⊗ |Ψ0〉+

√
1− c0 |1A〉 ⊗ |Ψ1〉, (1)

where |Ψ0〉 and |Ψ1〉 are the honest states generated for committing to 0 and
1 respectively and |0A〉 and |1A〉 are two orthogonal states of HExtra, an extra
ancilla kept by A. In this case, for both value of w ∈ {0, 1}, the opening circuit
On
w can put HOpen into a mixture that will unveil w successfully with some

non zero probability. So we have S0(n), S1(n) > 0. The fact that the binding
condition S0(n) = 0∨S1(n) = 0 is too strong was previously noticed in [13]. We
propose the weaker condition S0(n) + S1(n)− 1 ≤ ε(n) where ε(n) is negligible
(i.e. smaller than 1/poly(n) for any polynomial p(n)). For classical applications,
this binding condition (with ε(n) = 0) is as good as if the commiter was forced
to honestly commit a random bit (with the bias of his choice) and only had
the power to abort in view of the bit. The power of this binding condition for
quantum applications is unclear, but we think it is a useful condition even in
that context.

We now extend this binding condition to a computational setting. It is
convenient to restrict ourselves to the cases where On

0 is the identity circuit.
We can adopt this restriction without lost of generality because any triplet
(Cn,On

0 ,O
n
1 ) can easily be replaced by the three quantum circuits (Cn

0 ,11,U
n
0,1),

where Cn
0 = (On

0 ⊗ 11Commit) · Cn and Un
0,1 = On

1 · (On
0 )
†, without chang-

ing the adversaries strategy. The difference in complexity between applying
(Cn,On

0 ,O
n
1 ) and (Cn

0 ,11,U
n
0,1) is only ∆T (n) = ‖On

0‖UG . Therefore, the ad-
versary is completely determined by the pair (Cn

0 ,U
n
0,1) where Cn

0 acts on all
registers in HAll, and U

n
0,1 is restricted to act only in HExtra ⊗HKeep ⊗HOpen.

Definition 2 An adversary Ã = {(Cn
0 ,U

n
0,1)}n for the binding condition of a

quantum bit commitment scheme is (S(n), T (n))–successful if for all n ∈ N,
‖Un

0,1‖UG + ‖Cn
0‖UG ≤ T (n) and S0(n) + S1(n) − 1 = S(n). An adversary with

S(n) = 1 is called a perfect adversary.

Any (0, T (n))-successful adversary does not achieve more than what an honest
committer is able to do. In order to cheat, an adversary must be (S(n), T (n))-
successful for some non-negligible S(n) > 0. The security of a quantum bit
commitment scheme is defined as follow:

Definition 3 A quantum bit commitment scheme is R(n)–binding if there exists
no (S(n), T (n)–successful quantum adversary against the binding condition that
satisfies T (n)/S(n) ≤ R(n). A quantum bit commitment scheme is perfectly
concealing (statistically concealing) if the systems received for the commitments
of 0 and 1 are identical (resp. statistically indistinguishable).

It is easy to verify that if a R(n)-binding classical bit commitment scheme (satis-
fying the classical definition) allows to implement a cryptographic task securely,
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then using a R(n)-binding quantum bit commitment scheme instead would also
provide a secure implementation.

The scheme we describe next will be shown to be perfectly concealing and
Ω(R(n))-binding whenever used with a R(n)2-secure family of one-way permu-
tations.

3 The Scheme

Let Σ = {σn : {0, 1}n → {0, 1}n|n > 0} be a family of one-way permutations.
The commitment scheme takes, as common input, a security parameter n ∈ N
and the description of family Σ. The quantum part of the protocol below is
similar to the protocol for quantum coin tossing described in [3]. Given Σ and n,
the players determine the instance σn : {0, 1}n → {0, 1}n ∈ Σ. A sends through
the quantum channel σn(x) for x ∈R {0, 1}n polarized in basis θ(w)n where
w ∈ {0, 1} is the committed bit. B then stores the received quantum state until
the opening phase. It is implicit here that B must protect the received system

commitΣ,n(w)

1. A picks x ∈R {0, 1}n, computes y = σn(x) for σn ∈ Σ,
2. A sends the quantum state |σn(x)〉θ(w)n ∈ HCommit to B.

HCommit ' H2n against decoherence until the opening phase. The opening phase
consists only for A to unveil all her previous random choices allowing B to
verify the consistency of the announcement by measuring the received state. So,
HOpen ' H2n is only used to store classical information.

openΣ,n(w, x)

1. A announces w and x to B,
2. B measures ρB with measurement Mθ(w)n thus providing the classical outcome

ỹ ∈ {0, 1}n,
3. B accepts if and only if ỹ = σn(x).

4 The Concealing Condition

In this section, we show that every execution of commitΣ,n conceals w perfectly.
Let ρw for w ∈ {0, 1} be the density matrix corresponding to the mixture

sent by A when classical bit w is committed. Since σn is a permutation of the
elements in the set {0, 1}n, we get

ρ0 =
∑

x∈{0,1}n

2−n|x〉+n〈x| = 2−n112n =
∑

x∈{0,1}n

2−n|x〉×n〈x| = ρ1 (2)
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where 112n is the identity operator in H2n . The following lemma follows directly
from (2).

Lemma 1. Protocol commitΣ,n(w) is perfectly concealing.

Proof: The quantum states ρ0 and ρ1 are the same. It follows that no quantum
measurement can distinguish between the commitments of 0 and 1. ut

5 The Most General Attack

Here we describe the most general adversary Ã = {(Cn
0 ,U

n
0,1)}n≥n0

against the
binding condition of our scheme. We shall prove that any such attack can be
used to invert the one-way permutation in subsequent sections.

The adversary doesn’t necessarily know which value will take y on the re-
ceiver’s side after the measurement Mθ(w)n on HCommit associated with the
opening of w. He computes x ∈ {0, 1}n using On

w, announces (x,w) and hopes
that σn(x) = y. So we have that HOpen ' H2n is used to encode x ∈ {0, 1}n.
We separate the entire system in three parts: the system HCommit that encodes
y, the system HOpen that encodes x, and the remainder of the system that we
conveniently denote all together by HKeep (thus including for simplicity register

HExtra). We easily obtain that the states |Ψ̃nw〉 = Cn
w|0〉, w = 0, 1, can be written

in the form

|Ψ̃n0 〉 =
∑

x,y∈{0,1}n

|γx,y0 〉Keep ⊗ |x〉Open ⊗ |y〉Commit
+n = Cn

0 |0〉 (3)

with
∑

x,y ‖|γ
x,y
0 〉‖2 = 1, and

|Ψ̃n1 〉 =
∑

x,y∈{0,1}n

|γx,y1 〉Keep ⊗ |x〉Open ⊗ |y〉Commit
×n = Un

0,1|Ψ̃n0 〉 (4)

with
∑

x,y ‖|γ
x,y
1 〉‖2 = 1. In the following, we shall refer to states |Ψ̃n0 〉 and |Ψ̃n1 〉

as the 0-state and the 1-state of the attack respectively. The transformationUn
0,1

is applied on the system HKeep ⊗HOpen.
Next section restricts the analysis to the case where an adversary A can open

both w = 0 and w = 1 with probability of success pw = 1. Such an adversary
is called a perfect adversary. We show that any perfect adversary can invert
efficiently σn(x) for any x ∈ {0, 1}n. In Sect. 7 we generalize the result to all
imperfect but otherwise good adversaries. We show that any polynomial time
adversary for which p0 + p1 ≥ 1 + 1

poly(n) can invert σn(x) for x ∈R {0, 1}n
efficiently and with non-negligible probability of success.

6 Perfect attacks

In this section, we prove that any efficient perfect adversary A = {(Cn
0 ,U

n
0,1)}n

against the binding condition can be used to invert efficiently the one-way per-
mutation with probability of success 1. In the next section, we shall use a similar
technique for the case where the attack is not perfect.
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By definition, a perfect adversary A is (1, T (n))-successful, that is: S0(n) =
S1(n) = 1. We obtain that ‖|γx,yw 〉‖ = 0 if σn(x) 6= y:

|Ψn0 〉 =
∑

x∈{0,1}n

|γx0 〉Keep ⊗ |x〉Open ⊗ |σn(x)〉Commit
+n = Cn

0 |0〉 (5)

where |γx0 〉 corresponds to |γ
x,σn(x)
0 〉 and ∑x ‖|γx0 〉‖2 = 1, and

|Ψn1 〉 =
∑

x∈{0,1}n

|γx1 〉Keep ⊗ |x〉Open ⊗ |σn(x)〉Commit
×n = Un

0,1|Ψn0 〉 (6)

where |γx1 〉 corresponds to |γx,σn(x)
1 〉 and ∑x ‖|γx1 〉‖2 = 1. Any pair of 0-state

and 1-state satisfying (5) and (6) is called a perfect pair. Any perfect adversary
A = {(Cn

0 ,U
n
0,1)}n generates a perfect pair for all n > 0.

Let Pu,+Commit and Pu,×Commit be the projection operators Pu+n and Pu×n re-
spectively, acting upon register HCommit. We assume that we have an input
register HY ' H2n initialized in the basis state |y〉 on input y. The states
|Φn0 (u)〉 = Pu,×Commit |Ψn0 〉, u ∈ {0, 1}n, play an essential role in the mechanisms
used by the inverter. These states have three key properties for every u ∈ {0, 1}n:
1. ‖|Φn0 (u)〉‖ = 2−n/2,
2. there exists a simple circuit Wn on HY ⊗HOpen ⊗HCommit which, if u is

encoded in register HY , unitarily maps |Ψn
0 〉 into 2n/2 |Φn0 (u)〉, and

3. Un
0,1|Φn0 (u)〉 = |γσ

−1(u)〉Keep ⊗ |σ−1
n (u)〉Open ⊗ |u〉Commit

×n .

On input y ∈ {0, 1}n, the inverter creates the state |Ψn
0 〉, then applies the circuit

Wn, then the circuit Un
0,1, and finally measures the register HOpen to obtain

σ−1
n (y). We now prove these three properties.

6.1 Proof of Properties 1 and 3

First we write the state |Ψn
0 〉 using the basis ×n for the register HCommit ' H2n .

We get

|Ψn0 〉 = 2−n/2
∑

u,v∈{0,1}n

(−1)u¯v|γσ
−1
n (v)

0 〉Keep ⊗ |σ−1
n (v)〉Open ⊗ |u〉Commit

×n

from which we easily obtain, after the change of variable σ−1
n (v)→ x,

|Φn0 (u)〉 = 2−n/2
∑

x∈{0,1}n

(−1)u¯σn(x)|γx0 〉Keep ⊗ |x〉Open ⊗ |u〉Commit
×n . (7)

Property 1 follows from (7). Note that the states |Φn0 (u)〉 can be mapped one
into the other by a unitary mapping, a conditional phase shift which depends
on u and x. Because (6) can be rewritten as

|Ψn1 〉 =
∑

u∈{0,1}n

|γσ
−1(u)

1 〉Keep ⊗ |σ−1(u)〉Open ⊗ |u〉Commit
×n ,
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it follows that, for all u ∈ {0, 1}n, we have

Un
0,1|Φn0 (u)〉 = Un

0,1 Pu,×Commit |Ψn0 〉 = Pu,×CommitU
n
0,1 |Ψn0 〉

= Pu,×Commit |Ψn1 〉 = |γσ
−1(u)〉Keep|σ−1

n (u)〉Open|u〉Commit
×n .

which concludes the proof of property 3.

6.2 Proof of Property 2

A simple comparison of (5) and (7) suggests what needs to be done to obtain
2n/2|Φn0 (y)〉 efficiently starting from |Ψn

0 〉. Assume the input register HY = H1
Y ⊗

. . . ⊗ Hn
Y ' H2n is in the basis state |y〉. The first step is to add the phase

(−1)y¯σn(x) in front of each term in the sum of (5). Note that, for every y ∈
{0, 1}n, this is a unitary mapping on HKeep ⊗HOpen ⊗HCommit. It is sufficient
to execute a circuit ⊕̂1 which, for each i ∈ {1, . . . , n}, acts on the corresponding
pair of qubits in H i

Y ⊗Hi
Commit. The circuit ⊕̂1 maps each state |yi〉 ⊗ |σn(x)i〉,

i = 1, . . . , n, into (−1)(yi ¯σn(x)i)(|yi〉⊗|σn(x)i〉). It can easily be implemented as
⊕̂1 = (H⊗11Commit) ·CNot · (H⊗11Commit) where each H is applied to register H i

Y

and where register H i
Commit encodes the control bit of the CNot gate. We denote

by ⊕̂n the complete quantum circuit acting in HY ⊗HCommit and applying ⊕̂1

to each pair i ∈ {1, . . . , n} of qubits |yi〉 ⊗ |σn(x)i〉 ∈ Hi
Y ⊗Hi

Commit.
The second step is to set the register HCommit which contains the state

|σn(x)〉+n into the new state |y〉×n . For this we use the composition of three
circuits. The first circuitUσn

: |x〉Open⊗|u〉Commit 7→ |x〉Open⊗|u⊕σn(x)〉Commit

sets the quantum register HCommit into the new state |0〉+n . Note that Uσn
is

the quantum circuit that is guaranteed to compute σn(x) efficiently. The second
circuit is ⊕n : |y〉Y ⊗|u〉Commit 7→ |y〉Y ⊗|y⊕u〉Commit which sets HCommit into
the state |y〉+n by simply applying a CNot between registers H i

Commit, H
i
Y ' H2

for i ∈ {1, . . . , n}. Finally the third circuit executes the Hadamard transform Hn
on HCommit which maps the +n basis into the ×n basis (it is simply n Hadamard
gates H ∈ UG) . The composition of ⊕̂n with these three circuits is the circuitWn

shown in Fig. 1. This circuit allows to generate any 2n/2|Φn0 (y)〉 for y ∈ {0, 1}n.
Moreover, it is easy to verify that ‖Wn‖UG = ‖Uσn

‖UG +5n. The following is a

HY

HCommit

HOpen

�
n

U �
n �

n

Hn

Fig. 1. Transformation Wn.

straightforward consequence of these three properties, the definition of Wn and
the above discussion:

Lemma 2. If there exists a (1, T (n))-successful adversary against commitΣ,n
then there exists an adversary against Σ with time-success ratio

R(n) ≤ T (n) + ‖Uσn
‖UG + 5n.
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It follows that the adversary against Σ has about the same complexity than the
one against the binding condition of commitΣ,n . In the next section, we show
that the same technique can be applied to the case where the adversary does
not implement a perfect attack against commitΣ,n .

7 The General Case

In this section, we are considering any attack that yields a non-negligible success
probability to a cheating committer. In terms of Definition 2, such an adversary
Ã = {(Cn

0 ,U
n
0,1)}n must be (ε(n), T (n))-successful for some ε(n) ≥ 1/poly(n) ≥

0. In order for the attack to be efficient, T (n) must also be upper bounded by
some polynomial.

In general, the 0-state |Ψ̃n0 〉 and 1-state |Ψ̃n1 〉 of adversary Ã can always be
written as in (3) and (4) respectively. In this general case, the probability of
success of unveiling the bit w, i.e. the probability of not being caught cheating,
is the probability of the event Ã announces a value x and the outcome of B’s
measurement happens to be σn(x). One can see easily that this probability is
given by :

SÃw = SÃw (n) =
∑

v

‖|γv,σn(v)
w 〉‖2. (8)

If the adversary Ã is (ε(n), T (n))-successful then

SÃ0 + SÃ1 ≥ 1 + ε(n). (9)

In that setting, our goal is to show that from such an adversary Ã, σ−1
n (y) can

be computed similarly to the perfect case and with probability of success at
least 1/poly(n) whenever y ∈R {0, 1}n and ε(n)−1 is smaller than some positive
polynomial.

7.1 The Inverter

Compared to the perfect case, the inverter for the general case will involve an
extra step devised to produce a perfect |Ψn

0 〉 from the initial and imperfect 0-state
|Ψ̃n0 〉. Although this preprocessing will succeed only with some probability, any
( 1
p(n) , T (n))-successful adversary can distill |Ψn

0 〉 from |Ψ̃n0 〉 efficiently and with

good probability of success. From |Ψn
0 〉, the inverter then proceeds the same way

as in the perfect case.
The distillation process involves a transformation Tn acting in HOpen ⊗

HCommit ⊗HT where HT ' H2n is an extra register. We define Tn as:

Tn : |x〉Open|y〉Commit|a〉T 7→ |x〉Open|y〉Commit|σn(x)⊕ y ⊕ a〉T . (10)

Clearly, one can always write

Tn(|Ψ̃n0 〉All ⊗ |0〉T ) =
∑

σn(x)6=z
|γx,z0 〉Keep|x〉Open|z〉Commit|σn(x)⊕ z〉T

+
∑

x

|γx,σn(x)
0 〉Keep|x〉Open|σn(x)〉Commit|0〉T . (11)
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Upon standard measurement of register HT in state |0〉, the adversary obtains
the quantum residue (by tracing out the ancilla):

|Ψn0 〉 =
∑

x

|γx0 〉Keep ⊗ |x〉Open ⊗ |σn(x)〉Commit (12)

where |γx0 〉Keep = 1
√

SÃ
0

|γx,σn(x)〉Keep, with probability

SÃ0 =
∑

v

‖|γv,σn(v)
0 〉‖2 = |〈Ψn0 |Ψ̃n0 〉|2.

It is easy to verify that Tn can be implemented by a quantum circuit of
O(‖Uσn

‖UG) elementary gates. On input y ∈R {0, 1}n, the inverter then works
exactly as in the perfect case. In Fig. 2, the quantum circuit for the general

inverter IÃn (y) is shown. The input quantum register is HY and the output
register is HOpen. The output is the outcome of the standard measurement Mn

applied to the output register HOpen which hopefully contains x = σ−1
n (y). The

HY

HCommit

HOpen

HT

HKeep

Cn
0

Tn

�

n
Wn

Un
0,1

�

n

Fig. 2. The inverter IÃn (y), y ∈ {0, 1}n obtained from adversary Ã = (Cn
0 ,U

n
0,1).

following lemma is straightforward and establishes the efficiency of the inverter
in terms of the efficiency of Ã’s against commitΣ,n :

Lemma 3. If Ã is (·, T (n))-successful then

‖IÃn (y)‖UG ∈ O(T (n) + ‖Uσn
‖UG).

It should be noted that gates ⊕n and Hn appearing in circuit Wn are not taken
into account in the statement of Lemma 3. The reason is that none of them
influence the final outcome since they commute with the final measurement in
HOpen. They have been included in Wn to help the reader with the analysis of
the success probability described in the next section.

7.2 Analysis of the Success Probability

Let Ã = {(Cn
0 ,U

n
0,1)}n>0 be any (ε(n), ·)-successful adversary for some ε(n) > 0

thus satisfying SÃ0 + SÃ1 ≥ 1 + ε(n). Let PxOpen be the projection operator Px

applied to registerHOpen. We recall that Py,+Commit and Py,×Commit are the projection



Quantum Bit Commitment from One-Way Permutations 317

operators Py+n and Py×n respectively, acting upon register HCommit. We now
define the two projection operators:

P 0 =
∑

x∈{0,1}n

PxOpen ⊗ Pσn(x),+
Commit and P 1 =

∑

x∈{0,1}n

PxOpen ⊗ Pσn(x),×
Commit (13)

which have the property, using (8), that SÃ0 = ‖P 0|Ψ̃n0 〉‖2 and SÃ1 = ‖P 1|Ψ̃n1 〉‖2.
Next lemma relates the success probability to projections P 0 and P 1.

Lemma 4. The probability of success ps of inverter I
Ã
n (y) satisfies

ps = ‖P 1U
n
0,1P 0|Ψ̃n0 〉‖2.

Proof: We recall that the probability of success is defined in terms of a uni-
formly distributed input y. We will first compute the probability ps(y) that the
inverter succeeds on input y ∈ {0, 1}n. Assume that right after gate Tn, the
register HT is observed in state |0〉. The registers HAll⊗HY have now collapsed
to the state |y〉Y ⊗ |Ψn0 〉 where |Ψn0 〉 is the state P 0|Ψ̃n0 〉 after renormalization.

Note that |Ψn0 〉 is a perfect 0-state. This event has probability ‖P 0|Ψ̃0〉‖2 = SÃ0
to happen according to (12). Next the circuit Wn, with y encoded in HY , uni-
tarily maps the state |Ψn

0 〉 into the state 2n/2|Φn0 (y)〉 = 2n/2 Py,×Commit |Ψn0 〉 (see
Sect. 6). Then the circuit Un

0,1 returns the state 2n/2 Py,×CommitU
n
0,1 |Ψn0 〉. Finally,

the register HOpen is measured and the probability of success given the initial

state |Ψn0 〉 is ‖2n/2 Pσ
−1
n (y)

Open Py,×CommitU
n
0,1 |Ψn0 〉‖2. Using (12), we get that ps(y) =

SÃ0 2n ‖Pσ
−1
n (y)

Open Py,×CommitU
n
0,1 |Ψn0 〉‖2 = 2n ‖Pσ

−1
n (y)

Open Py,×CommitU
n
0,1 P 0 |Ψ̃n0 〉‖2. Av-

eraging over all values of the uniformly distributed variable y we obtain:

ps =
∑

y∈{0,1}n

2−nps(y) =
∑

y∈{0,1}n

‖
(

Pσ
−1
n (y)

Open ⊗ Py,×Commit

)

Un
0,1P 0|Ψ̃n0 〉‖2

= ‖





∑

y∈{0,1}n

Pσ
−1
n (y)

Open ⊗ Py,×Commit



Un
0,1P 0|Ψ̃n0 〉‖2 = ‖P 1U

n
0,1P 0 |Ψ̃n0 〉‖2 (14)

where (14) is obtained from the fact that {PxOpen ⊗ Pσn(x),×
Commit}x∈{0,1}n is a set of

orthogonal projections and from Pythagoras theorem. ut
We are now ready to relate the probability of success for the inverter given

a good adversary against the binding condition of commitΣ,n .

Lemma 5. Let IÃn be the inverter obtained from a (SÃ0 + SÃ1 − 1, ·)-successful
adversary Ã with SÃ0 +SÃ1 ≥ 1+ε(n) for ε(n) > 0 for all n > 0. Then the success
probability ps to invert with success a random image element satisfies

ps ≥ (

√

SÃ1 −
√

1− SÃ0 )2.
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Proof: Using lemma 4, we can write

ps = ‖P 1U
n
0,1P 0|Ψ̃n0 〉‖2 = ‖P 1U

n
0,1(11Ã − P⊥

0 )|Ψ̃n0 〉‖2

= ‖P 1U
n
0,1|Ψ̃n0 〉 − P 1U

n
0,1P

⊥
0 |Ψ̃n0 〉‖2 = ‖P 1|Ψ̃n1 〉 − P 1U

n
0,1P

⊥
0 |Ψ̃n0 〉‖2.

Using the triangle inequality and SÃ1 > 1− SÃ0 , we are led to

ps ≥
(

‖P 1|Ψ̃n1 〉‖ − ‖P 1U
n
0,1P

⊥
0 |Ψ̃n0 〉‖

)2

≥
(

‖P 1|Ψ̃n1 〉‖ − ‖P⊥
0 |Ψ̃n0 〉‖

)2

=

(
√

SÃ1 −
√

1− SÃ0

)2

.

ut
From Lemma 5 and a few manipulations, we conclude that SÃ0 + SÃ1 > 1 +
ε(n) implies that ps > ε(n)2/4. In addition, if ε(n) ∈ Ω( 1

poly(n) ) and T (n) ∈
O(poly(n)) then the inverter works in polynomial time with probability of success
in Ω(1/poly(n)2).

8 Conclusion

The concealing condition is established unconditionally by Lemma 1. Lemmas 3
and 5 imply that any (S(n), T (n))-successful adversary against commitΣ,n can
invert the family of one-way permutations Σ with time-success ratio roughly
T (n)/S(n)2. We finally obtain:

Theorem 1. Let Σ be a R(n)-secure family of one-way permutations. Proto-
col commitΣ,n is unconditionally concealing and R

′(n)–binding where R′(n) ∈
Ω(
√

R(n)).

Our reduction produces only a quadratic blow-up in the worst case between
the time-success ratio of the inverter and the time-success ratio of the attack.
Compared to NOVY’s construction, the reduction is tighter by several degrees of
magnitude. If Σ is T (n)/S(n)–secure with 1

S(n) ∈ O(
√

T (n)) then the reduction

is optimal.
In order for the scheme to be practical, the receiver should not be required

to store the received qubits until the opening phase. It is an open question
whether or not our scheme is still secure if the receiver measures each qubit
πi upon reception in a random basis θi ∈R {+,×}. The opening of w ∈ {0, 1}
being accepted if each time θi = θ(w), the announced x ∈ {0, 1}n is such that
[σn(x)]i = ỹi. That way, the protocol would require similar technology than the
one needed for implementing the BB84 quantum-key distribution protocol [2].

It is also not clear how to modify the scheme in order to deal with noisy
quantum transmissions. Another problem linked to practical implementation is
the lack of tolerance to multi-photon pulses. If for x,w ∈ {0, 1}, the quantum
state |φx〉θ(w) ⊗ |φx〉θ(w) is sent instead of |φx〉θ(w) then commitΣ,n is no more
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concealing. Moreover, it is impossible in practice to make sure that only one
qubit per pulse is sent.

Our main open problem is the finding of candidates for families of quantum
one-way permutations or functions. If a candidate family of quantum one-way
functions was also computable efficiently on a classical computer then classical
cryptography could provide computational security even against quantum ad-
versaries. It would also be interesting to find candidates one-way functions that
are not classical one-way. Quantum cryptography could then provide a different
basis for computational security in cryptography.

Acknowledgements. Thanks to Ivan Damg̊ard for several enlightening discus-
sions and to Peter Høyer for helping with the circuitry. Thanks also to Alain
Tapp for helpful comments on earlier drafts.
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