
Public-Key Encryption in a Multi-user Setting:

Security Proofs and Improvements

Mihir Bellare1, Alexandra Boldyreva1, and Silvio Micali2

1 Dept. of Computer Science & Engineering, University of California at San Diego,
9500 Gilman Drive, La Jolla, California 92093, USA.

E-mails: {mihir, aboldyre}@cs.ucsd.edu.
URLs: www-cse.ucsd.edu/users/{mihir, aboldyre}.

2 MIT Laboratory for Computer Science,
545 Technology Square, Cambridge MA 02139, USA.

Abstract. This paper addresses the security of public-key cryptosys-
tems in a “multi-user” setting, namely in the presence of attacks involv-
ing the encryption of related messages under different public keys, as
exemplified by H̊astad’s classical attacks on RSA. We prove that secu-
rity in the single-user setting implies security in the multi-user setting as
long as the former is interpreted in the strong sense of “indistinguishabil-
ity,” thereby pin-pointing many schemes guaranteed to be secure against
H̊astad-type attacks. We then highlight the importance, in practice, of
considering and improving the concrete security of the general reduction,
and present such improvements for two Diffie-Hellman based schemes,
namely El Gamal and Cramer-Shoup.

1 Introduction

Two settings. The setting of public-key cryptography is usually presented like
this: there is a receiver R, possession of whose public key pk enables anyone to
form ciphertexts which the receiver can decrypt using the secret key associated
to pk. This single-user setting —so called because it considers a single recipient
of encrypted data— is the one of formalizations such as indistinguishability and
semantic security [9]. Yet it ignores an important dimension of the problem: in
the real world there are many users, each with a public key, sending each other
encrypted data. Attacks presented in the early days of public-key cryptography
had highlighted the presence of security threats in this multi-user setting that
were not present in the single-user setting, arising from the possibility that a
sender might encrypt, under different public keys, plaintexts which although
unknown to the attacker, satisfy some known relation to each other.

Håstad’s attacks. An example of the threats posed by encrypting related
messages under different public keys is provided by H̊astad’s well-known attacks
on the basic RSA cryptosystem [10].1 Suppose we have many users where the

1 As H̊astad points out, the simple version of the attack discussed here was discovered
by Blum and others before his work. His own paper considers extensions of the attack
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public key of user Ui is an RSA modulus Ni and (for efficiency) all users use
encryption exponent e = 3. Given a single ciphertext yi = m3 mod Ni, the
commonly accepted one-wayness of the RSA function implies that it is com-
putationally infeasible for an adversary to recover the plaintext m. However,
suppose now that a sender wants to securely transmit the same plaintext m to
three different users, and does so by encrypting m under their respective public
keys, producing ciphertexts y1, y2, y3 where yi = m3 mod Ni for i = 1, 2, 3. Then
an adversary given y1, y2, y3 can recover m. (Using the fact that N1, N2, N3 are
relatively prime, y1, y2, y3 can be combined by Chinese remaindering to yield
m3 mod N1N2N3. But m

3 < N1N2N3 so m can now be recovered.)

Several counter-measures have been proposed, e.g. padding the message with
random bits. The benefit of such measures is, however, unclear in that although
they appear to thwart the specific known attacks, we have no guarantee of se-
curity against other similar attacks.

A general reduction. The first and most basic question to address is whether
it is possible to prove security against the kinds of attacks discussed above, and if
so how and for which schemes. This question turns out to have a simple answer:
the schemes permitting security proofs in the multi-user setting are exactly those
permitting security proofs in the single-user setting, as long as we use “strong-
enough” notions of security in the two cases. What is “strong-enough”? Merely
having the property that it is hard to recover the plaintext from a ciphertext is
certainly not: basic RSA has this property, yet H̊astad’s attacks discussed above
show it is not secure in the multi-user setting. Theorem 1 interprets “strong
enough” for the single-user setting in the natural way: secure in the sense of
indistinguishability of Goldwasser and Micali [9]. As to the multi-user setting,
the notion used in the theorem is an appropriate extension of indistinguishability
that takes into account the presence of multiple users and the possibility of an
adversary seeing encryptions of related messages under different public keys.
We prove the general reduction for security both under chosen-plaintext attack
and chosen-ciphertext attack, in the sense that security under either type of
attack in one setting implies security under the same type of attack in the other
setting. (The analogous statement can be shown with regard to non-malleability
[7] under chosen-plaintext attack, and a simple way to extend our proof to that
setting is to exploit the characterization of [5].)

We view ourselves here as establishing what most theoreticians would have
“expected” to be true. The proof is indeed simple, yet validating the prevailing
intuition has several important elements and fruits beyond the obvious one of
filling a gap in the literature, as we now discuss.

Immediate consequences. The above-mentioned results directly imply secu-
rity guarantees in the multi-user setting for all schemes proven to meet the notion
of indistinguishability, under the same assumptions that were used to estab-
lish indistinguishability. This includes practical schemes secure against chosen-

using lattice reduction [10]. For simplicity we will continue to use the term “H̊astad’s
attack(s)” to refer to this body of cryptanalysis.
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plaintext attack [8], against chosen-ciphertext attack [6], and against chosen-
ciphertext attack in the random oracle model [4, 12].

These results confirm the value of using strong, well-defined notions of se-
curity and help to emphasize this issue in practice. As we have seen, designers
attempt to thwart H̊astad-type attacks by specific counter-measures. Now we
can say that the more productive route is to stick to schemes meeting notions of
security such as indistinguishability. Designers are saved the trouble of explicitly
considering attacks in the multi-user setting.

The model. The result requires, as mentioned above, the introduction of a new
model and notion. We want to capture the possibility of an adversary seeing
encryptions of related messages under different keys when the choice of the re-
lation can be made by the adversary. To do this effectively and elegantly turns
out to need some new definitional ideas. Very briefly —see Section 3 for a full
discussion and formalization— the formalization introduces the idea of an adver-
sary given (all public keys and) a list of “challenge encryption oracles,” one per
user, each oracle capable of encrypting one of two given equal-length messages,
the choice of which being made according to a bit that although hidden from
the adversary is the same for all oracles.2 This obviates the need to explicitly
consider relations amongst messages. This model is important because its use
extends beyond Theorem 1, as we will see below.

Isn’t simulation enough? It may appear at first glance that the implication
(security in the single-user setting implies security in the multi-user setting for
strong-enough notions of security) is true for a trivial reason: an adversary at-
tacking one user can just simulate the other users, itself picking their public keys
so that it knows the corresponding secret keys. This doesn’t work, and misses
the key element of the multi-user setting. Our concern is an adversary that sees
ciphertexts of related messages under different keys. Given a challenge ciphertext
of an unknown message under a target public key, a simulator cannot produce a
ciphertext of a related message under a different public key, even if it knows the
secret key corresponding to the second public key, because it does not know the
original message. Indeed, our proof does not proceed by this type of simulation.

The need for concrete security improvements. Perhaps the most impor-
tant impact of the general reduction of Theorem 1 is the manner in which it leads
us to see the practical importance of concrete security issues and improvements
for the multi-user setting.

Suppose we have a system of n users in which each user encrypts up to qe
messages. We fix a public-key cryptosystem PE used by all users. Theorem 1
says that the maximum probability that an adversary with running time t can

2 An encryption oracle is used in definitions of security for private-key encryption [3]
because there the encryption key is secret, meaning not given to the adversary. One
might imagine that oracles performing encryption are unnecessary in the public-key
case because the adversary knows the public keys: can’t it just encrypt on its own?
Not when the message in question is a challenge one which it doesn’t know, as in
our setting.
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compromise security in the multi-user setting —this in the sense of our definition
discussed above— is at most qen times the maximum probability that an adver-
sary with running time closely related to t can compromise security in the stan-
dard sense of indistinguishability. Notationally, Advn-cpa

PE,I (t, qe) ≤ qen·Adv
1-cpa
PE,I (t

′)
where t′ ≈ t. (Here I represents any possible information common to all users
and should be ignored at a first reading, and the technical term for the “max-
imum breaking probabilities” represented by the notation is “advantage”.) It
follows that if any poly-time adversary has negligible success probability in the
single-user setting, the same is true in the multi-user setting. This corollary is
what we have interpreted above as saying that “the schemes secure in the single-
user setting are exactly those secure in the multi-user setting”. However, what
this theorem highlights is that the advantage in the multi-user setting may be
more than that in the single-user setting by a factor of qen. Security can degrade
linearly as we add more users to the system and also as the users encrypt more
data. The practical impact of this is considerable, and in the full version of this
work [2] we illustrate this with some numerical examples that are omitted here
due to lack of space.

We prove in Proposition 1 that there is no general reduction better than
ours: if there is any secure scheme, there is also one whose advantage in the two
settings provably differs by a factor of qen. So we can’t expect to reduce the
security loss in general. But we can still hope that there are specific schemes for
which the security degrades less quickly as we add more users to the system.
These schemes become attractive in practice because for a fixed level of security
they have lower computational cost than schemes not permitting such improved
reductions. We next point to two popular schemes for which we can provide new
security reductions illustrating such improvements.

El Gamal. The El Gamal scheme in a group of prime order can be proven
to have the property of indistinguishability under chosen-plaintext attack (in
the single-user setting) under the assumption that the decision Diffie-Hellman
(DDH) problem is hard. (This simple observation is made for example in [11, 6]).
The reduction is essentially tight, meaning that the maximum probability that
an adversary of time-complexity t can compromise the security of the El Gamal
scheme in the single-user setting is within a constant factor of the probability of
solving the DDH problem in comparable time. Theorem 1 then implies that the
maximum probability of breaking the El Gamal scheme under chosen-plaintext
attack in the presence of n users each encrypting qe messages is bounded by
2qen times the probability of solving the DDH problem in comparable time. We
show in Theorem 2 that via an improved reduction the factor of qen can be
essentially eliminated. In other words, the maximum probability of breaking the
El Gamal scheme under chosen-plaintext attack, even in the presence of n users
each encrypting qe messages, remains tightly related to the probability of solving
the DDH problem in comparable time.

Our reduction exploits a self-reducibility property of the decisional Diffie-
Hellman problem due to Stadler and Naor-Reingold [15, 11], and a variant thereof
that was also independently noted by Shoup [14]. See Lemma 1.
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Cramer-Shoup. The Cramer-Shoup scheme [6] is shown to achieve indistin-
guishability under chosen-ciphertext attack (in the single-user setting) assuming
the DDH problem is hard. Their reduction of the security of their scheme to that
of the DDH problem is essentially tight. Applying our general result to bound
the advantage in the multi-user setting would indicate degradation of security by
a factor of qen. We present in Theorem 3 an improved reduction which (roughly
speaking) reduces the factor of qen to a factor of qe only. Thus the maximum
probability of breaking the Cramer-Shoup scheme under chosen-ciphertext at-
tack, in the presence of n users, each encrypting qe messages, is about the same
as is proved if there was only one user encrypting qe messages. (The result is
not as strong as for El Gamal because we have not eliminated the factor of qe,
but this is an open problem even when there is only one user.) This new result
exploits Lemma 1 and features of the proof of security for the single-user case
given in [6].

Discussion and related work. A special case of interest in these results is
when n = 1. Meaning we are back in the single-user setting, but are looking
at an extension of the notion of indistinguishability in which one considers the
encryption of up to qe messages. Our results provide improved security for the
El Gamal scheme in this setting.

The questions raised here can also be raised in the private-key setting: what
happens there when there are many users? The ideas of the current work are
easily transfered. The definitions of [3] for the single-user case can be adapted
to the multi-user case using the ideas in Section 3. The analogue of Theorem 1
for the private-key setting is then easily proven.

Baudron, Pointcheval and Stern have independently considered the problem
of public-key encryption in the multi-user setting [1]. Their notion of security for
the multi-user setting —also proved to be polynomially-equivalent to the stan-
dard notion of single-user indistinguishability— is slightly different from ours.
They do not consider concrete-security or any specific schemes. (The difference
in the notions is that they do not use the idea of encryption oracles; rather, their
adversary must output a pair of vectors of plaintexts and get back as challenge a
corresponding vector of ciphertexts. This makes their model weaker since the ad-
versary does not have adaptive power. If only polynomial-security is considered,
their notion, ours and the single-user one are all equivalent, but when concrete
security is considered, our notion is stronger.)

2 Definitions

We specify a concrete-security version of the standard notion of security of a
public-key encryption scheme in the sense of indistinguishability. We consider
both chosen-plaintext and chosen-ciphertext attacks.

First recall that a public-key encryption scheme PE = (K, E ,D) consists of
three algorithms. The key generation algorithm K is a randomized algorithm
that takes as input some global information I and returns a pair (pk, sk) of

keys, the public key and matching secret key, respectively; we write (pk, sk)
R
←
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K(I). (Here I includes a security parameter, and perhaps other information.
For example in a Diffie-Hellman based scheme, I might include a global prime
number and generator of a group which all parties use to create their keys.)
The encryption algorithm E is a randomized algorithm that takes the public

key pk and a plaintext M to return a ciphertext C; we write C
R
← Epk(M).

The decryption algorithm D is a deterministic algorithm that takes the secret
key sk and a ciphertext C to return the corresponding plaintext M ; we write
M ← Dsk(C). Associated to each public key pk is a message space MsgSp(pk)
from which M is allowed to be drawn. We require that Dsk(Epk(M)) = M for
all M ∈ MsgSp(pk).

An adversary B runs in two stages. In the “find” stage it takes the public
key and outputs two equal length messages m0,m1 together with some state
information s. In the “guess” stage it gets a challenge ciphertext C formed by
encrypting a random one of the two messages, and must say which message was
chosen. Below the superscript of “1” indicates that we are in the single-user
setting, meaning that although there may be many senders, only one person
holds a public key and is the recipient of encrypted information. In the case of
a chosen-ciphertext attack the adversary gets an oracle for Dsk(·) and is allowed
to invoke it on any point with the restriction of not querying the challenge
ciphertext during the guess stage [13].

Definition 1. [Indistinguishability of encryptions] Let PE = (K, E ,D) be
a public-key encryption scheme. Let Bcpa, Bcca be adversaries where the latter
has access to an oracle. Let I be some initial information string. For b = 0, 1
define the experiments

Experiment Exp1-cpa
PE,I (Bcpa, b)

(pk, sk)← K(I)
(m0,m1, s)← Bcpa(find, I,pk)

C
R
← Epk(mb)

d← Bcpa(guess, C, s)
Return d

Experiment Exp1-cca
PE,I (Bcca, b)

(pk, sk)← K(I)

(m0,m1, s)← B
Dsk(·)
cca (find, I,pk)

C
R
← Epk(mb)

d← B
Dsk(·)
cca (guess, C, s)

Return d

It is mandated that |m0| = |m1| above. We require that Bcca not make oracle
query C in the guess stage. We define the advantage of Bcpa and Bcca, respec-
tively, as follows:

Adv
1-cpa
PE,I (Bcpa) = Pr

[

Exp1-cpa
PE,I (Bcpa, 0) = 0

]

− Pr
[

Exp1-cpa
PE,I (Bcpa, 1) = 0

]

Adv1-cca
PE,I (Bcca) = Pr

[

Exp1-cca
PE,I (Bcca, 0) = 0

]

− Pr
[

Exp1-cca
PE,I (Bcca, 1) = 0

]

.

We define the advantage function of the scheme for privacy under chosen-plaintext
(resp. chosen-ciphertext) attacks in the single-user setting as follows. For any
t, qd, let

Adv
1-cpa
PE,I (t) = max

Bcpa

{Adv1-cpa
PE,I (Bcpa) }

Adv1-cca
PE,I (t, qd) = max

Bcca

{Adv1-cca
PE,I (Bcca) }
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where the maximum is over all Bcpa, Bcca with “time-complexity” t, and, in the
case of Bcca, also making at most qd queries to the Dsk(·) oracle.

The “time-complexity” is the worst case execution time of the associated exper-
iment plus the size of the code of the adversary, in some fixed RAM model of
computation. (Note that the execution time refers to the entire experiment, not
just the adversary. In particular, it includes the time for key generation, chal-
lenge generation, and computation of responses to oracle queries if any.) The
same convention is used for all other definitions in this paper and will not be
explicitly mentioned again. The advantage function is the maximum likelihood
of the security of the encryption scheme PE being compromised by an adver-
sary, using the indicated resources, and with respect to the indicated measure
of security.

Definition 2. We say that PE is polynomially-secure against chosen-plaintext
attack (resp. chosen-ciphertext attack) in the single-user setting if Adv1-cpa

PE,I (B)

(resp. Adv1-cca
PE,I (B)) is negligible for any probabilistic, poly-time adversary B.

Here complexity is measured as a function of a security parameter that is con-
tained in the global input I. If I consists of more than a security parameter (as
in the El Gamal scheme), we fix a probabilistic generator for this information
and the probability includes the choices of this generator.

3 Security in the multi-user setting

We envision a set of n users. All users use a common, fixed cryptosystem PE =
(K, E ,D). User i has a public key pki and holds the matching secret key ski. It
is assumed that each user has an authentic copy of the public keys of all other
users.

As with any model for security we need to consider attacks (what the adver-
sary is allowed to do) and success measures (when is the adversary considered
successful). The adversary is given the global information I and also the public
keys of all users. The main novel concern is that the attack model must capture
the possibility of an adversary obtaining encryptions of related messages under
different keys. To have a strong notion of security, we will allow the adversary to
choose how the messages are related, and under which keys they are encrypted.
For simplicity we first address chosen-plaintext attacks only.

Some intuition. To get a start on the modeling, consider the following game.
We imagine that a message m is chosen at random from some known distribu-
tion, and the adversary is provided with Epk1

(m), a ciphertext of m under the
public key of user 1. The adversary’s job is to compute some partial information
about m. To do this, it may, for example, like to see an encryption of m under
pk3. We allow it to ask for such an encryption. More generally, it may want to see
an encryption of the bitwise complement of m under yet another key, or perhaps
the encryption of an even more complex function of m. We could capture this
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by allowing the adversary to specify a polynomial-time “message modification
function” ∆ and a user index j, and obtain in response Epkj

(∆(m)), a cipher-
text of the result of applying the modification function to the challenge message.
After many such queries, the adversary must output a guess of some partial
information about m and wins if it can do this with non-trivial advantage. Ap-
propriately generalized, these ideas can be used to produce a semantic-security
type notion of security for the multi-user setting, but, as should be evident even
from our brief discussion here, it would be relatively complex. We prefer an
indistinguishability version because it is simpler and extends more easily to a
concrete security setting. It is nonetheless useful to discuss the semantic security
setting because here we model the attacks in which we are interested in a direct
way that helps provide intuition.

Indistinguishability based approach. The adversary is provided with all
the public keys. But unlike in the single-user indistinguishability setting of
Section 2, it will not run in two phases, and there will be no single challenge
ciphertext. Rather the adversary is provided with n different oracles O1, . . . ,On.
Oracle i takes as input any pair m0,m1 of messages (of equal length) and com-
putes and returns a ciphertext Epki

(mb). The challenge bit b here (obviously
not explicitly given to the adversary) is chosen only once at the beginning of
the experiment and is the same across all oracles and queries. The adversary’s
success is measured by its advantage in predicting b.

We suggest that this simple model in fact captures encryption of related mes-
sages under different keys; the statement in the italicized text above is crucial in
this regard. The possibility of the adversary’s choosing the relations between en-
crypted messages is captured implicitly; we do not have to worry about explicitly
specifying message modification functions.

The formal definition. Formally, the left or right selector is the map LR
defined by LR(m0,m1, b) = mb for all equal-length strings m0,m1, and for any
b ∈ {0, 1}. The adversary A is given n oracles, which we call LR (left-or-right)
encryption oracles,

Epk1
(LR(·, ·, b)) , . . . , Epkn

(LR(·, ·, b))

where pki is a public key of the encryption scheme and b is a bit whose value is
unknown to the adversary. (LR oracles were first defined by [3] in the symmet-
ric setting.) The oracle Epki

(LR(·, ·, b)), given query (m0,m1) where m0,m1 ∈
MsgSp(pki) must have equal length, first sets mb ← LR(m0,m1, b), meaning mb

is one of the two query messages, as dictated by bit b. Next the oracle encrypts
mb, setting C ← Epki

(mb) and returns C as the answer to the oracle query. The
adversary also gets as input the public keys and the global information I.

In the case of a chosen-ciphertext attack the adversary is also given a de-
cryption oracle with respect to each of the n public keys. Note we must disallow
a query C to Dski

(·) if C is an output of oracle Epki
(LR(·, ·, b)). This is neces-

sary for meaningfulness since if such a query is allowed b is easily computed,
and moreover disallowing such queries seems the least limitation we can impose,
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meaning the adversary has the maximum meaningful power. Below we indicate
the number n of users as a superscript.

Definition 3. Let PE = (K, E ,D) be a public-key encryption scheme. Let Acpa,
Acca be adversaries. Both have access to n ≥ 1 oracles, each of which takes as
input any two strings of equal length, and Acca has access to an additional n
oracles each of which take a single input. Let I be some initial information string.
For b = 0, 1 define the experiments:

Experiment Expn-cpa
PE,I (Acpa, b)

For i = 1, . . . , n do (pki, ski)← K(I) EndFor

d← A
Epk1

(LR(·,·,b)), ..., Epkn
(LR(·,·,b))

cpa (I,pk1, . . . ,pkn) ; Return d

Experiment Expn-ccaPE,I (Acca, b)

For i = 1, . . . , n do (pki, ski)← K(I) EndFor

d← A
Epk1

(LR(·,·,b)), ..., Epkn
(LR(·,·,b)),Dsk1

(·), ...,Dskn (·)
cca (I,pk1, . . . ,pkn)

Return d

It is mandated that a query to any LR oracle consists of two messages of equal
length and that for each i = 1, . . . , n adversary Acca does not query Dski

(·) on
an output of Epki

(LR(·, ·, b)) We define the advantage of Acpa, and the advantage
of Acca, respectively, as follows:

Adv
n-cpa
PE,I (Acpa) = Pr

[

Expn-cpa
PE,I (Acpa, 0) = 0

]

− Pr
[

Expn-cpa
PE,I (Acpa, 1) = 0

]

Advn-ccaPE,I (Acca) = Pr
[

Expn-ccaPE,I (Acca, 0) = 0
]

− Pr
[

Expn-ccaPE,I (Acca, 1) = 0
]

.

We define the advantage function of the scheme for privacy under chosen- plain-
text (resp. chosen-ciphertext) attacks, in the multi-user setting, as follows. For
any t, qe, qd let

Adv
n-cpa
PE,I (t, qe) = max

Acpa

{Advn-cpa
PE,I (Acpa) }

Advn-ccaPE,I (t, qe, qd) = max
Acca

{Advn-ccaPE,I (Acca) }

where the maximum is over all Acpa, Acca with “time-complexity” t, making at
most qe queries to each LR oracle, and, in the case of Acca, also making at most
qd queries to each decryption oracle.

The advantage function is the maximum likelihood of the security of the sym-
metric encryption scheme PE being compromised by an adversary, using the
indicated resources, and with respect to the indicated measure of security.

Remark 1. Notice that when n = qe = 1 in Definition 3, the adversary’s capabil-
ity is limited to seeing a ciphertext of one of two messages of its choice under a
single target key. Thus Definition 3 with n = qe = 1 is equivalent to Definition 1.
We can view Definition 3 as extending Definition 1 along two dimensions: the
number of users and the number of messages encrypted by each user.
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Definition 4. We say that PE is polynomially-secure against chosen-plaintext
(resp. chosen-ciphertext) attack in the multi-user setting if Advn-cpa

PE,I (A) (resp.

Advn-ccaPE,I (A)) is negligible for any probabilistic, poly-time adversary A and poly-
nomial n.

Again complexity is measured as a function of a security parameter that is
contained in the global input I, and the latter is generated by a fixed probabilistic
polynomial-time generation algorithm if necessary.

4 A general reduction and its tightness

Fix a public-key encryption scheme PE = (K, E ,D). The following theorem
says that the advantage of an adversary in breaking the scheme in a multi-user
setting can be upper bounded by a function of the advantage of an adversary
of comparable resources in breaking the scheme in the single-user setting. The
factor in the bound is polynomial in the number n of users in the system and
the number qe of encryptions performed by each user, and the theorem is true
for both chosen-plaintext attacks and chosen-ciphertext attacks. The proof of
Theorem 1 is via a simple hybrid argument that is omitted here due to lack of
space but can be found in the full version of this paper [2].

Theorem 1. Let PE = (K, E ,D) be a public-key encryption scheme. Let n, qe, qd,
t be integers and I some initial information string. Then

Adv
n-cpa
PE,I (t, qe) ≤ qen · Adv

1-cpa
PE,I (t

′)

Advn-ccaPE,I (t, qe, qd) ≤ qen · Adv
1-cca
PE,I (t

′, qd)

where t′ = t+O(log(qen)).

The relation between the advantages being polynomial, we obviously have the
following:

Corollary 1. Let PE = (K, E ,D) be a public-key encryption scheme that is
polynomially-secure against chosen-plaintext (resp. chosen-ciphertext) attack in
the single-user setting. Then PE = (K, E ,D) is also polynomially-secure against
chosen-plaintext (resp. chosen-ciphertext) attack in the multi-user setting.

Tightness of the bound. We present an example that shows that in general
the bound of Theorem 1 is essentially tight. Obviously such a statement is vac-
uous if no secure schemes exist, so first assume one does, and call it PE . We
want to modify this into another scheme PE ′ for which Adv

n-cpa
PE′,I

(t, qe) is Ω(qen)

times Adv1-cpa
PE′,I

(t). This will be our counter-example. The following proposition
does this, modulo some technicalities. In reading it, think of PE as being very
good, so that Adv1-cpa

PE,I (t) is essentially zero. With that interpretation we indeed
have the claimed relation.
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Proposition 1. Given any public-key encryption scheme PE and integers n, qe
we can design another public-key encryption PE ′ such that for any I and large
enough t we have

Adv
n-cpa
PE′,I

(t, qe) ≥ 0.6 and Adv
1-cpa
PE′,I

(t) ≤
1

qen
+ Adv

1-cpa
PE,I (t) .

The proof of Proposition 1 is in [2]. An analogous result holds in the chosen-
ciphertext attack case, and we omit it.

5 Improved security for DH based schemes

The security of the schemes we consider is based on the hardness of the Decisional
Diffie-Hellman (DDH) problem. Accordingly we begin with definitions for latter.

Definition 5. Let G be a group of a large prime order q and let g be a generator
of G. Let D be an adversary that on input q, g and three elements X,Y,K ∈ G
returns a bit. We consider the experiments

Experiment Expddh-real
q,g (D)

x
R
← Zq ; X ← gx

y
R
← Zq ; Y ← gy

K ← gxy

d← D(q, g,X, Y,K)
Return d

Experiment Expddh-rand
q,g (D)

x
R
← Zq ; X ← gx

y
R
← Zq ; Y ← gy

K
R
← G

d← D(q, g,X, Y,K)
Return d

The advantage of D in solving the Decisional Diffie-Hellman (DDH) problem
with respect to q, g, and the advantage of the DDH with respect to q, g, are
defined, respectively, by

Advddh
q,g (D) = Pr

[

Expddh-real
q,g (D) = 1

]

− Pr
[

Expddh-rand
q,g (D) = 1

]

Advddh
q,g (t) = max

D
{Advddh

q,g (D) }

where the maximum is over all D with “time-complexity” t.

The “time-complexity” of D is the maximum of the execution times of the two
experiments Expddh-real

q,g (D) and Expddh-rand
q,g (D), plus the size of the code for

D, all in our fixed RAM model of computation.
A common case is that G is a subgroup of order q of Z∗

p where p is a prime
such that q divides p−1. But these days there is much interest in the use of Diffie-
Hellman based encryption over elliptic curves, where G would be an appropriate
elliptic curve group. Our setting is general enough to encompass both cases.

Our improvements exploit in part some self-reducibility properties of the
DDH problem summarized in Lemma 1 below. The case x 6= 0 below is noted
in [15, Proposition 1] and [11, Lemma 3.2]. The variant with x = 0 was noted
independently in [14]. Below T exp

q denotes the time needed to perform an expo-
nentiation operation with respect to a base element in G and an exponent in Zq,
in our fixed RAM model of computation. A proof of Lemma 1 is in [2].
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Lemma 1. Let G be a group of a large prime order q and let g be a generator
of G. There is a probabilistic algorithm R running in O(T exp

q ) time such for

any a, b, c, x in Zq the algorithm takes input q, g, ga, gb, gc, x and returns a triple

ga
′

, gb
′

, gc
′

such that the properties represented by the following table are satisfied,
where we read the row and column headings as conditions, and the table entries
as the properties of the outputs under those conditions:

x = 0 x 6= 0

c = ab mod q
a′ = a
b′ is random
c′ = a′b′ mod q

a′ is random
b′ is random
c′ = a′b′ mod q

c 6= ab mod q
a′ = a
b′ is random
c′ is random

a′ is random
b′ is random
c′ is random

Here random means distributed uniformly over Zq independently of anything
else.

El Gamal. As indicated above, our reduction of multi-user security to single-
user security is tight in general. Here we will obtain a much better result for a
specific scheme, namely the El Gamal encryption scheme over a group of prime
order, by exploiting Lemma 1. We fix a group G for which the decision Diffie-
Hellman problem is hard and let q (a prime) be its size. Let g be a generator
of G. The prime q and the generator g comprise the global information I for
the El Gamal scheme. The algorithms describing the scheme EG = (K, E ,D) are
depicted below. The message space associated to a public key (q, g,X) is the
group G itself, with the understanding that all messages from G are properly
encoded as strings of some common length whenever appropriate.

Algorithm K(q, g)

x
R
← Zq

X ← gx

pk ← (q, g,X)
sk ← (q, g, x)
Return (pk, sk)

Algorithm Eq,g,X(M)

y
R
← Zq

Y ← gy

K ← Xy

W ← KM
Return (Y,W )

Algorithm Dq,g,x(Y,W )
K ← Y x

M ←WK−1

Return M

We noted in Section 1 that the hardness of the DDH problem implies that the
El Gamal scheme meets the standard notion of indistinguishability of encryp-
tions (cf.[11, 6]), and the reduction is essentially tight: Adv1-cpa

EG,(q,g)(t) is at most

2Advddh
q,g (t). We want to look at the security of the El Gamal scheme in the

multi-user setting. Directly applying Theorem 1 in conjunction with the above
would tell us that

Adv
n-cpa
EG,(q,g)(t, qe) ≤ 2qen · Adv

ddh
q,g (t

′) (1)

where t′ = t + O(log(qen)). This is enough to see that polynomial security of
the DDH problem implies polynomial security of El Gamal in the multi-user
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setting, but we want to improve the concrete security of this relation and say
that the security of the El Gamal scheme in the multi-user setting almost does
not degrade with respect to the assumed hardness of the DDH problem. The
following theorem states our improvement.

Theorem 2. Let G be a group of a large prime order q and let g be a generator
of the group G. Let EG = (K, E ,D) be the El Gamal public-key encryption scheme
associated to these parameters as described above. Let n, qe, t be integers. Then

Adv
n-cpa
EG,(q,g)(t, qe) ≤ 2 · Advddh

q,g (t
′) +

1

q

where t′ = t+O(qen · T
exp
q ).

The 1/q term is negligible in practice since q is large, so the theorem is saying
that the security of the encryption scheme is within a constant factor of that of
the DDH problem, even where there are many users and the time-complexities
are comparable.
Proof of Theorem 2: Let A be an adversary attacking the El Gamal public-
key encryption scheme EG in the multi-user setting (cf. Definition 3). Suppose
it makes at most qe queries to each of its n oracles and has time-complexity
at most t. We will design an adversary DA for the Decisional Diffie-Hellman
problem (cf. Definition 5) so that DA has running time at most t

′ and

Advddh
q,g (DA) ≥

1

2
· Advn-cpa

EG,(q,g)(A)−
1

2q
. (2)

The statement of theorem follows by taking maximums. So it remains to specify
DA. The code for DA is presented in Figure 1. It has input q, g, and also three
elements X,Y,K ∈ G. It will use adversary A as a subroutine. DA will provide
for A as input public keys pk1, . . . , pkn and global information q, g and will
simulate for A the n LR oracles, Epki

(LR(·, ·, b)) for i = 1, . . . , n. We use the
notation A → (i,m0,m1) to indicate that A is making query (m0,m1) to its
i-th LR oracle, where 1 ≤ i ≤ n and |m0| = |m1|. We use the notation A ← C
to indicate that we are returning ciphertext C to A as the response to this LR
oracle query. We are letting R denote the algorithm of Lemma 1.

An analysis of this algorithm —which is omitted here due to lack of space
but can be found in [2]— shows that

Pr
[

Expddh-real
q,g (D) = 1

]

=
1

2
+
1

2
· Advn-cpa

EG,(q,g)(A) . (3)

and

Pr
[

Expddh-rand
q,g (D) = 1

]

≤
1

2
·

(

1−
1

q

)

+
1

q
=
1

2
+
1

2q
. (4)

Subtracting Equations (3) and (4) we get Equation (2). ut

Cramer-Shoup. Now we consider another specific scheme, namely the prac-
tical public-key cryptosystem proposed by Cramer and Shoup, which is secure
against chosen-ciphertext attack in the single-user setting as shown in [6]. We
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Adversary DA(q, g, X, Y, K)

b
R
← {0, 1}

For i = 1, . . . , n do

(X ′
i[1], Y

′
i [1], K

′
i[1])← R(q, g, X, Y, K, 1) ; pki ← (q, g, X ′

i[1]) ; ctri ← 0
For j = 2, . . . , qe do

(X ′
i[j], Y

′
i [j], K

′
i[j])← R(q, g, X ′

i[1], Y
′

i [1], K
′
i[1], 0)

EndFor

EndFor

Run A replying to oracle queries as follows:
A→ (i, m0, m1) [ 1 ≤ i ≤ n and m0, m1 ∈ G]
ctri ← ctri + 1 ; Wi ← K′

i[ctri] ·mb

A← (Y ′
i [ctri], Wi[ctri])

Eventually A halts and outputs a bit d

If b = d then return 1 else return 0

Fig. 1. Distinguisher DA in proof of Theorem 2, where R is the algorithm of Lemma 1.

are interested in the security of this scheme (against chosen-ciphertext attack)
in the multi-user setting. Let us define the basic scheme. Let G be a group of
a large prime order q and let g be a generator of G. The prime q and the gen-
erator g comprise the global information I for the scheme. Let H be a family
of collision-resistant hash functions, each member of which maps strings of ar-
bitrary length to the elements of Zq. The message space is the group G. The
algorithms describing the scheme CS = (K, E ,D) are defined as follows:

Algorithm K(q, g)

g1 ← g ; g2
R
← G

H
R
← H

x1, x2, y1, y2, z
R
← Zq

c← gx1

1 gx2

2

d← gy11 gy22

h← gz1
pk ← (g1, g2, c, d, h)
sk ← (x1, x2, y1, y2, z)
Return (pk, sk)

Algorithm Epk(M)

r
R
← Zq

u1 ← gr1
u2 ← gr2
e← hrM
α← H(u1, u2, e)
v ← crdrα

C ← (u1, u2, e, v)
Return C

Algorithm Dsk(C)
parse C as (u1, u2, e, v)
α← H(u1, u2, e)
If u1

x1+y1αu2
x2+y2α = v

then M ← e/u1
z

else reject

Return M

Although Cramer and Shoup do not explicitly state the concrete security of their
reduction, it can be gleaned from the proof in [6, Section 4]. Their reduction is
essentially tight. In our language:

Adv1-cca
CS,(q,g)(t, qd) ≤ 2 · Adv

ddh
q,g (t) + 2 · Adv

cr
H(t) +

2(4qd + 1)

q
. (5)

as long as qd ≤ q/2. The first term represents the advantage of the scheme in the
single-user setting under chosen-ciphertext attack. Note that in this attack mode
a new parameter is present, namely the number qd of decryption queries made
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by the adversary, and hence the advantage is a function of this in addition to
the time t. (Definition 1 has the details.) We are using AdvcrH(t) to represent the
maximum possible probability that an adversary with time t can find collisions in
a random member H of the family H. The last term in Equation (5) is negligible
because q is much bigger than qd in practice, which is why we view this reduction
as tight. Moving to the multi-user setting, Theorem 1 in combination with the
above tells us that

Advn-ccaCS,(q,g)(t, qe, qd) ≤ 2 · qen · Adv
ddh
q,g (t

′) + 2 · qen · Adv
cr
H(t

′) +
2qen · (4qd + 1)

q

where t′ = t+(log(qen)). The first term represents the advantage of the scheme in
the multi-user setting under chosen-ciphertext attack, with n users, qe encryption
queries per user, and qd decryption queries per user. Our improvement is the
following.

Theorem 3. Let G be a group of a large prime order q. Let H be a family
of collision-resistant hash function, each member of which maps from {0, 1}∗

into Zq. Let g be a generator of G. Let CS = (K, E ,D) be the Cramer-Shoup
public-key encryption scheme associated to these parameters as defined above.
Let n, qe, qd, t be integers with qd ≤ q/2. Then

Advn-ccaCS,(q,g)(t, qe, qd) ≤ 2qe · Adv
ddh
q,g (t

′) + 2qe · Adv
cr
H(t

′) +
2(4qenqd + qen)

q

where t′ = t+O(n · T exp
q ).

Note that the last term is negligible for any reasonable values of n, qe, qd due to
the fact that q is large. So comparing with Equation (5) we see that we have
essentially the same proven security for n users or one user when each encrypts
qe messages.

The reduction we got for Cramer-Shoup is not as tight as the one we got
for El Gamal. We did not avoid the factor of qe in a degradation of security of
Cramer-Shoup for the multi-user setting. However it is still an open problem
to avoid the factor of qe even when there is only a single user encrypting qe
messages, so our result can be viewed as the optimal extension to the multi-user
setting of the known results in the single-user setting.

To obtain this result we use Lemma 1 and modify the simulation algorithm
from [6]. We provide a full proof and discuss the difficulties in improving the
quality of the reduction in [2].
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