
Confirmer Signature Schemes

Secure against Adaptive Adversaries

(Extended Abstract)

Jan Camenisch

IBM Research
Zurich Research Laboratory

CH–8803 Rüschlikon
jca@zurich.ibm.com

Markus Michels

Entrust Technologies (Switzerland)
Glatt Tower

CH–8301 Glattzentrum
Markus.Michels@entrust.com

Abstract. The main difference between confirmer signatures and ordi-
nary digital signatures is that a confirmer signature can be verified only
with the assistance of a semitrusted third party, the confirmer. Addi-
tionally, the confirmer can selectively convert single confirmer signatures
into ordinary signatures.
This paper points out that previous models for confirmer signature schemes
are too restricted to address the case where several signers share the
same confirmer. More seriously, we show that various proposed schemes
(some of which are provably secure in these restricted models) are vul-
nerable to an adaptive signature-transformation attack. We define a new
stronger model that covers this kind of attack and provide a generic so-
lution based on any secure ordinary signature scheme and public key
encryption scheme. We also exhibit a concrete instance thereof.

1 Introduction

To limit the information dispersed by digital signatures, Chaum and van Antwer-
pen introduced the concept of undeniable signatures [10]. Undeniable signatures
can only be verified with the help of the original signer. Of course, the signer
should be able to deny invalid signatures but must not be able to deny valid
signatures. Thereby the signer is able to control who gets to know the validity
of a signature. To overcome this concept’s shortcoming that signers might be
unavailable or unwilling to cooperate and hence signatures would no longer be
verifiable, Chaum suggested the notion of confirmer signatures [9]. Here, the
ability to verify/deny signatures is transferred to a semitrusted third party, the
confirmer. The confirmer is also given the power to convert a confirmer signa-
ture into an ordinary (i.e., publicly verifiable) signature. Of course, the confirmer
should not be involved in the signing process. It is understood that the confirmer
follows some policy for deciding to whom he confirms signatures or which signa-
tures he can convert and under which circumstances (e.g., such a policy could
be included in the signed message). For instance, a policy could state that con-
firmation is only allowed during a certain time period, only to a certain group
of people, or simply that the confirmer must log all requests.

Chaum also presented a concrete scheme but neither a formal model nor
a proof of security [9]. Later, Okamoto presented a formal model and proved

Confirmer Signature Schemes 247

that confirmer signature schemes are equivalent to public-key encryption [23].
Okamoto further presented a practical solution. However, Okamoto’s model ex-
plicitly enables not only the confirmer but also the signer to assist in verification
of a confirmer signature. A drawback of this approach is that a coercer could
force the signer to cooperate in confirming or denying a signature. Although a
signer is in principle always able to prove that a confirmer signature he generated
is valid (e.g., by proving knowledge of all inputs to the signing algorithm), the
signer can always claim that he did not generate an alleged confirmer signature
and thus is unable to prove anything, if confirmer signatures are “invisible”, i.e.,
if it is undecidable for everybody apart from the confirmer whether a confirmer
signature is valid or not. This coercer problem is (partially) overcome in the
model of Michels and Stadler [21], which does not explicitly enable the signer
to deny invalid signatures. They also showed that Okamoto’s practical scheme
is insecure because the confirmer can fake signatures. Moreover, they proposed
new schemes and proved them secure in their model. Finally, all realizations
proposed so far [9, 11, 21–23] incorporate the feature that the confirmer could
convert confirmer signatures into ordinary but proprietary signatures (i.e., not
standard signatures such as RSA PKCS#1 or DSS). However, this convertibility
is not included in any of their models and it is hence uncertain whether the
schemes remain secure if this feature is activated.

The contribution of this paper is to point out that various proposed confirmer
schemes are insecure when many signers share the same confirmer. The latter
seems to be natural in an e-commerce environment where playing the role of
a confirmer is offered as a trusted third party service and signers decide on a
per-signature basis which confirmer to use (possibly considering requirements
from the signature receiver). More precisely, these schemes are vulnerable to
an adaptive signature-transformation attack, where the attacker transforms a
confirmer signature with respect to given signing keys into a confirmer signature
with respect to other signing keys such that the resulting confirmer signature is
valid only if the original signature is valid. With this new signature the attacker
can enter the confirmation protocol thus circumvent the policy of the original
signature. For instance, such attacks are possible against the schemes in [21]
that were proved secure with respect to the model given there and applies also to
some of the schemes presented in [9, 23]. We argue that the formal models [21, 23]
proposed so far are too restrictive, e.g., as this kind of attack is not incorporated.

This paper exhibits a new model that fully incorporates adaptive adversaries.
The model also explicitly includes the convertibility of confirmer signatures into
ordinary signature schemes and excludes the signer’s ability to deny invalid sig-
natures. We present a generic solution based on any signature scheme that is
secure against an adaptive chosen-message attack and on any encryption scheme
that is secure against an adaptive chosen-ciphertext attack and prove its security
in our model. This solution enjoys perfect convertibility, i.e., converted signatures
are signatures with respect to the signature scheme we use as a building block.
This property is unmet by all previously proposed schemes. We also provide
a concrete instance based on any deterministic RSA signature scheme and the

248 Jan Camenisch and Markus Michels

Cramer-Shoup encryption scheme. An adaption to other signature schemes such
as DSS is easily possible using techniques from [1]. Moreover, we outline how
the scheme of Michels and Stadler can be adapted to be secure in our model and
how scenarios such as fair contract signing and verifiable signature sharing can
be addressed.

2 Confirmer Signature Model

This section provides a formal definition of confirmer signatures. After having
defined our model, we discuss the differences to previously suggested models in
detail and point out why various previously proposed schemes fail in our model.

2.1 Formal Model

Definition 1. The players in a confirmer signature scheme are signers S, con-
firmers C, and verifiers V . A confirmer signature scheme consists of the follow-
ing procedures:

Key generation: Let CKGS(1`) → (xS , yS) and CKGC(1
`) → (xC , yC) be two

probabilistic algorithms. The parameter ` is a security parameter, (xS , yS) is a
secret/public key pair for the signer, and (xC , yC) is a secret/public key pair
for the confirmer.

Signing:A probabilistic signature generation algorithm CSig(m,xS , yS , yC) → σ
for signing a message m ∈ {0, 1}∗.

Confirmation and disavowal:A signature verification protocol (CVerC,CVerV) be-
tween a confirmer and a verifier. The private input of the confirmer is xC and
their common input consists of m, σ, yS, and yC . The output of the verifier
is either 1 (true) and 0 (false).

Selective convertibility:An algorithm CConv(m,σ, yS , xC , yC) → s that allows a
confirmer to turn a confirmer signature σ into an ordinary signature. If the
conversion fails, the algorithm’s output is ⊥.

Signature verification (ordinary):An algorithm COVer(m, s, yS) → {0, 1} that al-
lows everybody to verify signatures and takes as input a messagem, a signature
s, and the public key yS of the signer.

Before formally stating the security requirements, we try to describe the intuition
behind them. Correctness and validity of confirmation/disavowal, and correct-
ness of conversion are obvious. Security for the signer guarantees that confirmer
signatures as well as converted signatures are unforgeable under an adaptive
chosen-message attack (cf. [20]). Security for the confirmer/invisibility of sig-
natures guarantees that the scheme is secure for the confirmer against adaptive
chosen-confirmer-signature attacks (this is similar to security against chosen-
ciphertext attacks for encryption schemes, in fact, CSig can be regarded as an
encryption scheme for a single bits). This requirement also assures that no one
apart from the confirmer can distinguish between valid and invalid confirmer

Confirmer Signature Schemes 249

signatures. This ensures for instance that the signer is not coercible. Finally,
non-transferability says that one cannot get more information out of the confir-
mation/disavowal protocol than whether a signature is valid or not.
By {A(u)} we denote the set of all possible output values of a probabilistic

algorithm A when input u.

Correctness of confirmation/disavowal: If the confirmer and the verifier are honest,
then for all `, all (xS , yS) ∈ {CKGS(1

`)}, all (xC , yC) ∈ {CKGC(1
`)}, all

m ∈ {0, 1}∗, and all σ ∈ {0, 1}∗,

CVerVCVerC(m,σ, yS , yC) =

{
1 if σ ∈ {CSig(m,xS , yS , yC)}

0 otherwise .

Validity of confirmation/disavowal: For all CVerC ∗, all sufficiently large `, all
(xS , yS) ∈ {CKGS(1`)}, all (xC , yC) ∈ {CKGC(1`)}, all m ∈ {0, 1}∗, all
σ ∈ {0, 1}∗, and for every polynomial p(·) we require that

Prob [CVerVCVerC∗(m,σ, yS , yC) = 0] < 1/p(`)

if σ ∈ {CSig(m,xS , yS , yC)} and

Prob [CVerVCVerC∗(m,σ, yS , yC) = 1] < 1/p(`)

otherwise. The probability is taken over the coin tosses of CVerV and CVerC ∗.

Correctness of conversion: For all `, all (xS , yS) ∈ {CKGS(1
`)}, all (xC , yC) ∈

{CKGC(1`)}, all m ∈ {0, 1}∗, and for all σ ∈ {CSig(m,xS , yS , yC)}, it holds
that COVer(m,CConv(m,σ, yS , xC , yC), yS) = 1.

Security for the signer:Consider the following game against an adversary A. First
the key generators for the signer and the confirmer are run on input 1`. Then
A is given as input the public key of the signer and the confirmer, yS and yC ,
and the secret key xC of the confirmer. A is further allowed oracle access to the
signer (i.e., it may ask confirmer signatures of polynomially many messages
{mi}). Finally, A halts and outputs a pair of strings (m,u) where m 6= mi for
all i. Then, for all such A and all sufficiently large ` we require that A’s output
satisfies COVer(m,u, yS) = 1 with negligible probability only. The probability
is taken over the coin tosses of the signer, A, and the key generators. (Note
that the adversary can convert confirmer signatures itself as it is given xC .)

Security for the confirmer / Invisibility of Signatures:Consider the following game
against an adversary A. First the key generators for the signer and the con-
firmer are run on input 1`. The adversary is given the public keys of the signer
and the confirmer, in addition to the secret key of the signer. Then the ad-
versary can make arbitrary oracle queries to the confirmer via CVerC and
CConv. For doing this, the adversary is allowed at anytime (and repeatedly)
to create additional signature-key pairs (xS′ , yS′) (not necessarily by running
the key generator) and to interact with the confirmer with respect to these
keys. Then, the adversary has to present two messages m1,m2 ∈ {0, 1}∗.

250 Jan Camenisch and Markus Michels

After that we flip a fair coin. If the result is heads, the adversary is given
σ = CSig(m1, xS , yS , yC), if it is tails, the adversary is given a string σ =
CSig(m2, xS , yS , yC). Now the adversary is again allowed to query the signer
and the confirmer except that σ is not allowed in any of these queries. Finally,
the adversary must output 0 or 1. We require that for all such adversaries,
all polynomials p(·), and all sufficiently large `, the probability that the ad-
versary’s output equals our coin flip is smaller than 1/2 + 1/p(`), where the
probability is taken over the coin tosses of the signer, the confirmer, and the
key generators.

Non-transferability of verification/disavowal:Consider the following two games in-
volving the adversary, a signer, a confirmer, and a simulator:

Game 1.The adversary is given the public keys yS and yC of the signer and
the confirmer. Then it can make arbitrary oracle queries to both of them
via CSig, CVerC, and CConv. (Again the adversary is allowed at any time
to create its own key pairs (xS′ , yS′) and run, e.g., CSig with these keys,
and then interact with the confirmer with respect to these keys as well.)
Then the adversary must present two strings, m and σ for which it wishes
to carry out the protocol (CVerC,CVerV) with the confirmer. Next the
confirmer and the adversary carry out this protocol with common input
(m,σ, yS , yC). The confirmer’s secret input will be xC . In parallel, the
adversary is allowed to make arbitrary queries to the signer and confirmer.
Eventually, the adversary stops producing an output.

Game 2.This game is the same as Game 1 with the difference that when it
comes to the interaction with the confirmer on m and σ the simulator is
plugged in the place of the confirmer. However, in all other interactions
with the adversary the real confirmer or the real signer speak with the ad-
versary. The simulator is not given the secret key of the confirmer, but it is
allowed a single call to an oracle that tells it whether the strings m and σ
produced by the adversary are a valid confirmer signature w.r.t. yS and yC .

Now we require that for every adversary there exists a simulator such that
for all sufficiently large `, all (xS , yS) ∈ {CKGS(1

`)}, and all (xC , yC) ∈
{CKGC(1`)}, the outputs of the adversary when playing Game 1 and Game 2
are indistinguishable. In other words, there must exist a simulator such that
the adversary cannot distinguish whether he is playing Game 1 or 2.

We call a confirmer signature scheme perfect convertible with respect to some
(ordinary) signature scheme if converted confirmer signatures are valid signatures
with respect to this signature scheme.

Throughout the paper we assume that the policy stating the circumstances
under which the confirmer is allowed to confirm/disavow a confirmer signature is
part of the actual message and that he refuses cooperation whenever the policy
requires so. This is sufficient to ensure that verifiers cannot circumvent a policy.

Schemes according to our definition are separable, i.e., all parties can run
their key generation algorithms independent of each other (cf. [6]). This enables
signers to choose a confirmer on a per signature basis at signing time.

Confirmer Signature Schemes 251

Remark 1. One could easily add a protocol between a confirmer signature re-
cipient and the signer in which the signer proves to the recipient that a con-
firmer signature just generated is valid. The only modification to our model
would be that one would have to add a security requirement for this proto-
col that is similar to the one of non-transferability of verification/disavowal for
(CVerC,CVerV). Furthermore, the adversary has to be allowed to use this new
protocol in the games defined in security for the signer and non-transferability
of verification/disavowal.

2.2 Comparison with Previous Formal Models

Let us point out the differences between our model and the previous formal
models [21, 23].

As mentioned in the introduction, Okamoto’s model enables the signer to
confirm and deny signatures, which makes the signer vulnerable to a coercer
that forces him to confirm or deny a signature. The model does not include
selective conversion. Moreover, his model defines a weaker notion of security of
the confirmer: the adversary knowing the signer’s secret key wins the game only
if he is able to behave like the confirmer, i.e., to confirm and disavowal signatures,
but does not win the game if he can distinguish between two confirmer signatures
(or between a valid and an invalid confirmer signature). The crucial difference,
however, lies in the definition of invisibility and untransferability, where the
adversary has access only to the confirmation and disavowal protocol run with
the true signer, but not with the confirmer. Thus it does not cover adaptive
attacks against the confirmer. For instance, the signature transformation attack
mentioned below is not captured by this model. In fact, one can construct a
scheme that is secure in Okamoto’s model but is vulnerable to this signature
transformation attack. Such a scheme is obtained from one of the schemes in [21]
by having the signer choose an encryption public key and then appending to the
signature an encryption of all random choices made by the signer in the signing
protocol under this public key (this encryption also must be signed together
with the message). This will allow the signer to confirm/disavow signatures as
required in Okamoto’s model.

The model by Michels and Stadler does not explicitly enable the signer to
confirm and deny signatures, but it does not exclude it either. In particular, the
security for the confirmer (where the adversary gets the signer’s secret key) as
well as the selective conversion are not included. Their definition of invisibility
allows the adversary only to query the confirmer with respect to a certain signer
and is not given the signer’s secret key, i.e., they allow only a very restricted
kind of adaptive attack. This model is realistic only if there is a single signer
that is furthermore assumed to be honest. However, if several signer are allowed
and they are not all assumed to be honest, then their schemes are vulnerable to
the signature transformation attack as described in the next paragraph.

252 Jan Camenisch and Markus Michels

2.3 Adaptive Signature-Transformation Attacks

This paragraph points out that the previously suggested schemes [9, 21, 23] are
vulnerable to an adaptive attack and are indeed insecure in our model. Before
describing this attack, we note that the scheme proposed in [22] is not secure
in our model because is has the property that given a signature and two dif-
ferent messages it’s publically verifiable w.r.t. which message the signature is
potentially valid. Due to this property the invisibility requirement in our model
cannot be satisfied. Furthermore, the scheme presented in [11] is insecure in all
models, i.e., even against non-adaptive attackers (see Appendix A).

We first show that the proof-based scheme by Michels and Stadler [21, Sec-
tion 5.2], which was proved secure in their model, is vulnerable to a so-called
adaptive signature-transformation attack that exploits the malleability of the
used building block. The practical scheme by Okamoto [23], with or without
the heuristic fix of another vulnerability suggested in [21], as well as Chaum’s
scheme [9] are vulnerable to a similar attack. We omit the details regarding those
schemes here.

Let us first recall the scheme by Michels and Stadler. It uses as building
blocks so-called proof-based signature schemes (an example is Schnorr’s signature
scheme [26]) and confirmer commitments. For simplicity, let us use the confirmer
commitment provided in [21, Section 4.2] and the Schnorr signature scheme [26]
in the following. With these choices the public key of the signer is a group
G = 〈g〉, a prime q = |G|, and y ∈ G. The signer’s secret key is x = logg y. The
confirmer’s public key is H = 〈h〉, a prime p = |H|, and z ∈ H. The confirmer’s
secret key is u = logh z. Furthermore, a suitable hash function H is publicly
known. The signer can issue a confirmer signature on m as follows.

1. r1 ∈ Zq, r2 ∈ Zp, t := gr1 , d := (d1, d2) := (z
r2 , hr2+H(t,m)),

2. c := H(d), and s := r1 − cx mod q.

The confirmer signature is (t, (d1, d2), s). The confirmer can tell whether a given

confirmer signature (t, (d1, d2), s) is valid by checking if d2/d
1/u
1

?
= hH(t,m) and

yH(d)gs
?
= t hold. We refer to [21] for the confirmation/disavowal protocol.

Now we are ready to describe the signature transformation attack. We are
given an alleged confirmer signature (t, (d1, d2), s) on m w.r.t. a signer’s public
key (G, g, q, y). Furthermore, assume that the confirmer is not allowed to tell
us whether this particular signature is a valid. The following attack will allow
us to transform the signature into another signature that is independent from
(t, (d1, d2), s). To do so, we choose our own signing public and secret keys G̃ = 〈g̃〉
with |G̃| = q̃, ỹ = g̃x̃. Then we choose a random message m̃ and

1. r̃1 ∈ Zq̃, r̃2 ∈ Zp, t̃ := g̃r̃1 , d̃ := (d̃1, d̃2) := (d1z
r̃2 , d2h

r̃2+H(t̃,m̃)−H(t,m)),

2. c̃ := H(d̃), and s̃ := r̃1 − c̃x̃ mod q̃

and get the new confirmer signature (t̃, (d̃1, d̃2), s̃). This confirmer signature is
valid if and only if the original confirmer signature (t, (d1, d2), s) is valid. Fur-
thermore, if the original confirmer signature is valid, then the new confirmer

Confirmer Signature Schemes 253

signature is indistinguishable from a confirmer signature made using the real
signing algorithm with our public key. Hence we can simply feed the signature
(t̃, (d̃1, d̃2), s̃) to the confirmer and he will tell in fact whether (t, (d1, d2), s) is
valid. This attack breaks the invisibility property, and it is possible because
the confirmer commitment is malleable. Note that the definition of security for
confirmer commitments in [21] does not consider adaptive adversaries.

A variant of this attack works even if the used confirmer commitment is
non-malleable: After the attacker has obtained the confirmer signature (t, d, s)
on m w.r.t. a signer’s public key (G, g, q, y), he computes a new public key
(G, g̃, q, ỹ) by picking r̃1, x̃ ∈ Zq and computing g̃ := t1/r̃1 and ỹ := g̃x̃. Now
(t, d, (r̃1 − H(d)x̃ mod q)) will be a valid confirmer signature on m w.r.t. the
signer’s public key (G, g̃, q, ỹ) if and only if (t, d, s) is a valid w.r.t. (G, g, q, y). In
a similar way as above this attack breaks the invisibility property. The second
scheme proposed in [21] is also vulnerable to this attack. However, this kind of
attack can be easily countermeasured by adding the signer’s public key to the
input of the confirmer commitment.

3 A Generic Realization of Confirmer Signature Schemes

This section presents a generic confirmer signature scheme, proves its security,
and discusses its implications. As we will see in the next section, this generic
scheme has concrete instances that are quite efficient.

Let SIG = (SKG,Sig,Ver) denote a signature scheme, where SKG is the
key-generation algorithm (which on input 1` outputs a key pair (x, y)), Sig is
the signing algorithm (which on input of a secret key x, the corresponding public
key y, and a message m ∈ {0, 1}∗ outputs a signature s on m), and Ver is the
verification algorithm (which on input of a message m, an alleged signature s,
and public key y outputs 1 if and only if s is a signature on m with respect to y).
Moreover, let ENC = (EKG,Enc,Dec) denote a public key encryption scheme.
On input of a security parameter, EKG outputs a key pair (x′, y′). On input
of a public key y′ and a message m′, Enc outputs a ciphertext c. On input of
the ciphertext c of the message m′, the secret key x′, and the public key y′, Dec
outputs m′ if c is valid and ⊥ otherwise.

Given a suitable signature scheme SIG = (SKG,Sig,Ver) and a suitable
encryption scheme ENC = (EKG,Enc,Dec), a confirmer signature scheme can
be constructed as follows. We will later see what suitable means.

1. The respective key generators are chosen as CKGS(1`) =̂ SKG(1`) and
CKGC(1`) =̂ EKG(1`).

2. The signer signs a message m ∈ {0, 1}∗ by computing s := Sig(xS , yS ,m)
and e := Enc(yC , s). The confirmer signature on m is given by e.

3. The confirmation and disavowal protocol (CVerC,CVerV) between the con-
firmer and a verifier is done as follows: Given an alleged confirmer signature
e and a message m, the confirmer decrypts e to get ŝ := Dec(e, xC , yC). If
Ver(m, ŝ, yS) = 1, then the confirmer tells the verifier that the confirmer

254 Jan Camenisch and Markus Michels

signature is valid and shows this by proving in concurrent zero-knowledge
that he knows values α and β such that “β is the secret key corresponding to
yC and α = Dec(e, β, yC) and Ver(m,α, yS) = 1.” Otherwise, the confirmer
tells the verifier that the confirmer signature is invalid and proves in concur-
rent zero-knowledge that he knows values α and β such that “β is the secret
key corresponding to yC and ((α = Dec(e, β, yC) and Ver(m,α, yS) = 0)
or decryption fails).”

4. The selective conversion algorithm CConv(m, e, yS , xC , yC) outputs
Dec(e, xC , yC), provided Ver(m,Dec(e, xC , yC), yS) = 1, and ⊥ otherwise.

5. The public verification algorithm for converted signatures is defined as
COVer(m, s, yS) =̂ Ver(m, s, yS).

Theorem 1. If SIG is existentially unforgeable under an adaptive chosen-
message attack and ENC is secure against adaptive chosen-ciphertext attacks,
then the above construction constitutes a secure confirmer signature scheme with
perfect conversion.

Proof: [Sketch] The properties correctness of confirmation/disavowal, validity
of confirmation/disavowal, and correctness of conversion are obviously satisfied.
Let us consider the remaining properties.

Security for the signer:We show that if there is an adversary A that can forge a
confirmer signature, then A could be used to forge signatures of the signature
scheme SIG in an adaptive chosen-message attack: The messages mi that are
queried by A are simply forwarded to the signing oracle of the underlying
signature scheme SIG and then the result is encrypted using ENC. If A is
able to produce a valid confirmer signature to any message that is not in the
set of queried messages, we can convert this confirmer signature into a valid
ordinary signature by the conversion algorithm. If A is able to compute a valid
signature to any message that is not in the set of messages previously queried,
we are already done. Both cases contradict the security of SIG.

Security for the confirmer/Invisibility of signatures:We show that if there exists an
adversary A that can violate this property, then the encryption scheme ENC
is not secure against adaptive chosen-ciphertext attacks: When getting A’s
request for confirmation/disavowal of a message m and an alleged confirmer
signature e, we forward e to the decryption oracle of the underlying encryption
scheme and obtain s. If s is an (ordinary) signature of m, then we tell A that
the confirmer signature is valid and carry out the proof that this is indeed the
case. Of course, we cannot carry out the real protocol, but as it is required
to be concurrent zero-knowledge, there exists a simulator for it which we can
use. The case where s is not a valid signature is similar. If A requests the
conversion of m and e, we forward e to the decryption oracle, get s, and then
we output s if s is a valid ordinary signature on m, or ⊥ otherwise.
When it comes to the point where A presents the “test messages” m1 and
m2, we produce signatures of them, i.e., s1 and s2, and present these as “test
messages” to the game in the underlying encryption scheme. Then we forward
the encryption we get as challenges from the underlying game to A as a

Confirmer Signature Schemes 255

challenge. The following queries of A are handled as before. When A eventually
halts and outputs 0 or 1, we forward this output as an answer in the game
against the underlying encryption scheme. This concludes the reduction.

Non-transferability of verification/disavowal:This property follows in a straightfor-
ward manner from the concurrent zero-knowledge property of the proofs in
the confirmation/disavowal protocol.

ut

Corollary 1. I. If trapdoor one-way permutations exist then there exists a se-
cure confirmer signature scheme. II. A secure confirmer signature scheme exists
if and only if a public key encryption scheme secure against adaptive chosen-
ciphertext attacks exists (cf. [23, Theorem 3]).

Proof: Part I. The existence of trapdoor one-way permutations implies a secure
signature scheme and an encryption scheme secure against adaptive chosen-
ciphertext attacks [3, 16, 20, 25]. Due to Theorem 1, this is sufficient for a secure
confirmer signature scheme. Part II. On the one hand, an encryption scheme for
encrypting a single bit follows from a secure confirmer signature scheme (cf. [23]).
Let the public key of the encryption scheme be the public key of the confirmer.
To encrypt, one chooses a signer’s key pair and then a 0 is encrypted by issuing a
valid confirmer signature on a randomly chosen message and a 1 is encrypted by
issuing a simulated (invalid) confirmer signature on a randomly chosen message.
On the other hand, if a secure public key encryption scheme exists then there
exist one-way functions and hence a signature scheme secure against adaptive
chosen-message attacks [20, 25]. Due to Theorem 1, this is sufficient for a secure
confirmer signature scheme. ut

Remark 2. The generic confirmer signature scheme exhibited in this section pro-
vides perfect convertibility with respect to the signature scheme SIG.

Remark 3. The described generic confirmer signature scheme has some similar-
ities to the generic scheme due to Okamoto[23]. However, as Okamoto’s model
requires the signer to have the ability to deny invalid confirmer signature scheme
this scheme cannot satisfy the invisibility property as stated above. Whereas
Okamoto’s generic scheme is a theoretical construction requiring general zero-
knowledge proofs for confirmation and disavowal, our scheme has concrete in-
stances with quite efficient protocols for confirmation and disavowal.

4 An Instance Providing Perfect Conversion of Signatures

This section provides an instance based on an arbitrary deterministic RSA sig-
nature scheme [24] and the Cramer–Shoup encryption scheme [13]. Instances for
other signature schemes such as DSS or Schnorr can be realized similarly using
the signature reduction techniques from [1].

256 Jan Camenisch and Markus Michels

4.1 Notation

We use notation from [6, 7] for the various proofs of knowledge of discrete log-
arithms and proofs of the validity of statements about discrete logarithms. For
instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)} ,

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ and ỹ = g̃αh̃γ holds, where v < α < u,” where y, g, h, ỹ, g̃, and h̃ are
elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention is
that Greek letters denote the knowledge proved, whereas all other parameters
are known to the verifier. The scheme presented in this section uses proofs of
knowledge of double discrete logarithms and of roots of discrete logarithms [7, 27]
and proofs that a discrete logarithm lies in an interval [5, 12], e.g., (u ≤ logg y ≤
v). These protocols are 3-move zero-knowledge proofs of knowledge with binary
challenges.

An important variant of such protocols are concurrent zero-knowledge proofs
(of knowledge). They are characterized by remaining zero-knowledge even if
several instances of the same protocol are run arbitrarily interleaved [14, 15, 17].
Damg̊ard [15] shows that 3-move proofs (this includes all protocols considered
in this paper) can easily be made concurrent zero-knowledge in many practical
scenarios. We denote the resulting protocols by, e.g., CZK-PK{α : y = gα}

4.2 Description of the Scheme

We review both schemes we use as building block briefly and then describe the
resulting confirmer signature scheme.

Let (n, e) be an RSA public key of a signer and PadS(·) : {0, 1}
∗ → {1, . . . , n}

be some padding function. To sign a message m ∈ {0, 1}∗, the signer computes
s := PadS(m)

1/e mod n. To verify a signature s on m, one checks whether
se ≡ PadS(m) (mod n). If the padding function is assumed to be a truly random
function, the system is secure against adaptively chosen-message attacks under
the RSA assumption [4].

The Cramer–Shoup encryption scheme works over some group H of (large)
prime order q of which two generators h1 and h2 are known. The secret key
consists of five elements x1, . . . , x5 ∈R Zq and the public key (y1, y2, y3) is com-
puted as y1 := hx1

1 hx2

2 , y2 := hx3

1 hx4

2 , and y3 := hx5

1 . Encryption of a message
m ∈ H is done by choosing a random r ∈R Zq and computing c1 := hr1, c2 := hr2,

c3 := yr3m, and c4 := yr1y
rH(c1,c2,c3)
2 . Decryption of a tuple (c1, c2, c3, c4) ∈ H4 is

done by computing u := H(c1, c2, c3) and checking whether c
x1+x3u
1 cx2+x4u

2 = c4.
If this condition does not hold, the decryption algorithm outputs ⊥. Otherwise,
it computes m′ := c3/c

x5

1 and outputs m′. Provided the decision Diffie–Hellman
assumption holds in H and the hash function H used is chosen collision resistant,
the system is secure against adaptive chosen-ciphertext attacks [13].

We are now ready to present the different procedures of the confirmer signa-
ture scheme.

Confirmer Signature Schemes 257

Key Generation:CKGS : The signer chooses an RSA public key (n, e). Further-
more, the signer also publishes a group G = 〈g1〉 = 〈g2〉 of order n. CKGC :
The confirmer chooses sufficiently large primes q and p = 2q + 1 and two ele-
ments h1 and h2 from Z?

p such that
(
h1

p

)
=
(
h2

p

)
= 1 and logh1

h2 is unknown.

Furthermore, the confirmer publishes a group H̃ = 〈h̃1〉 of order p. This group
is required for the proofs in the confirmation/disavowal protocol. A collision
resistant hash function H is fixed.

Signing:We assume n < p/2. (The case p/2 < n can be handled by splitting the
signature into two or more parts before encryption. We refer to the forthcom-
ing full version of the paper for details.) To sign a message m ∈ {0, 1}∗, the
signer computes ŝ := PadS(m)

1/e mod n, sets s := ŝ if
(
ŝ
p

)
= 1 and s := p− ŝ

otherwise (hence
(
s
p

)
= 1). The signer encrypts s by choosing a random

r ∈R Zq and computing c1 := hr1, c2 := hr2, c3 := yr3s, and c4 := yr1y
rH(c1,c2,c3)
2 .

The confirmer signature on m is σ := (c1, c2, c3, c4).

Confirmation and disavowal:The verifier chooses h̃2 ∈R H̃ and h3 ∈R H. Upon
receipt of a request m ∈ {0, 1}∗, (n, e) ∈ {0, 1}∗×Zn, σ = (c1, c2, c3, c4) ∈ H4,
and (h̃2, h3) ∈ H̃×H from a verifier the confirmer first decrypts (c1, c2, c3, c4)
and gets a value ŝ if decryption does not fail. If 0 < ŝ < n he sets s := ŝ
and s := p − ŝ otherwise. If 0 < s < n and se ≡ PadS(m) (mod n) holds,
the confirmer tells the verifier that the confirmer signature σ is valid and
otherwise that it is not valid.

If σ is valid (confirmation): The confirmer computes commitments C1 := gs1g
v1

2

and C2 := h̃ŝ1h̃
v2

2 with v1 ∈R Zn and v2 ∈R Zp and sends C1 and C2 to the
verifier. Then, confirmer and verifier carry out the following protocol:

CZK–PK{(α, β, γ, ε, ϑ, λ, ρ, ξ, α, ν1, . . . , ν6) :

y1 = hγ1h
β
2 ∧ y2 = hλ1h

ρ
2 ∧ y3 = hξ1 ∧

h̃c31 = C
cξ1
2 h̃ν1

2 ∧ c4 = cγ1(c
H(c1,c2,c3)
1)λcβ2 (c

H(c1,c2,c3)
2)ρ ∧

((
C2 = h̃ε1h̃

ν2

2 ∧ C1 = gε1g
ν3

2 ∧ (1 ≤ ε ≤ n− 1)
)
∨

(
C2 = (1/h̃1)

ϑh̃ν4

2 ∧ C1 = gϑ1 g
ν5

2 ∧ (1 ≤ ϑ ≤ n− 1)
))
∧

C1 = gα1 g
ν6

2 ∧ g
PadS(m)
1 = gα

e

1

}
.

With this protocol the confirmer convinces the verifier that decryption was
successful and that either the decrypted value or p minus the decrypted
value are a valid RSA signature with respect to m, e, n, and PadS . We
refer the reader to the full paper for the protocol in all its details.

If σ is not valid (disavowal): If decryption failed, the confirmer chooses ŝ ∈R
Zp and s ∈R ZN such that

(
ŝ
p

)
= 1. Then he computes the following

commitments C1 := gs1g
v1

2 , C2 := h̃ŝ1h̃
v2

2 , C3 := gs
e

1 gv3

2 , C4 :=

hv4

3 c
x1+x2H(c1,c2,c3)
1 c

x3+x4H(c1,c2,c3)
2 , and C5 := h̃

h
v4
3

1 h̃v5

2 with v1, v3 ∈R Zn,
v2, v5 ∈R Zp, and v4 ∈R Zq. He sends (C1, C2, C3, C4, C5) to the verifier.

258 Jan Camenisch and Markus Michels

Confirmer and verifier carry out the following protocol:

CZK–PK
{
(γ, β, λ, ρ, ξ, δ, κ, α1, α2, α3, ν1, . . . , ν14) :

y1 = hγ1h
β
2 ∧ y2 = hλ1h

ρ
2 ∧ y3 = hξ1 ∧((

C4 = hδ3c
γ
1(c

H(c1,c2,c3)
1)λcβ2 (c

H(c1,c2,c3)
2)ρ ∧ C5 = h̃

hδ3
1 h̃ν1

2 ∧

h̃1 = (h̃
C4/c4
1 /C5)

κ(1/h̃2)
ν2
)
∨

(
h̃c31 = C

cξ1
2 h̃ν3

2 ∧ c4 = cγ1(c
H(c1,c2,c3)
1)λcβ2 (c

H(c1,c2,c3)
2)ρ ∧

((
C2 = h̃α1

1 h̃ν4

2 ∧ C1 = gα1

1 gν5

2 ∧ C3 = g
αe1
1 gν6

2 ∧

g1 = (C3/g
PadS(m)
1)ν7gν8

2 ∧ (1 ≤ α1 ≤ n− 1)
)
∨

(
C2 = (1/h̃1)

α2 h̃ν9

2 ∧ C1 = gα2

1 gν10

2 ∧ C3 = g
αe2
1 gν11

2 ∧

g1 = (C3/g
PadS(m)
1)ν12gν13

2 ∧ (1 ≤ α2 ≤ n− 1)
)
∨

(
C2 = h̃α3

1 h̃ν14

2 ∧ (n ≤ α3 ≤ p− n)
))))}

.

This protocol proves that either decryption fails or that both the encrypted
value and p minus the encrypted value are either not in [1, n− 1] or not a
valid RSA signature with respect to m, e, n, and PadS .

Selective conversion: If (c1, c2, c3, c4) is a valid confirmer signature, then the con-
firmer just return the decryption of (c1, c2, c3, c4) and otherwise answers ⊥.

Remark 4. As the confirmation and the disavowal protocol involve double dis-
crete logarithms, they are not very efficient because they use binary challenges.
If batch verification technology [2] is incorporated, the computational load of
both the verifier and the confirmer is about 20 times that of a similar proof
with non-binary challenges. Furthermore, the protocol could be made more ef-
ficient by allowing non-binary challenges for parts of the protocol. Moreover, if
e is small (e.g., 3 or 5), then there is a much more efficient way of proving the
knowledge of a root of a discrete log (cf. [7]).

5 Alternative Generic Solutions

Although the two generic schemes presented in [21] are demonstrably insecure,
they can both be modified such that they are provably secure in our model.
In contrast to the scheme exhibited in Section 3, these schemes cannot provide
perfect convertibility with respect to signature schemes such as RSA or DSS.
However, they have instances where the confirmation and disavowal protocol
is on order of magnitude more efficient than for the scheme described in the
previous section. We note that the bi-proof proposed in [21] for disavowal is not
computational zero-knowledge, however, it can be replaced by a similar proof
that is perfect zero-knowledge (we refer to the full version of this paper for
details).

Confirmer Signature Schemes 259

The first scheme in [21] is based on signature schemes that are derived from 3-
move honest-verifier zero-knowledge proofs of knowledge. The Schnorr signature
scheme [26] is a typical example thereof. If an encryption scheme secure against
adaptive chosen-ciphertext attacks is used as confirmer commitment scheme and
the public keys of the signer and the confirmer are appended to the message that
is signed, then the resulting confirmer signature scheme can be proven secure in
our model provided that the underlying 3-move proofs of knowledge have the
property that the third message is uniquely defined by the first two messages.

The second scheme in [21] is based on signature schemes that are existentially
forgeable in their basic variant but become secure if a hash of the message is
signed instead of the plain message. The RSA signature scheme is a typical
representative for this class of signature schemes. Again, if an encryption scheme
secure against adaptive chosen-ciphertext attacks is used, the public keys of the
signer and the confirmer are appended to the message, and the signature scheme
is deterministic, then the resulting confirmer signature scheme can be shown to
be secure in our model.

Details will be given in the forthcoming full version of this paper.

6 Applications to Other Scenarios

As mentioned in [21], confirmer signatures schemes with conversion can be used
to realize fair contract signing schemes as follows. The trusted third party in
the contract signing scheme plays the role of the confirmer. Furthermore, recall
that a signer can always confirm a valid confirmer signature. Thus, a confirmer
signature scheme together with a confirmation protocol for the signer can be used
to replace the “verifiable signature encryption scheme” in [1]: the parties issue
confirmer signatures and prove the correctness of their respective signatures.
After this step, either the real signatures can be exchanged or, if this fails, they
can ask the TTP/confirmer to convert the confirmer signatures (a suitable policy
for the TTP/confirmer should be included in the signed messages). The resulting
optimistic fair contract signing scheme can be shown secure in the standard
model (i.e., not in the random oracle model) if the security of the underlying
signature scheme is assumed.

It is also possible to employ the techniques used for our confirmer signature
scheme for realizing verifiable signature sharing schemes [18]. In a nutshell, a
promise to a signature is split into shares according to a given secret sharing
scheme. Then each of the shares is encrypted (similarly as the ordinary signature
in our confirmer signature scheme) and it is proved that the encrypted values
are indeed correct shares. Such a proof is similar as the confirmation protocol
exhibited in Section 4. This approach is possible for signature schemes such as
RSA or DSS. The resulting scheme will enjoy separability and be secure against
adaptive attackers while previous solutions were either insecure [18] or secure
only in a non-adaptive model [8, 19].

260 Jan Camenisch and Markus Michels

7 Acknowledgements

The authors are grateful to Victor Shoup for various discussions and to the
anonymous referees for their helpful and detailed comments.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. In EUROCRYPT ’98, vol. 1403 of LNCS, pp. 591–606, 1998.

2. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In EUROCRYPT ’98, vol. 1403 of LNCS, pp.
236–250. Springer Verlag, 1998.

3. M. Bellare and S. Micali. How to sign given any trapdoor function. In CRYPTO
’88, vol. 403 of LNCS, pp. 200–215. Springer-Verlag, 1990.

4. M. Bellare and P. Rogaway. The exact security of digital signature – how to sign
with RSA and Rabin. In EUROCRYPT ’96, vol. 1070 of LNCS, pp. 399–416.
Springer Verlag, 1996.

5. F. Boudot. Efficient proofs that a committed number lies in an interval. In EURO-
CRYPT 2000, vol. 1807 of LNCS, pp. ??–??. Springer Verlag, 2000 (this volume).

6. J. Camenisch and M. Michels. Separability and efficiency for generic group signa-
ture schemes. In CRYPTO ’99, vol. 1296 of LNCS, pp. 413–430, 1999.

7. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO ’97, vol. 1296 of LNCS, pp. 410–424. Springer Verlag, 1997.

8. D. Catalano and R. Gennaro. New efficient and secure protocols for verifiable
signature sharing and other applications. In CRYPTO ’98, vol. 1642 of LNCS, pp.
105–120. Springer Verlag, 1998.

9. D. Chaum. Designated confirmer signatures. In EUROCRYPT ’94, vol. 950 of
LNCS, pp. 86–91. Springer Verlag, 1994.

10. D. Chaum and H. van Antwerpen. Undeniable signatures. In CRYPTO ’89, vol.
435 of LNCS, pp. 212–216. Springer-Verlag, 1990.

11. L. Chen. Efficient fair exchange with verifiable confirmation of signatures. In
ASIACRYPT ’98, vol. 1514 of LNCS, pp. 286–299. Springer Verlag, 1998.

12. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO ’94, vol. 839 of LNCS,
pp. 174–187. Springer Verlag, 1994.

13. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO ’98, vol. 1642 of LNCS,
pp. 13–25. Springer Verlag, 1998.

14. G. Di Crescenzo and R. Ostrovsky. On concurrent zero-knowledge with pre-
processing. In CRYPTO ’99, vol. 1296 of LNCS, pp. 485–502, 1999.

15. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT 2000, LNCS. Springer Verlag, 2000.

16. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Proc. 35th
IEEE Symposium on Foundations of Computer Science (FOCS), 1994.

17. C. Dwork and A. Sahai. Concurrrent zero-knowledge: Reducing the need for timing
constraints. In CRYPTO ’98, vol. 1642 of LNCS, pp. 105–120, 1998.

18. M. Franklin and M. Reiter. Verifiable signature sharing. In EUROCRYPT ’95,
vol. 921 of LNCS, pp. 50–63. Springer Verlag, 1995.

Confirmer Signature Schemes 261

19. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In EUROCRYPT ’98, vol. 1403 of
LNCS, pp. 32–46. Springer Verlag, 1998.

20. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308.

21. M. Michels and M. Stadler. Generic constructions for secure and efficient confirmer
signature schemes. In EUROCRYPT ’98, vol. 1403 of LNCS, pp. 406–421, 1998.

22. K. Nguyen, Y. Mu, and V. Varadharajan. Undeniable confirmer signature. Proc.
Information Security Workshop’99, LNCS, Springer-Verlag, 1999.

23. T. Okamoto. Designated confirmer signatures and public-key encryption are equiv-
alent. In CRYPTO ’94, vol. 839 of LNCS, pp. 61–74. Springer Verlag, 1994.

24. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Comm. of the ACM, 21(2):120–126, Feb. 1978.

25. J. Rompel. One-way functions are necessary and sufficient for secure signature. In
Proc. 22nd Annual ACM STOC, 387–394, 1990.

26. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,
4(3):239–252, 1991.

27. M. Stadler. Publicly verifiable secret sharing. In EUROCRYPT ’96, vol. 1070 of
LNCS, pp. 191–199. Springer Verlag, 1996.

A An Insecure Confirmer Signature Scheme

This section show that the scheme due to Chen [11] is insecure because the
confirmer can forge confirmer signatures of any message for an arbitrary signer.

Let us review this scheme briefly. Public system parameters are a group
G = 〈g〉 and a prime q = |G|. The signer’s public key is y ∈ G and its secret
key is x = logg y. The confirmer’s public key is z ∈ G and its secret key is w =
logg z. Furthermore, a suitable hash function H is known. The signer generates
a confirmer signature on m by picking u, k1, k2 ∈R Zq and computing ỹ := yu,
ŷ := zxu, r1 := yk1 , r2 := zk2 , c := H(m, r1, r2), s1 := k1 − uc mod q, and s2 :=
k2−uxc mod q. The resulting confirmer signature onm is given by (c, s1, s2, ỹ, ŷ).
It is valid if and only if c = h(m, ys1 ỹc, zs2 ŷc) and logỹ ŷ = logg z. We refer to [11]
for a discussion of how the confirmer confirms/disavows.

This scheme is insecure because the confirmer can fake confirmer signatures
for an arbitrary signer and message m: He picks random values t, s2, d ∈R Zq

and computes c := h(m, yt, zs2yd), a := d/(wc) mod q, ỹ := ya, ŷ := ỹw, and
s1 := t − ac mod q. As yt = ys1 ỹc and zs2yd = zs2 ŷc holds, (c, s1, s2, ỹ, ŷ) is
a confirmer signature on the message m. This attack is possible although the
security of the scheme is proved in [11]. The problem is that it is erroneously
assumed in the security proof that the knowledge extractor learns logz ŷ, which
is not necessarily the case.

