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Abstract. We put forward two new measures of security for threshold
schemes secure in the adaptive adversary model: security under con-
current composition; and security without the assumption of reliable
erasure. Using novel constructions and analytical tools, in both these
settings, we exhibit efficient secure threshold protocols for a variety of
cryptographic applications. In particular, based on the recent scheme
by Cramer-Shoup, we construct adaptively secure threshold cryptosys-
tems secure against adaptive chosen ciphertext attack under the DDH
intractability assumption. Our techniques are also applicable to other
cryptosystems and signature schemes, like RSA, DSS, and ElGamal.
Our techniques include the first efficient implementation, for a wide but
special class of protocols, of secure channels in erasure-free adaptive
model.
Of independent interest, we present the notion of a committed proof.

1 Introduction

Overview. The idea of threshold cryptography [Des87,DF89] is that a highly
sensitive operation such as decryption or signing, can be performed by a group of
cooperating servers in such a way that no minority of servers are able to perform
the operation by themselves, nor are they be able to prevent the other servers
from performing the operation when it is required. Thus, threshold protocols
implement trusted entities, based on the assumption that only a fraction of a
given set of dedicated servers can become corrupted. However, it is a challenging
task to design protocols that are secure in the face of realistic attacks against the

? This extended abstract is a concise presentation of two independent results by
Lysyanskaya [Lys00] and Jarecki and Lysyanskaya [JL00]. Lysyanskaya [Lys00] in-
troduces the concurrent model, presents the notion of a committed proof, and con-
structs threshold schemes secure against the adaptive adversary in the concurrent
model; Jarecki and Lysyanskaya [JL00] introduce the erasure-free model, and present
threshold schemes secure against the adaptive adversary in this model, including the
efficient implementation of secure channels.
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servers. In the present extended abstract we consider two such attacks for which
no previous threshold schemes can be proven secure. The two attacks correspond
to two quite limiting assumptions which were necessary for the previously known
solutions, and which consequently hindered their applicability.

We consider a concurrent attack where the adversary tries to get an advantage
by participating in several concurrent executions of the threshold protocol. Since
previous schemes were not provably secure in this adversarial model, they were
limited to sequential execution synchronized among all servers. We also consider
an attack in which the entire history of a server’s computation is recorded and
becomes available to an adversary that corrupts this server. Since no schemes
were provable in this model, they had to be executed on servers that could
reliably erase their data. For both of these adversarial models, we devise novel
techniques that allow us to implement efficient protocols that withstand them.
We exemplify these techniques with threshold implementations of the Cramer-
Shoup cryptosystem [CS98], which achieves the highest known level of security:
security against adaptive chosen ciphertext attack. Furthermore, our techniques
also yield efficient concurrent or erasure-free adaptively secure solutions to other
schemes like RSA, DSS, and ElGamal.

History. For a long time, we knew only how to design threshold protocols secure
in the so-called static adversary model where the adversary fixes the players that
will be corrupted before the protocol starts. Recently, Canetti et al. [CGJ+99a]
and Frankel et al. [FMY99a-b] exhibited the first threshold schemes secure and
robust against the stronger and more realistic adaptive adversary, who chooses
which players to corrupt at any time and based on any information he sees dur-
ing the protocol. These results are important since it is known that the adaptive
adversary is strictly stronger than the static one [CFGN96,Can98,CDD+99].
However, none of these adaptively secure protocols remained secure under con-
current composition, and they all required erasures. In addition, the cryptosys-
tems and signature schemes implemented by these threshold schemes are not
known to be provably secure under adaptive chosen ciphertext attack/adaptive
chosen message attack. We remark that even though general multi-party com-
putation results guarantee adaptive erasure-free distributed function evalua-
tion [BGW88,CCD88,CDD+99,CFGN96], implementing threshold cryptography
via these general techniques is impractical.

General model. We consider a network of n players and an adaptive adversary
that can corrupt up to a minority t < n/2 of the players. The players have access
to a reliable broadcast channel, there are insecure point-to-point links between
each pair of them, and the message delivery is partially synchronous.

Concurrent model. We consider the concurrent setting, where many invoca-
tions of possibly the same threshold cryptosystem or signature scheme can be
executed at the same time, and each of them must remain secure. This previ-
ously unexplored setting models an important property of threshold systems:
the possibility of executing several protocols at the same time.
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Erasure-free model. All of the threshold systems mentioned so far are imple-
mented using erasures. That is to say, they are only secure if honest players can
erase local data once it is no longer needed. However, secure erasure is hard to
achieve in practice. On the hardware level, it is difficult to permanently erase
information from hardware storage devices. On the system maintenance level,
the need to erase data complicates standard computer system bookkeeping and
backup procedures. Most serious problems arise on the operating systems level,
since in order to securely erase the data, one needs to erase it from all the
caches and from the part of the hard drive that was used for page swaps, etc.
Di Crescenzo et al. [CFIJ99] discuss this problem and suggest a solution that
enables erasures based on the assumption that some area of memory can indeed
be securely erased. In contrast, we show that in the adaptively secure threshold
setting it is possible to get rid of the need of secure data erasure altogether. We
thus examine an erasure-free model, in which the adversary is effectively allowed
to examine the entire history of the computation of a party it corrupts.

Techniques of independent interest. We introduce the notion of a committed
proof, i.e. a zero-knowledge proof of an unknown statement [Lys00]. It was not
known before that it was possible to prove a statement without revealing it to the
verifier until the very last round of communication. Here we use such committed
proofs to achieve threshold cryptosystems adaptively secure in the concurrent
model. Another useful technique of independent interest that we put forward as
an implementation of secure channels in the erasure-free model is our receiver-
non-committing encryption scheme [JL00]. A non-committing encryption scheme
has a property that there is a way to generate messages that look like ciphertexts
but do not commit the players to any particular plaintext. We give a simple and
efficient encryption scheme that is non-committing for the receiver under the
decisional Diffie-Hellman intractability assumption.

Organization. In Section 2 we give an overview of our results and the most
important techniques which allow us to achieve them. In Section 3 we present
the notion and an implementation of a committed proof. Section 4 presents
our non-committing encryption scheme. We then present our adaptive threshold
protocols: Section 5 describes the basic building blocks of our solutions; sec-
tions 6 and 7 exemplify our techniques with two threshold implementations of
the Cramer-Shoup cryptosystem: (1) an erasure-enabled protocol secure in con-
current composition; (2) an erasure-free protocol which is concurrently secure
only under certain restrictions. For a more thorough treatment of our results
pertaining to the concurrent model and to committed proofs, see the work of
Lysyanskaya [Lys00]. For a more thorough treatment of our results pertaining to
the erasure-free model and non-committing encryption, see Jarecki and Lysyan-
skaya [JL00].
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2 Overview of our concurrent and erasure-free protocols

Definitions and goals. A threshold cryptosystem or signature scheme imple-
mented by n players with threshold t is said to be secure if the view of the
adversary that corrupts up to t players does not enable him to compute decryp-
tions or signatures on his own. A threshold scheme is said to be robust if, no
matter what the corrupted t players do, the remaining (i.e. honest) players still
output a valid decryption or signature. (For formal definitions of security and
robustness, see previous work [SG98,CG99,CGJ+99b].)

A standard technique of proving security of a threshold cryptosystem (or a
signature scheme) is to exhibit a simulation algorithm which, without access to
any secret information but with an oracle access to the single-server realization
of the underlying cryptosystem, furnishes the adversary with the correct view of
the execution of the threshold protocol. Thus, by exhibiting such simulator, we
reduce the security of the threshold version of a cryptosystem to the security of
its single-server counterpart.

A corresponding standard technique for proving robustness of a threshold
scheme is to exhibit a knowledge extractor which plays the part of the honest
players in the protocol, and in case the adversary succeeds in inducing the honest
players into producing an invalid output, it extracts from the adversary’s behav-
ior a solution to some hard problem. Thus again, by exhibiting such extractor,
we reduce the robustness of our threshold protocol to some standard hardness
assumption.

Previous adaptively secure solutions. The task of strengthening statically-
secure protocols to handle an adaptive adversary contains a following difficulty:
To compute an instance of a certain function robustly (we abstract from whether
the function is a signature or a decryption), say an exponentiation function
A=ma on instance m, where a is secret-shared, the players must publish some
partial results of this function, say values Ai=m

αi where αi’s are the polynomial
shares of a. In the static model, since the group of corrupted players is fixed,
without knowing a, on the input A=ma received from the function oracle (see the
definitions paragraph above), the simulator can produce the view of the protocol
that outputs A by picking the shares of the corrupted players and using them
to interpolate values Ai of the honest players. However, in the adaptive model,
such simulation fails because the simulator cannot publish Ai’s for the honest
players and then be able to open the values αi s.t. mαi=Ai for any t-sized group
of players that the adaptive adversary chooses to corrupt: That would imply the
knowledge of more than t shares αi, and hence the knowledge of a.

Recent adaptively secure protocols [CGJ+99,FMY99a-b] have overcome this
difficulty with the following ideas: i) Value A can be reconstructed if every player
publishes Ai = mai where ai is its additive share of a, i.e.

∑
ai=a; ii) Robust-

ness, previously guaranteed via “interpolation in the exponent” of values Ai, is
achieved via generation of Pedersen’s commitments gaihâi along each share ai,
and with zero-knowledge proofs that show that mai corresponds to the commit-
ted value. Because the shares are additive, the simulator can reveal a consistent
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internal state ai for all but one of the players it controls. If that single inconsistent
player is corrupted, which happens with at most 1/2 probability, the simulation
is rewound to the beginning of this instance of the function application. Thus
the simulation of a single instance succeeds after expected two trials. However,
since such rewinding must be constrained to within the single instance of the
function application (see the overview discussion of Canetti et al. [CGJ+99a]),
the additive shares ai used in this protocol must be erased (resharing must be
performed to enable the application of the function on a new instance), so that
the simulator will know again the proper internal state of that player: He simply
no longer needs to show the information that he cannot produce.

Concurrent adaptive security with committed proofs. Our first obser-
vation about the above reasoning is that there might be no inconsistent player
during the simulation at all, if the “compromising” share ai can be erased before
the partial result Ai is published. Since there would be no inconsistent players,
the simulator would never have to rewind, and hence concurrent executions of
such threshold protocol can be simulated and thus proven secure. However, how
can we achieve robustness if a player is to erase its share ai before publishing
Ai? We show that it is indeed possible by devising a novel tool of a committed
zero-knowledge proof (see Sec. 3), where a statement that needs to be proven,
e.g. “Ai and gaihâi contain the same value ai”, is revealed only after the proof
ends. In particular, it can be revealed after the witness ai needed to prove the
above statement is erased. This committed proof technique can thus be applied
to transform, with negligible increase in communication complexity, the adap-
tive DSS and RSA solutions [CGJ+99,FMY99a-b], as well as other protocols like
threshold ElGamal, to concurrently secure adaptive solutions.

We further observe that by providing robustness while eliminating all incon-
sistent players in the above way, the committed proof technique can actually
transform, in the erasure-enabled setting, a very general class of statically secure
threshold protocols into adaptively and concurrently secure ones (see Lysyan-
skaya [Lys00] for more discussion). In Section 6 we exemplify the generality of
these techniques with a threshold Cramer-Shoup cryptosystem.

Erasure-free adaptive security with persistently inconsistent players.
Our second observation is that in the above simulation [CGJ+99,FMY99a-b] a
random inconsistent player need not be picked in a simulation of each instance
of the function application protocol. Instead, it can pick some player at the
beginning of the simulation process, and use that player as a single persistently
inconsistent player in a simulation of each instance of the function application.
If that player is ever corrupted, the simulation fails, but since that happens
only with at most 1/2 probability, such simulation still establishes a reduction
from the security of the threshold protocol to the security of the underlying
cryptosystem or signature scheme. If we can show that indeed this single player
is the only player whose internal state held by the simulator is inconsistent with
the adversary’s view of the protocol, then our protocols do not have to resort to
erasure, and hence they are secure in the erasure-free model.
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We achieve this goal in two steps: First we remove the need to erase on the
protocol level, by which we mean that the resulting scheme is secure in erasure-
free model if it is implemented over secure channels. We do this, in general, by
using additive sharing instead of polynomial sharing throughout the threshold
protocols. Secondly, for the threshold protocols that need secure channels, we
need to devise an encryption that implements the secure channels abstraction
in the adaptive erasure-free model. This is an intriguing and non-trivial task,
and the solution of non-committing encryption for the receiver which we provide
in Section 4 is better than the available solutions [CFGN96,Bea97] of general
non-committing encryption because it does not introduce any non-negligible
communication overhead. The reason why non-committing encryption for the
receiver only is sufficient is because not only is our simulator able to reveal, at the
time of corruption, the history of computation of all players it controls except the
persistently inconsistent one, but he already knows the values of all messages sent
by these players at the time the messages are sent. These techniques yield efficient
adaptive non-erasing protocols for DSS, RSA, and ElGamal (additionally, our
methods lead to a dramatic reduction in the cost of adaptive RSA [JL00]). In
Section 7 we exemplify them with a threshold Cramer-Shoup cryptosystem.

Finally, we remark that since the simulators in our erasure-free protocols are
also non-rewinding (although they have 1/2 probability of faiure), a concurrent
execution of any number of instances of such protocols is secure if, for example,
they are executed by dedicated players (see [JL00] for more details).

3 Adaptive, concurrent security via committed proofs

In this section, we present the notion of a committed proof [Lys00], which is
a zero-knowledge proof that is carried out in a committed form. The verifier
does not learn the statement that is being proven until the very last round
of the protocol. As discussed in section 2, this technique gives a general tool
that transforms statically secure threshold protocols to adaptively secure ones,
with the additional property that their security is preserved under concurrent
composition.

Suppose we are given a following three-step public-coin honest-verifier zero-
knowledge proof of knowledge system Z [BG92] for language L:

1. The proof system has perfect completeness and soundness 2−Ω(k).
2. The prover’s input is x ∈ L, a witness w, and some randomness r.
3. The random coins R are tossed after the prover issues the first message.
4. Algorithms P1(x,w, r), and P2(x,w, r,R) generate the first and second mes-

sages of the prover.
5. The verifier runs algorithm V er(x,m1, R,m2) to determine whether to ac-

cept or reject.
6. The simulator algorithm SIM used for proving the zero-knowledge prop-

erty of Z, has the property that for all inputs R ∈ {0, 1}k, it generates
an accepting transcript (m1, R,m2) indistinguishable from a transcript of a
conversation with the real prover.
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7. The knowledge extractor algorithm KE for Z has the property that, for some

constant c, on input (x,m1, R,R
′, . . . , R(c),m2,m

′
2, . . . ,m

(c)
2 ) such that R 6=

R′ 6= . . . 6= R(c) and V er accepts all transcripts (x,m1, R,m2), (x,m1, R
′,m′

2),

. . ., (x,m1, R
(c),m

(c)
2 ), KE outputs a witness w with probability 1−neg(k).

Such proof systems exist for all languages in NP, by a witness-preserving re-
duction to Hamiltonian cycles [Gol95]. In particular, for proving knowledge or
equality of discrete logarithms or representations, such proof systems have per-
fect simulations and are well-studied and efficient [Bra99,Cam98].

Suppose that x for which the prover is demonstrating membership in L is
unknown to the verifier. However, the verifier knows the distribution D from
which x has been sampled. Moreover, D has the property that there is an effi-
ciently samplable joint distribution (W, D) from which pairs (w, x) are sampled,
such that w is a witness for the statement x ∈ L. For example, x can be a tuple
(Gq, g, h, y) and statement x ∈ L means that y is an element in Gq that can
be represented in bases g and h. When we sample D, we can first generate a
random α, β ∈ Zq, then and then set w = (α, β), and y = gαhβ .

Suppose we are given a trapdoor commitment scheme, i.e. a commitment
scheme that has the property that for any instance of the commitment scheme,
there exists a trapdoor σ the knowledge of which enables to open any commit-
ment to an arbitrary value within some given domain.

For example, consider Pedersen commitment: an instance is a group Gq of
order q in which the discrete logarithm problem is hard, with generators g and
h and a collision-resistant hash function H : {0, 1}∗ → Z

∗
q . The trapdoor σ =

logg h. To commit to x, choose a random r and output gH(x)hr. To open the
commitment, reveal x and r. If σ is known, it is easy to see that a commitment
can be opened to any x. Note that if we are not given a collision-resistant hash
function, then the prover can still commit to his input x and the first message
of the proof, but this commitment will have to use some special encoding of x
and will be larger.

How can we create a simulator such that σ is known to it? In multi-party
systems, we can have an instance of the commitment scheme generated as part
of the set-up for the system; then it will follow from the properties of multi-party
computation that a simulator will know σ. We will discuss such a protocol in
section 5.1. In two-party protocols, σ can be a value known to the verifier, but
not the prover; the simulator with black-box access to the verifier will then have
to extract σ from the verifier.

Using trapdoor commitments, the prover can execute the proof without re-
vealing x to the verifier until the very end of the proof. Consider the protocol in
figure 1 between a prover and a verifier. The protocol uses Pedersen commitment,
but any trapdoor commitment can be used instead.
Note (Completeness): We get completeness for free from proof system Z.

Lemma 1. (Zero-knowledge) This protocol is zero-knowledge for any verifier.

Proof: The lemma follows from the fact that for a simulator that knows logg h,
the commitments M1 and M2 are not binding, and so the simulator can reveal
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Common inputs: (Gq, g, h): an instance of Pedersen commitment.
Prover’s inputs: statement x ∈ D, witness w, random input r.
Verifier’s goal: obtain x s.t. prover knows a witness to “x ∈ L.”

P −→ V Prover computes m1 = P1(x,w, r), chooses random r1 and sends
M1 = gH(x,m1)hr1 .

P ←− V Verifier tosses random coins R and sends them to the prover.
P −→ V Prover computes m2 = P2(x,w, r, R), chooses random r2 and sends

M2 = gH(m2)hr2 . Prover erases w.
P −→ V Prover sends x, m1, m2, r1, r2, i.e. opens commitments M1,M2.
Acceptance: The verifier accepts if M1 is a valid commitment to x and m1,

M2 is a valid commitment to m2, and V er(x,m1, R,m2) accepts.

Fig. 1. Committed proof

x, message m1 and response m2 in the very end, when it already knows the
challenge R, by property 6 of proof system Z. ut

Note: Notice that the original proof system Z was zero-knowledge for the
public-coin model only, while the proof system we obtain is zero-knowledge for
any verifier. (We achieve this because of a preprocessing step that generates h.)

Lemma 2. (Concurrent composition) This protocol remains secure when
executed concurrently (i.e. with an arbitrary interleaving of steps) with arbitrarily
many invocations of itself or of any other concurrently composable protocols.

Proof: The lemma follows from the fact that the above simulator that exhibits
the zero-knowledge property does not need to rewind the verifier. ut

Lemma 3. (Soundness and knowledge extraction) If the discrete loga-
rithm problem is hard, and the hash function H : {0, 1}∗ → Zq

∗ is collision-
resistant, then for this protocol there exists a polynomial-time knowledge ex-
tractor such that if the verifier accepts with non-negligible probability, then with
probability 1−neg(k) the knowledge extractor learns the witness w for x that the
prover possesses.

Proof: We will exhibit a knowledge extractor which, with black-box access to
the prover that induces the verifier to accept with non-negligible probability,
either extracts a witness for x or computes the discrete logarithm of h to the
base g, or finds a collision in H. Clearly this is sufficient to prove the lemma.

The extractor runs the prover and obtains the x, as well as m1, R, m2 and
M1, r1, M2, r2. Now the extractor rewinds the prover to step 3 of the protocol
and issues a challenge R′ 6= R. Running the protocol to the end allows the verifier
to obtain x′, as well as m′

1, m′
2, r′1, r′2 and M ′

2. Note that since the prover replies
with non-negligible probability, with enough rewindings, we will get as many
replies from him as the knowledge extractor KE of proof system Z may need.

Suppose x 6= x′. Then either x = H(x,m1) 6= H(x′,m′
1) = x′ or we have

found a collision in the hash function. If the latter, we have the desired contra-
diction. Otherwise, gxhr1 = M1 = gx

′

hr
′

1 , and so we can compute logg h.



Adaptively Secure Threshold Cryptography 231

Now suppose x = x′. Then, by the same argument as above, m1 = m′
1 or

we find a collision or compute discrete log. Then since m2 is a valid response to
challenge R and so is m′

2 to challenge R′, it follows from the fact that Z is a
proof of knowledge that we can extract a witness for x by using KE. ut

Finally, lemma 4 below is the key to why a committed proof is instrumental
for designing protocols that are secure against the adaptive adversary. It captures
the counter-intuitive fact that the prover can be attacked in the middle of the
proof, but the adversary still learns nothing, i.e. the zero-knowledge property of
the whole game is retained! The only condition required is that the distribution
(W,D) that captures the adversary’s a priori information about the distribution
that x and witness w come from, be efficiently samplable.

Lemma 4. (Security against corruption) If the prover is corrupted by the
adversary in the middle of the proof,everything that the adversary learns can be
accomplished either by revealing x, or by sampling (W,D).

Proof: We prove the claim by exhibiting a simulator S which generates the
adversary’s view of the corruption. Suppose the adversary decides to corrupt
the prover just before the end of step 3. Then S samples (W,D) and obtains a
witness w′ for an x′. S the generates a random r and, using trapdoor σ = logg h

computes m′
1 = P1(x,w, r) and r′1 such that M1 = gH(x′,m′

1
)hr

′

1 , as well as
m′

2 = P2(x,w, r,R) and r′2 such that M2 = gH(m′

2
)hr

′

2 . Reveal w′, x′, r, r′1, r′2 to
the adversary. These values are distributed correctly since w′ and x′ come from
distribution (W,D) and r, r′1, r′2 are all random values.

Suppose the adversary decides to corrupt the prover at some step before the
end of step 3. Then it is clear that S will just have to reveal a subset of the
values above (depending on whether M1 and M2 have been issued yet).

Suppose the adversary corrupts the prover after the end of step 3, i.e. after
w was erased. Since w is erased, the adversary learns nothing more than what
the verifier can learn. Thus, S just runs the simulator we have constructed for
proving the zero-knowledge property. ut

As we will see in section 6, this property of a committed proof allows us to cre-
ate a perfect and never failing simulation of the adversary’s view, which implies
full concurrency of the erasure-enabled threshold cryptosystems we propose.

4 Implementing secure channels without erasures

In erasure-enabled adaptive threshold cryptosystems (for example our threshold
Cramer-Shoup of Sec. 6) we can assume secret communication between players
because they can be implemented in that model with an inexpensive technique
due to Beaver and Haber [BH92]. However, if erasures are not allowed, imple-
menting secure channels is more complicated. The problem arises because the
adversary can tap all the channels and see all the ciphertexts passed between
players. When the adaptive adversary corrupts a party, he expects to see cleart-
exts that correspond to the ciphertexts he has seen. Thus the adaptive adversary
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can potentially open any generated ciphertext. When instead of the honest play-
ers, we have a simulator attempting to simulate the adversary’s view (recall that
such simulator is needed to prove security), we cannot easily argue why the ad-
versary does not learn anything from, paradoxingly, the ciphertexts that he does
not get to open. This subtle problem, known as selective decommitment problem
(see Dwork et al. [DNRS99]), arises, from our inability to reduce an adversary
that does learn something from such view to semantic security of encryption.
This problem can be solved with a non-committing encryption, i.e. an encryp-
tion with an additional property that the ciphertext-looking messages sent by
the simulator can be opened as any cleartexts, and hence contain no information.

A general solution to this problem, due to Canetti et al. [CFGN96], requires
O(k2) communication for secure transmission of a single bit, where k is the secu-
rity parameter. A less expensive technique under the decisional Diffie-Hellman
requires O(k) overhead and is due to Beaver [Bea97].

We present a conceptually simpler but less general encryption scheme E
which, under the DDH assumption, is non-committing for the receiver only [JL00].
Such encryption is custom-made for the persistently inconsistent player paradigm.
Namely, a simulator who sends the ciphertext-looking messages on behalf of the
inconsistent player is able to open them freely if the adversary attacks any re-
ceiver of these messages, i.e. anybody but the inconsistent player. Since our sim-
ulation assumes that the adversary never corrupts that player anyway (which
gives us 1/2 probability of success), such encryption is good enough for simu-
latability of our protocols. The non-committing encryption we propose has only
negligible communication overhead.

E is a non-committing encryption scheme in the following sense: On the
one hand, any properly encrypted message has a unique decryption. On the
other, there is a procedure which, given a sender’s key and some trapdoor σ, can
produce special type of invalid ciphertexts, which, for any a ∈ Zq, can be opened
as an encryption of m = ga. This is achieved because there are q possible secret
keys that this procedure can reveal. Moreover, under DDH, it is impossible to
distinguish the regular ciphertexts and the invalid ones produced by this special
procedure. The ideas we use to implement this encryption E are similar to those
of Cramer and Shoup [CS98].

Common system parameters: Group Gq, generators g and h.
Bob selects: x, y ∈ Zq, Bob sends to Alice: P = gxhy.
Alice: To transmit message m ∈ Gq to Bob, Alice chooses r ∈ Zq and sends

A = gr, B = hr, C = P rm to Bob.
Bob: Computes m = C/(AxBy).

Fig. 2. Non-committing encryption scheme E

Lemma 5. Under DDH, E is non-committing for the receiver.
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Proof: Suppose that Alice (the sender) and Bob (the receiver) are on the same
side and both know σ = logg h and z = logg P . Then they can compute an
invalid ciphertext as follows: Pick r1 6= r2 6= r3 at random, and let A∗ = gr1 ,
B∗ = gr2 , C∗ = gr3 . (A∗, B∗, C∗) is not a valid ciphertext because r1 6= r2.
If Bob is infiltrated, then for any ma = ga, he can claim that this triple is an
encryption of ma, by showing a secret key (x∗, y∗) such that the decryption
algorithm outputs ma. He can do that by solving a system of linear equations:
x∗ + y∗σ = z mod q and r3 = r1x

∗ + r2y
∗σ + a mod q. If r1 6= r2 this system

must have a solution. Therefore, as long as a, σ and z are known to Alice and
Bob, they are not committed to the plaintext.

We must now show that whether the ciphertext sent is valid or invalid as
above the view of the adversary who is observing the conversation and may
infiltrate Bob remains the same. Let us call the distribution that produces the
tuples (P,A∗, B∗, C∗) of the invalid form, E∗(Gq, g, h). By E(Gq, g, h), we will
denote the distribution that produces the tuples (P,A,B,C) where (A,B,C) is
a valid ciphertext under key P . We will now show that E and E∗ are computa-
tionally indistinguishable under the DDH assumption.

Suppose a DDH instance (g, u, v, w) is given. Our goal is to decide whether
it was sampled according to distribution D = {g, gs, gt, gst}{s,t} or according
to distribution D∗ = {g, gs, gt, gz}{s,t,z}. Create the common information for

the encryption scheme as follows: Choose values α and β such that h = gαuβ .
Choose x and y and create P = gxhy. Choose some random a, b, r. Send (A,B,C)
where A = (gavb)r, B = Aα((uawb)r)β , and C = AxBym. Note that if logg w =
logg u logg v (i.e. the DDH instance is from D), then the view the adversary
gets is from distribution E ; otherwise the adversary’s view is from distribution
E∗. Thus, the adversary that distinguishes between E and E∗ can be used to
distinguish between D and D∗. Therefore, under DDH, no such polynomial-time
adversary exists. ut

Lemma 6. If a multi-party protocol is secure against the adaptive adversary in
the secure channel erasure-free model, and the simulator algorithm SIM ∗ used
to prove security produces a perfect simulation and is such that all but a con-
stant number of players controlled by this simulator (i.e. the inconsistent play-
ers) follow the protocol exactly, and all messages sent by all honest players can
be prepared by the simulator at send-time such that (1) the inconsistent player’s
messages are selected uniformly at random and (2) other players’ messages are
distributed correctly in full consistency with whatever the simulator will open as
this player’s internal state, then using encryption E results in a secure multi-
party protocol in insecure channels (under the DDH assumption).

Proof Sketch: First we notice that, since the messages of the honest and con-
sistent players are known to SIM ∗, the erasure-free simulator SIM that we
need to construct just uses E to encrypt the right message from them all the
time. Second, we note that since the messages of the inconsistent player can also
be prepared at send-time, the simulator can prepare sender’s key, receiver’s key,
ciphertext tuples that would decrypt to these messages.
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Next, we notice that if SIM uses scheme E∗ for the inconsistent players, then,
whether the simulator knows the secret inputs and follows the protocol (call that
V iew1) or simulates it as SIM∗ would (call that V iew2), the adversary sees no
difference in the view because the “ciphertexts” produced by E∗ are independent
of the messages sent on the part of the sender. Now, assume that the simulator
knows the players’ inputs and follows the protocol, but embeds an instance of
DDH into the common system parameter h, as described in lemma 5, into the
ciphertext-looking messages produced on the part of the inconsistent players.
This construction creates information-theoretically independent samples of E or
E∗ based on the same instance of the DDH (call the view of the first distribution
V iew3, and note that the second view is V iew1 discussed above). Therefore, the
adversary that differentiates these two distributions can be used to solve the
DDH. Hence V iew3 is the view of the protocol over the insecure channels, and
V iew2 is a view of a simulation, this protocol is secure. ut

We note that this implementation of secure channels can only work for a special
class of multi-party protocols, namely, the ones that satisfy the conditions of
lemma 6. Thus, although it does not replace Beaver’s elegant scheme in general,
it allows us to create efficient erasure-free adaptive protocols for many schemes
that are important in practice, like RSA, DSS, ElGamal, and Cramer-Shoup.

5 Common building blocks

5.1 Set-up: Generating an Instance of a Trapdoor Commitment

Our protocols rely heavily on a discrete-log based trapdoor commitment scheme
due to Pedersen: On instance (p, q, g, h), where h ∈ Gq, a commitment to x ∈ Zq

is C = gxhx̂, where x̂ is picked at random in Zq. The value h that defines the
commitment instance is generated jointly once and for all at the beginning of
our protocols in such a way so that (1) the simulator can learn the trapdoor
logg h of the chosen commitment; and (2) the simulator can embed another
instance of the discrete log problem into the generated commitment by learning
the representation of h in bases g, g̃ of its choice. Option i) is used for proving
secrecy, when knowledge of the trapdoor enables the simulator to always open
the commitments of the players it controls in the way it chooses, which leads to
efficient simulation of the protocols. Option ii) is used to prove robustness: If the
adversary cheats in protocols that follow, the simulator can use such adversary to
break an instance of the hard problem embedded in the trapdoor. When secure
channels are present, h can be obtained by using general techniques of multi-
party computation [BGW88,CDD+99]. When secure channel are not there, and
implementing them by erasure is not an option, we can use another protocol,
where each player generates his share hi of h, and then all players, in parallel,
prove knowledge of logg hi to each other. This is in some respect similar to the
solution of Frankel et al. [FMY99a-b]. Please see Jarecki and Lysyanskaya [JL00]
for the details.
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5.2 Joint Random VSS and Distributed Coinflip

In Figure 3, we include the well-known protocol Joint-RVSS [Ped91,GJKR99] for
joint verifiable sharing of a random secret, which is a basic building block of our
protocols. We give it here anew using notation that is useful for the presentation
of the protocols that follow.

Protocol: (on inputs group Gq, generators g, h)
1. Each player Pi performs a Pedersen VSS of a random value ai:

(a) Pi picks t-deg. polynomials fai(z) =
∑t

k=0 cikz
k, fâi

(z) =
∑t

k=0 ĉikz
k

Let ai = fai(0) and âi = fâi
(0) be the values shared by these polynomials

Pi broadcasts Cik = gcikhĉik for k = 0..t. Set Fai(z) =
∏t

k=0(Cik)z
k

Pi sends to Pj shares αij = fai(j), α̂ij = fâi
(j) for each j = 1..n

(b) Each Pj verifies if gαijhα̂ji = Fai(j) for i = 1..n
If the check fails for any i, Pj broadcasts a complaint against Pi

(c) If Pj complained against Pi, Pi broadcasts αij , α̂ij ; everyone verifies it.
If Pi fails this test or receives more than t complains, exclude Pi from Qual

2. Pi sets his polynomial share of the generated secret a as
αi =

∑
Pj∈Qual

αji, and their associated randomness as α̂i =
∑

Pj∈Qual
α̂ji

We label the data structure created by this protocol as RVSS-datat,g,h[a]:
Secret Information of each player Pi: (well-defined for Pi∈Qual)
– ai, âi his additive shares of the secret and its associated randomness
– fai , fâi

t-degree polynomials he used in sharing his additive share
– αi, α̂i his polynomial share of the secret and its associated randomness
– αji, α̂ji his polynomial shares (and assoc. rand.) of faj , fâj

for j = 1..n
Public Information:
– the set Qual ⊆ {P1, .., Pn}
– verification function Fa : Zq → Zp

∗ (see the implicit information below)

– verification functions Fai(z) = gfai
(z)hfâi

(z) for Pi ∈ Qual
Secret Information Defined Implicitly (not stored by any player):
– secret sharing t-degree polynomials fa(z), fâ(z) s.t. αi = fa(i), α̂i = fâ(i),

fa(z) =
∑

Pi∈Qual
fai(z), fâ(z) =

∑
Pi∈Qual

fâi
(z), and Fa(z) = gfa(z)hfâ(z)

– secret shared value a = fa(0) and its associated randomness â = fâ(0)

Fig. 3. Joint-RVSS creates a sharing RVSS-data[a] of random secret a ∈ Zq

Notation: We say that players generate RVSS-datat,g,h[a] if they execute this
protocol with generators g, h and polynomials of degree t. We index the data pro-
duced with labels a, α, using the associated Greek letter for polynomial shares.

One use of Joint-RVSS is in a distributed coinflip protocol (Fig.4), whose
security properties are formalized in Lemma 7. This lemma is useful also for
other uses of Joint-RVSS, where unlike in the coinflip protocol, the generated
secret is not explicitly reconstructed.
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Lemma 7. In secure channels model, the distributed coinflip protocol of Fig. 4
(1) does not use erasures and (2) simulator SIM simulates it without rewinding.

Proof: The simulator for the security proof is contained in figure 4. The simula-
tor knows logg h, thus it need not decide on ai’s for players Pi it controls until it
learns aj for each player Pj that the adversary controls. (Note that the simulator
can determine the adversary’s value aj by interpolating faj

(i).) After that, the
simulator assigns values ai to the players in such a way that

∑
Pi∈Qual

ai = a∗.
ut

Note: If the simulator is allowed to have one player Pi ∈ Qual whose internal state
is inconsistent, then it can decide on the values ak in advance for all Pk 6= Pi,
and only leave ai undefined until it is able to set ai = a∗−

∑
Pk∈Qual,k 6=i

ak. This
observation will be useful for erasure-free protocols.

Protocol: (on inputs group Gq, generators g, h)
1. Players generate RVSS-data[a] (i.e. perform Joint-RVSS, Fig.3)
2. Each Pi ∈ Qual broadcasts his additive shares ai, âi
3. For Pi ∈ Qual s.t. gaihâi 6= Fai(0), the players reconstruct Pi’s additive

share ai by broadcasting their shares αij , α̂ij and verifying them with Fai

4. A public random value a is reconstructed as a =
∑

Pi∈Qual
ai

Simulation: (on SIM’s inputs Gq, g, h and σ = logg h)
1. SIM performs Joint-RVSS on the part of the honest players
2. SIM receives random a∗ ∈ Zq. For some Pi among the players it controls:

SIM broadcasts a∗i = a∗ −
∑

Pj∈Qual\{Pi}
aj , â

∗
i s.t. ai + σâi = a∗i + σâ∗i

For all other players Pj it controls, SIM broadcasts correct values aj , âj
3. SIM performs Step 3 on the part of the honest players
4. Note that the public random value is reconstructed as a∗

Fig. 4. Erasure-Free Distributed Coinflip Protocol using Joint-RVSS

5.3 Simultaneous Zero-Knowledge Proofs of Knowledge

Our adaptive protocols, following the protocols of Canetti et al. [CGJ+99a], use
simultaneous zero-knowledge proofs of knowledge to enable robustness efficiently.
We describe this technique here in full generality.

Consider any honest-verifier public-coin zero-knowledge proof of knowledge
system (ZKPK) [BG92]. Say that the prover shows knowledge of witness w
of a public relation A = (y, x) for some value y. Let (p, q, g) be a discrete-
log instance and assume that the random coins in the proof system are picked
in Zq. Assume that the simulator that exhibits the zero-knowledge property
proceeds by first choosing any value for the random coin and then generating
the rest of the proof transcript, and that it has zero probability of failure. Three-
round ZKPKs of this form exist for, in particular, proving knowledge of discrete
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logarithm, i.e. A = {gx, x} (e.g. Schnorr’s protocol [Sch91]), or knowledge of
representations, e.g A = {(g, h, gxhx̂), (x, x̂)} (see the work of Brands [Bra99] or
Camenisch [Cam98] and the references therein). In a simultaneous proof using
a three-round ZKPK, each player Pi proves knowledge of its witnesses wi for
some statement (yi, wi) in A in parallel, by executing the steps of the prover
as in the original ZKPK protocol, while for the verifier’s part, they all use a
single common public coin generated with a distributed coinflip protocol. In our
protocols, such simultaneous proof is preceded by h-generation and the coinflip
is implemented with the protocol in Fig.4. This method generalizes to ZKPK
protocols with any number of rounds: Every time a public coin is needed, it is
picked via a distributed coinflip.

The following lemma is purely technical, but it isolates a convenient property
of the simultaneous proof that allow us to concisely argue the security of the
protocols that use it as a building block.

Lemma 8. In the secure channels model, the simultaneous proof protocol has
the following two properties: (1) It can be simulated without rewinding as long
as the simulator has a consistent internal state for every player the adversary
corrupts; (2) There is a simulator that can extract all the witnesses from the
players controlled by the adversary.

See Jarecki and Lysyanskaya [JL00] for the proof. From the lemma above and
lemma 4 we immediately get:

Corollary 1. In the erasure-enabled model, if the ZKPK proof used in the above
simultaneous proof protocol is a committed proof of Fig.1, this protocol can be
successfully simulated without rewinding even if the simulator does not know any
witnesses to the statements it reveals for the players it controls.

Lemma 8 also implies a corollary useful for our erasure-free protocols:

Corollary 2. In the secure channels erasure-free model, the simultaneous proof
protocol can be simulated if the simulator does not know the witnesses for a
constant number of players it controls, as long as these players are not corrupted
by the adversary.

5.4 Shared Exponentiation Protocol

Another useful building block of our threshold cryptosystems is a protocol that
computes ma for any input element m ∈ Gq if value a ∈ Zq is secret-shared with
RVSS-data[a]. This protocol has two variants, an “additive” and “polynomial”
exponentiation (Figs. 5 and 6), which refers to the two methods of extracting
value ma from the sharing RVSS-data[a] of a: Every player Pi broadcasts either
value mai for its additive share ai, or value mαi for its polynomial share αi.

The additive exponentiation protocol, which generalizes and removes erasure
from the distributed key generation protocol of [CGJ+99a], is a basis of the key
generation for our threshold Cramer-Shoup cryptosystems, and it is used in our
threshold Cramer-Shoup decryption in the erasure-free setting. The polynomial



238 StanisÃlaw Jarecki and Anna Lysyanskaya

exponentiation is used in our concurrent erasure-enabled Cramer-Shoup decryp-
tion. Since the polynomial exponentiation protocol erases the polynomial shares
αi of a at the end, in that model we must always use a one-time randomization of
the polynomial secret-sharing of a as inputs to this protocol. We omit the proofs
of the two lemmas below and send the reader to Jarecki and Lysyanskaya [JL00]
and Lysyanskaya [Lys00] for them.

Input: m ∈ Gq, secret sharing RVSS-data[a], g, h ∈ Gq

1. Each Pi broadcasts Ai = mai

2. With a simultaneous proof of Sec. 5.3, using ZKPK proof of equality of
representation, each Pi proves knowledge of (equal) representation of mi

in bases m, 1 and Fai(0) in bases g, h.
If some Pi fails, ai and Ai = mai are reconstructed publicly using Fai

3. Everyone computes ma =
∏n

i=1 Ai

Fig. 5. Erasure-Free Additive Exponentiation with RVSS-data[a]

Lemma 9. In the secure channels erasure-free model, as long as the adversary
does not corrupt the designated persistently inconsistent player, the additive ex-
ponentiation protocol can be simulated such that (1) for all honest and consis-
tent players, the simulator can provide correct messages they send at the time
of sending and (2) for the honest inconsistent player, the simulator can provide
messages such that if any t of them are revealed they look correct.

Input: m ∈ Gq, secret sharing RVSS-data[a], g, h ∈ Gq

1. With a simultaneous proof of Sec. 5.3, using committed ZKPK proof (Fig.1)
of equality of representation, each Pi proves knowledge of (equal)
representation of Ai = mαi in bases m, 1 and Fa(i) in bases g, h.
Note that at the end of the proof, value Ai is published and αi erased.

2. Value ma is interpolated in the exponent from Ai’s that passed the proof

Fig. 6. Erasure-Enabled Polynomial Exponentiation with RVSS-data[a]

Lemma 10. In the erasure-enabled model, the polynomial exponentiation pro-
tocol can be simulated without rewinding.

6 Concurrent threshold Cramer-Shoup cryptosystem

The Cramer-Shoup cryptosystem. Recall the Cramer-Shoup [CS98] cryp-
tosystem. The setting is as follows: a group Gq in which the decisional Diffie-
Hellman problem is assumed to be hard, and a universal one-way family of
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hash functions H : {0, 1}∗ → Zq
∗ are given [BR97,Sho99a]. The secret key

consists of five values, a, b, c, d, e, selected from Zq
∗ uniformly at random. The

public key consists of two random bases, g1, g2 ∈ Gq, such that the discrete
logarithm that relates them is unknown, and the group elements C = ga1g

b
2,

D = gc1g
d
2 and W = ge1. To encrypt a message m from a message space M

(M is assumed to have an efficiently computable and invertible mapping into
Gq, and so we write m ∈ Gq), Alice chooses r ∈ Zq

∗ uniformly at random,
computes x = gr1, y = gr2, w = W rm, σ = H(x, y, w), and v = CrDrσ. The
ciphertext is the 4-tuple (x, y, w, v). And now for decryption, we will use the
Canetti-Goldwasser method [CG99]: Bob selects uniformly at random s ∈ Zq

∗

and outputs w/(xe(v/v′)s), where v′ = xa+cσyb+dσ. Recall that, under the as-
sumption that the decisional Diffie-Hellman problem is hard, the Cramer-Shoup
cryptosystem, as well as the Canetti-Goldwasser variant thereof, has been shown
to be secure against adaptive chosen ciphertext attack which is the strongest no-
tion of security known for public-key cryptosystems [CS98,Sho99b,CG99].

Key generation. In figure 7, we present the key generation protocol for the
concurrent Cramer-Shoup cryptosystem. We assume that the group Gq with a
generator g and the universal one-way hash function H have been generated
already. Indeed we may allow one server to set up these parameters and have
the others verify that his computation was performed correctly. We also assume
that h ∈ Gq was generated using correct h-generation protocol.

Input: Gq, g, h, H
Goal: Generate the Cramer-Shoup public key (g1, g2, C,D,W ).

1. Run the joint coinflip protocol and generate random bases g1, g2, h1, h2.
2. Run Joint-RVSS five times in parallel and obtain RVSS-datat,g1,h1

[a, c, e]
and RVSS-datat,g2,h2

[b, d].
3. Pi performs, in parallel, committed simultaneous proofs of knowledge of

repr. in bases g1, g2 of values Ci = gai
1 gbi

2 , Di = gci
1 gdi

2 and Wi = gei
1 ;

and repr. in bases h1, h2 of values Ĉi = hâi
1 hb̂i

2 , D̂i = hĉi
1 h

d̂i
2 , and Ŵi = gêi

1 ;
Pi erases fai , fbi

, fci , fdi
, fei and fâi

, fb̂i
, fĉi

, fd̂i
, fêi

;

Pi opens the committed proofs.
4. Verify (1) validity of other players’ proofs;

and (2) for all Pk ∈ Qual, CkĈk = Fak
(0)Fbk

(0), DkD̂k = Fck
(0)Fdk

(0),

and WkŴk = Fek
(0).

For any player who failed the test, reconstruct all his secrets using backup
information stored in RVSS-data[a, b, c, d, e].

5. Compute the public key:
C =

∏
Pi∈Qual

Ci, D =
∏

Pi∈Qual
Di and W =

∏
Pi∈Qual

Wi.

Fig. 7. Erasure-Enabled Key Generation for Cramer-Shoup
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See Lysyanskaya [Lys00] for proofs of security and robustness for this proto-
col. We note that the simulator for the security proof is easy to construct. The
key step here is that we generate two auxiliary bases, h1 and h2, such that if this
is a simulation, the simulator will get to know logg1 h1 and logg2 h2. As a result
of this and of the committed proof technique, at no step of this protocol will
the simulator be committed to a particular player’s internal state (see lemma 1
and lemma 4). The additive share of the public key published at the end is
non-committing to any current internal state either because it is distributed in-
dependently from any non-erased information that the adversary will ever have
a chance to see.

We also note that if a corrupted player deviates from the protocol but still
succeeds in carrying out the committed proof so that the honest players accept,
then, since these proofs are proofs of knowledge of representation, we can exhibit
an extractor which will compute two different representations of some value in
two different bases, and will therefore solve the discrete logarithm problem.

Decryption. In figure 8, we present the decryption protocol for the Cramer-
Shoup cryptosystem. For full proofs of security and robustness of this protocol,
see Lysyanskaya [Lys00].

Let us only show correctness of the decryption protocol in figure 8: if all the
players behave as prescribed by the protocol, the output is valid decryption. To
see this, let us look at the values Oi: Oi = mim

′
i = (vi/v)sigrisigzixeig−risigoig−zi

= (vi/v)sixeigrisi+zi−risi+oi−zi = (vi/v)sixeigoi Since o(i) is a degree 2t share
of 0, the interpolation of these shares will yield (v′/v)s(0)uz1, as in Canetti and
Goldwasser [CG99].

The decryption protocol is secure because all the information that one sees
before the committed proofs are opened does not commit the simulator to the
internal state of any of the players (by lemma 4), and, since the simulator knows
the values logg h, logg1 h1 and logg2 h2, the simulator can exhibit the internal
state of any player at the adversary’s request. The information revealed after the
committed proof is information-theoretically independent of the internal state of
a player who published this information, since by the time he publishes it, any
secrets pertaining to it have been erased; and the whole process is perfect zero-
knowledge by corollary 1. Therefore, owing to the committed proof technique
we get a perfect simulation for the adversary’s view. Robustness follows from
lemma 3.

Key refresh. Notice that, using standard techniques [HJJ+97], the above imple-
mentation of the threshold Cramer-Shoup cryptosystem can be made proactive
i.e. secure against mobile attackers who, over time, lose control over some of the
servers, but attack new ones.

Taking the decryption off-line. Note that, as in the Canetti-Goldwasser
implementation [CG99], we can precompute and store the randomizers. When
a ciphertext needs to be decrypted, a user can talk to each server individually
and have each server, using committed proofs, prove to the user that its share
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of the decryption is valid. By lemma 2, these committed proofs can be executed
concurrently. Such a method can tolerate up to n/3 corruptions.

7 Erasure-free threshold Cramer-Shoup cryptosystem

We exemplify our erasure-free threshold cryptography techniques with a thresh-
old protocol for the Cramer-Shoup cryptosystem (Fig.10). We assume that the
key generation was done similarly to Sec. 6, except that all sharings are of the
type RVSS-datat,g,h[a, b, c, d, e]. Since this protocol essentially exponentiates ele-
ments v−1, x, y to values that are held with additive sharing, the security of this
protocol can be shown in an argument similar to Lemma 9. For full analysis, as
well as the key generation protocol, see Jarecki and Lysyanskaya [JL00].

This protocol uses an “additive multiplication” sub-protocol MULT (Fig.9),
which creates ADD-data[c], an additive sharing with polynomial backups of value
c = ab mod q from sharings RVSS-data[a] and RVSS-data[b]. Note that if αi’s
and βi’s are shares of t-degree polynomials fa, fb s.t. fa(0) = a, fb(0) = b then
c =

∑n
i=1 vi where vi = λiαiβi mod q for some interpolation coefficients λi (as-

suming, for simplicity, that n = 2t + 1). Therefore, the players already hold ad-
ditive shares vi of c, but they are not independently distributed. Protocol MULT

essentially re-randomizes this additive sharing, as the “2sum-to-2sum” protocol
of [FMY99a-b] (except that here all players participate). In the future use of the
newly created additive shares ci of c, the polynomial sharings RVSS-data[a,b]
can serve as backups: If any player Pj misuses or withholds its cj in the future,
these shares are used to reconstruct vj = λjajbj , and the values ci’s of all other
players are adjusted so that

∑
i6=j ci = c.
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Input: Values obtained from the key generation protocol.
Goal: Decrypt ciphertext (x, y, w, v).
Notation: In this protocol, indexed Latin letters (e.g. ai) denote polynomial
shares of the corresponding values. (Unlike the rest of this extended abstract
where they denote additive shares.)

1. Run Joint-RVSS five times and obtain RVSS-datat,g,h[s, r, p] and
RVSS-data2t,g,h[o, z, u].

2. Pi computes the following values:
(a) li = xai+ciσybi+diσgri = vig

ri , where vi = xai+ciσybi+diσ.
(b) l′i = grihpi .
(c) l′′i = grisihpisi+ui = (l′i)

sihui .
(d) mi = (li/v)sigzi = (vi/v)sigrisigzi .
(e) m′

i = xeig−risigoig−zi .
3. Prove in committed simultaneous form:

(a) Eq. of repr. of li, Fa(i), Fb(i), Fc(i), Fd(i), Fr(i) in bases
(x, xσ, y, yσ, g, 1, 1, 1, 1, 1), (g1, 1, 1, 1, 1, h1, 1, 1, 1, 1),
(1, 1, g2, 1, 1, 1, 1, h2, 1, 1), (1, g1, 1, 1, 1, 1, h1, 1, 1, 1),
(1, 1, 1, g2, 1, 1, 1, 1, h2, 1), (1, 1, 1, 1, g, 1, 1, 1, 1, h), corre-
spondingly.

(b) Eq. of repr. of l′i, Fr(i), Fp(i) in bases (g, 1, h, 1), (g, h, 1, 1),
(1, 1, g, h).

(c) Eq. of repr. of l′′i , Fs(i), Fu(i) in bases (l′i, h, 1, 1), (g, 1, h, 1),
(1, g, 1, h).

(d) Eq. of repr. of mi,Fs(i), Fz(i) in bases ((li/v), g, 1, 1), (g, 1, h, 1),
(1, g, 1, h).

(e) Eq. of repr. of m′
i, Fe(i), l′′i , Fo(i), Fz(i) in bases

(x, g−1, g, g−1, 1, 1, 1, 1), (g1, 1, 1, 1, h1, 1, 1, 1), (1, g, 1, 1, 1, h, 1, 1),
(1, 1, g, 1, 1, 1, h, 1), (1, 1, 1, g, 1, 1, 1, h).

4. Erase the one-time secrets generated in step 1.
5. Open the committed proofs and reveal li, l

′
i, l

′′
i , mi, and m′

i.
6. Verify the committed proofs of other players.
7. Set a players output share Oi = mim

′
i. Determine the output O by La-

grange interpolation in the exponent; the resulting decryption is w/O.

Fig. 8. Erasure-enabled decryption for Cramer-Shoup
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Input: Sharings RVSS-data[a], RVSS-data[b], values p, q, g, h
Goal: Additive sharing ADD-data[c] of c = ab =

∑n

i=1 λiαiβi mod q

1. Each player Pi computes its additive share vi = λiαiβi of c, picks v̂i ∈ Zq,
broadcasts value Fvi(0) = gvihv̂i , and proves that vi in Vi is the product
of αi and λiβi committed to in Fa(i) and (Fb(i))

λi . This is done using a
simultaneous proof of Sec.(5.3) with a 3-move public-coin zero-knowledge
proof of [CD98].

2. Players perform the “2sum-to-2sum” protocol of [FMY99a-b] for additive
re-sharing of shares v1, .., vn. At the end each Pi computes its new additive
share ci, ĉi of c, and there are public verification values Fci(0) = gcihĉi .

Fig. 9. Multiplication MULT : (RVSS-data[a],RVSS-data[b])→ ADD-data[ab]

Input: Ciphertext x, y, w, σ, v, public key g1, g2, C,D,W , values p, q, g, h
Sharings RVSS-data[a,b,c,d,e,s] (i.e. RVSS-data[a],RVSS-data[b],etc.)

Goal: Decrypt cleartext m = w(v−1)sxs(a+cσ)−eys(b+dσ) mod p

1. Each player locally obtains its part of RVSS-data[a+cσ] and RVSS-data[b+
dσ] from RVSS-data[a,b,c,d] and σ.

2. Let r = s(a + cσ) and z = s(b + dσ). Players perform two parallel MULT

instances to get ADD-data[r] and ADD-data[z] from RVSS-data[s,a+cσ,b+
dσ]

3. Each Pi broadcasts mi = w(v−1)sixri−eiyzi and proves, using simultane-
ous proof of Sec.(5.3) with a 3-move public-coin zero-knowledge proof of
equality of representation of mi/w, Fsi(0), Fri(0)/Fei(0), and Fzi(0) in
appropriate bases made of elements 1, g, h, v−1, x, y in Gq.

4. If any player fails, their secret inputs are reconstructed.

Fig. 10. Adaptive Erasure-Free Cramer-Shoup Protocol


