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Abstract. Cryptography is more and more concerned with elaborate
protocols involving many participants. In some cases, it is crucial to be
sure that players behave fairly especially when they use public key en-
cryption. Accordingly, mechanisms are needed to check the correctness
of encrypted data, without compromising secrecy. We consider an op-
timistic scenario in which users have pairs of public and private keys
and give an encryption of their secret key with the public key of a third
party. In this setting we wish to provide a publicly verifiable proof that
the third party is able to recover the secret key if needed. Our emphasis
is on size; we believe that the proof should be of the same length as the
original key.
In this paper, we propose such proofs of fair encryption for El Gamal and
RSA keys, using the Paillier cryptosystem. Our proofs are really efficient
since in practical terms they are only a few hundred bytes long. As an
application, we design a very simple and efficient key recovery system.

1 Introduction

In some cryptographic applications it is crucial to be sure that players behave
fairly, especially when they use public key encryption. For example, we can
consider a voting scheme where each player encrypts the name of his favorite
candidate. It can be useful to convince anybody that the encrypted name is
indeed in the list of the candidates without revealing any information about this
name. Accordingly, mechanisms are needed to check the correctness of encrypted
data, without compromising secrecy.
We consider an optimistic scenario in which users have pairs of public and

private keys and give an encryption of their secret key with the public key of
a third party. In this setting we wish to provide a publicly verifiable proof that
the third party is able to recover the secret key if needed. We use the term
fair encryption for such a verifiable encryption. Note that the third party is
not involved during encryption or during verification of the proof. In optimistic
systems like [1], the third party is active only in case of dishonest behavior of
one participant; it is implicitly assumed that the knowledge that the third party
is able to solve any conflict is enough to deter anybody from cheating.
Our emphasis is on size; we believe that the proof should be approximately

of the same length as the original key. Consequently, general techniques of zero-
knowledge proofs cannot be used and we have to design specific proof systems
which are very efficient.
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Previous work.
Publicly verifiable encryption is not a new concept and it has been used in appli-
cations like secret sharing or key escrow. In 1998, Young and Yung [29] proposed
auto-recoverable auto-certifiable public key cryptosystems based on verifiable
encryption of secret keys using double decker exponentiation which makes the
proofs efficient but certainly not really practical, in a natural sense that is defined
below. Furthermore, this system does not separate the recoverability verification
from the ability to certify public keys.1

Efficient vs Practical protocols.
Following the tradition of complexity theory, cryptographers generally consider
that a protocol is “efficient” when both its running time and the size of the
transmitted data are polynomial in some typical parameters such as the bit
length of the integers in use and other security parameters. This approach enables
to eliminate non polynomial schemes that are obviously not usable in practice
but those which survive cannot necessarily be considered practical. For example
we can think about general multi-party computation protocols.
In this paper, we focus on protocols that are efficient but also really practical.

As an example, let us consider the Fiat-Shamir identification scheme [10]; if
we note k the security parameter and |N |b the size of used integers, its time
complexity is O(k × |N |b

2
) and the communication complexity measuring the

size of the exchanged data is O(k× |N |b). Thus this protocol is efficient but not
very practical. As another example, the Schnorr scheme [24] is efficient and even

practical since its time complexity is O(|N |b
2
) and its communication complexity

is O(k + |N |b); the security parameter k may be raised with only a modest
increase in size.
Our aim is to design proof systems that are practical at least in terms of

communication, i.e. such that the size of the proofs are of the same order than
the size of the underlying objects. This is motivated by the scenario that we
have in mind since we wish to turn our proofs into non interactive “certificates”.
In this setting, the optimization of the size of transmitted data is of crucial
importance.

Our results.
In this paper, we propose proofs of fair encryption for secret keys of any encryp-
tion scheme based on the discrete logarithm problem or on the intractability of
the factorization, including RSA and its variants. The asymmetric secret keys
are encrypted using any homomorphic public key cryptosystem like those of
Naccache-Stern [17], Okamoto-Uchiyama [18] or Paillier [19]. In this paper we
only focus on the Paillier scheme but we can immediately adapt the protocols in
order to use the Okamoto-Uchiyama cryptosystem which onewayness is based on
the well studied factorization problem instead of the new one introduced in [19].
More precisely, we give a protocol to prove that a ciphertext enables a third

party to recover the El Gamal secret key related to a public one. Such a proof is
very short and the workload of the third party during recovery is very small. We

1 Those results have been recently improved in [30]. See also [27].
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also propose a scheme for fair encrypting the factorization of a public modulus.
Such a proof is also very small but the workload of the third party is much
more important than for El Gamal keys since, from a theoretical point of view,
the recovery time and the cheating time are polynomially related. However, we
describe practical parameters to show that actual applications are feasible.
Finally, as an application, we design a very simple and efficient key recovery

system that can be used with any kind of keys, including RSA keys. We propose
the first non-interactive proof of recoverability of RSA keys short enough (a few
hundred bytes) to be appended as a certificate to any ciphertext. A consequence
is that the recoverability verification is no longer performed by the certification
authority. Consequently, this approach is more flexible than auto-recoverable
cryptosystems [29] and more secure than binding cryptography [28].
Those results follow from a careful analysis of previously proposed building

blocks: homomorphic cryptosystems based on exponentiation modulo composite
integers, the so-called bounded range commitment schemes that tries to prove the
knowledge of a discrete logarithm in a given range and short proofs of knowledge
for factoring proposed in [23].

Outline of the paper.
In section 2 we describe notations and give a precise description of the three
building blocks: trapdoor discrete logarithm cryptosystems, Diophantine com-
mitment and short proof of knowledge for factoring. Security proofs for those
two last protocols appear in appendix. Next, in section 3, we describe our fair
encryption protocols first for El Gamal and then for RSA. Finally, in section 4
we show how fair encryption enables the design of very simple and efficient key
escrow systems.

2 Preliminary tools

Throughout this paper, we use the following notation: for any integer n,
– we use ϕ(n) to denote the Euler totient function, i.e. the cardinality of Zn

∗,
– we use λ(n) to denote Carmichael’s lambda function defined as the largest
order of the elements of Zn

∗.

It is well known that if the prime factorization of an odd integer n is
∏η

i=1 qi
fi

then ϕ(n) =
∏η

i=1 qi
fi−1(qi − 1) and λ(n) = lcmi=1...η

(
qi

fi−1(qi − 1)
)
.

For any integer x, |x|b = (blog2(x)c+ 1) is the number of bits of x. Finally,
a prime number p is a strong prime if p = 2p′ + 1 and p′ is also prime. Our
computing model is the probabilistic polynomial time Turing machine (Pptm),
whose running time is a polynomial in specified parameters.

2.1 Homomorphic cryptosystems

Various cryptosystems which encrypt a message M by raising a base g to the
power M modulo some integer have been proposed [15, 3, 17–19]. Their security
is related to the intractability of computing discrete logarithm in the base g. As
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usual, the computation becomes easy using a trapdoor. As an important conse-
quence of this encryption technique, those schemes have homomorphic properties
that can be informally stated as follows:

E(M1 +M2) = E(M1)× E(M2) and E(k ×M) = E(M)
k

The early examples of such schemes could only achieve bit by bit encryp-
tion [15] or had very limited bandwidth [3]. However, recently, three cryp-
tosystems with significant bandwidth have been proposed: one by Okamoto and
Uchiyama [18] based on the exponentiation modulo P 2Q of messages from ZP

where P and Q are prime numbers, the second by Naccache and Stern [17] based
on the exponentiation modulo PQ of messages from Zσ with σ a smooth divisor
of ϕ(PQ) and finally a proposal of Paillier [19] which extends the system of [18]
by using exponentiation modulo P 2Q2 and messages from ZPQ. In the following,
we only describe protocols based on the Paillier cryptosystem but we insist on
the fact that any of those three cryptosystems could be used.

The Paillier cryptosystem is based on the properties of the Carmichael lambda
function in ZN2

∗. We recall here the main two properties: for any w ∈ ZN2
∗,

wλ(N) = 1 mod N and wNλ(N) = 1 mod N2.

Key Generation. Let N be an RSA modulus N = P ×Q, where P and Q are
prime integers s.t. gcd(N,ϕ(N)) = 1. Let G be an integer of order multiple of
N modulo N2. The public key is (N,G) and the secret key is λ(N).

Encryption. To encrypt a message M ∈ ZN , randomly choose u in ZN
∗ and

compute the ciphertext c = GM × uN mod N2.

Decryption. To decrypt c, compute M =
L(cλ(N) mod N2)

L(Gλ(N) mod N2)
mod N where

the L-function takes as input an element equal to 1 modulo N and computes
L(u) = u−1

N .

The integer gλ(N) mod N2 is equal to 1 moduloN so there exists β ∈ ZN such
that gλ(N) = 1+βN mod N2. Furthermore, we note that β = L(gλ(N) mod N2).

Consequently, cλ(N) =
(
gMuN

)λ(N)
=

(
gλ(N)

)M
= (1 + βN)

M
= 1+MβN mod

N2. So M × L(gλ(N)) = L(cλ(N)) mod N .

Security. It is conjectured that the so-called composite residuosity class prob-
lem, that exactly consists in inverting the cryptosystem, is intractable. The se-
mantic security is based on the difficulty to distinguish N th residues modulo N2.
We refer to [19] for details.

2.2 Diophantine Commitment

In 1989, Schnorr [24] proposed his famous signature scheme which may be viewed
as proof of knowledge of a discrete logarithm modulo a prime number. Since then,
many authors have tried to adapt the scheme in order to add control over the
size of the secret value. Such a bounded-range commitment has many applica-
tions and it has been used for group signature by Camenisch and Michels [6], for
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electronic cash by Chan, Frankel and Tsiounis [8], for verifiable secret sharing
by Fujisaki and Okamoto [12] and finally for proving that a modulus is the prod-
uct of two safe primes by Camenisch and Michels [7]. However no satisfactory
solution has appeared at the moment2. Known proposals are only able to prove
that the discrete logarithm is not “too far” from a fixed range, their analysis is
complex (and sometimes erroneous as in the Eurocrypt ’98 version of [8]) and
their security is often based on non-standard assumptions such as the so-called
“strong RSA assumption” needed to make proofs efficient. In this paper, we
adopt a totally different strategy in the analysis of bounded-range commitment
schemes.

Let G be a multiplicative finite group. As an example of such a group, in the
next sections we use groups of unknown order G = ZN2

∗ where N is an RSA
modulus. Let S be an integer and G be an element of G. We consider a player
who has a secret integer x that lies in the range [0, S[ and who computes, in G,
the public value Γ = Gx.
We do not know how to prove the knowledge of a discrete logarithm in the

range [0, S[ of Γ in base G. Consequently we only prove a weaker property. Let A
and B be two parameters whose values are analyzed later. We describe a practical
statistically zero-knowledge interactive proof of knowledge of σ ∈] − A,A[ and
τ ∈]0, B[ such that Gσ = Γ τ in G. It should be clear that we do not prove the
knowledge of x ∈ [0, S[ such that Γ = Gx. However, in practice, the prover needs
to know such an x in order to be able to perform the proof.

Protocol 1: The following round is repeated ` times. At each round,
the prover randomly chooses an integer r in [0, A[ and computes the
commitment t = Gr in G. Then he sends t to the verifier who answers a
challenge e randomly chosen in [0, B[. The prover computes y = r + ex
(an integer in Z) and sends it to the verifier who checks t = Gy × Γ−e

in G and 0 ≤ y < A.

A security analysis of this scheme is proposed in appendix A. Note that this
protocol is similar to previous proposals for bounded-range commitment [6, 8,
12, 7] but that the analysis is really different and does not use non-standard
hypothesis like the strong-RSA assumption.
Let us summarize the security results. A prover who knows x ∈ [0, S[ is

accepted with probability higher than 1 − `SB/A so A must be much larger
than `SB in order to make the protocol correct. Furthermore, the protocol is
sound, i.e. a prover who convinces a verifier with probability higher that 1/B`

must know σ ∈] − A,A[ and τ ∈]0, B[ such that Gσ = Γ τ . Finally, in the
complexity theory setting, if we consider a security parameter k and if all the
parameters A, B, S and ` are viewed as functions of k, the protocol is statistically
zero-knowledge if `×B is polynomial in k and if `SB/A is negligible.
When S is chosen, the choice of the remaining parameters is directed by

those results. From a theoretical point of view, if we consider that the security

2 Last minute : see F. Boudot’s paper [5] in this volume, pp. ??–??.
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parameter k is related to the cheating probability 1/2k for an adversary, the
soundness implies that B` ≥ 2k. Furthermore, the protocol is zero-knowledge
if it can be simulated in polynomial time. Since the time complexity of the
simulation is O(`×B), the parameters ` and B must be polynomial in k. Finally,
the correctness and the zero-knowledge property show that A must be such that
`SB/A is negligible.
From a practical point of view, we can fix the security parameter k to 80 for

example. If |S|b = 160, the following practical values for the other parameters
are reasonable: B = 220, ` = 4, A = 22+160+20+80 = 2262.

Let ω be the order of G in G. Note that the relation Gσ = Γ τ does not even
imply the existence of a discrete logarithm for Γ with base G but, if Γ = Gx mod

N2, we have xτ = σ mod ω and consequently x = σ×
(

τ
gcd(τ,ω)

)−1

mod ω
gcd(τ,ω) .

The Diophantine commitment can be made non-interactive using the Fiat-
Shamir heuristic [10]. The verifier’s challenge e is replaced with the hash value of
the commitment t and of the public data using a collision-resistant hash function
H. It is widely believed that such a transformation guarantees an accurate level
of security as soon as H is random enough. Furthermore, the security of this
approach can be formalized using the random oracle model [20].

2.3 Short proof of knowledge for factoring

Proofs of knowledge for the factorization of an integer n have been known for a
long time. But, even if they are claimed efficient according to complexity theoret-
ical arguments, none of them can be considered practical for many applications
because of their significant communication complexity: the proof is much longer
than the object it deals with.
A new strategy have been used in [23]. The protocol is a proof of knowledge

of a small common discrete logarithm of zn mod n for a few randomly chosen
elements z modulo n. This scheme is very efficient; when suitably optimized,
its communication complexity is only O(k + |n|b) bits, where k is a security
parameter. In this setting, the size of the proof is similar to the size of the
integer n. The improvement in comparison with the previously known schemes
can therefore be compared with the difference of efficiency between the Fiat-
Shamir scheme and the Schnorr one. Furthermore, the computational complexity
is proved to be O((|n|b+k)×k) multiplications modulo n both for the prover and
the verifier but strong heuristic evidence shows that O((|n|b + k) × k/ log k) is
enough. This might appear a small improvement but it has drastic consequences
in practical terms: only three modular exponentiations both for the prover and
the verifier are needed to obtain a very high level of security.

Protocol 2: First the prover and the verifier agree on mutually ran-
domly chosen integers zi ∈ Zn

∗ for i = 1..K. Then the following elemen-
tary round is repeated ` times. The prover randomly chooses an integer
r in [0, A[ and computes, for i = 1..K, the commitments ti = zri mod n.
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Then he sends the tis to the verifier who answers a challenge e randomly
chosen in [0, B[. The prover computes y = r + (n − ϕ(n)) × e (in Z)
and sends it to the verifier who checks 0 ≤ y < A and, for i = 1..K,
zy−n×e
i = ti mod n.

A security analysis of this scheme appears in [23]. The choice of the param-
eters ` and B must be such that B` > 2k, where k is a security parameter, in
order to make the protocol sound. Furthermore, the parameter A must be much
larger than (n−ϕ(n))`B to guarantee the completeness and the zero-knowledge
property but A must also be smaller than n to guarantee the soundness. Con-
sequently, n must verify (n − ϕ(n))`B ¿ n. For the applications we consider
in this paper, such a proof is used to prove the knowledge of integers like RSA
modulus with large prime factors so this condition is always satisfied. Note that
if n has small prime factors, the proof is no longer zero-knowledge but it is still
sound so a prover cannot try to cheat choosing an integer n with small factors.
Such a choice would only compromise his own security.

Using classical techniques, the commitments ti can be hashed. This trick
makes the communication complexity independent of K. Accordingly, the pro-
tocol is really practical in term of communication whatever K may be. Further-
more, the proof can be made non-interactive; the zi are chosen by means of a
hash function repeatedly applied to the integer n and the verifier’s challenge e
is replaced with the hash value of the commitments and of the public data. The
size of such a proof is very small in practice, i.e. similar to the size of n.

3 Fair Encryption of secret keys

We consider a third party who chooses his own private and public keys in the
Paillier cryptosystem. Let (N,G) be his public key. We also consider a user who
has a pair (SK,PK) of related secret and public keys for any cryptosystem (not
necessarily Paillier’s one). A fair encryption of SK consists of a ciphertext Γ
and of a non-interactive proof of fairness; Γ encrypts some secret data related
to SK with the public key of the third party and the proof convinces anybody
that the third party is able to recover SK using PK, Γ and his Paillier secret
key.

Note that the third party is not involved in the process of fair encryption or
during verification of the proof of fairness. As in many “optimistic” systems like
[1], the third party is active only in case of dishonest behavior of one participant;
it is implicitly assumed that the knowledge that the third party is able to solve
any conflict is enough to deter anybody from cheating.

We propose fair encryption scheme for secret keys of all known public key
encryption schemes based on the discrete logarithm problem or on the difficulty
of factorization. We first give the application to the case of El Gamal keys. Then,
we study the case of RSA keys.
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3.1 Fair encryption of El Gamal type keys

A fair encryption of an El Gamal secret key x consists of an encryption Γ of x,
obtained with the public key of a third party, and of a publicly verifiable non-
interactive proof that the third party would be able to recover x from Γ and Y if
needed. Such systems have already been proposed (see for example the attempt
in [2]) but we explain at the end of this section why previous solutions are not
satisfactory. Note that, in order to simplify the presentation of the protocol, we
only consider non-randomized Paillier scheme but a semantically secure version
can be used as shown in the next section for the case RSA case.

A third party first chooses his public key (N,G) and the related private key
to be used with the Paillier cryptosystem, i.e. N = PQ an RSA modulus and
G an element of order multiple of N in ZN2

∗. Let us further consider a strong
prime number p = 2q + 1 and a generator g of Zp

∗. Each user chooses a private
key x ∈ Zp−1 and computes his public key Y = gx mod p. In order to make a
fair encryption of his secret key x, he computes the ciphertext Γ = Gx mod N2

and a non-interactive proof of third party’s ability to compute x from Y and Γ .
We now describe an interactive version of such a proof that will further be made
non-interactive.
We define S = p− 1 and G = ZN2

∗. Let A, B and ` be Diophantine commit-
ment parameters as described in section 2.2.

Protocol 3:
The following round is repeated ` times. At each round, the prover ran-
domly chooses an integer r in [0, A[ and sends the commitment t =
(Γ r mod N2, gr mod p) to the verifier who answers an integer e ran-
domly chosen in [0, B[. The prover computes y = r + ex and sends it
to the verifier who checks t = (Gy × Γ−e mod N2, gy × Y −e mod p) and
0 ≤ y < A.

This protocol runs in parallel the Girault scheme [13] analyzed in [22] and
Diophantine commitment. Just as for each of the two schemes separately, we
can prove correctness and statistical zero-knowledge property provided `SB/A
is negligible and `×B is polynomial in the security parameter k. Furthermore,
if a prover is accepted with probability > 1/B` then he must know (σ, τ) with
|σ| < A, 0 < τ < B, Gσ = Γ τ mod N2 and gσ = Y τ mod p. In other words, if an
adversary viewed as a probabilistic Turing machine is accepted with probability
> 1/B`, we can use it in order to make an extractor that computes such a
pair (σ, τ).

Theorem 1. The third party can recover a fair encrypted secret key x from Y
and Γ in time O(|N |) if the recoverability proof is valid, provided N ≥ 2

√
2AB.

Proof: First note that the discrete logarithm x of Y in base g modulo p, i.e. the
secret key x related to the El Gamal public key Y , exists because g generates
Zp

∗. The proof associated with the encryption Γ shows that there exists (σ, τ)
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such that gσ = Y τ mod p so we have σ = τ logg Y mod p − 1. As q = (p −
1)/2 is a prime number, we obtain σ/d = τ/d × x mod q, where d = gcd(σ, τ).
Consequently, the knowledge of (σ/d, τ/d) enables to recover x because we can

compute x0 = (σ/d)×(τ/d)−1
= σ0×τ0

−1 mod q and the secret key x mod p−1
is x0 or x0 + q.
Finally, it is enough to show that a third party can recover (σ0, τ0) =

(σ/d, τ/d) from Γ and Y . We show that this can be efficiently done, provided
N ≥ 2

√
2AB.

First, he decrypts Γ and obtains γ =
L(Γλ(N) mod N2)

L(Gλ(N) mod N2)
mod N so Γ λ(N) =

Gγλ(N). Since Gσ = Γ τ mod N2, the previous equation implies σ− γτ = 0 mod
N . Let us consider the solutions of the equation x−γy = 0 mod N where x and y
are the unknowns. They are elements of a lattice with basis ((N, 0), (γ, 1)). Since
the dimension of the lattice is 2, we can use Gauss’ algorithm [9, p.23] in order
to find its shortest vector. When running this algorithm, we need to specify the
inner product; for the sake of optimization, we replace the standard inner product
by (x, y).(x′, y′) = xx′ + A2/B2 × yy′. The corresponding norm is ||(x, y)|| =√

x2 +A2/B2 × y2. Receiving basis ((N, 0), (γ, 1)) as its input, the algorithm
outputs the shortest vector (σ0, τ0) of the lattice. The (unknown) vector (σ, τ) is
also in the lattice so that ||(σ0, τ0)|| ≤ ||(σ, τ)|| <

√
A2 +A2/B2 ×B2 =

√
2A.

This means that |σ0| <
√
2A and |τ0| <

√
2B.

From the equations γτ − σ = γτ0 − σ0 = 0 mod N we obtain σ0τ = ττ0γ =
στ0 mod N . But |σ0τ − στ0| ≤ |σ0||τ | + |σ||τ0| < 2

√
2AB so, if N ≥ 2

√
2AB,

σ0τ = στ0 in Z. Furthermore, (σ0, τ0) is the shortest vector of the lattice so
gcd(σ0, τ0) = 1. Finally, the output of the algorithm leads to the computation of
the pair (σ/d, τ/d) where d if the gcd of σ and τ . Furthermore, since 0 < τ < B,
d is less than B.
Classical results about the complexity of Gauss’ algorithm (see for example

[25]) prove that the number of repetitions needed to find (σ0, τ0) is O(log(N)).
ut

As a consequence, the key recovery process is efficient from a theoretical point
of view. Furthermore, practical experiments confirms very high efficiency since a
few milliseconds computation can recover the key, whatever the encryption may
be but provided the proof is valid.
In conclusion, the protocol is secure both for the prover and the verifier. An

dishonest verifier cannot obtain any extra information about SK and if the proof
is accepted the third party can recover SK whatever the encryption Γ , even if
the prover is dishonest and have unlimited computation power.

Non-interactive version and Optimizations. Many well known optimiza-
tions can be applied to the previous proof. The commitment can be replaced by
its hash value as described in [14] and it can be precomputed in order to reduce
the on-line computation to a very simple non-modular arithmetic operation. We
can also reduce the size of the secret key x to about 160 bits as explained in [26].
Finally, this proof can be made non-interactive in order to obtain a very short
certificate of fair encryption.
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Comparison with previous proposals. At first sight, the key recovery pro-
cedure based on lattice reduction might seem overly intricate. We explain why a
simple decryption of Γ (as proposed in [2]) presumably does not always enable
to recover the secret key.
Let us consider the following cheating strategy based on the ability to extract

f -th root, where f is small, without being able to factor. This is a plausible
assumption as explained in [4]. The (dishonest) prover chooses an x, computes

Y and Γ = Gx mod N2. Then he extracts an f -th root Γ̃ of Γ modulo N2. When
f divides the challenge e, which happens with probability 1/f , the prover answers
z = r+(e/f)x. The verification is still correct but, when the third party decrypts
Γ , he obtains a value that has nothing to do with the the discrete logarithm of
Y in base g modulo p.
In order to overcome the difficulty one can use a non-standard intractability

assumption, the so-called “strong RSA problem”, which appears in several pa-
pers [12, 6]. With our system, under standard assumption, the third party would
find σ and τ such that gσ = Y τ mod p, since σ = (e− e′)/f × x = (τ/f)x, and
consequently the correct value of the secret key x as was previously explained.

3.2 Fair encryption of RSA keys

We now turn to fair encryption of RSA keys. Using Diophantine commitment
and short proofs of knowledge for factoring, we design a fair encryption system
which enables the third party to recover the factorization of the RSA modulus,
even if it is not of a correct form, i.e. if it is not the product of two large
safe primes of approximately the same length. The originality of our solution,
in comparison with other proposals is that it does not include any proof that
the RSA modulus has exactly two different prime factors. This has important
consequence on efficiency.

We consider a scenario where each user chooses two k′-bit prime numbers p
and q and computes his RSA modulus n = pq. He also computes x = n−ϕ(n) =
p+ q − 1 and the encryption Γ = Gx mod N2.
We now describe a scheme that enables the user to convince a verifier that

the third party is able to factor n using Γ and is Paillier secret key. Let A, B,
` and K be parameters of short proof of knowledge for factoring as exposed in
section 2.3.

Protocol 4: First the prover and the verifier agree on mutually ran-
domly chosen integers zi ∈ Zn

∗ for i = 1..K. Then the following basic
round is repeated ` times. The prover randomly chooses an integer r in
[0, A[ and sends the commitment t = (Gr mod N2, {zri mod n}i=1..K).
Then the verifier answers an integer e randomly chosen in [0, B[. The
prover computes y = r + ex and sends it to the verifier who checks
t = (Gy × Γ−e mod N2,

{
zy−en
i mod n

}
i=1..K

) and 0 ≤ y < A.

The protocol is a parallel execution of a Diophantine commitment and of a
short proof of knowledge for factoring. If a prover is accepted with probability
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> 1/B` then, as usual, one can find a round for which he is able to correctly
answer y and y′ to different challenges e and e′ (e > e′) following an identical

commitment t. Consequently, for all i = 1..K, zy−y′

i = z
n(e−e′)
i mod n. If we

note σ = y − y′, τ = e− e′ and L = nτ − σ, we have

σ ∈]−A,A[, τ ∈]0, B[, Gσ = Γ τ mod N2 and, for all i = 1..K, zLi = 1 mod n

If σ and τ , and consequently L, are known, the same technique as for the proof
of soundness of protocol 2 shows that the factorization of n can be extracted
with O(|n|b × |L|) multiplications modulo n.

Theorem 2. The third party can factor n from the fair encryption Γ in time
O(|N |+

√
B) if the recoverability proof is valid, provided N ≥ 2

√
2AB.

Proof: First, using the same procedure as for El Gamal keys, he computes
(σ0, τ0) = (σ/d, τ/d) with d = gcd(σ, τ). Let L0 be nτ0−σ0; since L = nτ −σ =
d × L0 and d = gcd(σ, τ) ≤ |τ | < B, the third party recovers L divided by a
factor d smaller than B.
This missing information can be computed using an algorithm which finds the

order of the zis as follows. For any i, we know that the order of y = zL0

i mod n is
less than B because zLi = 1 mod n. The λ-method of Pollard [21] enables to find
this order in time O(

√
B) with memory complexity O(1). The idea is to choose a

randomly looking function f and to iteratively compute yi+1 = yi×yf(yi) mod n,
with y0 = 1, for i = 1..M whereM is a fixed parameter. Then, just remembering
this last value, we compute y′i+1 = y′i × yf(y′i) mod n, with y′0 = yB , until we
find an indexM ′ such that yM = y′M ′ mod n or untilM ′ exceeds a fixed bound.
If a collision yM = y′M ′ mod n is found (see [21] for a precise analysis), it leads to

yB+
∑M′−1

i=0 f(y′i)−
∑M−1

i=0 f(yi) = 1 mod n so L0 ×


B +

M ′−1∑

i=0

f(y′i)−
M−1∑

i=0

f(yi)




is a multiple of the order of zi modulo n.
Finally, in time O(

√
B) and with a small amount of memory, the third party

recovers L and then factors n with high probability. ut
As a consequence of the time complexity of the algorithm in O(

√
B), if B

is exponential in the security parameter k, the extractor is not efficient from
a theoretical point of view. However, we show in the next sections that the
parameters B and ` can be chosen in order to guarantee a high level of security,
to make the key recovery process feasible by the third party and to have short
proofs.

We insist on the fact that our system does not require the modulus n to have
exactly two factors; a cheating user cannot gain any advantage using a modu-
lus with three or more factors. Furthermore, the protocol can be immediately
adapted to cryptosystems like Okamoto-Uchiyama’s where the modulus is not
an RSA modulus (e.g n = p2q).

Remark about cheating provers. In order to show why we need a key re-
covery procedure that might seem at first sight overly intricate, we consider
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a cheating strategy that enables a dishonest prover to encrypt something dif-
ferent from n − ϕ(n) in Γ and to give a valid proof. Let f be a factor of
λ(n) and Γ be Gn−αλ(n)/f mod N2, where α is an integer of about the same
size as f . The prover follows the protocol but only answers when f divides
the challenge e; this happens with probability 1/f . In this case he returns
y = r + (e/f) × (n − αλ(n)). Consequently, verifications are correct because

zyi = zri × zeni × z
−eαλ(n)/f
i mod N2 and the last term is equal to 1 because f

divides e but the third party cannot immediately recover the missing factor f .
Notice that such a cheating strategy implies a workload O(f) for cheating but
only a workload O(

√
f) for the third party to defeat it.

Randomized non-interactive version. In order to prove the semantic secu-
rity of the Paillier cryptosystem, the encryption has to be probabilistic. This can
be done by multiplying with uN mod N2, where u is randomly chosen in ZN

∗:
Γ = Gn−ϕ(n) × uN mod N2. We can easily modify our schemes in order to use
this version of the Paillier scheme. Furthermore, when a third party wants to
recover a secret key, the randomization does not affect the decryption process
so that nothing is changed in the key recovery. Finally, the proof can be made
non-interactive. We obtain the following protocol:

Protocol 5:
Encryption. Choose u ∈ ZN

∗ and compute Γ = Gn−ϕ(n)×uN mod N2

Proof of Fairness.
Choose (ri)i=1..` ∈R [0, A[

`
and (vi)i=1..` ∈R ZN

∗`

Compute t =
((

GrivNi mod N2
)
i=1..`

,
(
zri

j mod n
)
i=1..`,j=1..K

)

and (e1, . . . e`) = H
(
t,N,G, (zj)j=1..K , n

)

Compute yi = ri + ei(n− ϕ(n)) and yi
′ = uei × vi mod N for i = 1..`

A non-interactive proof of fairness is a 3`-tuple ((yi, yi
′, ei)i=1..`)

Verification.

Check 0 ≤ yi < A for i = 1..`

Compute t′ =
((

Gyi × yi
′N/Γ ei mod N2

)

i=1..`
,
(
zyi−ein
j mod n

)
i=1..`,j=1..K

)

Check (e1, . . . e`) = H
(
t′, N,G, (zj)j=1..K , n

)

Fair encryption of RSA keys in practice. This section is more practical
in character; we consider fair encryption, using protocol 5, for a 1024-bit RSA
modulus n with two 512-bit prime factors.

Choice of ` and B: the probability of a cheating strategy to succeed during
a proof of fairness is smaller than 1/B` so ` × |B|b must be large enough, e.g.
` × |B|b = 80, in order to guarantee a high level of security. Furthermore, the
workload for the third party is O(

√
B) in worst cases so B may not be too large.

The choice ` = 2 and B = 240 seems satisfactory.
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Choice of A: this parameter must be smaller than n and much larger than
(n−ϕ(n))`B in order to make proofs of knowledge for factoring secure. Since n
has two prime factors of about the same size, n− ϕ(n) ≈ √n. Consequently, A
must satisfy 512 + 1 + 40¿ |A|b < 1024; we advise A = 2633.

Choice of K: [23] analyzes the choice of K and shows, using heuristic argu-
ments, that K = 3 is a good choice. As was already observed, the communication
complexity of protocol 5 does not depend of K. Consequently, the use of K = 80
in order to reach a high level of provable security does not make proofs longer.

Choice of N : the Paillier modulus N must satisfies N > 2
√
2AB in order to

make the key recovery process possible. With the previously advised values of
parameters A and B, this means |N |b > 675. Consequently, in order to guarantee
the security of the Paillier cryptosystem, |N |b = 1024 seems to be a good choice.
Choice of H: the function H must be a collision-resistant cryptographic hash
function; SHA-1 is a good candidate.

Choice of G: the base G must be an element of order multiple of N modulo
N2. It is very simple to find such an element.

Choice of zjs: the zjs must ideally be mutually randomly chosen in the inter-
active setting. In practice, they can be pseudo-randomly generated, using a hash
function H ′, with a formula like zj = H ′(N,G, n, Γ, j) mod n.

With those parameters, a complete fair encryption, including the RSA mod-
ulus n (1024 bits), the encryption Γ of n− ϕ(n) (2048 bits) and the previously
described non-interactive proof (2612 bits) is about only 710 bytes long.

4 Application to Key Recovery systems

As an example of application of fair encryption, we now explain its use in de-
signing very efficient key recovery systems. It must be clear that our aim is not
to enter into the controversial debate on the notion of key recovery but to give
an application of fair encryption. The general criticisms against such systems are
still topical questions. Also, we believe that our notion will find other application,
e.g. in the areas of electronic cash, voting schemes or lotteries.
We consider three kinds of participants: users which want to exchange en-

crypted messages, authorities which are seeking the guaranty that they will
obtain the decryption of some messages in specific cases and key recovery agents
able to decrypt ciphertexts when requested by the proper authority. Our key
recovery systems are designed to be used very easily with any cryptosystem,
without adding interaction with authorities, third parties or key recovery agents.
The basic idea consists in appending to any ciphertext C a fair encryption Γ of
the asymmetric secret key that enables the decryption of C. Γ is encrypted with
the Paillier public key of a key recovery agent. The proof of fairness provides a
way for anyone (including authorities, proxies, users, ...) to check the correctness
of Γ without interaction with any kind of centralized authority and consequently
to be convinced that the key recovery agent can actually decrypt C.
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Using the Young and Yung setting [29], this leads to the design of auto-
recoverable auto-certifiable versions of all the cryptosystems based on discrete
logarithm or on factoring. This includes all variants of RSA, the homomorphic
schemes [17–19] and many other cryptosystems. But the shortness of our proofs,
a few hundred bytes, enables more flexible mechanisms where recoverability ver-
ification is separated from the ability to certify public keys. It seems realistic to
append short non-interactive proofs to any encrypted message; this leads to a
very simple and efficient key recovery system which can be used in conjunction
with any common cryptosystem.
We consider a new public key scenario in which each user publicizes is public

key PK, a certificate for this key, i.e. a signature of an authority that guarantees
the authenticity of PK, and a fair encryption of the secret key related to PK
that may enable a key recovery agent to decrypt any ciphertext encrypted with
PK. The proof of fairness can be checked by anybody, including people who
want to send messages encrypted using PK. In the so-called fair public key
scenario, the fair encryption of the secret key related to PK is added to any
ciphertext encrypted with PK. Of course, this does not guarantees that it has
really been encrypted with PK but the aim of key escrow schemes is only to
avoid the use of regular public key infrastructure in dishonest ways; we cannot
avoid simple countermeasure like over-encryption or steganography for example.
The fair public key scenario can for example be used in a network where servers
deliver encrypted messages to Alice only if a fair encryption of her secret key is
added to ciphertexts.

Note on shadow public keys. Kilian and Leighton have shown in [16] than
many key escrow schemes can be easily misused by dishonest users. The basic
idea is to use non-escrowed keys that may be computed from regularly escrowed
ones. As a first consequence, the secret keys must be jointly generated by users
and authorities. Furthermore, in the more specific case of the system we propose,
the proof of fairness should not be used as a subliminal channel to publicize a
non-escrowed public key. For example, it is easy to fix a few bits, e.g. in the
ei, but we cannot see any way to increase the bandwidth of such a channel to
transmit enough information.

Note on chosen ciphertext attacks. All the known cryptosystems based on
a trapdoor discrete log [17–19] are only secure against chosen plaintext attacks
but not against chosen ciphertext attacks. As an example, if it is possible to
obtain the decryption of a ciphertext in the Okamoto-Uchiyama system, this
immediately leads to a multiple of P and consequently to the factorization of N .
So a “curious” authority can factor N just asking the recovery of a single key!
As a consequence the recovery agent must not reveal recovered keys but only
decrypted messages.
With the RSA escrowing scheme, the problem is more subtle because the key

obtained by the recovery agent are not meaningless since they are the factoriza-
tion of a large number. Anyway, an attacker could try to use it as an oracle able
to factor a modulus n = pq if and only if x = p + q − 1 < P ; this binary infor-
mation can be used to recover the exact value of P . A dichotomic algorithm can
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easily bound P in such a way that after O(|P |b) queries, the attacker recovers
the factorization of N .

The Paillier scheme seems much more resistant to such attacks. Of course it
is not secure against chosen ciphertext attacks since it is malleable. Furthermore,
we cannot use a non-malleable version since we would no longer be able to make
proofs. However, we do not know any attack able to recover a Paillier secret key
by CCA; this is the main reason why we prefer to use this scheme and not the
Okamoto-Uchiyama cryptosystem.

Note on threshold Paillier scheme. The other reason to use the Paillier
scheme is that it is the only homomorphic cryptosystem related to be discrete
log problem for which a threshold distributed version [11] is known. This may
be of crucial importance for practical applications in order to reduce the trust
in the recoverability agent.
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A Security analysis of Diophantine commitment

In order to prove the exact security of Diophantine commitment, the approach
of Feige, Fiat and Shamir is followed, first proving completeness, then soundness
and, finally, the zero-knowledge property.

Theorem 3 (Completeness). The execution of the protocol between an honest
prover who knows the secret value x ∈ [0, S[ and a verifier is successful with
probability higher than 1− `SB/A.
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Proof: If the prover knows a secret x ∈ [0, S[ and follows the protocol, he fails
only if y ≥ A at some round of the proof. For any value x ∈ [0, S[ the probability
of failure of such an event taken over all possible choices of r is smaller than
SB/A. Consequently the execution of the protocol is successful with probability

≥
(
1− SB

A

)` ≥ 1− `SB
A . ut

Theorem 4 (Soundness). Assume that some adversary P̃ is accepted with

probability ε′ = 1/B` + ε, ε > 0. Then there exists an algorithm which, with

probability > ε2/(6ε′
2
), outputs a pair (σ, τ) with −A < σ < A, 0 < τ < B and

Gσ = Γ τ in G. The expected running time is < 2/ε× τ , where τ is the average
running time of an execution of the proof.

Proof: Assume that some adversary, modeled as a Turing machine P̃ (ω) run-
ning on random tape ω, is accepted with probability ε′ = 1/B` + ε. We write
Succ(ω, (e1, ...e`)) ∈ {true, false} the result (successful of not) of the identifica-
tion of P̃ (ω) when the challenges e1, ...e` are used.
We consider the following algorithm (largely inspired from [24]):

Step 1. Pick a random tape ω and a tuple e of ` integers e1, ...e` in {0, ..B− 1}
until Succ(ω, e). Let u be the number of probes.
Step 2. Probe up to u random `-tuples e′ different from e until Succ(ω, e′). If
after the u probes a successful e′ is not found, the algorithm fails.
Step 3. Let j be one of the indices such that ej 6= ej

′; we note yj and yj
′

the related correct answers of P̃ . If ej > ej
′ the algorithm outputs (σ, τ) =

(yj − yj
′, ej − ej

′), otherwise it outputs (σ, τ) = (yj
′ − yj , ej

′ − ej).
If this algorithm does not fails, the prover is able to correctly answer two

challenges ej and ej
′ for the same commitment tj with the answers yj and yj

′.

This means that Gyj/Γ ej = tj = Gyj
′

/Γ ej
′

so Gσ = Γ τ . Furthermore, |σ| < A
and 0 < τ < B because integers yi and yi

′ are smaller than A and integers ei
and ei

′ are different and smaller than B.
We now analyze the complexity of the algorithm. By assumption, the proba-

bility of success of P̃ is ε′ so the first step finds ω and e with the same probability.
The expected number E of repetitions is 1/ε′ and the number u of probes is equal
to N with probability ε′ × (1− ε′)N−1.
Let Ω be the set of random tapes ω such that Pr

e
{Succ(ω, e)} ≥ ε′ − ε/2 =

1/B` + ε/2. The probability for the random tape ω found in step 1 to be in Ω
conditioned by the knowledge that Succ(ω, e) = true can be lower bounded:

Pr
ω,e
{ω ∈ Ω|Succ(ω, e)} = 1− Pr

ω,e
{ω 6∈ Ω|Succ(ω, e)} =

1− Pr
ω,e
{Succ(ω, e)|ω 6∈ Ω} ×

Pr
ω,e
{ω 6∈ Ω}

Pr
ω,e
{Succ(ω, e)} ≥ 1−

(
1

B`
+

ε

2

)
× 1/ε′ = ε

2× ε′

With probability > ε/(2ε′), the random tape ω is in Ω and in this case, by
definition of the set Ω, the probability for a tuple of challenges e′ 6= e to lead
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to success is ≥ ε/2. The probability to obtain such a tuple e′ after less than N
probes is ≥ 1− (1− ε/2)N .
Consequently, the probability to obtain a random tape ω in Ω and to find e′

is greater than

ε

2ε′
×

+∞∑

N=1

(1− ε′)
N−1 × ε′ ×

[
1− (1− ε

2
)
N
]
=

ε2

4ε′(ε′ + ε/2− ε× ε′/2)
>

ε2

6ε′2

In conclusion, the algorithm finds (σ, τ) with probability > ε2/(6ε′
2
) and the

total expected number of executions of the proof between P̃ and a verifier is
smaller than 2/ε′. ut
Finally, in the complexity theory setting, let us consider a security parame-

ter k. All the parameters A, B, S and ` are viewed as functions of k.

Theorem 5 (Zero-knowledge). The protocol is statistically zero-knowledge if
`×B is polynomial in k and if `SB/A is negligible.

Proof: We describe the polynomial time simulation of the communication be-
tween a prover P and a possibly dishonest verifier Ṽ . We assume that, in order to
try to obtain information about x, Ṽ does not randomly choose the challenges.
If we focus on the ith round, Ṽ has already obtained data, noted Datai, from
previous interactions with P . Then the prover sends the commitment ti and Ṽ
chooses, possibly using Datai and ti, the challenge ei(Datai, ti).
Here is a simulation of the ith round: choose random values ei

′ ∈ [0, B[ and
yi

′ ∈ [0, A[, compute ti
′ = Gyi

′ × Γ ei
′

. If ei(Datai, ti
′) 6= ei

′ then try again with
another pair (ei

′, yi
′), else return (ti

′, ei
′, yi

′). It can be formally proved that
such a simulation is statistically indistinguishable from the transcript of a real
proof as soon as `SB/A is negligible:

∑

(αi,εi,βi),i≤`

∣∣∣Pr {(αi, εi, βi) = (ti, ei, yi)}− Pr
{
(αi, εi, βi) = (ti

′, ei
′, yi)

′
}∣∣∣

<
4`SB

A

Furthermore, the time complexity of the simulation if O(`×B) so the simulation
runs in polynomial time in k if `×B is polynomial. ut


