
Single Database Private Information Retrieval
Implies Oblivious Transfer

Giovanni Di Crescenzo1, Tal Malkin2, and Rafail Ostrovsky1

1 Telcordia Technologies, Inc., 445 South Street, Morristown, NJ, 07960.
E-mail: {giovanni,rafail}@research.telcordia.com.

2 AT&T Labs – Research, 180 Park Ave., Florham Park, NJ, 07932.
E-mail: tal@research.att.com.

Work done at the Massachusetts Institute of Technology.

Abstract. A Single-Database Private Information Retrieval (PIR) is a
protocol that allows a user to privately retrieve from a database an entry
with as small as possible communication complexity. We call a PIR pro-
tocol non-trivial if its total communication is strictly less than the size
of the database. Non-trivial PIR is an important cryptographic prim-
itive with many applications. Thus, understanding which assumptions
are necessary for implementing such a primitive is an important task,
although (so far) not a well-understood one. In this paper we show that
any non-trivial PIR implies Oblivious Transfer, a far better understood
primitive. Our result not only significantly clarifies our understanding of
any non-trivial PIR protocol, but also yields the following consequences:

– Any non-trivial PIR is complete for all two-party and multi-party
secure computations.

– There exists a communication-efficient reduction from any PIR pro-
tocol to a 1-out-of-n Oblivious Transfer protocol (also called SPIR).

– There is strong evidence that the assumption of the existence of a
one-way function is necessary but not sufficient for any non-trivial
PIR protocol.

1 Introduction

Relationships between cryptographic primitives. One of the central
questions in cryptography is to study which assumptions (if any) are necessary
to implement a cryptographic protocol or task. For most primitives this an-
swer is well understood, and falls in two categories: either one-way functions
are necessary and sufficient, or stronger assumptions are necessary (i.e., one-
way functions with some additional properties like trapdoor may be required).
For example, pseudo-random generators [20], signature schemes [32, 36], com-
mitment schemes [20, 30] and zero-knowledge proofs for NP [20, 30, 18, 34] are
all equivalent to the existence of a one-way function. On the other hand there is
a class of primitives that probably needs additional assumptions, including, for
example, public-key cryptosystems, key-exchange, oblivious transfer [22], non-
interactive zero-knowledge proofs of knowledge for NP [11] and any non-trivial
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secure two-party [4] and multi-party function evaluation [25]. Single Database
Private Information Retrieval has received a lot of attention in the literature,
however its place in the above setting was not understood. In this paper we
address (and resolve) its position.

Private Information Retrieval. A Private Information Retrieval (PIR)
scheme allows a user to retrieve information from a database while maintaining
the query private from the database managers. More formally, the database is
modeled as an n-bit string x out of which the user retrieves the i-th bit xi,
while giving the database no information about the index i. The communication
complexity of such a scheme is denoted by c(n). A trivial PIR scheme con-
sists of sending the entire data string to the user (i.e. c(n)=n), thus satisfying
the PIR privacy requirement in the information-theoretic sense. We call any
PIR protocol with c(n)<n non-trivial. The problem of constructing non-trivial
PIR was originally introduced by Chor et al. [8] and further studied in [8, 1,
7, 33, 27, 29, 3, 12, 16, 15, 6, 23, 28]. In [8] this problem was studied in the setting
of multiple non-communicating copies of the database (further improvements
were given in [1, 23]). That is, [8] show that if there are at least two or more
copies of the database, then non-trivial PIR (for example, with two copies of the
database, with communication complexity c(n)=O(n1/3)) is indeed possible. In
the original work [8] also show that it is information-theoretically impossible to
achieve a non-trivial PIR with a single copy of the database. Kushilevitz and
Ostrovsky [27] have shown a way to get around this impossibility result using
computational assumptions1. In particular, [27] show that assuming that the
quadratic residuosity (number-theoretic) problem is hard, they can get Single-
Database PIR protocol with c(n) < nε for any ε > 0. Further constructions of
single-database PIR schemes, improving either the communication or the as-
sumption, followed [29, 37, 6, 28]. In particular, Cachin et al. [6] construct PIR
with polylogarithmic communication complexity, under the so-called Φ-hiding
(number-theoretic) assumption. This is essentially optimal communication com-
plexity since the security parameter needs to be at least poly-logarithmic in n.
Recently, [28] have shown a single database PIR based on any one-way trap-
door permutation, though their communication, while less then n, is bigger than
schemes based on specific number-theoretic assumptions [27, 29, 37, 6]. On the
other hand, [3] have shown that any non-trivial single database PIR implies the
existence of a one-way function.

Oblivious Transfer. The Oblivious Transfer (OT) protocol was introduced
by Rabin [35], one-out-of-two Oblivious Transfer, denoted

(

2
1

)

-OT , was intro-

duced in [13], and one-out-of-n Oblivious Transfer, denoted
(

n
1

)

-OT , was intro-
duced in [2]. All these OT variants were shown to be equivalent to one another
[10, 2]. In this paper, we will mainly use the last two versions. Roughly speaking,
(

2
1

)

-OT is a protocol between two players, a sender Alice and a receiver Bob.

1 Also, [7, 33] consider the use of computational assumptions in the settings of multiple
non-communicating databases.
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Alice has two bits, and Bob wishes to get one of them such that (a) Alice does
not know which bit Bob got; and (b) Bob does not learn any information about
the bit that he did not get. When generalized to

(

n
1

)

-OT we can see that the
formulation of this primitive is “close” to single-database PIR, in that they both
share requirement (a). However, non-trivial PIR has an additional requirement
regarding the communication complexity (to be less than the number of bits)
and does not require condition (b) – which is essential for the definition of Obliv-
ious Transfer. The

(

n
1

)

-OT protocol that combines both requirements (a), (b)
and the small communication requirement was considered in [16], who call it
Symmetric-PIR.
In [24], it was shown that OT is complete, namely it can be used to construct

any other protocol problem. [21] have shown that OT implies the existence of
one-way functions. Moreover, [22] have shown that assuming OT is probably
stronger than assuming existence of one-way functions (OWF) in the following
sense. They show that it is impossible to construct a black-box reduction from
OT to OWF (where the OT protocol uses the promised OWF as a black box,
and the proof is black-box). Furthermore, proving any such black-box construc-
tion (even if the proof itself is not black-box), is as hard as separating P from
NP. Thus [22] gives a strong evidence that OWF are currently not sufficient to
construct OT, namely that OT is a strictly stronger assumption.

Our Results

In this paper, we present a reduction transforming any nontrivial single-database
PIR into Oblivious Transfer. The significance of this reduction is threefold: (1)
it provides “negative” results, asserting that PIR cannot be constructed based
on weak computational assumptions; (2) It provides a general “positive” result,
namely that PIR is also a complete primitive, and any non-trivial implementation
of Single-Database PIR may be used to construct any other secure protocol;
and (3) it provides a specific “positive” result, allowing transformation from
communication efficient single-database PIR to communication-efficient

(

n
1

)

-OT
(also called Symmetric-PIR [16]). We elaborate below.

Complexity of PIR. As mentioned above, the original paper of Chor et al. [8]
shows that it is information-theoretically impossible to implement a non-trivial
Single-Database PIR. That is, if the user needs information-theoretic privacy, the
communication cannot be less than n. Thus, some computational assumption is
necessary. Naturally, this leads to the following question.

Under which computational assumptions can non-trivial Single-Database
PIR be achieved?

While this question has received a lot of attention recently [27, 29, 37, 6, 3, 28],
only limited progress has been achieved thus far towards a solution. In particular,
as described above, there has been a large gap between the assumptions known to
be sufficient, and those known to be necessary. On one hand, the only assumption
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previously known to be necessary for non-trivial PIR is the existence of one-way
functions [3]; on the other hand, the weakest assumptions known to be sufficient
are trapdoor permutations [28]. In this paper we make an important step towards
closing this gap, by showing the following

Main Theorem (Informal Statement) If there exists any non-trivial
Single-Database PIR then there exists an OT.

That is, even saving one bit compared to the (information-theoretic) trivial pro-
tocol of sending the entire database, already requires OT. It is interesting to note
that we can also reduce any code for non-trivial single-database PIR to a code
for OT; this is similar to code-to-code reductions in [4]. Moreover, our theorem
holds even if the communication sent by the user in the given PIR scheme is
unbounded, as long as the database sends less than n bits.
OT protocol implies the existence of a one-way function [21]. Single database

PIR also implies the existence of a one-way function [3], but in light of [22] our
result is strictly stronger and implies the following:

Corollary (Informal Statement) One-way functions are necessary
but probably not sufficient to construct non-trivial Single-Database PIR.

Completeness of Any non-trivial Single-Database PIR. The following
corollary, demonstrating the importance of the PIR primitive, follows from the
result of the completeness of OT [24]:

Corollary (Informal Statement) Any non-trivial Single-Database
PIR is complete for all two-party and multi-party secure computation.

That is, an implementation of the PIR primitives allows a secure computation
of any function.

Symmetric-PIR (or communication-efficient
(

n
1

)

-OT ). In the standard
formulation of PIR, there is no concern about how many bits of the database the
user learns. If one makes an additional requirement that the user must learn only
one bit (or secret) of the database, then this can be viewed as communication-
efficient

(

n
1

)

-OT (called Symmetrically Private Information Retrieval (SPIR)).
SPIR schemes were first introduced in [16] in the setting of multiple databases.
In [27] SPIR were shown to exist in the setting of a single database. The single-
database SPIR schemes of [27, 16, 37] were based on specific algebraic assump-
tions. Naor and Pinkas [31] have shown a general reduction transforming any
single database PIR into single-database SPIR using one call to the underlying
PIR protocol, a logarithmic number of calls to one-out-of-two (string) Oblivious
Transfer, and the existence of pseudo-random generators. Combining our main
result with that of [31] we get:

Theorem (Informal Statement) If there exists any non-trivial Single-
Database PIR scheme with communication c(n) and security parame-
ter k, then there exists

(

n
1

)

-OT (i.e., SPIR) with communication c(n) ·
poly(k).
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We stress that the efficient communication complexity of the SPIR scheme we
construct is the main point of the last theorem. Indeed, in the context of com-
putational assumptions, SPIR is equivalent to the

(

n
1

)

-OT variant of Oblivious
Transfer. However, this theorem provides a stronger result, since the communi-
cation complexity obtained (which is the main parameter in the SPIR context)
is efficient, costing only a factor depending on the security parameter (not on n)
over the underlying PIR. In particular, when given PIR scheme with a sublinear
communication, the resulting SPIR scheme also has sublinear communication.

Proof Outline. The variant of OT that we use here is the
(

2
1

)

-OT . We
prove our results using the following three steps: (1) communication-efficient
PIR implies

(

2
1

)

-OT for honest parties; (2) communication-efficient PIR implies
(

2
1

)

-OT (for possibly dishonest parties); (3) communication-efficient PIR implies
communication-efficient SPIR.

2 Preliminaries and Definitions

In this section we give some general conventions that we will use in the paper
and the formal definitions for PIR, SPIR, and OT.

General Conventions Let IN be the set of natural numbers and define
[k] = {1, . . . , k}. If S is a set, the notation x← S denotes the random process of
selecting element x from set S with uniform probability distribution over S and
independently from all other random choices. If A is an algorithm, the notation
y ← A(x) denotes the random process of obtaining y when running algorithm A
on input x, where the probability space is given by uniformly and independently
choosing the random coins (if any) of algorithm A. By Prob[R1; . . . ;Rn : E ]
we denote the probability of event E, after the execution of random processes
R1, . . . , Rn. We denote a distribution D as {R1; . . . ;Rm : v}, where v denotes
the values that D can assume, and R1, . . . , Rm is a sequence of random pro-
cesses generating value v. By algorithm we refer to a (probabilistic) Turing ma-
chine. An interactive Turing machine is a probabilistic Turing machine with
a communication tape. A pair (A,B) of interactive Turing machines running
in probabilistic polynomial time is an interactive protocol. A transcript of an
execution of an interactive protocol is the sequence of messages that appear
on the communication tapes of the two machines forming the protocol dur-
ing that execution. The notation tA,B(x, rA, y, rB) denotes the transcript of an
execution of an interactive protocol (A,B) with inputs x for A and y for B
and with random strings rA for A and rB for B. If t = tA,B(x, rA, y, rB) is
such a transcript, the output of A (resp. B) on this execution is denoted by
A(x, rA, t) (resp. B(y, rB , t)). The notation (rB , t) ← tA,B(x, rA, y, ·) denotes
the random process of selecting a random string rB uniformly at random (and
independently of all other choices), and setting t = tA,B(x, rA, y, rB). Similarly
we denote (rA, t)← tA,B(x, ·, y, rB) for the case where A’s random string is cho-
sen uniformly at random, and (rA, rB , t)← tA,B(x, ·, y, ·) for the case where the
random strings for both A and B are chosen uniformly at random.
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Private Information Retrieval. Informally, a private information retrieval
(PIR) scheme is an interactive protocol between two parties, a database D and
a user U . The database holds a data string x ∈ {0, 1}n, and the user holds
an index i ∈ [n]. In its one-round version, the protocol consists of (a) a query
sent from the user to the database (generated by an efficient randomized query
algorithm, taking as an input the index i and a random string rU ); (b) an answer
sent by the database (generated by an efficient deterministic (without loss of
generality) answer algorithm, taking as an input the query sent by the user and
the database x); and (c) an efficient reconstruction function applied by the user
(taking as an input the index i, the random string rU , and the answer sent by
the database). At the end of the execution of the protocol, the following two
properties must hold: (1) after applying the reconstruction function, the user
obtains the i-th data bit xi; and (2) the distributions on the query sent to the
database are computationally indistinguishable for any two indices i, i′. (That
is, a computationally bounded database does not receive any information about
the index of the user). We now give a formal definition of a PIR scheme.

Definition 1. (Private Information Retrieval Scheme.) Let (D,U) be an in-
teractive protocol, and let R be a polynomial time algorithm2. We say that
(D,U ,R) is a private information retrieval (PIR) scheme if:

1. (Correctness.) For each n ∈ IN, each i ∈ {1, . . . , n}, each x ∈ {0, 1}n, where
x = x1 ◦ · · · ◦xn, and xl ∈ {0, 1} for l = 1, . . . , n, and for all constants c, and
all sufficiently large k,

Prob[ (rD, rU , t)← tD,U ( (1
k
, x), ·, (1k

, n, i), ·) : R(1k
, n, i, rU , t) = xi ] ≥ 1− k

−c
.

2. (User Privacy.) For each n ∈ IN, each i, j ∈ {1, . . . , n}, each x ∈ {0, 1}n,
where x = x1 ◦ · · · ◦ xn, and xl ∈ {0, 1} for l = 1, . . . , n, for each polynomial
time D′, for all constants c, and all sufficiently large k, it holds that |pi−pj | ≤
k−c, where

pi = Prob[ (rD′ , rU , t)← tD′,U ( (1
k, x), ·, (1k, n, i), ·) : D′(1k, x, rD′ , t) = 1 ]

pj = Prob[ (rD′ , rU , t)← tD′,U ( (1
k, x), ·, (1k, n, j), ·) : D′(1k, x, rD′ , t) = 1 ].

We say that (D,U ,R) is an honest-database PIR scheme if it is a PIR scheme
in which the user-privacy requirement is relaxed to hold only for D′ that follow
the protocol execution as D.
For sake of generality, the above definition does not pose any restriction

on the number of rounds of protocol (D,U); however, we remark that the most
studied case in the literature is that of one-round protocols (as discussed above).

2 For clarity, we chose to include the reconstruction function R as an explicit part
of the PIR definition. We note however that replacing R by U in the correctness
requirement yields an equivalent definition (where the reconstruction function is an
implicit part of U , who executes it to produce an output).
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Symmetrically Private Information Retrieval. Informally, a symmet-
rically private information retrieval (SPIR) scheme is a PIR scheme satisfying
an additional privacy property: data privacy. Namely, for each execution, there
exists an index i, such that the distributions on the user’s view are computa-
tionally indistinguishable for any two databases x, y such that xi = yi. (That is,
a computationally bounded user does not receive information about more than
a single bit of the data). We now give a formal definition of a SPIR scheme.

Definition 2. (Symmetrically Private Information Retrieval Scheme)
Let (D,U ,R) be a PIR scheme. We say that (D,U ,R) is a symmetrically private
information retrieval (SPIR) scheme if in addition it holds that

3. (Data Privacy.) For each n ∈ IN, for each polynomial time U ′, each i′ ∈
{1, . . . , n}, and each random string rU ′ , there exists an i ∈ {1, . . . , n}, such
that for each x, y ∈ {0, 1}n where x = x1 ◦ · · · ◦ xn and y = y1 ◦ · · · ◦ yn,
xl, yl ∈ {0, 1} for l = 1, . . . , n, and such that xi = yi, for all constants c and
all sufficiently large k, it holds that |px − py| ≤ k−c, where

px = Prob[ (rD, t)← tD,U ′((1k, x), ·, (1k, n, i′), rU ′) : U ′(1k, n, i′, rU ′ , t) = 1 ]

py = Prob[ (rD, t)← tD,U ′((1k, y), ·, (1k, n, i′), rU ′) : U ′(1k, n, i′, rU ′ , t) = 1 ].

Oblivious Transfer. Informally, a
(

2
1

)

-Oblivious Transfer (
(

2
1

)

-OT) is an in-
teractive protocol between Alice, holding two bits b0, b1, and Bob, holding a
selection bit c. At the end of the protocol, Bob should obtain the bit bc, but no
information about bc̄, whereas Alice should obtain no information about c. (By
“obtaining no information” we mean that the two possible views are indistin-
guishable.) The extension to

(

n
1

)

-OT is immediate. A formal definition follows.

Definition 3. (
(

2
1

)

-Oblivious Transfer)

Let (Alice,Bob) be an interactive protocol. We say that (Alice,Bob) is a
(

2
1

)

-

Oblivious Transfer (
(

2
1

)

-OT ) protocol with security parameter k if it holds that:

1. (Correctness). For all b0, b1, c ∈ {0, 1}, all constants d, and all sufficiently
large k,

Prob[ (rA, rB , t)← tAlice,Bob((1
k
, b0, b1), ·, (1

k
, c), ·) : Bob(1k

, c, rB , t) = bc ]

≥ 1− k
−d

.

2. (Privacy against Alice). For all probabilistic polynomial time Alice′, all
b0, b1 ∈ {0, 1}, all constants d, and all sufficiently large k,

Prob [ c← {0, 1}; (rA′ , rB , t)← tAlice′,Bob((1
k, b0, b1), ·, (1

k, c), ·) :

Alice′(1k, b0, b1, rA′ , t) = c ] ≤ 1/2 + k−d.

3. (Privacy against Bob). For all probabilistic polynomial time Bob′, all c′ ∈
{0, 1}, and all random strings rB′ , there exists c ∈ {0, 1} such that for all
constants d, and all sufficiently large k,

Prob [ (b0, b1)← {0, 1}
2; (rA, t)← tAlice,Bob′((1k, b0, b1), ·, (1

k, c′), rB′) :

Bob′(1k, c′, rB′) = bc̄ ] ≤ 1/2 + k−d.
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We say that (Alice,Bob) is an honest-Bob-
(

2
1

)

-OT protocol if it is a
(

2
1

)

-OT
protocol in which privacy against Bob is relaxed to hold only when Bob is honest
(but curious). That is, condition (3) in Definition 3 is relaxed to

3’. (Privacy against honest-but-curious-Bob). For all probabilistic polynomial
time CuriousB, for all constants d, and all sufficiently large k,

Prob [ (b0, b1)← {0, 1}
2; (rA, rB , t)← tAlice,Bob((1

k, b0, b1), ·, (1
k, c), ·) :

CuriousB(1k, c, rB , t) = bc̄ ] ≤ 1/2 + k−d.

We say that (Alice,Bob) is an honest-parties-
(

2
1

)

-OT protocol if it is a
(

2
1

)

-OT
protocol where privacy requirements are relaxed to hold only when both Alice
and Bob are honest-but-curious; that is, (Alice,Bob) should satisfy correctness,
privacy against honest-but-curious Bob (as defined above), and privacy against
honest-but-curious Alice (which is similarly defined).
We remark that the definitions of

(

2
1

)

-OT and its honest-but-curious versions are

extended in the obvious way to the case of
(

n
1

)

-OT, for any n ≥ 3.

Communication Complexity. Let (D,U ,R) be a PIR scheme. We define
the communication complexity of (D,U ,R) as the maximal length c(n) of a
transcript returned by a possible execution of (D,U ,R) where n is the size of
D’s input (i.e. the length of the database). We define the database communication
complexity as the maximal length cD(n) of the communication sent by D in any
execution of (D,U ,R), and similarly the user communication complexity cU (n).
That is, c(n) = cD(n)+cU (n). The communication complexity of a SPIR scheme
and of an

(

n
1

)

-OT scheme are similarly defined.

SPIR vs.
(

n
1

)

-OT. It can be easily verified that
(

n
1

)

-OT is equivalent to SPIR
with a database of length n. The reason we need two concepts (and the reason
we formulated the definitions in two different, though equivalent, ways), is the
different motivations for using these primitives (and the way they were histori-
cally defined). In particular, we note that when constructing a SPIR protocol,
the communication complexity is a crucial parameter.

3 PIR Implies honest-Bob-
(

2

1

)

-OT

In this section we construct an honest-Bob-
(

2
1

)

-OT protocol from any PIR scheme
with database communication complexity cD(k) < k (and arbitrary user com-
munication complexity cU (k)), for database of length k.3

3 In this section and the next we denote the database length by k, since the way it will
be used will be for a database whose length depends (polynomially) on the security
parameter. This is to avoid confusion with the length of the actual database n in
the last section, where we construct SPIR using this

(

2

1

)

-OT .
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The protocol description. Let P = (D,U ,R) be a PIR scheme with
database communication cD(k) < k. Our

(

2
1

)

-OT protocol consists of simultane-
ously invoking polynomially many4 independent executions of P with a random
data string for D (ran by Alice) and random indices for U (ran by Bob). In
addition, Bob sends to Alice two sequences of indices (one consists of the in-
dices retrieved in the PIR invocations, and one a sequence of random indices),
and in response Alice sends to Bob her two secret bits appropriately masked,
so that Bob can reconstruct only one of them. A formal description of protocol
(Alice,Bob) is in Figure 1. We note that some related techniques to those in our
construction have appeared in [5]; however, we remark that the protocol of [5]
cannot be used in our case, mainly because of the differences in the models. We
next prove that (Alice,Bob) is a honest-Bob-

(

2
1

)

-OT protocol.

Correctness. In order to prove the correctness of (Alice,Bob), we need to
show that Bob outputs bc with probability at least 1− k−ω(1). First, notice that
if Bob is able to correctly reconstruct all bits xj(ij) for j = 1, . . . ,m, after the
m executions of the PIR protocol in step 1, then he is able to compute the
right value for bc in step 5. Next, from the correctness of P = (D,U ,R), Bob,
who is playing as U , is able to reconstruct all bits xj(ij) with probability at
least (1 − k−ω(1))m since the m executions of (D,U) are all independent. This
probability is then at least 1− k−ω(1) since m is polynomial in k.

Privacy against Alice. In order to prove that (Alice,Bob) satisfies the prop-
erty of privacy against Alice, we need to show that for any probabilistic polyno-
mial time algorithm Alice′, the probability that Alice′, at the end of the protocol,
is able to compute the bit c input to Bob is at most 1/2+ k−ω(1) (where proba-
bility is taken over the uniform distribution of c and the random strings of Alice′

and Bob). Informally, this follows from the user’s privacy in the PIR subprotocol
P, which guarantees that in each invocation Alice gets no information about the
index used by Bob, and thus cannot tell between the sequence of real indices
used, and the sequence of random indices (since both these sequences are dis-
tributed uniformly). A more formal argument follows. Assume for the sake of
contradiction that the property is not true; namely, there exists a probabilistic
polynomial time algorithm Alice′, which, after running protocol (Alice′,Bob),
is able to compute c with probability at least 1/2 + k−d, for some constant d
and infinitely many k. In step 3, Bob sends two m-tuples (I0, I1) of indices to
Alice′, such that Ic is the tuple of indices used by Bob in the PIR invocations
of step 1, and Ic̄ is a tuple containing random indices. Therefore, Alice

′ is able
to guess with probability at least 1/2 + k−d which one of I0, I1 is the tuple of
retrieved indices. This implies, by a hybrid argument, that for some position
j ∈ {1, . . . ,m}, Alice′ can guess with probability at least 1/2 + k−d/m whether
in the j-th PIR invocation the index used was ij0 or i

j
1. Since all PIR invocations

4 The number of invocations, m, is a parameter whose value can be set based on the
communication complexity of P and the target (negligible) probability of error in
OT, but will always be polynomial in k as will become clear below.
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Honest-Bob-
(

2

1

)

-OT

Alice’s inputs: 1k (where k is a security parameter) and b0, b1 ∈ {0, 1}.
Bob’s inputs: 1k and c ∈ {0, 1}.
Additional (common) inputs: a parameter m polynomial in k, and a PIR
protocol (D,U ,R).

Instructions for Alice and Bob:

1. For every j ∈ {1, . . . , m} do:
– Alice uniformly chooses a data string xj ∈ {0, 1}k

(where xj can be written as xj(1) ◦ · · · ◦ xj(k), for xj(i) ∈ {0, 1}).
– Bob uniformly chooses an index ij ∈ [k]
– Alice and Bob invoke the PIR protocol (D,U ,R) where Alice plays

the role of D on input (1k, xj) and Bob plays the role of U on input
(1k, k, ij). (That is, Alice and Bob execute (D,U) on the above inputs,
and then Bob applies the reconstruction function R to obtain the bit
xj(ij)).

2. Bob sets (i1c , . . . , i
m
c )

def

= (i1, . . . , im) (? the indices retrieved ?)
and uniformly chooses (i1c̄ , . . . , i

m
c̄ ) from [k]m. (? random indices ?)

3. Bob sends to Alice (i10, . . . , i
m
0 ) and (i11, . . . , i

m
1 ).

4. Alice sets z0
def

= b0⊕x1(i10)⊕. . .⊕xm(im0 ), and z1
def

= b1⊕x1(i11)⊕. . .⊕xm(im1 )
and sends z0, z1 to Bob;

5. Bob computes bc = zc ⊕ x1(i1)⊕ . . .⊕ xm(im) and outputs: bc.

Fig. 1. A protocol (Alice,Bob) for honest-Bob-
(

2

1

)

-OT , using a PIR protocol P =
(D,U ,R) with cD(k) < k database communication complexity.
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are independent (implying that the indices in different positions within I0 and
I1 are independent), it is straightforward to use Alice

′ to construct a D′ which
distinguishes in a single PIR execution between the index used by the user and
a random index, with probability at least 1/2 + k−d/m. Since m is polynomial,
this is a non-negligible advantage, and thus contradicts the user privacy of P.

Privacy against honest-but-curious Bob. In order to prove that the pair
(Alice,Bob) satisfies the property of privacy against a honest-but-curious Bob,
we need to show that the probability that Bob, after behaving honestly in the
protocol, is able to compute the bit bc̄ is at most 1/2+k−ω(1) (where probability
is taken over the uniform distribution of b0, b1, and the random strings of Alice
and Bob). In order to prove this property for an appropriate polynomial number
m of invocations of (D,U) in step 1, we start by considering a single invocation.
In the following lemma we consider the probability p that a malicious user U ′,
after invoking (D,U ′) where D uses a uniformly chosen database, fails in recon-
structing a bit in a random location j in the database. Note that j is not known
to U ′ when running (D,U ′).5 We also note that no further requirements about
U ′ or its computational power are necessary. In the following we show that if
the database communication complexity is less than the length of the data, this
failure probability is non-negligible. This is shown by first bounding the binary
entropy of the failure probability.

Lemma 1. Let P = (D,U ,R) be a PIR scheme with database communication
complexity cD(k). For every interactive Turing machine U

′, every reconstruction
algorithm R′, every rU ′ , and every k, let

p
def

= Prob [ x = x1 ◦ · · · ◦ xk ← {0, 1}
k; (rD, t)← tD,U ′((1k, x), ·, 1k, rU ′);

j ← [k] : R′(1k, rU ′ , t, j) 6= xj ]

Then it holds that H(p) ≥ k−cD(k)
k , where H(p) is the binary entropy function

H(p)
def

= p log(1/p) + (1− p) log(1/(1− p)).

Proof.We need to prove that, for every U ′ and R′, after running (D,U ′) with a
uniform data string for D, the probability that R′ fails in reconstructing a data
bit in a uniformly chosen location j, has binary entropy which is bounded below

by k−cD(k)
k . This is proved using standard information theory arguments (e.g.,

similar arguments have been used in [3]). For background and terminology used
in the proof below, see for example [9].
Let X be the random variable ranging over the data strings (where Xj corre-

sponds to the j-th bit), and A be the random variable ranging over the database
answers. Thus, the length of A is at most cD(k), implying that H(A) ≤ cD(k)

(where H is the entropy function for random variables). Let X̂ ∈ {0, 1}k denote
the user’s reconstruction of the data string X, namely (following the notation in

5 Indeed, if U ′ had known which location j he would have to reconstruct, he could
run the honest user algorithm U with input j, and could reconstruct the correct bit
with high probability using the reconstruction function R.
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the lemma), X̂j = R
′(1k, rU ′ , t, j) for j ∈ [k]. Let pj

def

= Prob [ X̂j 6= Xj ] be the
probability of failure in reconstructing the j-th bit. The probability of failure in
reconstructing a random bit-location is therefore p = (1/k) ·

∑k
j=1 pj . By Fano’s

inequality (see [9]), we have that H(pj) ≥ H(Xj |A), for all j = 1, . . . , k, where
H(pj) refers to the binary entropy function, and H(Xj |A) is the entropy of Xj

given A. By the chain rule for entropy,

H(X|A) =
k

∑

j=1

H(Xj |A,Xj−1, . . . X1) ≤
k

∑

j=1

H(Xj |A)

On the other hand,

H(X|A) = H(X)−H(A) +H(A|X) = k −H(A) ≥ k − cD(k),

where the last equality follows since A is determined by X. Putting all the above
together and using the concavity of the entropy function, we obtain that

H(p) = H(
1

k

k
∑

j=1

pj) ≥
1

k

k
∑

j=1

H(pj) ≥
1

k

k
∑

j=1

H(Xj |A) ≥
H(X|A)

k
≥

k − cD(k)

k

ut

Remark 1. Note that Lemma 1 holds even when cD(k) is defined as the expected
database communication complexity (rather than the worst-case one). This is
because the proof above holds for any cD(k) ≥ H(A), and indeed the expected
length of A is bounded below by the entropy of A (according to the entropy
bound on data compression [9]).

The relation between the failure probability p and its binary entropy is given by
the following fact (the proof follows from the expression for the entropy function
and is omitted).

Fact 1 For every ε > 0 there exists a constant c > 0 such that for every 0 ≤
p < c, p log(1/p) ≤ H(p) ≤ (1 + ε)p log(1/p).

The above fact allows us to translate the lower bound onH(p) into a lower bound
on p. For example, a loose manipulation of the fact yields that, for any δ > 0 and
small enough p, p > H(p)1+δ. More generally, if H(p) is non-negligible then p is
also non-negligible. For sake of concreteness, we state a corollary bounding the
failure probability, using δ = 1. This will be sufficient for our needs, although as
explained tighter corollaries can be derived.

Corollary 1. Let P = (D,U ,R) be a PIR scheme with database communication
complexity cD(k). The there exists a constant c > 0 such that for every interactive
Turing machine U ′, every reconstruction algorithm R′, every rU ′ , and every k,
letting p be as in Lemma 1, we have that either p > c, or p ≥ (1− cD(k)/k)

2.
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Thus, if the communication complexity cD(k) < k, the probability that the
user fails to reconstruct a bit in a random location after a single execution is
non-negligible. For example, if cD(k) = k − 1 this failure probability is at least
1/poly(k), and if cD(k) ≤ k/2 the failure probability is constant.
Finally, recall that in our protocol Alice and Bob run m independent invo-

cations of (D,U), and (since Bob is honest-but-curious), Ic̄ = (i
1
c̄ , . . . , i

m
c̄ ) is a

uniformly chosen m-tuple, independent of the random choices made in the PIR
invocations. Moreover, Bob is able to reconstruct bc̄ if and only if he can recon-
struct the exclusive-or of all values x1(i1c̄) ⊕ · · · ⊕ xm(imc̄ ), since he receives zc̄
from Alice in step 4. This, together with Corollary 1, yields that for an appropri-
ately chosen polynomial number m, the failure probability is exponentially close
to 1, namely Bob’s probability of correctly reconstructing bc̄ is negligible. We
conclude that our protocol maintains privacy against honest-but-curious Bob.

We have proved that the protocol of Figure 1 maintains correctness, privacy
against Alice, and privacy against honest-but-curious Bob. We have therefore
proved the following theorem.

Theorem 1. If there exists a single database PIR scheme with database com-
munication complexity cD(k) < k, where k is the length of the database, then
there exists an honest-Bob-

(

2
1

)

-OT protocol with security parameter k.

Similarly, it is easy to see that using a PIR scheme for which the data privacy
requirement holds with respect to honest databases (rather than maliciously
ones) in the protocol of Figure 1 yields an

(

2
1

)

-OT protocol for which both
privacy requirement hold with respect to honest Alice and Bob.

Theorem 2. If there exists a honest-database PIR scheme with database com-
munication complexity cD(k) < k, where k is the length of the database, then
there exists an honest-parties-

(

2
1

)

-OT protocol with security parameter k.

The following remarks about the full strength of Theorem 1 follow from the
proof above.
Round and Communication Complexity. Our protocol for honest-Bob-

(

2
1

)

-
OT requires the same number of rounds as the underlying PIR protocol P, and
in particular if P has one round, so is the new protocol. This is so, since all
the messages that need to be sent by Bob (in steps 1,3 of our protocol) can
be computed in parallel and sent to Alice in a single message, and similarly all
messages that need to be sent back by Alice (in steps 1,4) can be sent to Bob in
a single message. We also note that our theorem holds even when we consider
expected communication complexity (rather than maximal).
Computational Power of the Parties. Our transformation from PIR to
honest-Bob-

(

2
1

)

-OT preserves the computational power of the parties; namely, if
D (resp., U) runs in polynomial time, then so does Alice (resp., Bob). In terms
of privacy, our result is stronger than stated in Theorem 1; namely, the privacy
against the honest-but-curious Bob is information-theoretic (to see this, observe
that in the proof of this property we never make any assumption on the computa-
tional power of Bob, but rather rely on Lemma 1 which is information-theoretic).
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On the other hand, the privacy against Alice requires the same assumptions
as on the computational power of D in the PIR protocol (D,U); however, no-
tice that Alice must be computationally bounded, since there exists no single
database PIR protocol with communication complexity smaller than the size of
the database and private against a computationally unbounded database [8].
Our Reduction. We note that our construction is a black-box reduction in the
following sense: the

(

2
1

)

-OT uses the underlying PIR protocol as a subroutine
with the only guarantee that the total number of bits that user gets regarding the
database is strictly less then the total size of the database (i.e., without relying on
any specific features of the implementation, and without making any additional
assumptions about the implementation.) Thus any idealized implementation of
this primitive (as a black-box) will also work for our purposes. As a consequence,
our reduction is also “code-to-code”. That is, any implementation of non-trivial
Single-Database PIR protocol will also give an implementation of OT. In this
aspect, our reduction is similar to [4].

4 PIR Implies
(

2

1

)

-OT (even for dishonest parties)

In this section, we transform the protocol given in Figure 1 into a protocol that
is resilient against arbitrary (possibly dishonest) parties. That is, we prove the
following analogue of Theorem 1.

Theorem 3. If there exists a single database PIR scheme with database com-
munication complexity cD(k) < k, where k is the length of the database, then
there exists an

(

2
1

)

-OT protocol with security parameter k. Moreover, if the orig-
inal PIR scheme requires a constant number of rounds then so does the resulting
(

2
1

)

-OT protocol.

Proof. Let P be a PIR scheme with database communication cD(k) < k. Theo-
rem 1 guarantees an implementation of

(

2
1

)

-OT for honest-but-curious Bob. Such
an implementation may be transformed into one for dishonest parties, using (by
now standard) techniques originating in [18, 19], based on commitment schemes
and zero-knowledge proofs for NP-complete languages. The resulting reduction,
however, would return a protocol for

(

2
1

)

-OT having a number of rounds polyno-
mial in k even if the original PIR scheme has a constant number of rounds. Below
we sketch a more direct reduction, combining ideas in [19] with techniques for
witness-indistinguishability protocols from [14], which yields a constant round
(

2
1

)

-OT whenever P is a constant round PIR.

Let us denote by (Alice,Bob) the
(

2
1

)

-OT scheme obtained applying Theo-
rem 1 to P. In order to achieve privacy against a possibly dishonest Bob, it is
enough to design the scheme so that the following two properties are satisfied:
(1) the two m-tuples of indices (i10, . . . , i

m
0 ) and (i

1
1, . . . , i

m
1 ) are uniformly and

independently distributed over [n]m; (2) Bob’s messages during the execution
of the PIR subprotocols are computed according to the specified program, and
using randomness that is independently distributed from the above two m-tuple
of indices. In order to achieve the first property, the two m-tuples are computed
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using a flipping coin subprotocol at the beginning of protocol (Alice,Bob). In
order to achieve the second property, at the beginning of the protocol Bob com-
mits to the randomness to be later used while running the PIR subprotocol.
Specifically, the protocol (Alice,Bob) is modified as follows.

At the beginning of protocol (Alice,Bob):

1. Bob commits to a sufficiently random string R and to randomly chosen
indices (l10, . . . , l

m
0 ) and (l

1
1, . . . , l

m
1 ) by sending three commitment keys comR,

com0, com1;
2. Alice sends random indices (h10, . . . , h

m
0 ) and (h

1
1, . . . , h

m
1 );

3. Bob sets ijd = (h
j
d + ljdmodn) + 1, for j = 1, . . . ,m and d = 0, 1;

When required to use indices (i1, . . . , im) in step 1 of (Alice,Bob), for each
message he sends:

4. Bob proves that the message has been correctly computed according to the
PIR subprotocol, using the string R committed in step 1 above as random
tape, and using as a tuple of indices one of the two m-tuples committed in
step 1 above. This can be written as an NP statement and can be efficiently
reduced to a membership statement T for an NP complete language. Bob
proves T to Alice by using a witness-indistinguishable proof system.

When required to send indices (i1d, . . . , i
m
d ), for d = 0, 1, in step 3 of (Alice,Bob):

5. Bob proves that the two tuples he is sending have been correctly computed
in the following sense: one is the same used in the PIR subprotocols and one
is the one out of the two committed in step 1 above not used in the PIR
subprotocols. This can be written as an NP statement and can be efficiently
reduced to a membership statement T for an NP complete language. Bob
proves T to Alice by using a witness-indistinguishable proof system.

We note that the parallel execution of an atomic zero-knowledge proof sys-
tem for an NP-complete language as the one in [18] is known to be witness-
indistinguishable from results in [14] and can be implemented using only 3 rounds
of communication, and therefore can be used in steps 4 and 5 above.

Now, let us briefly show that the modified protocol (Alice,Bob) is a
(

2
1

)

-OT
protocol. First of all, observe that the described modification does not affect the
property of correctness, which therefore continues to hold. Then observe that the
fact that the privacy against Alice continues to hold follows from the witness-
indistinguishability of the proof system used, and the privacy against a possibly
dishonest Bob follows from the soundness of the proof system used. Moreover,
the overall number of rounds of the modified protocol (Alice,Bob) is constant
and no additional complexity assumption is required, since commitment schemes
and 3-round witness-indistinguishable proof systems for NP complete languages
can be implemented using any one-way function [20, 30] and one-way functions,
in turn, can be obtained by any low-communication PIR protocol [3]. ut

We remark that in the case c(k) < k/2 the above transformation can be made
more efficient (by a polynomial factor) using a direct derivation of commitment
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schemes from low communication PIR, provided in [3]. Finally, using Theorem 2
and the same techniques as above, Theorem 3 can be strengthened to transform
even an honest-database PIR into a

(

2
1

)

-OT protocol; that is:

Theorem 4. If there exists a single database honest-database PIR scheme with
database communication complexity cD(k) < k, where k is the length of the
database, then there exists an

(

2
1

)

-OT protocol with security parameter k.

5 PIR Implies SPIR

We are now ready to complete the proof of the following theorem.

Theorem 5. If there exists a single database PIR scheme with communication
complexity c(n) < n, where n is the length of the database, then there exists
a single database SPIR scheme with security parameter k and communication
complexity c(n) · q(k) for some polynomial q.

Proof. First, by the result of Naor and Pinkas [31], we know that given a fam-
ily of pseudo-random functions, a

(

2
1

)

-OT primitive, and a single database PIR
with communication complexity c(n), there exists a single database SPIR pro-
tocol which uses log n invocations of

(

2
1

)

-OT , and additional communication
complexity c(n·poly(k)) where n is the length of the data string and k is the secu-
rity parameter. Next, since PIR implies one-way functions (first proved in [3] and
also directly follows from the results in the previous section), PIR also implies
pseudo-random functions [17, 20]. Finally, by our result in the previous section,
PIR implies

(

2
1

)

-OT (where the communication complexity is some polynomial
poly′ in the security parameter). Thus, we get that PIR implies SPIR with com-
munication complexity c′(n), satisfying c′(n) = c(n · poly(k)) + poly′(k) log n =
poly′′(k) · c(n), where poly, poly′, poly′′ are polynomials, k is a security parame-
ter, and n is the length of the database. The second equality uses the fact that
c(n) > log n, which follows from a result proven in [3], namely that in PIR where
the database sends less than n bits, the user must send at least log n bits of com-
munication. ut
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