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Abstract. We show that general one-way trapdoor permutations are
sufficient to privately retrieve an entry from a database of size n with
total communication complexity strictly less than n. More specifically,
we present a protocol in which the user sends O(K2) bits and the server
sends n− cn

K
bits (for any constant c), where K is the security parameter

of the trapdoor permutations. Thus, for sufficiently large databases (e.g.,
when K = nε for some small ε) our construction breaks the information-
theoretic lower-bound (of at least n bits). This demonstrates the fea-
sibility of basing single-server private information retrieval on general
complexity assumptions.

An important implication of our result is that we can implement a 1-out-
of-n Oblivious Transfer protocol with communication complexity strictly
less than n based on any one-way trapdoor permutation.

1 Introduction

Private information retrieval (PIR, for short) is a communication protocol be-
tween a user and a server. In this protocol the user wishes to retrieve an item
from a database stored in the server without revealing to the server which item
is being retrieved. For concreteness, the database is viewed as an n-bit string x
and the entry to be retrieved is the i-th bit of x. This problem was introduced
by Chor et al. [9] and various aspects of it were further studied in [1, 8, 32, 27, 11,
15, 16, 28, 39, 12, 2, 7, 24, 30]. A naive solution for hiding which particular item is
being retrieved (i.e., the index i) is to retrieve the entire database x. The com-
munication complexity of this solution is n bits. Solutions that are more efficient
than the naive one, in a setting where there are identical copies of the database
stored in several servers, were found by [9] and later in [1, 24]. In this setting, the
user can make queries to different servers and use the answers to reconstruct the
bit xi. Assuming that the servers do not communicate with each other, then pri-
vacy can be achieved with a cost which is much less than n (e.g., O(n1/3) when
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two such servers are available). Moreover, [9] have shown that if there is only a
single server, then getting information-theoretic privacy with communication of
less than n bits is impossible, hence motivating the use of replication.

Kushilevitz and Ostrovsky [27] have shown a way to get around this impos-
sibility results. Namely they show that, assuming the hardness of some number-
theoretic problem (specifically, the quadratic residuosity problem), it is possi-
ble to design a private information retrieval protocol with a single server and
communication complexity of O(nε) (for any constant ε > 0). 1 Their result
strongly relies on the algebraic properties of the quadratic residuosity problem.
Other single-server PIR protocols which are based on specific (number-theoretic
and/or algebraic) intractability assumptions were subsequently presented in [28,
39, 7]. In particular, Cachin, Micali and Stadler [7] have shown that under the
so-called φ-hiding (number-theoretic) assumption one can achieve even more
efficient poly-logarithmic (in n) communication with a single server. (This is
almost optimal since even without the privacy requirement the communication
complexity must be at least log n.) All these PIR protocols exploit specific alge-
braic structures related to the specific intractability assumption in use. In this
paper, we address the question whether PIR protocols can be based on some
“general” (preferably, the weakest possible) assumption.

Starting with the work of Yao [40], the program of identifying the weakest
possible assumptions to reach various cryptographic tasks was launched. This
program enjoyed a great success and for most cryptographic primitives we have
very good grasp of both necessary and sufficient conditions; see, e.g. [21, 38, 36].
What about private information retrieval? On the lower-bound front, in addition
to the information-theoretic lower-bound [9], recent work has established that
single-server private information retrieval with less than n communication (even
n − 1 bits) already implies the existence of one-way functions [2] and, more
generally, the existence of Oblivious Transfer (OT) protocols [12] (the connection
between PIR and OT is discussed in more details below). The most general
assumption based on which it is (currently) known how to construct OT is that
one-way trapdoor permutations exist [20]. 2 Thus, in a sense, the most general
assumption one can hope to use for constructing single-server private information
retrieval protocols is the assumption that one-way trapdoor permutations exist
(or trapdoor functions with polynomial pre-image size; see [3]).

1 In [8] it is shown, in the setting where there are several servers storing identical
database x, that intractability assumptions might be of help in constructing efficient
PIR protocols.

2 Impagliazzo and Rudich [23] have shown that OT is unlikely to be implemented
based one one-way functions only (i.e. without trapdoor) since the proof of security
(using black-box reductions) would yield a proof that P is not equal to NP. Also,
Impagliazzo and Luby [22] have shown that oblivious transfer protocols already imply
the existence of one-way functions. (In fact, OT was shown to be complete for any
two-party computation [25, 26].) We also note that there are known constructions for
OT which are based on concrete assumptions, such as the Diffie-Hellman assumption;
in this case a trapdoor may not be required.
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In this paper, we show that this is indeed feasible. That is, we show, under
the sole assumption that one-way trapdoor permutations exist (without relying
on special properties of any specific assumption), that single-server private in-
formation retrieval with strictly less than n communication is possible (or more
precisely, of communication n− cn

K +O(K
2), where K ¿ n is the security param-

eter and c is some constant3). We note however that, while the communication
complexity is below the information-theoretic lower bounds of [9], it is nowhere
close to what can be achieved based on specific assumptions. This quantitative
question remains for future study.
As we already mentioned, single-server private information retrieval has a

close connection to the notion of Oblivious Transfer (OT), introduced by Rabin
[37]. A different variant of Oblivious Transfer, called 1-out-of-2 OT, was intro-
duced in [13] and, more generally, 1-out-of-n OT was considered in [4].4 All these
notions were shown to be equivalent [5] and complete for all two party computa-
tions [25]. As mentioned, communication-efficient implementation of 1-out-of-n
OT can be viewed as a single-server PIR protocol with an additional guarantee
that only one (out of n) secrets is learned by the user. This notion (in the set-
ting of several non-communicating servers) was first considered in [16] and called
Symmetric Private Information Retrieval (or SPIR). Kushilevitz and Ostrovsky
[27] noted that in a setting of single-server PIR their protocol can be made into
1-out-of-n OT protocol (i.e., SPIR) with communication complexity O(nε) for
any ε > 0 (again, based on a specific algebraic assumption). Naor and Pinkas [30]
have subsequently shown how to turn any PIR protocol into SPIR protocol with
one invocation of PIR protocol and logarithmic number of invocations of 1-out-
of-2 (string) OT. Combining our results with the results of [30] and with known
implementations of OT based on any one-way trapdoor permutation [20], we get
1-out-of-n OT (i.e., SPIR) protocol based on any one-way trapdoor permutation
whose communication complexity is strictly less than n.

Organization and Techniques: Section 2 includes some definitions that are
used in this paper. In addition, it describes several tools from the literature that
are used by our constructions. These include some facts about the Goldreich-
Levin hard-core predicates [19], some properties of universal one-way hash func-
tions, introduced by Naor and Yung [31], and properties of interactive hashing
protocol, introduced by Ostrovsky, Venkatesan and Yung [33] 5. In Section 3 we

3 Further improvements are possible; see Section 3.2.
4 Loosely speaking, 1-out-of-n OT is a protocol for 2 players: A sender who initially
has n secrets x1, . . . , xn and a receiver who initially holds an index 1 ≤ i ≤ n. At
the end of the protocol the receiver knows xi but has no information about the
other secrets, while the sender has no information about the index i. Note that OT
is different from PIR in that there is no communication complexity requirement
(beyond being polynomially bounded) but, on the other hand, “secrecy” is required
for both players.

5 Interactive hashing has found many applications in cryptography (cf. [33, 29, 14, 34,
35, 18, 10, 6]) since, in some settings, it can replace collision-resistant hash-functions
but it can be implemented from general cryptographic assumptions. The drawback
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describe our basic PIR protocols based on one-way trapdoor permutations. This
protocol is further extended in Section 4 to deal with faulty behavior by the
server.

2 Preliminaries

2.1 Notation

We use the following notations throughout the paper. The data string is denoted
by x, its length is denoted by n. The index of the bit that the user wishes to
retrieve from this string is denoted by i. We useK to denote a security parameter.
For a finite set A, we denote by a ∈R A the experiment of choosing an

element of A according to the uniform distribution (and independently of all
other random choices made).

2.2 Definitions

In this section we define the notions of one-way trapdoor permutations and of
hard-core predicates. The reader is referred to [17] for an extended background
related to these definitions.

Definition 1. A collection of functions G = (GK) is called a collections of one-
way trapdoor permutations if the following hold:

– There exists a probabilistic polynomial-time generating algorithm, I, that on
input 1K outputs a pair (g, g−1) where g is (an index of) a function in GK
and g−1 is a string called the “trapdoor for g”.

– Each function g ∈ GK is a permutation over {0, 1}
K and is computable in

polynomial time (that is, there exists an algorithm that given g ∈ G, and
x ∈ {0, 1}∗ computes the value of g(x) in time polynomial in |x|).

– Each g is easy to invert given its trapdoor g−1. That is, there exists an
algorithm that given y ∈ {0, 1}K and the string g−1 computes the (unique)
value x such that g(x) = y (i.e. x = g−1(y)) in time polynomial in K.

– It is hard to invert the functions in G without having the trapdoor. Formally,
for every probabilistic polynomial-time algorithm B, every integer c, and
sufficiently large K

Pr
g∈IG(1K),y∈R{0,1}K

(B(g, y) = g−1(y)) <
1

Kc
,

where “g ∈ IG(1
K)” denotes choosing a function g according to the probabil-

ity distribution induced by the generating algorithm I.

of this primitive is its high round-complexity (our protocol for a malicious server
inherits this drawback; the question of how to reduce the round-complexity of this
protocol is an interesting open problem).
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Remark: There are definitions of one-way trapdoor permutations that give more
power to the adversary. For example, the adversary may adaptively ask for many
inverses of his choosing and only then try to invert the given permutation on
a randomly chosen point. Another strengthening of the adversary, which is of
interest in some cases, is requiring that it can recognize if g is “well-formed”.
The way in which we use the trapdoor permutations in our protocols, none of
these issues come up and so we stick to the above simpler definition.

Next, we will need the notion of hard-core predicates. Specifically, we will
use the Goldreich-Levin hard-core predicates [19]. For a string r ∈ {0, 1}K let
us denote r(x) = 〈r, x〉, where 〈·, ·〉 is the standard inner-product modulo 2.
The Goldreich-Levin Theorem [19] states that if g is a one-way permutation
then there is no algorithm that can compute r(x) given g(x) and r. Formally, for
every probabilistic polynomial-time algorithm B, every integer c, and sufficiently
large K

Pr
g∈IG(1K),x∈R{0,1}K ,r∈R{0,1}K

(B(g(x), r) = r(x)) <
1

2
+
1

Kc
.

Remark: the above definitions concentrate on the case of one-way permutations;
however, they can be easily generalized to deal with more general notions. In
particular, the Goldreich-Levin Theorem [19] applies to any one-way function.

2.3 Some Useful Machinery

Let G be some arbitrary family of one-way trapdoor permutations over {0, 1}K .
It is sometimes convenient to view strings in {0, 1}K as elements of the field
GF[2K ]. With this view in mind, let

H =
{

ha,b : GF[2
K ]→ GF[2K ] | h(x) = ax+ b, a, b ∈ GF[2K ], a 6= 0

}

.

Given G and H, Naor and Yung [31] define the following family of functions

F =
{

f : {0, 1}K → {0, 1}K−1 | g ∈ G, h ∈ H, f(x) = chop(h(g(x)))
}

where the chop operator takes a string and chops its last bit.
For a function f ∈ F we sometimes denote f = (g, h) to indicate the functions
g ∈ G, h ∈ H based on which f is defined. Moreover, if I is the generating
algorithm for G then we denote by IF a generating algorithm for F that generates
(g, g−1) by applying I, generates h ∈ H according to the uniform distribution
and let f = (g, h).
The following are basic properties of F .

1. Each function f ∈ F is 2→ 1. In other words, for every x ∈ {0, 1}K there is
a (unique) string, denoted x?, such that f(x?) = f(x) and x? 6= x.
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2. Every function f = (g, h) in F is efficiently computable. Moreover, given the
trapdoor g−1 it is easy to compute, for every y ∈ {0, 1}K−1 the two strings
x, x? such that f(x) = f(x?) = y. 6

3. Collisions are hard to find for F [31] (i.e., given x and f(x) it is hard to find
the string x?). Formally, for every x, for every probabilistic polynomial-time
algorithm B, every integer c, and sufficiently large K

Pr
f=(g,h)∈IF (1K)

(B(x, f(x)) = x?) <
1

Kc
.

Note that property 3 does not guarantee that specific bits of x? are hard to
find. Instead we will make use of hard-core bits.

We shall use in an essential way an interactive hashing protocol of Ostrovsky,
Venkatesan and Yung [33]. Interactive hashing found many applications in cryp-
tography (cf. [33, 14, 29, 34, 35, 18, 10, 6]). This is a protocol between two players
Alice and Bob, where both Alice and Bob are probabilistic polynomial-time ma-
chines. Alice is given as an input 1K , a function g ∈ GK and an input x ∈ {0, 1}

K ;
Bob is given 1K . The interactive hashing protocol proceeds as follows:

– Bob chooses uniformly at random K − 1 vectors H1, . . . , HK−1 in {0, 1}
K

subject to the constraint that these K − 1 vectors are linearly independent
(viewing them as elements of the linear space ZK

2 ).
– The players interact in K−1 rounds where in round i they do the following:

• Bob sends to Alice Ht

• Alice sends to Bob 〈Ht, g(x)〉 (the inner product of Ht and g(x)).

The communication in this protocol, consisting of the strings H1, . . . , HK−1 sent
by Bob and the bits 〈H1, g(x)〉, . . . , 〈HK−1, g(x)〉, define K − 1 linear equations
and since all the Ht’s are linearly independent these equations admit two so-
lutions, denoted {y, y?} (we use the same notation as was used above for the
pre-images of f ∈ F to stress the analogy between these two tools; this anal-
ogy will also be used in our protocols). We now state several facts regarding
interactive hashing that make it useful for our purposes:

– If Alice follows the protocol then one of {y, y?} is g(x) (recall that x is an
input to Alice).

– Bob sends total of O(K2) bits to Alice. Alice sends total of K − 1 bits in
response.

– It is hard for Alice to find inverses of both y, y?, even if Alice does not follow
the protocol. Formally, for every probabilistic polynomial-time algorithm A′,
for every integer c and sufficiently large K, if g is chosen according to IG(1

K)
then after A′ executes the protocol with Bob, the probability that A′ outputs
x0, x1 such that both g(x0) = y and g(x1) = y? is less than 1

Kc .

6 Note that every h ∈ H is 1→ 1 and easy to invert; therefore, given y one can try the
two options for the chopped bit, invert h and then invert g using the trapdoor. We
also note that this property was not considered in [31] since they deal with arbitrary
one-way permutations and not only with trapdoors permutations.
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Interactive hashing, as described up-to this point, works with any one-way per-
mutation. In [33] one more property was used, which is needed in the current
paper as well. Specifically, we will apply interactive hashing with one-way trap-
door permutations; this modifications gives the following crucial property:

– Given the trapdoor for g (i.e., the string g−1) and the communication (i.e.,
the strings H1, . . . , HK−1 and the bits 〈H1, g(x)〉, . . . , 〈HK−1, g(x)〉) Bob can
compute both x0 and x1 (i.e., the strings such that g(x0) = y and g(x1) =
y?).

2.4 PIR Protocols

A Private Information Retrieval (PIR) is a protocol for two players: a server
S who knows an n-bit string x (called the database), and a user U holding
an index i ∈ [n] and interested in retrieving the value xi. When considering
the privacy requirement of PIR protocols there are several possible types of
“faulty” behaviors by the server: the server might be honest-but-curious or it
might be malicious. Below we detail the definition for each of these types; we
note however that the difference is especially important when dealing with multi-
round protocols (as those described in this work).
An honest-but-curious server is a one that behaves according to the pre-

defined protocol and just tries to deduce information about i from the commu-
nication it sees. This is formulated as follows: Fix a data string x; for every
i, i′ ∈ [n] (where i 6= i′) the distribution of communications generated by the
protocol when the user is interested in bit i is indistinguishable from the distri-
bution generated when the user is interested in index i′.7 We stress here that x is
fixed and the server is not allowed to change it during the protocol’s execution.
A malicious server is a one that does not necessarily follow the protocol.

It should be immediately noticed that there are several “bad” behaviors by a
malicious server which cannot be avoided; e.g., the server may refuse to par-
ticipate in the protocol or it may change the content of the database (say, it
can act as if x = 0n). The privacy requirement in this case makes sure however
that, no matter what the server does, the identity of the index i is not revealed.
Formally, for every i, i′ ∈ [n] (where i 6= i′) no probabilistic polynomial-time
server S ′ can distinguish executions of the protocol when the user’s index is i
from executions of the protocol when the user’s index is i′. We stress that here,
the server is allowed to modify its messages in an arbitrary manner during the
protocol execution in order to be able to distinguish.

3 A PIR Protocol with respect to a Honest-but-Curious

Server

In this section we present the honest-but-curious PIR protocol which proves
that it is possible to construct a PIR protocol from any family of one-way trap-

7 For lack of space we omit the formal definition of indistinguishability which is a
standard one [40].
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door permutations, with communication complexity smaller than n. (Later we
describe some simple improvements on this protocol.)

Theorem 1. If one-way trapdoor permutations exist then there exists honest-
but-curious single-server PIR protocol whose communication complexity is at
most

n−
n

2K
+O(K).

(More precisely, the user sends O(K) bits and the server sends at most n− n
2K

bits.)

(Some slightly better bounds are mentioned in Section 3.2 below).
Let G be a collection of one-way trapdoor permutations, as guaranteed by

the theorem, and let F be a family of 2→ 1 functions constructed based on G,
as described in Section 2.3. Assume, without loss of generality, that n is divisible
by 2K and let ` = n/(2K). The protocol works as follows.

1. The user picks two functions fL = (gL, hL) and fR = (gR, hR) (including
the corresponding trapdoors g−1

L and g−1
R ) using the generating algorithm

IF (1
K). It sends the functions fL, fR to the server (without the trapdoors).

2. Both the server and the user view x as if it is composed of 2` sub-strings
z1,L, z1,R, z2,L, z2,R, . . . , z`,L, z`,R each of size K (we refer to these strings as
“blocks”). The server now applies fL to each block zj,L and applies fR to
each block zj,R. It sends all the outcomes

fL(z1,L) fR(z1,R)
fL(z2,L) fR(z2,R)
...

...
fL(z`,L) fR(z`,R)

to the user.
3. The user, having the trapdoors for both fL and fR, can compute for each
block z the two possible pre-images {z, z?}. Assume that the bit xi is in
some block zs,L, for some s. The user picks random rL, rR ∈ {0, 1}

K such
that the hard-core predicates corresponding to rL, rR satisfy

rL(zs,L) 6= rL(z
?
s,L) and rR(zs,R) = rR(z

?
s,R).

It sends rL, rR to the server. (If the index xi is in block zs,R then rL, rR
are chosen subject to the constraint rR(zs,R) 6= rR(z

?
s,R) and rL(zs,L) =

rL(z
?
s,L).)

4. For each j = 1, . . . , ` the server computes and sends the bit bj = rL(zj,L)⊕
rR(zj,R).

5. By the choice of rL, rR the bit bs allows the user to compute the value of
zs,L (or the value of zs,R depending on the way that rL, rR were chosen).

8

This gives the user the bit xi (as well as all other bits in the corresponding
block).

8 The user ignores all the other bits bj , for j 6= s.
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Correctness: The correctness follows from the description of the protocol and
the basic properties of F . The idea is that for the pair of blocks in which the user
is interested, zs,L, zs,R, the hard-core predicates are chosen in a way that they
are sensitive on the block which the user wishes to retrieve, and are constant on
the other block. This allows the user to distinguish the target z from z?.

Communication complexity: The only messages sent by the user are those for
specifying fL, fR, rL, rR; all together O(K) bits. The server, on the other hand,
sends for each pair of blocks 2(K − 1) bits in Step 2 and an additional bit in
Step 4. All together, ` · (2K − 1) = n− n

2K bits. Therefore, the communication
complexity is as claimed by the theorem.

3.1 Proof of Security

The only information that the user sends which depends on the index it is
interested in is the choice of rL, rR (Step 3). We need to show that these strings
maintain the privacy of the user’s index. For this we introduce some notation.
We say that a block zs,L (resp. zs,R) is of type “E” (equal) if rL(zs,L) = rL(z

?
s,L)

(resp., if rR(zs,R) = rR(z
?
s,R)); similarly, we say that a block zs,L (resp. zs,R) is

of type “N” (not equal) if rL(zs,L) 6= rL(z
?
s,L) (resp., if rR(zs,R) 6= rR(z

?
s,R)).

Hence, the choice of rL, rR defines a sequence of ` pairs in {E,N}
2 with the only

restriction being that the pair in which the index i resides must be either (N,E)
or (E,N) (depending on whether i is in the left block or the right block). We
also use ? to denote a “don’t-care”. So if, for example, the user wishes to retrieve
the first block it picks rL, rR subject to the constraint that the corresponding
sequence is (N,E), (?, ?), . . . , (?, ?).
Using the above notation, we will now prove that the server cannot distin-

guish any pair of indices i, i′ the user may wish to retrieve. Obviously, if i, i′ are
in the same block then the user behaves in an identical way in both cases and
there is no way for the server to distinguish the two cases. The next case is where
i, i′ are in the same pair of blocks; say, i is in zs,L and i

′ in zs,R. For simplicity
of notations assume s = 1 then in the first case rL, rR are chosen uniformly from
those that induce the sequence

(N,E), (?, ?), . . . , (?, ?)

while in the second case rL, rR are chosen from those that induce the sequence

(E,N), (?, ?), . . . , (?, ?).

We omit the details for this case since it is a degenerate case of the more general
scenario where, say, i is in zs,L and i

′ in zs′,R. Again, for simplicity of notations
assume s = 1, s′ = 2; then, we have to distinguish the following two sequences:

(N,E), (?, ?), (?, ?), . . . , (?, ?)

and
(?, ?), (E,N), (?, ?), . . . , (?, ?).
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(Note that if, for example, the server can tell that for some s the corresponding
pair is of type, say, (E,E) then it can conclude that none of the blocks zs,L, zs,R
is of interest for the user.) We now show that if the server is able to distinguish
the above two sequences it can also predict the hard-core predicate associated
with the family G.
The first step uses a hybrid argument to claim that if one can distinguish

the two distribution of rL, rR as above (given x, fL and fR) then it can also
distinguish two adjacent distributions among the following list of distributions:

Π1 : (N,E), (?, ?), (?, ?), . . . , (?, ?)

Π2 : (?,E), (?, ?), (?, ?), . . . , (?, ?)

Π3 : (?, ?), (?, ?), (?, ?), . . . , (?, ?)

Π4 : (?, ?), (E, ?), (?, ?), . . . , (?, ?)

Π5 : (?, ?), (E,N), (?, ?), . . . , (?, ?)

(If each pair of adjacent distributions is indistinguishable then so are Π1 and
Π5, contradicting the assumption that the server can distinguish.) Suppose, for
example, that one can distinguish Π1 and Π2 (other cases are similar or even
simpler; they might require flipping the roles of fL and fR). Then, it is also
possible to distinguish Π1 and

Π ′
2 : (E,E), (?, ?), (?, ?), . . . , (?, ?).

To make the distinguishing property more concrete assume, without loss of gen-
erality, that for some data string x,

PrfL,fR∈IF (1K),(rL,rR)∈Π1
(D(x, fL, fR, rL, rR) = 1) ≤

1

2
− ε

and

PrfL,fR∈IF (1K),(rL,rR)∈Π′
2
(D(x, fL, fR, rL, rR) = 1) ≥

1

2
+ ε.

We use this algorithm D to construct an algorithm B that on input g ∈ IG(1
K),

y ∈R {0, 1}
K and r ∈R {0, 1}

K predicts the hard-core predicate r(g−1(y)),
with probability 0.5+ ε. This contradicts the Goldreich-Levin Theorem [19] (See
Section 2.2). Algorithm B works as follows:

1. Choose hL at random subject to the constraint

chop(hL(y)) = chop(hL(g(z1,L))).
9

Let fL = (g, hL) and rL = r. (Note that, with respect to fL we have z
?
1,L =

g−1(y). Also crucial is the fact that since D does not have y (only B does)
the distribution of hL looks random to D).

9 Specifically, in the unlikely event that g(z1,L) = y we are done; otherwise, choose
v ∈ {0, 1}K at random and let v′ be identical to v with the last bit flipped. Then,
we solve the system of equations a · y + b = v and a · g(z1,L) + b = v′ to find a, b
(i.e., hL). In particular a = (v−v′)/(y−g(z1,L)) (note that this is well defined since
y 6= g(z1,L) and different than 0 since v 6= v′).
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2. Choose a function fR ∈ IF (1
K) (including the corresponding trapdoor!) and

compute the string z?1,R (by using the trapdoor). Pick a random rR subject
to the constraint that rR(z

?
1,R) = rR(z1,R).

3. Invoke D on input (x, fL, fR, rL, rR). If the output is “1” (in which case the
input is more likely to be from Π ′

2; i.e., rL(z1,L) and rL(z
?
1,L) are more likely

to be not-equal) then B’s output is 1 − rL(z1,L). If the output is “0” (in
which case the input is more likely to be from Π1; i.e., rL(z1,L) and rL(z

?
1,L)

are more likely to be equal) then B’s output is rL(z1,L). (Note that while B
does not know what z?1,L is, it knows z1,L and hence can apply rL to it.

It can be verified that the distribution of inputs provided to D is exactly what
is needed and hence the correctness of B follows.

3.2 Some Improvements

We tried to make the description of the protocol above as simple as possible.
There are however certain modifications that one can apply to it in order to
slightly improve the efficiency. One such improvement is instead of using two
functions fL, fR to use d such functions f1, . . . , fd (where d may depend on K
and/or n). Then, the user can choose hard-core predicates r1, . . . , rd such that the
one corresponding to the index i gets two different values (on the corresponding
z, z?) while each of the other hard-core predicates get the same value (on z, z?).
Then, when the server returns the exclusive-or of the d bits this allows the user
to reconstruct the block of interest.
A second (more significant) modification that one can make is, instead of

using F as above, where each f ∈ F is obtained by chopping a single bit from
h(g(x)), we can chop some s bits (specifically, s = O(log log n)). Now, in Step 2 of
the protocol the server needs to send only K−s bits per block. In Step 3 the user
can pick s strings r’s that will allow him to retrieve only the block of interest.
Finally, in Step 4 (if combined with the previous modification) for each d blocks

it needs to send back s bits. This gives a complexity of n − (d−1)cn log log n
dK bits

from the server to the user (for any constant c) and O(Kd log log n) bits from
the user to the server.

4 A PIR Protocol with respect to a Malicious Server

In this section we deal with the case where the server is malicious. It is instructive
to consider first the protocol of Section 3 and examine the possibilities of a
malicious server to violate the privacy of the protocol. Suppose that the server
after receiving the functions fL, fR from the user (in Step 1) can find a pair of
strings α1, α2 ∈ {0, 1}

K such that fL(α1) = fL(α2) (note that the properties of
F guarantee that for every x and a randomly chosen f ∈ F it is hard to find x?;
but it does not guarantee that after choosing f one cannot find a pair x, x? with
respect to this f ; this is exactly the weakness that we wish to use). Then, the
server can replace say z1,L by α1. Now, when getting rL, rR from the user (in
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Step 3) it can tell whether the first block is of type ”E” or ”N” (since it knows
both z1,L and z

?
1,L which are just α1 and α2). So, for example, if the block is of

type ”E” then it follows that i is not in the first block. This violates the privacy
of i.
To overcome the above difficulties, we replace the use of the family F by

the use of interactive hashing. While the two tools have several similarities,
interactive hashing is the right tool to make sure that the server cannot, for
example, force both α1 and α2 to be mapped in the same way. However, there
is another technical difficulty in generalizing the honest-but-curious case to the
malicious case. Consider the proof of security in Section 3.1. A crucial point in
that proof is that we can make z1,L (which is fixed) and g

−1(y) be mapped to
the same value. In the malicious case this cannot be done because the server
need not fix the database and may choose it in some arbitrary way (possibly
depending on the communication). Intuitively, this means that the fact that the
distinguisher can tell blocks of type ”E” (equal) from blocks of type ”N” (not
equal) does not necessarily help us in predicting the hard-core bit. This will
require us to come up with some extra new machinery (see the definition of Ĝ
below).
We prove the following theorem:

Theorem 2. If one-way trapdoor permutations exist then there exists malicious
single-server PIR protocol whose communication complexity is at most

n−
n

6K
+O(K2).

(More precisely, the user sends O(K2) bits and the server sends at most n− n
6K

bits. Also, if the server is honest then with a negligible probability the protocol
fails; i.e., the user does not get the bit xi but its privacy is still maintained.

10)

Let G be a collection of one-way trapdoor permutations, as guaranteed by
the theorem. As a first step we construct, based on G, a new family of one-way
trapdoor permutations Ĝ which is defined as follows. Each function ĝ ∈ ĜK is
defined using 4 functions g00, g01, g10, g11 ∈ GK−2. Let x be a string in {0, 1}

K

and write x = b1b2w, where b1, b2 ∈ {0, 1} and w ∈ {0, 1}
K−2. We define

ĝ(x) = b1b2gb1b2(w).

Clearly each such ĝ is a permutation over {0, 1}K . The trapdoor ĝ−1 correspond-
ing to ĝ consists of the corresponding 4 trapdoors; i.e., (g−1

00 , g
−1
01 , g

−1
10 , g

−1
11 ). The

generating algorithm for Ĝ, denoted IĜ(1
K) simply works by applying IG(1

K−2)
four times for generating g00, g01, g10, g11 (with their trapdoors).
As before assume, without loss of generality, that n is divisible by 2K and

let ` = n/(2K). The protocol works as follows.

10 As pointed out in Section 2.4, a “bad” server can always refuse to let the user retrieve
the bit; hence, this is not considered a violation of the correctness requirement.
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1. The user picks two functions ĝL and ĝR (including the corresponding trap-
doors ĝ−1

L and ĝ−1
R ) using the generating algorithm IĜ(1

K). It sends the
functions ĝL, ĝR to the server (without the trapdoors).

2. As before the server and the user view the string x as if it is composed of 2`
“blocks” z1,L, z1,R, z2,L, z2,R, . . . , z`,L, z`,R each of size K.
Now the server and the user play 2` interactive hashing protocols as follows.
First, the user chooses K−1 linearly independent vectors in {0, 1}K denoted
(HL

1 , . . . , H
L
K−1). Now, for each t from 1 to K − 1 (in rounds) do:

– The user sends to the server HL
t .

– The server sends to the user the bits 〈HL
t , ĝL(z1,L))〉, . . . , 〈H

L
t , ĝL(z`,L))〉.

The same is repeated for the “right” blocks. That is, the user chooses another
set of K−1 linearly independent vectors HR

1 , . . . , H
R
K−1 and (in rounds) get

from the server the values 〈HR
t , ĝR(z1,R))〉, . . . , 〈H

L
t , ĝR(z`,R))〉.

3. The user, having the trapdoors for both ĝL and ĝR, can compute for each
block z the two possible pre-images {z, z?}. We call a block bad if the first
two bits of z, z? are equal; otherwise it is called good. If more than 1/3 of
the blocks are bad then the protocol halts (it is important to note that
the functions in Ĝ do not change the first two bits; therefore both players,
including the server who does not have the trapdoor, can tell which block is
bad and which is not). We call a pair of blocks zj,L, zj,R good if both blocks
are good; otherwise the pair is bad.

4. Dealing with bad pairs of blocks:

The user chooses two more vectors HL
K (independent of H

L
1 , . . . , H

L
K−1) and

HR
K (independent of HR

1 , . . . , H
R
K−1). It sends these vectors to the server.

In return, for each bad pair zj,L, zj,R, the server sends 〈H
L
K , ĝL(zj,L))〉 and

〈HR
K , ĝR(zj,R))〉. In this case both zj,L, zj,R become known to the user.

5. Dealing with good pairs of blocks:

Assume that the bit xi is in some block zs,L, for some good pair zs,L, zS,R
(if i is in a pair where at least one of the blocks is bad then in fact the
user already knows the block from the previous step and can continue in an
arbitrary manner). The user picks random rL, rR ∈ {0, 1}

K such that

rL(zs,L) 6= rL(z
?
s,L) and rR(zs,R) = rR(z

?
s,R).

(If the index xi is in block zs,R then rL, rR are chosen subject to the con-
straint rR(zs,R) 6= rR(z

?
s,R) and rL(zs,L) = rL(z

?
s,L).)

(a) The user sends rL, rR to the server.
(b) For every good pair zj,L, zj,R the server computes and sends the bit

bj = rL(zj,L)⊕ rR(zj,R).
(c) By the choice of rL, rR the bit bs allows the user to compute the value

of zs,L (or the value of zs,R depending on the way that rL, rR were
chosen). This gives the user the bit xi (as well as all other bits in the
corresponding block).

Remark: Improvements similar to those described in Section 3.2 are possible in
this case as well; details are omitted for lack of space.
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Correctness: The correctness is similar to the correctness of the protocol in
Section 3; one difference, which is not crucial for the correctness argument, is the
use of the interactive hashing (i.e., HL

1 , . . . , H
L
K−1 and H

R
1 , . . . , H

R
K−1) instead

of “standard hashing” (i.e., apply the functions hL, hR ∈ H and chop the last
bit). The second difference, is the treatment of bad pairs; however, from the
point of view of correctness this is an easy case since both blocks of each such
pair become known to the user. The only significant difference is the fact that
the protocol may halt without the user retrieving xi (Step 3). However, the
properties of interactive hashing guarantee that if the server plays honestly,
then the probability of each block being bad (i.e., both pre-images start with
the same 2 bits) is 1/4; hence, By Chernoff bound, the probability in the case
of honest server that at least 1/3 of the blocks are bad is exponentially small in
the number of blocks (i.e., 2` = n/K). (Note that if the server is dishonest in a
way that makes more than 1/3 of the blocks bad then the protocol is aborted.)

Communication complexity: The only messages sent by the user are those for
specifying the vectors HL

1 , . . . , H
L
K and H

R
1 , . . . , H

R
K as well as ĝL, ĝR, rL, rR; all

together O(K2) bits. The server, on the other hand, sends for each pair of blocks
2(K − 1) bits in the interactive hashing protocol (Step 2). If the protocol halts
in Step 3 (either because the server is dishonest or just because of “bad luck”)
then there is no more communication. Otherwise, for each bad pair the server
sends two more bits (and at most 2/3 of the pairs are bad) and for each good
pair it sends only one additional bit (and at least 1/3 of the pairs are good). All
together, at most n − n

6K bits. Therefore, the communication complexity is as
claimed by the theorem.

4.1 Proof of Security (sketch)

Here we provide the high level ideas for the proof of security in the malicious
case. Suppose that the malicious server can distinguish two indices i and i′. The
first (simple-yet-important) observation is that if the index that the user wishes
the retrieve happens to be (in a certain execution) in a bad pair of blocks then
all the messages sent by the user during this execution are independent of the
index. This allows us to concentrate on the good pairs only.
Using the same notation as in the honest-but-curious case (Section 3.1), and

repeating a similar hybrid argument we conclude that (in a typical case) there is
a distinguisher that can tell pairs rL, rR which are drawn from the distribution

Π1 : (N,E), (?, ?), (?, ?), . . . , (?, ?)

and pairs which are drawn from the distribution

Π ′
2 : (E,E), (?, ?), (?, ?), . . . , (?, ?).

This again is turned into a predictor for the Goldreich-Levin hard-core predi-
cate. Specifically, let D be the distinguisher between Π1 and Π

′
2. Our prediction

algorithm B on input g ∈ IG(1
K−2), w ∈R {0, 1}

K−2 construct an input for D
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as follows: As before it chooses ĝR ∈ IĜ(1
K), including its trapdoor (the cor-

responding rR is chosen at random, based on the transcript of the interactive
hashing, subject to the constraint that rR(z

?
1,R) = rR(z1,R)). Next, B chooses

3 functions g′, g′′, g′′′ ∈ IG(1
K−2) and uses them together with g (in a random

order) to define a function ĝ ∈ Ĝ (note that ĝ is distributed as if it was chosen
directly from IĜ(1

K)). Suppose that g is gb1b2 with respect to ĝ. Next B makes
sure that in the interactive hashing protocol corresponding to block z1,L one
of the two pre-images will be b1b2g

−1(w) (the properties of interactive hashing
guarantee that this is possible; this is done by standard “rewinding” techniques,
see [33, 29]). Now, there are two cases: either the first block is bad (in which case,
as explained above, it cannot be of help for the distinguisher D) or the block
is good. If the block is good then this means that one of the two pre-images is
b1b2g

−1(w) and the other is b′1b
′
2g

−1
b′
1
b′
2

(w′), for some function gb′
1
b′
2
different than

g (by the definition of the block being good). Since for each function other than
g, the algorithm B knows the trapdoor then obtaining from D the information
whether the block is of type ”E” or type ”N” suffices for computing rL(g

−1(w))
as required.

5 Concluding Remarks

In this paper we show how based on one-way trapdoor permutations, one can
get single-server PIR protocols with communication complexity smaller than n,
hence overcoming impossibility results that show that no such protocols exist
under certain weaker assumptions [9, 2, 12]. A major open problem is to lower
the communication complexity so that it will be comparable to what can be
achieved based on specific assumptions [27, 7].

Another interesting observation is that combining our results with results of
Naor and Pinkas [30], one can obtain a single-server SPIR protocol [16, 27] (i.e.,
a 1-out-of-n OT with “small” communication complexity) based on any one-way
trapdoor permutations whose communication complexity is strictly smaller than
n. In contrast, all previous communication-efficient SPIR protocols required spe-
cific algebraic assumptions [27, 39, 7, 30]. Specifically, [30] show how to implement
SPIR based on a single invocation of PIR and an additional log n invocations
of 1-out-of-2 OT on K-bit strings (their construction uses pseudo-random func-
tions, however those can be implemented from any one-way function [21]). Since
implementing 1-out-of-2 OT based on one-way trapdoor permutations can be
done with communication complexity which is polynomial in K [20], the to-
tal communication complexity of our SPIR protocol is still smaller than n (for
sufficiently small K) and we need only the assumption of a one-way trapdoor
permutation. This result can also be easily extended to 1-out-of-n string Oblivi-
ous Transfer with total communication less than the total size of all the secrets.
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