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Abstract. We exhibit an attack against a signature scheme recently
proposed by Gennaro, Halevi and Rabin [9]. The scheme’s security is
based on two assumptions namely the strong RSA assumption and the
existence of a division-intractable hash-function. For the latter, the au-
thors conjectured a security level exponential in the hash-function’s di-
gest size whereas our attack is sub-exponential with respect to the digest
size. Moreover, since the new attack is optimal, the length of the hash
function can now be rigorously fixed. In particular, to get a security level
equivalent to 1024-bit RSA, one should use a digest size of approximately
1024 bits instead of the 512 bits suggested in [9].

1 Introduction

This paper analyses the security of a signature scheme presented by Gennaro,
Halevi and Rabin at Eurocrypt’99 [9]. The concerned scheme (hereafter GHR)
uses a standard (public) RSA modulus n and a random public base s. To sign
a message m, the signer computes the e-th root modulo n of s with e = H(m)
where H is a hash function. A signature σ is verified with σH(m) = s mod n.

The scheme is proven to be existentially unforgeable under chosen message
attacks under two assumptions : the strong RSA assumption and the existence
of division-intractable hash-functions. The originality of the construction lies in
the fact that security can be proven without using the random oracle model [3].

In this paper we focus on the second assumption, i.e. the existence of division-
intractable hash-functions. Briefly, a hash function is division-intractable if it is
computationally infeasible to exhibit a hash value that divides the product of
other hash values. Assimilating the hash function to a random oracle, it is con-
jectured [9] based on numerical experiments that the number of k-bits digests
needed to find one that divides the product of the others is approximately 2k/8.
Here we show that the number of necessary hash-values is actually subexponen-
tial in k, namely exp((

√
2 log 2/2 + ◦(1))

√
k log k).
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The paper is organised as follows. We briefly start by recalling the GHR
scheme and its related security assumptions. Then we describe our attack, eval-
uate its asymptotical complexity and, by extrapolating from running times ob-
served for small digest sizes, estimate the practical complexity of our attack. We
also show that the attack is asymptotically optimal and estimate from a simple
heuristic model the minimal complexity of finding a hash value that divides the
product of the others.

2 The Gennaro-Halevi-Rabin Signature Scheme

2.1 Construction

The GHR scheme is a hash-and-sign scheme that shares some similarities with
the standard RSA signature scheme :

Key generation : Generate a RSA modulus n = p · q, product of two primes
p and q of about the same length and a random element s ∈ Z∗

n. The public key
is (n, s) and the private key is (p, q).

Signature generation : To sign a message m, compute an odd exponent
e = H(m). The signature σ is :

σ = se
−1 mod φ(n) mod n

where φ(n) = (p− 1)(q − 1) is Euler’s function.

Signature verification : Check that :

σH(m) = s mod n

2.2 GHR’s Security Proof

The originality of the GHR signature scheme lies in the fact that its security can
be proven without using the random oracle model. In the random oracle model,
the hash function is seen as an oracle which outputs a random value for each new
query. Instead, the hash function must satisfy some well defined computational
assumptions [9]. In particular, it is assumed that the hash function family is
division-intractable.

Definition 1 (Division intractability [9]). A hashing family H is division

intractable if finding h ∈ H and distinct inputs X1, . . . Xn,Y such that h(Y )
divides the product of the h(Xi) values is computationally infeasible.

The GHR signature scheme is proven to be existentially unforgeable under
an adaptive chosen message attack, assuming the strong RSA conjecture.
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Conjecture 1 (Strong-RSA [2]) Given a randomly chosen RSA modulus n
and a random s ∈ Z∗

n, it is infeasible to find a pair (e, r) with e > 1 such that

re = s mod n.

An opponent willing to forge a signature without solving the strong-RSA
problem can try to find messages m,m1, . . . ,mr such that H(m) divides the
least common multiple ofH(m1), . . . , H(mr). In this case, we say that a division-

collision for H was exhibited. Using Euclid’s algorithm the opponent can obtain
a1, . . . , ar, k such that :

a1

H(m1)
+ . . .+

ar
H(mr)

=
1

lcm(H(m1), . . . , H(mr))
=

1

k ·H(m)

and forge the signature σ of m from the signatures σi of messages mi by :

σ =
(

r
∏

i=1

σai

i

)k
mod n

If H is division-intractable then it is infeasible for a polynomially bounded at-
tacker to find a division collision for a hash function inH. In particular, a random
oracle is shown to be division-intractable in [9].

A natural question that arises is the complexity of finding a division collision,
if one assumes that the hash function behaves as a random oracle, i.e. outputs a
random integer for each new query. This question will condition the choice of the
signature scheme’s parameters. [9] conjectures (based on numerical experiments)
a security level exponential in the length of the hash function, namely that the
number of hash calls necessary to obtain a division-collision is asymptotically
2k/8 where k is the digest size. To get equivalent security to a 1024-bit RSA, [9]
suggests to use 512-bit digests. In the next section, we exhibit a sub-exponential
forgery and study its consequences for the recommanded digest size.

3 A Sub-exponential Attack

The outline of our attack is the following : we first look among many digests
to find a smooth one, i.e. a hash value that factors into moderate-size primes
pi. Then for each of the pi we look for a hash value divisible by pi, so that the
smooth hash value divides the least common multiple of the other hash values.

3.1 Background on Smooth Numbers

Let y be a positive integer. We say that an integer z is y-smooth if each prime
dividing z is ≤ y. An integer z is y-powersmooth if all primes powers dividing
z are ≤ y. Letting ψ(x, y) denote the number of integers 1 ≤ z ≤ x such that
z is y-smooth, the following theorem gives an estimate of the density of smooth
numbers [5] :
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Theorem 1. If ε is an arbitrary positive constant, then uniformly for x ≥ 10
and y ≥ (log x)1+ε,

ψ(x, y) = xu−u+◦(u) as x→∞

where u = (log x)/(log y).

In particular, setting y = Lx[β] = exp
(

(β + ◦(1))
√
log x log log x

)

, the prob-
ability that a random integer between one and x is Lx[β]-smooth is :

ψ(x, y)

x
= Lx[−

1

2β
]

The proportion of squarefree integers is asymptotically 6/π2 [10]. Letting ψ1(x, y)
denote the number of squarefree integers 1 ≤ z ≤ x such that z is y-smooth,
theorem 3 in [10] implies that the same proportion holds for y-smooth numbers :

ψ1(x, y) ∼
6

π2
ψ(x, y) (1)

under the growing condition :

log y

log log x
→∞, (x→∞)

A squarefree y-smooth integer is y-powersmooth, so letting ψ′(x, y) denote the
number of integers 1 ≤ z ≤ x such that z is y-powersmooth, we have for all
x, y > 0 :

ψ1(x, y) ≤ ψ′(x, y) ≤ ψ(x, y)

which using (1) shows that for y = Lx[β], the probability that a random integer
between one and x is y-powersmooth is :

ψ′(x, y)

x
= Lx[−

1

2β
]

3.2 The Attack

In the following we assimilate the hash function to a random oracle which outputs
random integers between one and x. Given a set S of random integers, we say
that (e, e1, . . . , er) is a division-collision for S if e, e1, . . . , er ∈ S and e divides
the least common multiple of e1, . . . , er.

Theorem 2. Let S = {e1, . . . , ev} be a set of v random integers uniformly dis-

tributed between one and x. If v = Lx[
√
2/2] then there exist a probabilistic

Turing machine which outputs a division-collision for S in time Lx[
√
2/2] with

non-negligible probability.
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Proof: Using the following algorithm with β =
√
2/2, a division-collision is

found in time Lx[
√
2/2] with non-negligible probability.

An algorithm finding a division-collision :

Input : a set S = {e1, . . . , ev} of v = Lx[
√
2/2] random integers between

one and x.

Output : a division-collision for S.
Step 1 : Look for a powersmooth ek ∈ S with respect to y = Lx[β], using

Pollard-Brent’s Method [4] or Lenstra’s Elliptic Curve Method (ECM) [11] to
obtain :

ek =

r
∏

i=1

pαi

i with pi
αi ≤ y for 1 ≤ i ≤ r (2)

Step 2 : For each prime factor pi look for eji
∈ S with ji 6= k such that

eji
= 0 mod pαi

i , whereby :

ek| lcm
(

ej1 , . . . , ejr

)

Pollard-Brent’s method finds a factor p of n in O(√p) expected running
time, whereas the ECM extracts a factor p of n in Lp[

√
2] expected running time.

Using Pollard-Brent’s method at step 1, an Lx[β]-powersmooth H(m) is found in
expected Lx[1/(2β)] ·Lx[β/2]= Lx[1/(2β) +β/2] time. Using the ECM an Lx[β]-
powersmooth H(m) is found in Lx[1/(2β)] · Lx[◦(1)] = Lx[1/(2β)] operations.
Since pαi

i ≤ y, the second stage requires less than y = Lx[β] operations.

The overall complexity of the algorithm is thus minimal for β = 1 when using
Pollard-Brent’s method, resulting in a time complexity of Lx[1]. The ECM’s
minimum complexity occurs for β =

√
2/2 giving a time complexity of Lx[

√
2/2].
ut

Moreover, the following theorem shows that the previous algorithm is opti-
mal.

Theorem 3. Let S = {e1, . . . , ev} be a set of v random integers uniformly dis-

tributed between one and x. If v = Lx[α] with α <
√
2/2, then the probability that

one integer in S divides the least common multiple of the others is negligible.

Proof: See appendix A.
ut

Consequently, assuming that the hash function behaves as a random oracle,
the number of hash values necessary to exhibit a division-collision with non-
negligible probability is asymptotically Lx[

√
2/2] and this can be done in time

Lx[
√
2/2].



96 Jean-Sébastien Coron and David Naccache

3.3 The Attack’s Practical Running Time

Using the ECM, the attack has an expected time complexity of :

Lx[
√
2/2] = exp

(

(

√
2

2
+ ◦(1))

√

log x log log x
)

(3)

It appears difficult to give an accurate formula for the attack’s practical
running time since one would have to know the precise value of the term ◦(1) in
equation (3). However, extrapolating from (3) and the running times observed
for small hash sizes, we can estimate the time complexity for larger hash sizes.
We have experimented the attack on a Pentium 200 MHz for hash sizes of

128, 160, and 192 bits, using the MIRACL library [12]. In Table 1 we summarize
the observed running time in seconds and the logarithm in base 2 of the number
of operations (assuming that the Pentium 200 MHz performs 200 ·106 operations
per second).

Table 1. Experimental running times in seconds and log
2
complexity (number of

operations) of the attack for various digest sizes

digest size in bits time complexity in seconds log
2
complexity

128 3.5 · 102 36

160 3.6 · 103 39

192 2.1 · 104 42

Assuming that the complexity of the attack (number of operations) can be
expressed as C ·exp(

√
2/2
√
log x log log x), the experimental complexity for a 192-

bits hash size gives C = 6.1 · 104, from which we derive in Table 2 the estimated
complexity for larger hash sizes. The estimate may be rather imprecise and only
provides an order of magnitude of the attack’s complexity. However, the results
summarized in Table 2 suggest that in order to reach a security level equivalent
to 1024-bit RSA, digests should also be approximately 1024-bit long. Finally,
we describe in the full version of the paper [6] a slightly better attack for the
particular hash function suggested in [9].

4 Minimal Number of Hash Calls Necessary to Obtain a

Division-collision

In the previous section we have estimated the time complexity of the attack
using the ECM, from its asymptotic running time (3) and the observed running
times for small hash sizes. Consequently, our estimate depends on the practical
implementations of the hash function and the ECM. However theorem 3 shows
that there is a lower bound on the number of hash calls necessary to mount
the attack : asymptotically the number of hash calls must be at least Lx[

√
2/2]
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Table 2. Estimated log
2
complexity (number of operations) of the attack for various

digest sizes

digest size log
2
complexity (number of operations)

256 47

512 62

640 69

768 75

1024 86

so that with non-negligible probability there exist a division-collision (i.e. one
hash value divides the least common multiple of the others). In this section we
obtain heuristically a more precise estimate of the minimal number of hash calls
necessary to have a division-collision with given probability. As in the previous
section we assume that the hash function behaves as a random oracle, i.e. it
outputs a random integer for each new query. Consequently the problem is the
following : given a set S of v random integers in {1, . . . , x}, what is the probability
P (x, v) that one integer in S divides the least common multiple of the others ?

4.1 A Heuristic Model

The probability P (x, v) can be derived from a simple heuristic model called
random bisection. In this model, the relative length of the first prime factor of
a random number is obtained asymptotically by choosing a random λ uniformly
in [0, 1], and then proceeding recursively with a random integer of relative size
1− λ. This model is used in [1] to compute a recurrence for F (α) = ρ(1/α), the
asymptotic probability that all prime factors of a random x are smaller than xα.
In the above formula ρ is Dickman’s rho function defined for real t ≥ 0 by the
relation [7] :

ρ(t) =















1 if 0 ≤ t ≤ 1

ρ(n)−
∫ t

n

ρ(w − 1)
w

dw if n ≤ t ≤ n+ 1 for n ∈ N
(4)

For an xα-smooth integer x, the relative length λ chosen by random bisection is
smaller than α, and the remaining integer of relative size 1−λ is also xα-smooth.
Consequently, we obtain equation (5) from which we derive (4).

F (α) =

∫ α

0

F (
α

1− λ )dλ (5)

LetQ(x, v) denote the probability that a random integer z comprised between
one and x divides the least common multiple of v other random integers in
{1, . . . , x}. Let X = log2 x and V = log2 v. Let p be a prime factor of z of
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relative size λ (i.e. p = xλ). The probability that p divides a random integer
in {1, . . . , x} is roughly 1/p. Consequently, the probability P that p divides the
least common multiple of v random integers in {1, . . . , x} is roughly :

P = 1− (1− 1
p
)v ' 1− exp(−v

p
) for large p

If λ ≤ V/X, then p ≤ v and we take P = 1. Otherwise if λ ≥ V/X then p ≥ v
and we take P = v/p. Consequently, we obtain :

Q(x, v) =















1 if x ≤ v

∫ V

X

0

Q(x1−λ, v)dλ+

∫ 1

V

X

Q(x1−λ, v)
v

xλ
if x > v

Letting S(α, V ) = Q(vα, v), we have :

S(α, V ) =















1 if α ≤ 1

1

α

∫ 1

0

S(α− s, V )ds+ 1
α

∫ α

1

S(α− s, V )2V (1−s)ds if α > 1

We obtain :

∂2S

∂α2
(α, V ) = −V log 2

α
S(α− 1, V )− ( 1

α
+ V log 2)

∂S

∂α
(α, V ) (6)

S(α, V ) for α ≥ 0 is thus defined as the solution with continuous derivative of the
delay differential equation (6) with initial condition S(α, V ) = 1 for 0 ≤ α ≤ 1.
A division-collision occurs if at least one integer divides the least common

multiple of the others. We assume those events to be statistically independent.
Consequently, we obtain :

P (x, v) ' 1−
(

1− S(X
V
, V )

)v

(7)

4.2 Numerical Experiments

Table 3. Number of random integers required to obtain a division-collision with prob-
ability 1% as a function of their size (numerical experiments and heuristic model)

integer size 16 32 48 64 80 96

number of integers (experiments) 4 25 119 611 1673 7823

log
2
number of integers (experiments) 2.0 4.6 6.9 9.3 10.7 12.9

log
2
number of integers (model) 2.0 4.7 7.0 9.1 10.9 12.6
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We performed numerical experiments to estimate the number of k-bit integers
required so that a division-collision appears with good probability. We considered
bit-lengths between k = 16 to k = 96 in increments of 16, and as in [9] for
each bit length we performed 200 experiments in which we counted how many
random integers were chosen until one divides the least common multiple of the
others. As in [9], we took the second smallest result of the 200 experiments as an
estimate of the number of integers required so that a division-collision appears
with probability 1%. The results are summarized in Table 3.

Table 4. log
2
number of random integers required to obtain a division-collision with

probability 1% as a function of their size

integer size in bits log
2
number of integers

128 15.6

256 25.6

512 40.6

640 46.8

768 52.4

1024 63.2

1280 72.1

The function S(α, V ) can be computed by numerical integration from (6)
and S(α, V ) = 1 for 0 ≤ α ≤ 1. We used Runge-Kutta method of order 4 to
solve the differential equation (6). We summarize in Table 3 the log2 number
of k-bit integers required to obtain a division-collision with probability 1% for
k = 16 to k = 96, from the heuristic model. We see that the values predicted
by the model are close to the experimental values. In Table 4 we use the model
to estimate the number of k-bit integers required to obtain a division-collision
with probability 1% for large values of k. As in section 3.3 we see that in order
to get a security level of a 1024-bits RSA, one should use a hash function of size
approximately 1024 bits.

5 Conclusion

We have analysed the security of the Gennaro-Halevi-Rabin signature scheme of
Eurocrypt’99. In particular, we exhibited a sub-exponential attack that forces
to increase the security parameters beyond 512 or 642 bits up to approximately
1024 bits in order to get a security level equivalent to 1024-bits RSA. Another
variant of the scheme described in [9] consists in generating prime digests only,
by performing primality tests on the digests until a prime is obtained. In this
case, a division-collision is equivalent to a collision in the hash function, but the
signature scheme becomes less attractive from a computational standpoint.
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A Proof of Theorem 3

Proof: Let S = {e1, . . . , ev} with v = Lx[α] and α <
√
2/2 be a set of v

random integers uniformly distributed between one and x. Denote by P (x, v) the
probability that one integer in S divides the least common multiple of the others
and by B the event in which e1 divides the least common multiple of {e2, . . . , ev}.
The proof’s outline is the following : we consider the possible smoothness degrees
of e1 and compute the probability of B for each smoothness degree. Then we
show that Pr[B] is smaller than Lx[−

√
2/2 + ε] for ε > 0 and conclude that

P (x, v) is negligible.

The possible smoothness degrees of e1 are denoted :
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• Sm : e1 is Lx[
√
2/2]-smooth. This happens with probability

Pr[Sm] = Lx[−
√
2/2]

and consequently :
Pr[B ∧ Sm] = O(Lx[−

√
2/2]) (8)

• Sm(γ, ε) : e1 is Lx[γ + ε]-smooth without being Lx[γ] smooth, for
√
2/2 <

γ <
√
2 and ε > 0. This happens with probability :

Pr[Sm(γ, ε)] = Lx[
−1

2 · (γ + ε) ]− Lx[
−1
2 · γ ] = Lx[

−1
2 · (γ + ε) ] (9)

In this case, e1 contains a prime factor greater than Lx[γ], which appears in the
factorization of another ei with probability O(Lx[−γ]). Consequently e1 divides
the least common multiple of {e2, . . . , ev} with probability :

Pr[B|Sm(γ, ε)] = O(Lx[α− γ])

With (9) and γ + 1
2(γ+ε) ≥

√
2− ε for all γ > 0, we get :

Pr[B ∧ Sm(γ, ε)] = O(Lx[−
√
2

2
+ ε]) (10)

• ¬Sm : e1 is not Lx[
√
2]-smooth. Consequently e1 contains a factor greater

than Lx[
√
2] and thus :

Pr[B ∧ ¬Sm] = O(Lx[α−
√
2]) = O(Lx[−

√
2

2
]) (11)

Partitioning the segment [
√
2/2,

√
2] into segments [γ, γ + ε] and using equa-

tions (8), (10) and (11), we get :

Pr[B] = O(Lx[−
√
2

2
+ ε])

Since α <
√
2/2 we can choose ε > 0 such that

√
2/2−α−ε = δ > 0 and obtain :

P (x, v) = O(Lx[α−
√
2/2 + ε]) = O(Lx[−δ])

which shows that P (x, v) is negligible. ut


