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Abstract. ISO 9796-1, published in 1991, was the first standard specify-
ing a digital signature scheme with message recovery. In [4], Coron, Nac-
cache and Stern described an attack on a slight modification of ISO 9796-
1. Then, Coppersmith, Halevi and Jutla turned it into an attack against
the standard in full [2]. They also proposed five countermeasures for re-
pairing it. In this paper, we show that all these countermeasures can be
attacked, either by using already existing techniques (including a very
recent one), or by introducing new techniques, one of them based on the
decomposition of an integer into sums of two squares.

1 Introduction: ISO 9796-1 and Forgery

The first standard on digital signature scheme with message recovery is ISO 9796-
1 [10]. At the end of 80’s, no hash-function standard was available. Consequently,
ISO 9796-1 used only redundancy function to resist attacks that exploit the
multiplicative property of the RSA cryptosystem. The precautions taken in this
standard are described in [8]. Until the rump session of Crypto ’99, no known
attack [13] was able to forge a signature complied with the ISO 9796-1 standard.

1.1 The ISO 9796-1 Standard

This standard specifies how a message m is encoded to a valid message µiso(m)
before applying the RSA signature function. Only redundancy is used, no hash-
function. Notations used in this paper to describe encoded functions are the
same as in [2]:

– s(x): the function mapping 4 bits of message to 4 bits of redundancy. It is
an Hamming code (8, 8, 4).

– s̄(x): the result of setting the most significant bit of s(x) to 1:

s̄(x) = s(x) OR 1000 . (1)

– s̃(x): the result of flipping the least significant bit of s(x):

s̃(x) = s(x)⊕ 0001 . (2)
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When the length of the modulus is 16z+1 bits and the length of the message
is 8z + 1 bits, the encoding function, or redundancy function µiso, is defined as
follows:

µiso(m) = s̄(ml−1)s̃(ml−2)ml−1ml−2

s(ml−3)s(ml−4)ml−3ml−4

. . .

s(m3)s(m2)m3m2

s(m1)s(m0)m06 .

(3)

1.2 Attack Against a Slight Modification of ISO 9796-1

At first, a new strategy of forgery was presented at Crypto ’99 by Coron, Nac-
cache and Stern in their paper [4]. They described an attack against a slight
modification of ISO 9796-1. Their forgery is possible when the length of the
modulus is 16z + 1 bits, the length of the message is 8z + 1 bits, and the valid
message µ(m) is defined as follows:

µ(m) = s̄(ml−1)s(ml−2)ml−1ml−2

s(ml−3)s(ml−4)ml−3ml−4

. . .

s(m3)s(m2)m3m2

s(m1)s(m0)m06 .

(4)

Remark 1. µ(m) = µiso(m) except that s̃(ml−2) is replaced by s(ml−2).

1.3 Attack Against ISO 9796-1 and Countermeasures

At the rump session of Crypto ’99, Coppersmith, Halevi and Jutla described a
modified version of the attack of Coron, Naccache and Stern to forge a signature
of a chosen message when the encoding function µiso of ISO standard is used,
i.e. (3). After Crypto conference, they submitted a contribution [2] to “IEEE
P1363 research contributions”. In their paper, they proposed five possible coun-
termeasures to avoid forgeries. Their solutions avoid Coron-Naccache-Stern-like
forgeries, but not all forgeries as we show now.

More precisely, we present various chosen messages attacks against all the
five countermeasures, in which the signatures of two (or three) messages chosen
by the enemy allow him to forge the signature of another one.

2 Massive Mask Changes

Coppersmith, Halevi and Jutla propose three solutions based on the massive
mask change technique. In their propositions, they use the same principle of
dispersion as in ISO 9796-1.

Remark 2. These three propositions allow message recovery, but nothing notifies
the length of the message. In ISO 9796-1 [10], a nibble was modified in order to
mark the length of the message.
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2.1 µ1: Fixed Redundancy

In the first proposition, µ1, only fixed redundancy is used. The i’th nibble, πi
in the hexadecimal expansion of the irrational number π = 3.14159..., is used
to obtain redundancy. Note that the number of bits of redundancy is half the
number of bits of the RSA modulus n.

µ1(m) = πl−1πl−2ml−1ml−2

πl−3πl−4ml−3ml−4

. . .

π1π0m1m0 .

(5)

The Coron-Naccache-Stern-like forgeries are avoided. But we are at the limit of
the efficiency of the forgery described in [12], which allows to find three messages
m1, m2, m3 such that µ1(m1)µ1(m2) = µ1(m3) (mod n) and therefore, given
signatures of m1 and m2, forge the signature of m3. Moreover, the limit of this
attack is heuristic. Consequently, the forgery in [12] may be used.

2.2 µ2 and µ3: Irrational Numbers and Exclusive-OR

With µ2 and µ3, the attacks based on the Coron-Naccache-Stern forgery [4], [2],
are also avoided. In these cases, the i’th nibbles, πi and ei in the hexadecimal
expansion of the irrational numbers π = 3.14159... and e = 2.71828... respec-
tively, are used. Moreover, the native redundancy of ISO 9796-1 is present and
plays its role to defeat the other forgeries [13].

µ2(m) = (πl−1 ⊕ s(ml−1))(πl−2 ⊕ s(ml−2))ml−1ml−2

(πl−3 ⊕ s(ml−3))(πl−4 ⊕ s(ml−4))ml−3ml−4

. . .

(π1 ⊕ s(m1))(π0 ⊕ s(m0))m1m0 .

(6)

µ3(m) = (πl−1 ⊕ s(ml−1 ⊕ el−1))(πl−2 ⊕ s(ml−2 ⊕ el−2))ml−1ml−2

(πl−3 ⊕ s(ml−3 ⊕ el−3))(πl−4 ⊕ s(ml−4 ⊕ el−4))ml−3ml−4

. . .

(π1 ⊕ s(m1 ⊕ e1))(π0 ⊕ s(m0 ⊕ e0))m1m0 .

(7)

Nevertheless, a new attack by Grieu [6], disclosed in October 1999, can be applied
to these functions of redundancy. This attack is originally against the ISO 9796-1
[10], but the principle of this attack can be used to forge a signature when µ2 or
µ3 is the redundancy function in a signature scheme. This forgery is based on the
multiplicative property of the RSA cryptosystem and, for any public exponent,
the forged signature of a message is obtained from the signature of three other
messages. This attack is computationally inexpensive and works for modulus of
16z, 16z ± 1, or 16z ± 2 bits.
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3 Length Expanding Encoding: µ4

The encoded function µ4 involves encoding the message m into a string longer
than the modulus n. This solution does not have the property of message recov-
ery. Two constants c0 and c1 are fixed, each half the length of the modulus n.
The message m is also half the length of the modulus. The redundancy function
µ4 is defined1 as follows :

µ4(m) = (m+ c0)||(m+ c1)||m . (8)

We can easily write µ4 as an affine function:

µ4(m) = (m+ c0)||(m+ c1)||m
= (m+ c0)2

α + (m+ c1)2
β +m

= m (2α + 2β + 1)
︸ ︷︷ ︸

ω

+ c02
α + c12

β

︸ ︷︷ ︸

a

= mω + a .

(9)

We are at the limit of the efficiency of the forgery described in [5] against signa-
ture scheme with an affine function of redundancy. This forgery allows to find
three messages m1, m2, m3 such that µ4(m1)µ4(m2) = µ4(m3) (mod n) and
therefore, given signatures of m1 and m2, forge the signature of m3. Moreover,
the limit of this attack is heuristic. Consequently, the forgery in [5] may be used.

4 Encoding via Squaring: µ5

The redundancy function µ5 is defined as follows :

µ5(m) = m2 + δ . (10)

where δ is a fixed random constant of about the same size as the RSA modulus
n and the message m is less than the square root of the modulus n. We present
two forgeries when µ5 is used.

First forgery2: Forges the signature of the message (m1m2 + δ (mod n)) with
the signatures of m1 and m2 such that:

m2 = m1 + 1 . (11)

Second forgery: Forges the signature of a message in the set {x, y, z, t} when
we can write A = 2(n− δ) as at least two different sums of two squares:

A = x2 + y2 = z2 + t2 (x, y) 6= (z, t) and (y, x) 6= (z, t) . (12)

1 The symbol || denotes the concatenation of two strings.
2 Discovered independently by D. Naccache.
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4.1 First Forgery

Let m1 and m2 be two messages such that :

m2 = m1 + 1 . (13)

Then we have :

µ5(m1)µ5(m2) = (m2
1 + δ)(m2

2 + δ)
= (m1m2)

2 + δ(m2
1 +m2

2) + δ2

= (m1m2 + δ)2 − 2m1m2δ + δ(m2
1 +m2

2)
= (m1m2 + δ)2 + δ(m2

1 − 2m1m2 +m2
2)

= (m1m2 + δ)2 + δ (m1 −m2)
2

︸ ︷︷ ︸

1

= µ5(m1m2 + δ)
= µ5(m1m2 + δ (modn)) (mod n) .

(14)

Now, we can find m1 and m2 s.t. m1m2+δ (mod n) is less than
√
n by choosing

m1 close enough to
√
n− δ. More precisely, let m1 =

√
n− δ + θ such that

θ ∈
[
− 1

2 ,
1
2

]
. Then :

m1m2 + δ = m1(m1 + 1) + δ

= m2
1 +m1 + δ

= (
√
n− δ + θ)2 + (

√
n− δ + θ) + δ

= (2θ + 1)
√
n− δ + θ(θ + 1) (mod n) .

(15)

and will be certainly (resp. possibly) smaller than
√
n if θ ∈

[
− 1

2 , 0
]
(resp. if

θ ∈
]
0, 1

2

]
). Of course, other values of m1 and m2 can be suitable, depending

on the value of
√
n− δ. Moreover, one can choose a large value for θ as long as

m1m2 + δ (mod n) is less than
√
n.

4.2 Second Forgery

The second forgery uses the fact that many integers can be written as sums of
two squares in (at least) two different ways. This will be applied to various values
of A = 2(n− δ), where n is a RSA modulus. Roughly speaking, if we can write:

A = x2 + y2 = z2 + t2, (x, y) and (y, x) 6= (z, t) . (16)

then it comes (see (25)):

µ5(x)µ5(z) = µ5(y)µ5(t) (mod n) . (17)

and the signature of any message in the set {x, y, z, t} can be deduced from the
signatures of the three other ones. To do that, we first need to recall some basic
results from (computational) number theory.
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The sum of two squares in two ways. In 17th century, Fermat proved that
every prime p such that p = 1 (mod 4) has a unique decomposition as a sum of
two squares and, more generally, that an integer n has such a decomposition if
and only if all its prime factors such that p = 3 (mod 4) have even exponents
in the factorization of n. In the latter case, the number of essentially different
decompositions3 is 2k−1, where k is the number of primes such that p = 1
(mod 4) [9]. Here, we will be specially interested in the case k ≥ 2.

Remark 3. (Gauss) If a number n can be written as a sum of squares then n has
⌈∏

i
(ei+1)

2

⌉

representations4 [7, section 182] where the ei are the powers of the

prime factors pi of n such that pi = 1 (mod 4).

Diophante’s identities are crucial in the proof of these theorems. We recall
them:

(a2 + b2)(c2 + d2) = (ac− bd)2 + (bc+ ad)2 = e21 + f2
1

= (ac+ bd)2 + (bc− ad)2 = e22 + f2
2 .

(18)

They show that the product of two sums of two squares is still the sum of two
squares, and in two different ways (see example 1). There is an exception to the
latter statement: if one of the initial sums is equal to 2 (= 12 + 12), then the
two identities become only one, and the decomposition remains the same (see
example 2).

Example 1.

13.17 = (22 + 32)(42 + 12)
= (2.4− 3.1)2 + (3.4 + 2.1)2 = 52 + 142

= (2.4 + 3.1)2 + (3.4− 2.1)2 = 112 + 102 .

(19)

Example 2.

2.13 = (12 + 12)(22 + 32)
= (1.2− 1.3)2 + (1.2 + 1.3)2 = 12 + 52

= (1.2 + 1.3)2 + (1.2− 1.3)2 = 52 + 12 .

(20)

Now, the point is to make, when existing, these decompositions efficient. In 1908,
Cornacchia [3] showed how to use Euclid’s algorithm to find the decomposition
of a prime p equal to 1 modulo 4 [1, pages 34-35], [15]. It can be briefly described
as follows: find a square root z of −1 modulo p, then apply Euclid’s algorithm
to p and z, until the remainder x is smaller than

√
p. Then it can be proven that

p− x2 is a square y2 and we have: p = x2 + y2.

Finally, it is trivial to remark that the product of a square and of a sum of
two squares is still a sum of two squares:

C2(x2 + y2) = (Cx)2 + (Cy)2 . (21)

3 n = a2 + b2 with gcd(a, b) = 1 and (a, b) ∈ N∗ × N∗.
4 n = a2 + b2 with (a, b) ∈ N× N.
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As a consequence of all these facts, if we can write A = 2(n− δ) as a product
in the form:

C2
k∏

i=1

pi or 2C2
k∏

i=1

pi . (22)

where the pi are equal to 1 modulo 4 and k ≥ 2, then, by applying Cornacchia’s
algorithm to the pi and applying Diophante’s identities to its outputs, we will
obtain at least 2k−1 different decompositions of A in sums of two squares.

Example 3. n = 493 = 17.29 and δ = 272.
Then A = 2(n− δ) = 2.13.17.
We have 13 = 22 + 32, 17 = 42 + 12.
And, by applying Diophante’s identities:

A = 2(52 + 142) = (12 + 12)(52 + 142) = 92 + 192

= 2(112 + 102) = (12 + 12)(112 + 102) = 12 + 212 .
(23)

If we cannot write A as such a product, either because its factorization reveals
a prime equal to 3 mod 4 with an odd exponent, or reveals only one prime equal
to 1 modulo 4, or simply because we failed in factorizing n− δ, then we have to
try again with another value of n. This leads to the following forgery method.

Forgery.

Step 1: Try different moduli n until obtaining:

A = x2 + y2 x, y, z, t <
√
n

= z2 + t2 (x, y) 6= (z, t) and (y, x) 6= (z, t) .
(24)

Step 2: Obtain the signature of 3 messages in the set {x, y, z, t}.
Step 3: Use the following relation to compute the signature of the remaining

message:

µ5(x)µ5(z) = (x2 + δ)(z2 + δ)
= (A− y2 + δ)(A− t2 + δ)
= (−y2 − δ)(−t2 − δ)
= (y2 + δ)(t2 + δ)
= µ5(y)µ5(t) (mod n) .

(25)

Example 4. n = 493 = 17.29 and δ = 272.
Then A = 92 + 192 = 12 + 212 (see example 3).

µ5(9)µ5(1) = (92 + 272)(12 + 272)
= 234 (mod 493) .

(26)

And,
µ5(19)µ5(21) = (192 + 272)(212 + 272)

= 234 (mod 493) .
(27)



88 Marc Girault and Jean-François Misarsky

Remark 4. The attack can be extended to A = 3n− 2δ, if δ > n
2 (if not, A will

be too large and some elements in the set {x, y, z, t} will be greater than
√
n).

Example 5. We try our attack on the signature scheme where the RSA-modulus
is the modulus specified in the Annex A of ISO 9796-1 [10]. All values in this
example are in hexadecimal.

p = BA09106C 754EB6FE BBC21479 9FF1B8DE

1B4CBB7A 7A782B15 7C1BC152 90A1A3AB
(28)

q = 1 6046EB39 E03BEAB6 21D03C08 B8AE6B66

CFF955B6 4B4F48B7 EE152A32 6BF8CB25
(29)

n = 1 00000000 00000000 00000000 00000000

BBA2D15D BB303C8A 21C5EBBC BAE52B71

25087920 DD7CDF35 8EA119FD 66FB0640

12EC8CE6 92F0A0B8 E8321B04 1ACD40B7

(30)

Let δ a random constant of about the same size as the modulus n:

δ = FFE3B564 A0CB8C6C 6585C9CF A1CFC64B

64B0C0F9 6CE980F5 ACC276C1 13045D1D

05B1D218 D58C7D32 2387A305 9547EC31

CF62CA5D 8C316E99 24B7F2C1 8A873FAE

(31)

Compute the factorization of A:

A = 2(n− δ)
= 2.2F9.2F9D10D.

200000011
2.3FE9820B7AE6D5.

3385F065A24DB4467E066FBBD577A0C6F6D119

(32)

With the Cornacchia algorithm and by applying the Diophante’s identities we
obtain 72 couples of values (ai, bi) such that a2

i + b2i = A. And all these values
are less than

√
n. We give 4 couples as examples:

a1 = 10F26AC8 379A5197 8F6D6E3E 17461ED9

1642DE79 C90D14D5 923190C6 D0A0EB

b1 = 78599149 C677F865 48F58E83 DA99C194

9F653DBD FAEA8B8C 02BCDD8D 04F7F5B

(33)

a2 = 15CCECF3 6BC80743 296A7F88 78FFC0E2

D509B3C9 B1EA0B53 8FE5036E B23E93

b2 = 7858C944 CDCA3E18 0B0477F2 C6728C54

BC4ADCD1 17361A46 2C0D7267 8661173

(34)

a3 = 274AEA5B 8289F65F 2C849CA7 DA69F691

15430C53 4EA3101F ACF6B8A8 673DDF

b3 = 78545894 164142A8 FC5E800A 3DAC3705

BBAD4B7C 46AE5A24 1B4D5830 E9FC137

(35)
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a4 = 4CE8CD96 B9920AB2 075E197C 564950E1

18BA416D 9FEC2BDF 5BE6BBEF C18F45

b4 = 78422D6B ED414DAD 9BE47D08 F2CF8EF8

D742C8E5 C0440C45 F2B3300E B3E4A75

(36)

5 Conclusion

We have shown that all the countermeasures described in “ISO 9796 and the
new forgery strategy (Working Draft)” [2] by Coppersmith, Halevi and Jutla
can be attacked. For two propositions, we use previous forgeries presented at
Eurocrypt ’97 and Crypto ’97. For the propositions two and three, µ2 and µ3,
a recent attack is used. Moreover, we present two new ways to forge a signature
when the last proposition is used.

Our contribution on the cryptanalysis of signature schemes with redun-
dancy, after De Jonge-Chaum [11], Girault-Misarsky [5], Misarsky [12], Coron-
Naccache-Stern [4] and Coppersmith-Halevi-Jutla [2] shows that is very difficult
to define this kind of scheme. But, perhaps it is a good challenge for a year with
a high level of redundancy (three zeroes) such as the year 2000.
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