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Abstract. We introduce an attack against the ISO/IEC 9796–1 digital
signature scheme using redundancy, taking advantage of the multiplica-
tive property of the RSA and Rabin cryptosystems. The forged signature
of 1 message is obtained from the signature of 3 others for any public
exponent v. For even v, the modulus is factored from the signature of 4
messages, or just 2 for v = 2. The attacker must select the above mes-
sages from a particular message subset, which size grows exponentialy
with the public modulus bit size. The attack is computationally inex-
pensive, and works for any modulus of 16z, 16z ± 1, or 16z ± 2 bits.
This prompts the need to revise ISO/IEC 9796–1, or avoid its use in
situations where an adversary could obtain the signature of even a few
mostly chosen messages.

1 Introduction

ISO/IEC 9796–1 [1] [2] is an international standard specifying a digital signa-
ture scheme giving message recovery, designed primarily for the RSA and Rabin
public key cryptosystems.

To sign a message M , it is first transformed by inserting redundant infor-
mation obtained by simple transformations of individual bytes of M , producing
the expanded message M̃ ; then the private key function S of the cryptosystem
is applied, producing the signature M̈ = S(M̃).

To verify an alleged signature M̈ ′, the public key function V of the cryptosys-
tem is applied, producing an alleged expanded message M̃ ′ = V(M̈ ′); then the
alleged message M ′ is recovered from M̃ ′ by straightforward extraction, and it
is checked M̃ ′ is what it should be under the signature production process.

ISO/IEC 9796–1 expansion makes it highly improbable that a randomly gen-
erated value is an acceptable signature. It meets precise design criterias in order
to guard against a variety of other attacks, see [3] and [2].

The recently introduced Coron–Naccache–Stern forgery strategy of [4] is ef-
fective on a slightly simplified variant of ISO/IEC 9796–1. Motivated by this
breakthrough and unaware of an extension to the full standard in [6], the author
made an independent effort to attack ISO/IEC 9796–1 and discovered a new,
simple and effective method.

In a nutshell, we efficiently construct many message pairs A,B with Ã/B̃
equal to a common ratio. Forgery follows from the multiplicative property of the
cryptosystem used: S(xy) = S(x)S(y).
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2 Definitions

When there is no ambiguity, we assimilate a bit string of fixed length and the in-
teger having this binary representation. Following ISO/IEC 9796–1 unless stated
otherwise, we use the notations

x ‖ y Concatenation of bitstrings x and y.
x⊕y Bitwise exclusive OR of bitstrings x and y.
[x]i The bitstring of exactly i bits with [x]i ≡ x mod 2i.

lcm(x, y) Least Common Multiple of x and y.
gcd(x, y) Greatest Common Divisor of x and y.
v Public verification exponent.
k Number of bits in public modulus.

nb: the standard [1] often use ks = k − 1.
n Public modulus of k bits, thus with 2k−1 ≤ n < 2k.
p, q Secret factors of n, with n = p q.

if v is odd, p− 1 and q − 1 are prime with v.
if v is even, (p− 1)/2 and (q − 1)/2 are prime with v,
p ≡ 3 mod 4 and q ≡ p+ 4 mod 8.

(x|n) Jacobi symbol of x with respect to n, used for even v only.
(x|n) = (x|p)(x|q) = (x(p−1)/2 mod p)(x(q−1)/2 mod q).
For even v the construction of p and q is such that (2|n) = −1.
(x|n) can be efficiently computed without knowledge of p and q.

s Secret signing exponent.
if v is odd, s v ≡ 1 mod lcm(p− 1, q − 1),

and as a consequence (xs)v ≡ x mod n for any x.
if v is even, s v ≡ 1 mod lcm(p− 1, q − 1)/2,

and as a consequence (xs)v ≡ x mod n if (x|n) = +1.
z Number of bytes a message fits in; z ≤ b(k + 2)/16c.
M Message to sign, which breaks up into the z bytes string

mz ‖ mz−1 ‖ .. ‖ m2 ‖ m1

M̃ Message as expanded according to ISO/IEC 9796–1 (see below).

nb: M̃ is noted Ir in [1] and also Sr in [2].

M̈ The signature of M. nb: M̈ is noted Σ(M) in [1] and [2].

if v is odd, M̈ = min(M̃s mod n, n− M̃s mod n)

if v is even, assuming gcd(M̃, n) = 1 which is highly probable,

M̈ = min

(

(

M̃
2(1−(M̃ |n))/2

)s
mod n, n−

(

M̃
2(1−(M̃ |n))/2

)s
mod n

)

We restrict our attack and our description of ISO/IEC 9796–1 to the cases
k ≡ 0, ±1, or ±2 mod 16, which covers many common choices of moduli, and to
messages of z = b(k + 2)/16c bytes, the maximum allowed message size. With
these restrictions, the construction of the redundant message amounts to the
local transformation of each byte mi of the message by an injection Fi, yielding
the redundant message

M̃ = Fz(mz) ‖ Fz−1(mz−1) ‖ .. ‖ F2(m2) ‖ F1(m1)
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with the injections Fi transforming an individual byte mi of two 4 bit digits
x ‖ y as defined by

F1(x ‖ y) =Π(x) ‖ Π(y) ‖ y ‖ [6]4
Fi(x ‖ y) =Π(x) ‖ Π(y) ‖ x ‖ y for 1 < i < z
Fz(x ‖ y) = [1]1 ‖ [Π(x)]k+2 mod 16 ‖ Π(y) ‖ x ‖ (y⊕1)

(1)

and where Π is the permutation on the set of 4 bit nibbles given by

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

Π(x) E 3 5 8 9 4 2 F 0 D B 6 7 A C 1

or as an equivalent definition, if the nibble x consists of the bits x4 ‖ x3 ‖ x2 ‖ x1,
Π(x) = (x4⊕x2⊕x1⊕1) ‖ (x4⊕x3⊕x1⊕1) ‖ (x4⊕x3⊕x2⊕1) ‖ (x3⊕x2⊕x1).

3 The new attack

We essentialy select a pair of small positive integers a, b and search all the
message pairs A,B that yield redundant messages verifying

Ã

B̃
=
a

b
(2)

3.1 Choice of ratio a/b

Since the ratios a/b and b/a will uncover the same messages, we can restrict our
choice of a, b to a < b without missing any message pairs satisfying (2). Similarly,
we can restrict ourselves to relatively prime a, b. Since Ã and B̃ are strings of
equal length with a 1 bit on the left, we must have b < 2a. We transform equation
(2) into B̃a = Ãb, reduce mod 16, observe [Ã]4 = [B̃]4 = 6, get 6a ≡ 6b mod 16,
so we restrict ourselves to a ≡ b mod 8.

Thus in the following we restrict our choice for the ratio a/b to relatively
prime integers a, b with 9 ≤ a < b < 2a and a ≡ b mod 8.

3.2 Making the search manageable

Since the fraction a/b is chosen irreducible, for an hypothetical message pair
A,B verifying (2), we can uniquely define the integer W such that

Ã = aW and B̃ = bW (3)

We break up A,B into z bytes, and, noticing that 9 ≤ a < b impliesW < 216z

for our choice of k, we break up W into z 16 bits strings

A = az ‖ az−1 ‖ .. ‖ a2 ‖ a1
B = bz ‖ bz−1 ‖ .. ‖ b2 ‖ b1
W = wz ‖ wz−1 ‖ .. ‖ w2 ‖ w1
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We break up each of the two multiplications appearing in (3) into z multiply
and add steps operating on each of the wi, performed from right to left, with
z − 1 steps generating an overflow to the next step, and a last step producing
the remaining left (k + 2 mod 16) + 13 bits. We define the overflows

ā0 = āz = 0 b̄0 = b̄z = 0
āi = b(awi + āi−1)/2

16c b̄i = b(bwi + b̄i−1)/2
16c for 1 ≤ i < z

(4)

so we can transform (3) into the equivalent

Fi(ai) = awi + āi−1 mod 216 Fi(bi) = bwi + b̄i−1 mod 216 for 1 ≤ i < z
Fi(az) = awz + āz−1 Fz(bz) = bwz + b̄z−1

(5)

The search for message pairs A,B satisfying (2) is equivalent to the search
of wi, ai, bi, āi, b̄i satisfying (4)(5). This is z smaller problems, linked together
by the overflows āi, b̄i.

3.3 Reducing overflows āi, b̄i to one link li

Definition (4) of the overflows āi, b̄i implies, by induction

āi =

⌊

a [W ]16i

216i

⌋

and b̄i =

⌊

b [W ]16i

216i

⌋

for 1 ≤ i < z (6)

Since 0 ≤ [W ]16i < 216i we have

0 ≤ āi < a and 0 ≤ b̄i < b (7)

We also observe that āi and b̄i are roughly in the ratio a/b, more precisely
equation (6) implies sucessively

a
[W ]16i

216i
− 1 < āi ≤ a

[W ]16i

216i
and b

[W ]16i

216i
− 1 < b̄i ≤ b

[W ]16i

216i

āi

a
≤

[W ]16i

216i
<
āi + 1

a
and

b̄i
b
≤

[W ]16i

216i
<
b̄i + 1

b

a
b̄i
b
− 1 < āi < a

b̄i + 1

b
and b

āi

a
− 1 < b̄i < b

āi + 1

a

so, as consequence of their definition, the āi, b̄i must verify

−a < ab̄i − bāi < b (8)

For a given b̄i with 0 ≤ b̄i < b, one or two āi are solution of (8): ba b̄i/bc, and
ba b̄i/bc+ 1 if and only if a b̄i−1 mod b > b− a.

It is handy to group āi, b̄i into a single link defined as

li = āi + b̄i + 1 with 1 ≤ li < a+ b (9)

so we can rearrange (8) into

āi =

⌊

a li
a+ b

⌋

and b̄i =

⌊

b li
a+ b

⌋

(10)
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3.4 Turning the problem into a graph traversal

For 1 ≤ i ≤ z we define the z sets of triples

Ti = {(li, wi, li−1) ∃(ai, bi, āi, b̄i, āi−1, b̄i−1) verifying (4)(5)(7)(9)(10)}

and we define that (li, wi, li−1) ∈ Ti connects to (l′j , w
′
j , l
′
j−1) ∈ Tj when j = i−1

and li−1 = l′j . Solving (2) is equivalent to finding a connected path from an
element of Tz to an element of T1. If this can be achieved, a suitable W is
obtained by concatenating the wi in the path, and Ã, B̃ follow from (3).

3.5 Building and traversing the graph

The graph can be explored in either direction with about equal ease, we describe
the right to left procedure.

Initialy we start with the only link l0 = 1. At step i = 1 and growing, for
each of the link at the previous step, we vary bi in range [0..28 − 1] and directly
compute

wi =

(

Fi(bi)−

⌊

b li−1

a+ b

⌋)

b−1 mod 216 (11)

Using an inverted table of Fi we can determine in one lookup if there exist an
ai such that

Fi(ai) = a wi +

⌊

a li−1

a+ b

⌋

mod 216 (12)

and in that case we remember the new triple (li, wi, li−1) with the new link

li =

⌊

a wi +
⌊

a li−1

a+b

⌋

216

⌋

+

⌊

b wi +
⌊

b li−1

a+b

⌋

216

⌋

+ 1 (13)

We repeat this process until a step has failed to produce any link, or we
reach i = z where we need to modify (11)(12)(13) by replacing the term 216 by
2(k+2 mod 16)+13, and reject nodes where lz 6= 1.

If we produce a link in the last step i = z, we can obtain a solution to (2) by
backtracking any path followed, and the resulting graph covers every solutions.

Exploration for the simplest ratio 9/17 stops on the first step, but 11/19 is
more fruitfull. For k = 256, and restricting to nodes belonging to a solution, we
can draw the graph in figure 1.

Using this graph to produce solutions to (2) is childishly simple: message
pairs are obtained by choosing a path between terminals nodes, and collecting
the message bytes ai (resp. bi) shown above (resp. below) the nodes1.

For example, if we follow the bottom link, the graph gives messages
A=85f27d64ef..64ef..64ef152c07
B=14ba7bf39d..f39d..f39d6ad958

thus

1 As a convenience we have shown the bytes ai, bi of messages A, B instead of the
triples (li, wi, li−1).
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Fig. 1. Graph of solutions of (2) for k = 256 and a/b = 11/19

Ã=458515f2fa7d2964c1ef..2964c1ef..2964c1ef3415572cef76

B̃=78146bbaf67b18f3da9d..18f3da9d..18f3da9d2b6aadd94086

with indeed Ã/B̃ = 11/19.

3.6 Counting solutions

It is easy to count the solutions: assign the count 1 to right nodes, and to all
others the sum of the count of their right-linked nodes. The number of solutions
to (2) is the sum of the count of the left nodes. This gives 42 for the graph above,
which Douglas Adams fans will appreciate.

Since the center part of the graph has a period of two steps, it is trivial to
extend it for higher k with k ≡ 0 mod 32. Asymptoticaly, this count grows by a

factor
√

5+1
2 when the modulus is increased by 32 bits.

If we take k = 1024 bits and restrict to b < 210, there are 13264 ratios worth
to explore. About 40% are eliminated on the first step, 9% have at least one
solution to (2), 7% have at least two solutions. There are about 5.7 1014 usable
message pairs, among which 98% come from the ratio 389/525 which yields 249

solutions. The code computing the above statistics runs in a minute on a personal
computer, and can output thousands of messages per second.

Lower bounds on the number of pairs of solutions to (2) are derived by
counting solutions for a good ratio
2(k−164.7..)/16 solutions for k ≡ −2 mod 16 using ratio 389/525
1.62177..(k−148.3..)/16 solutions for k ≡ −1 mod 16 using ratio 511/775
2(k−240)/16 solutions for k ≡ 0 mod 16 using ratio 389/525
1.62177..(k−227.6..)/16 solutions for k ≡ 1 mod 16 using ratio 511/775
2(k−226)/16 solutions for k ≡ 2 mod 16 using ratio 389/525
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3.7 Existential forgery from the signature of 3 chosen messages

By selecting a ratio a/b and finding two messages pairs A,B and C,D solutions
of (2), we can now construct 4 messages A,B, C,D such that

Ã D̃ = B̃ C̃ (14)

With high probability, Ã and n are relatively prime2, so that

D̃s ≡ Ã−sB̃sC̃s mod n (15)

and therefore, for odd v,

D̈ = min(Ä−1B̈ C̈ mod n, n− Ä−1B̈ C̈ mod n) (16)

If we can obtain the three signatures Ä, B̈, C̈, it is now straightforward to
compute D̈, using the extended Euclidian algorithm for the modular inversion
of Ä mod n.

For even v, equation (15) implies

D̈ =min(2jsÄ−1B̈ C̈ mod n, n− 2jsÄ−1B̈ C̈ mod n) (17)

with j =
(Ã|n)− 1

2
+

1− (B̃|n)

2
+

1− (C̃|n)

2
+

(D̃|n)− 1

2

If (a|n) = (b|n) then (Ã|n) = (B̃|n) and (C̃|n) = (D̃|n) thus j is always 0. If
(a|n) = −(b|n) then j is −2, 0 or 2, the case j = 0 has probability about 1/2, and
it is necessary to examine at most three message pairs before finding two such
that j = 0. When j = 0, equation (17) reduces to (16) and again we obtain a
forgery from three signatures.

In summary we have one forgery from three signatures for any public expo-
nent. Using the terminology in [8], it is a chosen messages existential forgery,
in that the adversary is bound to pick from a predefined subset the messages
submited for signature and the bogus message. More generaly, f forgeries can
be obtained from f + 2 signatures.

3.8 Total break from the signature of 4 chosen messages for even v

As pointed out in [7], for even public exponents v, finding a multiplicative relation
among expanded messages can lead to factorisation of the public modulus n.

We select a ratio a/b such that (a|n) = −(b|n), which for a given n occurs for
about half the ratios. We then test solutions of (2) until we find two messages
pairs A,B and C,D solutions of (2) verifying (Ã|n) = 1 and (C̃|n) = −1, with
the probability of not finding a solution about halved after each trial. For even
v, equation (15) implies

22s = u with u = ±ÄB̈−1C̈−1D̈ mod n (18)

2 else we would get a prime factor of n by computing gcd(Ã, n)
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where the term u is known3. Taking the above to the known power v/2 and
reducing mod p gives

uv/2 ≡ 2vs ≡ 2
p−1

2

q−1

2
+1 ≡ (2|p)

q−1

2 2 ≡ (2|p) 2 mod p

and similarly

uv/2 ≡ (2|q) 2 mod q.

Noticing that one of p or q is 3 mod 8 and the other is 7 mod 8, we have (2|p) =
−(2|q). We deduce that (uv/2 + 2) mod n is a multiple of only one of p or q.

Therefore a prime factor of n is gcd(Äv/2B̈−v/2C̈−v/2D̈v/2 + 2 mod n, n).

If we can obtain the four signatures Ä, B̈, C̈, D̈ we can thus factor the
modulus n. Of course this let us compute a valid signing exponent s then sign any
message just as easily as the legitimate signer, a total break using the terminology
in [8].

3.9 Reducing the number of required signatures for small v

Assume we can find two messages A,B solution of

Ã

B̃
=
cv

dv
with c 6= d (19)

This implies

Ãsdvs ≡ B̃scvs mod n (20)

For odd v, it follows that

B̈ = min(c−1d Ä mod n, n− c−1d Ä mod n) (21)

and we obtain one forgery from a single signature.

For even v, we can similarly obtain forgery from a single signature if (c|n) =
(d|n), or factor the modulus from two signature if (c|n) = −(d|n).

Solutions to (19) can be found for v = 2. For example with v = 2 and
k = 1024, 21 among the 1933 irreducible ratios with d < 216 give 22645 message
pairs, among which 16059 for the ratio 192/252. An example for k = 512 is:
ECE8F706C09CA276A3FC8F00803C821D90A3C03222C37DE26F5C3FD37A886FE4

CA969C94FA0B801DDEEA0C22932D80570F95A9C767D27FA8F06A56E7371B16DF

For v = 3 the search becomes more difficult, with only 7 ratios and message
pairs for d < 216 and 510 ≤ k ≤ 2050, and many values of k without a solution.
An example is k = 510 and ratio 493/573 which gives the message pair:
C6C058A3239EE6D5ED2C4D17588B02B884A30D92B5D414DDB4B5A6DA58B6901B

20768B854644F693DB1508DE0124B4457CD7261DF699F422D9634D5E4D5781A4

3 within sign; we could recover the sign, but it is not needed.
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3.10 Constraints on signed messages

We have seen the number of usable message pairs is huge, and grows exponentialy
with the modulus bit size, by a factor of 2 or 1.62177.. for every 16 bit of modulus.
The attacker can, with remarkable ease, select among this mass those messages
obeying a particular constraint, simply by restricting the range of bytes allowed
at some stage in the graph construction.

For example with k = 0 mod 16 the ratio 389/525 generates many mostly
ASCII message pairs, like
2B0D59B00D060D8FF65300B56A3A3D3D3D3D3D3D3D3D3D3D3D3D3D3D..3D3D3D37
A50F7D50962A02BDE981A4B28D9F5A5A5A5A5A5A5A5A5A5A5A5A5A5A..5A5A5A26

If we restrict all message bytes to [32..126] ∪ [160..255], a subset of what
Windows considers displayable, it is still easy to generate messages pairs; for
example with k = 512 the ratio 169/217 gives 682 message pairs like
5374FC56DEA856DEA856DEA856DEA856DEA856DEA856DEA856DEA856439F22CF

27D36E26425A26425A26425A26425A26425A26425A26425A26425A26CD1EB6F1

and
53A856DEA856DEA856DEA856DEA856DEA856DEA856DEA856DE74FCA3C7711BAF

275A26425A26425A26425A26425A26425A26425A26425A2642D36E0D81C70B21

3.11 Generality of the attack

The idea of searching solutions to (2) could apply to other redundancy schemes,
though no actually used system comes to mind. The same search principle effi-
ciently finds the solutions, if they exist, for any redundancy scheme that operate
on independant segments of the message, regardless of the tranformations used,
as long as the width of the individual segments do no prevent exhaustive search.
The search can be conducted sequentialy in either direction, and works equally
well if the redundancy added is dependant on the whole portion of the message
on some fixed side of the segment, rather than on the segment alone.

Experimentally, the existence of solutions to (2) appears independant of the
particular permutation Π(x). It does depends to some degree on the repeated
use of the same local injection, because that makes the center of the graph
more regular. It does depend heavily on an amount of redundancy not markedly
exceeding the message itself.

4 Future work

4.1 Other parameters

We have restricted our attack to k ≡ 0, ±1, or ±2 mod 16 and to messages
of z = b(k + 2)/16c bytes, the maximum allowed message size. The difficulty
appears to increase quickly as the message gets shorter than half the modulus.
The attack does works without modification for messages a few bits shorter, and
maybe could be extended to any value of k.
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4.2 Attack of ‘massive mask changes’ variants

As a countermeasure against the attack of [4], it has been envisioned in [5] to
use not only three injections like in the original standard, but z injections Fi

depending on i. Although the above search method applies, the author did not
yet establish if (2) has solutions for some ratios a/b with the particular variants4

proposed.

4.3 Combination with other attacks

Other attacks against ISO/IEC 9796–1 introduced in [4] then perfected in [6]
construct messages M which expanded form M̃ is the product of a common
constant Γ and small prime factors, then by gaussian elimination find a multi-
plicative relation similar to 14, although among thousands messages.

The technique we describe can be used to efficently find messages satisfying
(2) where a and b only have small prime factors. This gives a relation readily
usable in the gaussian elimination process. The combined attack can operate on
a wider range of messages, yet still has modest computing requirements.

5 Conclusion

Our attack applies to the full ISO/IEC 9796–1 standard, with common param-
eters: public modulus of 16z, 16z ± 1, or 16z ± 2 bits, and messages of 8z bits.
Using an inexpensive graph traversal, we constructs 2 messages pairs which ex-
pansion are in a common ratio, giving 4 messages which signatures are in a
simple multiplicative relation.

For any public exponent v, the attack obtains the forged signature of 1 such
message from the legitimate signature of 3 chosen others, or asymptotically
nearly one forgery per legitimate signature; it is a major concern for exam-
ple if obtaining a signature is possible for a price, and forged signatures have a
value for messages the attack applies to.

For even v, the attack is a total break in situations where an attacker can ob-
tain the signature of 4 chosen messages (or just 2 for v = 2). It is a major concern
for example if the attacker can gain limited access to a signing device accepting
arbitrary messages, as likely with an off-the-shelf Smart Card implementation
of ISO/IEC 9796–1.

The messages the attack can use are computationally easy to generate. Their
number grows exponentialy with the modulus size. Messages can efficiently be
found including with a small degree of constraint on the message structure.

This prompts the need to revise ISO/IEC 9796–1, or avoid its use in situations
where an adversary could obtain the signature of even a few mostly chosen
messages.

4 Remarking that Π(x ⊕ y) = Π(x) ⊕ Π(y) ⊕ Π(0), two of the three variants differ
only by the choice of arbitrary constants.
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