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Abstract. We present an index-calculus algorithm for the computation
of discrete logarithms in the Jacobian of hyperelliptic curves defined
over finite fields. The complexity predicts that it is faster than the Rho
method for genus greater than 4. To demonstrate the efficiency of our
approach, we describe our breaking of a cryptosystem based on a curve
of genus 6 recently proposed by Koblitz.

1 Introduction

The use of hyperelliptic curves in public-key cryptography was first proposed by
Koblitz in 1989 [24]. It appears as an alternative to the use of elliptic curves [23]
[31], with the advantage that it uses a smaller base field for the same level of
security. Several authors have given ways to build hyperelliptic cryptosystems
efficiently. The security of such systems relies on the difficulty of solving the
discrete logarithm problem in the Jacobian of hyperelliptic curves. If an algo-
rithm tries to solve this problem performing “simple” group operations only, it
was shown by Shoup [39] that the complexity is at least Ω(

√
n), where n is the

largest prime dividing the order of the group. Algorithms with such a complex-
ity exist for generic groups and can be applied to hyperelliptic curves, but are
still exponential. The Pollard Rho method and its parallel variants are the most
important examples [34], [46], [17].

For the elliptic curve discrete logarithm problem, there are some particular
cases where a solution can be found with a complexity better than O(

√
n). See

[30], [38], [40], [37]. Similar cases were discovered for hyperelliptic curves [14],
[35]. However they are very particular and can be easily avoided when designing
a cryptosystem.

In 1994, Adleman, DeMarrais and Huang [1] published the first algorithm
(ADH for short) to compute discrete logs which runs in subexponential time
when the genus is sufficiently large compared to the size of the ground field.
This algorithm was rather theoretical, and some improvements to it were done.
Flassenberg and Paulus [13] implemented a sieve version of this algorithm, but
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the consequences for cryptographical applications is not clear. Enge [11] im-
proved the original algorithm and gave a precise evaluation of the running time,
but did not implement his ideas. Müller, Stein and Thiel [32] extended the re-
sults to the real quadratic congruence function fields. Smart and Galbraith [16]
also gave some ideas in the context of the Weil descent, following ideas of Frey;
they dealt with general curves (not hyperelliptic).

Our purpose is to present a variant of existing index-calculus algorithms like
ADH or Hafner-McCurley [19], which allowed us to break a cryptosystem based
on a curve of genus 6 recently proposed by Koblitz. The main improvement
is due to the fact that the costly HNF computation in classical algorithms is
replaced by that of the kernel of a sparse matrix. A drawback is that we have
to assume that the order of the group in which we are working is known. This
is not a constraint in a cryptographical context, because the knowledge of this
order is preferable to build protocols. But from a theoretical point of view it
differs from ADH or Hafner-McCurley algorithm where the order of the group
was a byproduct of the discrete logarithm computation (in fact the aim of the
HNF computation was to find the group structure).

We will analyse our method for small genus and show that it is faster than
the Pollard Rho method as soon as the genus is strictly greater than 4. Indeed its
complexity is O(q2) where q is the cardinality of the base field. We will explain
below some consequences for the choice of the parameters, curve and base field,
when building a cryptosystem.

Moreover, the presence of an automorphism of order m on the curve can be
used to speed up the computation, just as in the Rho method [9] [17] [48]. This
is the case in almost all the examples in the literature. The gain in the Rho
method is a factor

√
m, but the gain obtained here is a factor m2, which is very

significant in practice.
The organization of the paper is as follows: in section 2 after some generalities

on hyperelliptic curves, our algorithm is described. It is analyzed in section 3,
and in section 4 we explain how the presence of an automorphism can help.
Finally the section 5 gives some details on our implementation and the results
of our experiments with Koblitz’s curve.

2 Description of the Algorithm

2.1 Hyperelliptic Curves

We give an overview of the theory of hyperelliptic curves. More precise state-
ments can be found in [24], [4], [15]. We will restrict ourselves to the so-called
imaginary quadratic case.

A hyperelliptic curve C of genus g over a field K is a smooth plane projective
curve which admits an affine equation of the form y2 +h(x)y = f(x), where f is
a polynomial of degree 2g + 1, and h is a polynomial of degree at most g, both
with coefficients in K.

A divisor on the curve C is a finite formal sum of points of the curve. The
set of all divisors yield an abelian group denoted by Div(C). For each divisor



An Algorithm for Solving the Discrete Log Problem on Hyperelliptic Curves 21

D =
∑

i niPi ∈ Div(C), where the Pi are points on the curve, we define the degree
of D by deg(D) =

∑

i ni. The set of all divisors of degree zero is a sub-group of
Div(C) denoted by Div0(C).

For each function ϕ(x, y) on the curve, we can define a divisor denoted by
div(ϕ) by assigning at each point Pi of the curve the value ni equal to the
multiplicity of the zero if ϕ(Pi) = 0, or the opposite of the multiplicity of the
pole if the function is not defined at Pi. It can be shown that the sum is finite,
and moreover that the degree of such a divisor is always zero. The set of all
divisors built from a function a subgroup of Div0(C) denoted by P(C) and we
call these divisors principal. The Jacobian of the curve C is then defined by the
quotient group Jac(C) = Div(C)0/P(C).

If the base field of the curve is a finite field with cardinality q, then the
Jacobian of the curve is a finite abelian group of order around qg. The Hasse-Weil
bound gives a precise interval for this order: (

√
q−1)2g ≤ #Jac(C) ≤ (

√
q+1)2g.

In [4], Cantor gave an efficient algorithm for the computation of the group
law. We do not recall his method, but we recall the representation of the elements.

Proposition 1 In every class of divisors in Jac(C), there exists an unique divi-

sor D = P1+ · · ·+Pg−g∞, such that for all i 6= j, Pi and Pj are not symmetric

points. Such a divisor is called reduced, and there is a unique representation of D
by two polynomials [u, v], such that deg v < deg u ≤ g, and u divides v2+hv−f .

In this representation, the roots of the polynomial u are exactly the abscissae
of the points which occur in the reduced divisor.

The group Jac(C) can now be used in cryptographical protocols based on the
discrete logarithm problem, for example Diffie-Hellman or ElGamal’s protocols.
The security relies on the difficulty of the following problem.

Definition 1 The hyperelliptic discrete logarithm problem takes on input a

hyperelliptic curve of given genus, an element D1 of the Jacobian, its order n,
and another element D2 in the subgroup generated by D1. The problem is to find

an integer λ modulo n such that D2 = λ.D1.

2.2 Smooth Divisors

Like any index-calculus method, our algorithm is based on the notions of smooth-
ness, and prime elements. We will recall these notions for divisors on hyperelliptic
curves, which were first defined in ADH.

Definition 2 With the polynomial representation D = [u, v], a divisor will be

said to be prime if the polynomial u is irreducible over Fq.

For a prime divisor D, when there is no possible confusion with the degree of
D as a divisor (which is always zero), we will talk about the degree of D instead
of the degree of u.

Proposition 2 A divisor D of Jac(C) represented by the polynomials [u, v] is
equal to the sum of prime divisors [ui, vi], where the ui are the prime factors of
u.
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Now we can give the smoothness definition. Let S be an integer called the
smoothness bound.

Definition 3 A divisor is said to be S-smooth if all its prime divisors are of

degree at most S. When S = 1, a 1-smooth divisor will be a divisor for which

the polynomial u splits completely over Fq.

The case S = 1 is the most important for two reasons: the first one is that for
a relatively small genus (say at most 9), and a reasonable field size, this choice is
the best in practice. The second one is that if we want to analyze our algorithm
for a fixed g and a q tending to infinity, this is also the good choice.

The definition of a smooth divisor can be seen directly on the expression of
D as a sum of points of the curve. Note that a divisor defined over Fq is defined
by being invariant under the Galois action. But it does not imply that the points
occuring in it are defined over Fq; they can be exchanged by Galois. Hence an
equivalent definition of smoothness is given by the following proposition.

Proposition 3 A divisor D = P1 + · · · + Pg − g∞ is S-smooth if and only if

each point Pi is defined over an extension Fqk with k ≤ S.

We define also a factor basis, similar to the one used for classical discrete log
problem over F∗p.

Definition 4 The factor basis, denoted by GS, is the set of all the prime divisors

of degree at most S. For S = 1 we simply write G.

In the following, we will always take S = 1 and we will say ‘smooth divisor’
for 1-smooth divisor.

2.3 Overview of the Algorithm

For the sake of simplicity, we will suppose that the Jacobian of the curve has
an order which is almost prime and that we have to compute a discrete log in
the subgroup of large prime order (this is always the case in cryptography). Let
n = ord(D1) be this prime order, and D2 be the element for which we search
the log.

We introduce a pseudo-random walk (as in [45]) in the subgroup generated
by D1: Let R0 = α0D1 + β0D2 be the starting point of the walk, where R0 is
the reduced divisor obtained by Cantor’s algorithm, and α0 and β0 are random
integers. For j from 1 to r, we compute random divisors T (j) = α(j)D1+β(j)D2.
The walk will then be given by Ri+1 = Ri+T (H(Ri)), where H is a hash function
from the subgroup generated by D1 to the interval [1, r]. This hash function is
assumed to have good statistical properties; in practice, it can be given by the
last bits in the internal representation of the divisors. Once the initialization is
finished, we can compute a new pseudo-random element Ri+1 at the cost of one
addition in the Jacobian. Moreover at each step we get a representation of Ri+1

as αi+1D1 + βi+1D2, where αi+1 and βi+1 are integers modulo n.
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The classical ρ method is to wait for a collision Ri1 = Ri2 , which will yield
the discrete logarithm λ = −(αi1−αi2)/(βi1−βi2) mod n. We can however make
use of the smooth divisors. For each Ri of the random walk, test its smoothness.
If it is smooth, express it on the factor basis, else throw it away. Thus we extract
a subsequence of the sequence (Ri) where all the divisors are smooth. We denote
also by (Ri) this subsequence. Hence we can put the result of this computation
in a matrix M , each column representing an element of the factor basis, and
each row being a reduced divisor Ri expressed on the basis: for a row i, we have
Ri =

∑

kmikgk, where M = (mik). We collect w + 1 rows in order to have
a (w + 1) × w matrix. Thus the kernel of the transpose of M is of dimension
at least 1. Using linear algebra, we find a non-zero vector of this kernel, which
corresponds to a relation between the Ri’s. Then we have a family (γi) such that
∑

i γiRi = 0. Going back to the expression of Ri in function of D1 and D2, we
get:

∑

i γi(αiD1 + βiD2) = 0, and then

λ = −
∑

i γiαi
∑

i γiβi
.

The discrete logarithm is now found with high probability (the denominator is
zero with probability 1/n).

We summarize this algorithm in the figure 1.

2.4 Details on Critical Phases

In the first step, we have to build the factor basis, and for that, we have to find,
if it exists, a polynomial v corresponding to a given irreducible u. This can be
rewritten in solving an equation of degree 2 over Fq, which can be done quickly.

The initialization of the random walk is only a matter of operations in the
group; after that, computing each random divisor Ri requires a single operation
in the group.

One crucial point is to test the smoothness of a divisor, i.e. to decide if a
polynomial of degree g (the u of the divisor) splits completely on Fq. A way to
do that is to perform the beginning of the factorization of u, which is called DDF
(stands for distinct degree factorization). By computing gcd(Xq −X,u(X)), we
get the product of all the prime factors of u of degree 1. Thus if the degree of
this product is equal to the degree of u, it proves that u splits completely on Fq.

In the case where a smooth divisor is detected, the factorization can be
completed, or a trial division with the elements of the basis can be performed.

The linear algebra is the last crucial point. The matrix obtained is sparse,
and we have at most g terms in each row. Then sparse technique like Lanczos’s
[27] or Wiedemann’s [47] algorithm can be used, in order to get a solution in
time quadratic in the number of rows (instead of cubic by Gaussian elimination).

Some other optimizations can be done to speed up the computation. They
will be described in section 5.
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Input: A divisor D1 of a curve of genus g over Fq, of prime order n =
ord(D1), a divisor D2 ∈ 〈D1〉, and a parameter r.
Output: An integer λ such that D2 = λD1.

1. /* Build the factor basis G */
For each monic irreducible polynomial ui over Fq of degree 1, try to find
vi such that [ui, vi] is a divisor of the curve. If there is a solution, store
gi = [ui, vi] in G (we only put one of the two opposite divisors in the
basis).

2. /* Initialization of the random walk */
For j from 1 to r, select α(j) and β(j) at random in [1..n], and compute
T (j) := α(j)D1 + β(j)D2.
Select α0 and β0 at random in [1..n] and compute R0 := α0D1 + β0D2.
Set k to 1.

3. /* Main loop */
(a) /* Look for a smooth divisor */

Compute j := H(R0), R0 := R0 + T (j), α0 := α0 + α(j) mod n, and
β0 := β0 + β(j) mod n.
Repeat this step until R0 = [u0(z), v0(z)] is a smooth divisor.

(b) /* Express R0 on the basis G */
Factor u0(z) over Fq, and determine the positions of the factors in
the basis G. Store the result as a row Rk =

∑

mikgi of a matrix
M = (mik).
Store the coefficients αk = α0 and βk = β0.
If k < #G+ 1, then set k := k + 1, and return to step 3.a.

4. /* Linear algebra */
Find a non zero vector (γk) of the kernel of the transpose of the matrix
M . The computation can be done in the field Z/nZ.

5. /* Solution */
Return λ = −(

∑

αkγk)/(
∑

βkγk) mod n. (If the denominator is zero,
return to step 2.)

Fig. 1. Discrete log algorithm

3 Analysis

3.1 Probability for a Divisor to Be Smooth

The following proposition gives the proportion of smooth divisors and then the
probability of smoothness in a random walk. This is a key tool for the complexity
analysis.

Proposition 4 The proportion of smooth divisors in the Jacobian of a curve of

genus g over Fq tends to 1/g! when q tends to infinity.

Proof: This proposition is based on the Hasse-Weil bound for algebraic curves:
the number of points of a curve of genus g over a finite field with q elements is
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equal to q+1 with an error of at most 2g
√
q, i.e. for large enough q we can neglect

it. Moreover the cardinality of its Jacobian is equal to qg with an error bounded
by approximatively 2gqg−

1
2 . Here the approximation holds when q is sufficiently

large compared to 4g2, which is the case in the applications considered.
To evaluate the proportion of smooth divisors, we consider the number of

points of the curve over Fq which is approximatively q. Now, the smooth divisors
of the Jacobian are in bijection with the g-multiset of points of the curve: we
have qg/g! smooth divisors, and the searched proportion is 1/g!. 2

3.2 Complexity

The complexity of the algorithm will be exponential in the size of q, so we will
count the number of operations which can be done in polynomial time. These
operations are of four types: we denote by cJ the cost of a group operation in
the Jacobian, cq the cost of an operation in the base field, cq,g the cost of an
operation on polynomials of degree g over the base field, and cn the cost of an
operation in Z/nZ, where n ≈ qg is the order of the Jacobian. We consider the
enumeration of steps in figure 1.

Step 1. For the building of the factor basis, we have to perform q times (i.e. the
number of monic irreducible polynomial of degree 1) a resolution of an equation
of degree 2 over Fq. Hence the complexity of this phase is O(qcq).

Step 2. The initialization of the random walk is only a polynomial number of
simple operations. Hence we have O((log n)cJ ) for this step.

Step 3. We have to repeat #G = O(q) times the steps 3.a. and 3.b.
Step 3.a. The computation of a new element of the random walk costs an addi-
tion in the Jacobian and two additions modulo n, and the test for its smoothness
costs a first step of DDF. By proposition 4, we have to compute g! divisors on
average before getting a smooth one and going away from step 3.a. Hence the
cost of this step is O(g!(cJ + cn + cq,g)).
Step 3.b. The final splitting of the polynomial in order to express the divisor
on the factor basis can not be proved to be deterministic polynomial (though
it is very fast in practice). For the analysis, we can then suppose that we do a
trial division with all the elements of the basis. This leads to a complexity of
O(qcq,g).

Hence the complexity of step 3. is O(qg!(cJ + cn + cq,g)) +O(q2cq,g).

Step 4. This linear algebra step consists in finding a vector of the kernel in
a sparse matrix of size O(q), and of weight O(gq); the coefficient are in Z/nZ.
Hence Lanczos’s algorithm provides a solution with cost O(gq2cn).

Step 5. This last step requires only O(q) multiplications modulo n, and one
inversion. Hence the complexity is O(qcn).

Finally, the overall complexity of the algorithm isO(g!qcJ )+O((g!q+gq2)(cn+
cq,g))+O(qcq). Now, by Cantor’s algorithm cJ is polynomial in g log q, and clas-
sical algorithm on finite fields and polynomials give cn polynomial in n = g log q,



26 Pierrick Gaudry

cq polynomial in log q and cq,g polynomial in g log q. Hence all these operations
can be done in time bounded by a polynomial in g log q.

Theorem 1 The algorithm requires O(q2 + g!q) polynomial time operations in

g log q and if one considers a fixed genus g, the algorithm takes time O(q2 logγ q).

4 Using Automorphisms on the Curve

4.1 Curves with Automorphisms in the Literature

When buiding a cryptosystem based on a hyperelliptic curve, it is preferable
to know the order of the Jacobian of this curve. Indeed, some protocols use the
group order; moreover it is necessary to be sure that it is not smooth. For elliptic
curves, the Schoof-Elkies-Atkin algorithm allows to compute quickly this order
for random curves (see [29] [28] [22] ). For random hyperelliptic curves, a similar
polynomial time algorithm exists [33], however it is still unusable in practice (see
recent progress on this subject [21] [43]). That is the reason why the curves that
we can find in the literature are very particular: they are built in such a way
that the order of their Jacobian is easy to compute.

A first way to build such curves is to take a curve defined over a small finite
field Fq. It is then possible to deduce the Zeta function (and hence the order)
of the Jacobian on the large field Fqn from the Zeta function of the Jacobian
on the small field. This construction provides then the so-called Frobenius au-
tomorphism defined by x 7→ xq, which can be applied to each coordinate of a
point of the curve and gives therefore an automorphism of order n.

Another construction, which is a bit harder than the previous (see [42] [7]
[3], comes from the theory of complex multiplication. This theory allows to
build a curve starting from its ring of endomorphisms. In some cases, this ring
contains units of finite order, and then there is an automorphism on the curve
corresponding to this unit.

In table 1 we give some examples of curves found in the literature with non
trivial automorphisms, and the order obtained by combining them together with
the hyperelliptic involution.

Table 1. Examples of curves

Author Equation of curve Field Automorphisms Order

Koblitz [24], [25] Y 2 + Y = X2g+1 + X F2n Frobenius 2n
Y 2 + Y = X2g+1 F2n Frobenius 2n

Buhler Koblitz [3] Y 2 + Y = X2g+1 Fp with mult by ζ2g+1 2(2g + 1)
Chao et al. [7] (and twists) p ≡ 1 (2g + 1)

Sakai Sakurai [36]
Smart [41]

Y 2 + Y = X13 + X11+
X9 + X5 + 1

F
229

Frobenius and






X 7→ X + 1
Y 7→ Y + X6 + X5

+ X4 + X3 + X2

4× 29

Duursma Sakurai [10] Y 2 = Xp −X + 1 Fpn

Frobenius and
{

X 7→ X + 1
Y 7→ Y

2np
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4.2 Reducing the Factor Basis with an Automorphism

In the context of the Pollard’s rho algorithm, the existence of an automorphism
of order m that can be quickly evaluated can be used to divide the expected
running time by a factor

√
m, see [9]. With our algorithm, the automorphism

can be used to reduce the basis and leads to a speed-up by a factor m2, which
can be very significant in practice. Moreover, the automorphism does not need
to be so quickly evaluated as in the rho method. A polynomial time evaluation
is enough.

The idea is to keep in the factor basis one representative for each orbit under
the action of the automorphism. Thus the size of the basis is reduced by a factor
m, so the necessary number of relations is reduced by the same factor, and the
linear algebra phase is speeded up by a factor m2. Let us explain how it works.

For the moment, assume that the Jacobian is cyclic of prime order n =
ord(D1), and denote by σ an automorphism of orderm on C extended by linearity
to an automorphism of Jac(C). Then σ(D1) belongs to Jac(C) = 〈D1〉, and
there exists an integer θ such that σ(D1) = θD1. Moreover, σ being a group
automorphism, for all D ∈ Jac(C), D = kD1 and we have σ(D) = σ(kD1) =
kσ(D1) = kθD1 = θD.

Suppose now that we have only kept in the basis one element for each orbit
under σ. Let R = P1 + P2 + · · · + Pk = αD1 + βD2 be the decomposition of a
smooth divisor into prime divisors of degree 1. For each i, there is a power of σ
such that the prime divisor Pi is equal to σli(gi), where gi is an element of the
reduced factor basis. Then we can write R = θl1(g1)+ · · ·+ θlk(gk), and we have
a relation in a matrix with m times less columns than the original one.

For the general case where the Jacobian is not cyclic and where we work in a
subgroup of prime order n, we have to work a little to justify the computations,
but in practice we do essentially the same.

5 Implementation and Results

We have implemented the algorithm in two distinct parts. The first one deals
with the building of the matrix and is written in the computer algebra system
Magma [2], which is a very good compromise between high level programming
and efficiency. The second part is our optimized implementation of the Lanczos
algorithm written in C.

5.1 Implementation of the Search for Relations

This part of the implementation was not optimized: it can be done in parallel
and it is not the limiting phase. However an interesting optimization suggested
by François Morain has been tested. It is based on a paper by Swan [44], where
a theorem is given which relates the parity of the number of irreducible factors
of a polynomial over a finite field and the fact that its discriminant is a square
or not in the corresponding local field. In the context of smoothness testing, a



28 Pierrick Gaudry

first computation can be done that tests if the discriminant is a square, and then
in half the cases we know that the polynomial cannot split completely and we
reject it. If the first test is passed, we do the classical smoothness test by DDF.

This technique provides a gain if and only if Swan’s test costs less than half
the time of the classical one. In odd characteristic, this is always the case (for
large q), but in characteristic 2, the running time estimation is harder because
some computations have to be done over an extension of Z/8Z and no package
exists that provides optimized code for this ring. Note that the complications
for the even characteristic is not surprising because in the finite field F2n every
element is a quadratic residue and it is not simple to have a practical translation
of Swan’s theorem .

In our implementation, the use of Swan’s theorem gave us a speed-up of 30
to 40% for the smoothness test in odd characteristic, but no improvement for
characteristic 2.

5.2 Implementation of the Linear Algebra

A critical step in the algorithm is the search of a vector in the kernel of a sparse
matrix. We chose Lanczos’s algorithm in preference to Wiedemann’s, because it
needs only 2n products of the matrix by a vector, to be compared to 3n with
Wiedemann’s technique. The drawback is a non negligible amount of time spent
in computing some scalar products. We refer to [27] for a precise comparison of
these two algorithms.

We wrote our program in the C language, using the ZEN library [6] for
things which were not critical (i.e. operations that are called a linear number
of times), and for others (i.e. operations in the matrix-vector multiplication and
scalar products), we used direct calls to some assembly routines taken from the
GMP [18] and BigNum [20] packages. Indeed our compact representation of the
matrix led to an overcost when using the ZEN functions. We used a classical
representation (we could probably obtain a better efficiency with Montgomery
representation), with the lazy reduction technique explained in [8].

Before running Lanczos’s algorithm, a preprocessing can be done on the ma-
trix (see [8] [5]). This filtering step (also called structured Gaussian elimination)
consists in the following tasks:

– Delete the empty columns.
– Delete the columns with exactly one term and the corresponding row.
– If the number of rows is greater than the number of columns plus one, delete

one row (randomly chosen, or via an heuristic method).
– Try the beginning of a Gaussian elimination, where the pivot is chosen as to

minimize the augmentation of the weight of the matrix, and stopping when
it increases the cost of Lanczos’s algorithm.

For the examples below, we have run only the first three tasks, our implementa-
tion of the last one being unsatisfactory. Therefore there is still some place for
further optimizations.
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5.3 Timings for Real Life Curves

The first example is a cryptosystem recently proposed by Buhler and Koblitz
[3]. We took the values recommended by Koblitz in his book [26], i.e. we have
worked on the curve y2 + y = x13, with a prime base field of order p greater
than 5, 000, 000, with p ≡ 1 mod 13. This curve has an automorphism of order
13 coming from complex multiplication, which helps in the computation of the
order of the Jacobian, but helps also our attack.

The following table gives precise information on that curve.

field F5026243

equation y2 + y = x13

genus 6
#J 133 × 7345240503856807663632202049344834001 ≈ 1040

We give the measured timings for the computation of a discrete logarithm in
the following table. These timings are on a Pentium II 450 MHz with 128 Mb.
During the Lanczos’s step (the most space consuming part of the algorithm),
the memory used was around 60Mb.

cardinal of factor basis 193, 485
time for building the basis 1638 sec
number of random steps 201, 426, 284

number of early abort by Swan 100, 721, 873
number of relations collected 281, 200
proportion of smooths (g!) 716.3 (720)

total time for collecting the relations 513, 870 sec = 6 days

time for writing relations on the basis 8, 822 sec
time for preprocessing the matrix 1218 sec

size of the matrix 165, 778× 165, 779
total time for Lanczos 780, 268 sec = 9 days

Our algorithm is not dependent on the characteristic of the base field. We
have tested our implementation on a genus 6 curve over F223 . This curve was
obtained by extending the scalars of a curve defined over F2. Therefore the
Frobenius automorphism can be used for accelerating the attack. The size of the
Jacobian is around 1041. Such a curve is not breakable by a parallel collision
search based on the birthday paradox (variants of Rho); indeed even using the
automorphism, we should compute about 263 operations in the Jacobian.

We give the same indications as for the previous curve.

field F223

equation y2 + (x+ 1)y = x13 + x11 + x8 + x7 + x5 + x4 + x+ 1
genus 6
#J 23 × 7× 6225718452117034383550124899048999495177 ≈ 1041
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cardinal of factor basis 182, 462
time for building the basis 6575 sec
number of random steps 165, 732, 450

number of relations collected 231, 000
proportion of smooths (g!) 717.5 (720)

total time for collecting the relations 797, 073 sec = 9 days

time for writing relations on the basis 12, 057 sec
time for preprocessing the matrix 880 sec

size of the matrix 162, 873× 162, 874
total time for Lanczos 1, 038, 534 sec = 12 days

6 Conclusion

We have proposed an algorithm for the hyperelliptic discrete log problem, which
is simpler to implement and to analyze than the previous ones. It is specially
well suited for practical cryptosystems where the genus is not too large (say less
than 9), and the base field is relatively small. Indeed the expected running time
is O(q2) for curves of small genus and therefore it is faster than Pollard Rho as
soon as the genus is greater than 4, as explained in the following table:

g 1 2 3 4 5 6 7

Rho q1/2 q q3/2 q2 q5/2 q3 q7/2

Index q2 q2 q2 q2 q2 q2 q2

Practical experiments have shown that this algorithm is efficient in practice,
and a genus 6 example was broken by this technique. Hence it seems that there
is no point in using hyperelliptic cryptosystem with genus other than 2, 3 or 4,
because for a higher genus, the size of the key has to be chosen larger in order to
guarantee a given level of security. Indeed, assume that we want to have a key
of size 2160, i.e. a group of order ≈ 2160, then we have to choose g log q ≈ 160.
Increasing g implies decreasing log q and helps the attack. Hence one of the
interests of the use of hyperelliptic curves, which was to decrease the size of q
(for example to avoid multiprecision) becomes a weakness.

The special case of genus 4 has to be further studied. In a first approximation
the complexity of Rho and our algorithm seem similar, but one trick can be
played. We can decide to keep only a fraction of the divisors in the factor basis.
Assume that we reduce the basis by a factor n. Then the probability to get a
good divisor in the random walk is reduced by a factor ng, and the cost of the
first phase of the algorithm increases by a factor ng−1, whereas the linear algebra
is reduced by a factor n2. In this context, Robert Harley pointed out to us that
if we assume that the factorization of polynomials can be done in polynomial
time (true in practice), we can balance both phases and choose n in order to

get an overall complexity of O(q
2g

g+1 ). For g = 4, it becomes O(q8/5), which is
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better than the complexity of the Rho method. We are going to do practical
comparisons between the two approaches in a near future.

From a theoretical point of view, we can also analyse our algorithm in the
same model as for ADH algorithm, i.e. we assume that the genus grows with
q and is always large enough. More precisely, if we have g > log q, we can let
vary the smoothness bound S (instead of have it fixed to one), and we obtain a
subexponential algorithm with expected running time Lqg [1/2,

√
2]. This result

is part of a work with Andreas Enge, where a general framework for this kind
of attack is given [12].
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