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Abstract. Ring signatures, introduced by [RST01], are a variant of digi-
tal signatures which certify that one among a particular set of parties has
endorsed a message while hiding which party in the set was the signer.
Ring signatures are designed to allow anyone to attach anyone else’s
name to a signature, as long as the signer’s own name is also attached.

But what guarantee do ring signatures provide if a purported signatory
wishes to denounce a signed message — or alternatively, if a signatory
wishes to later come forward and claim ownership of a signature? Prior
security definitions for ring signatures do not give a conclusive answer
to this question: under most existing definitions, the guarantees could
go either way. That is, it is consistent with some standard definitions
that a non-signer might be able to repudiate a signature that he did
not produce, or that this might be impossible. Similarly, a signer might
be able to later convincingly claim that a signature he produced is in-
deed his own, or not. Any of these guarantees might be desirable. For
instance, a whistleblower might have reason to want to later claim an
anonymously released signature, or a person falsely implicated in a crime
associated with a ring signature might wish to denounce the signature
that is framing them and damaging their reputation. In other circum-
stances, it might be desirable that even under duress, a member of a ring
cannot produce proof that he did or did not sign a particular signature.
In any case, a guarantee one way or the other seems highly desirable.

In this work, we formalize definitions and give constructions of the new
notions of repudiable, unrepudiable, claimable, and unclaimable ring sig-
natures. Our repudiable construction is based on VRFs, which are im-
plied by several number-theoretic assumptions (including strong RSA or
bilinear maps); our claimable construction is a black-box transformation
from any standard ring signature scheme to a claimable one; and our un-
claimable construction is derived from the lattice-based ring signatures
of [BK10], which rely on hardness of SIS. Our repudiable construction
also provides a new construction of standard ring signatures.

1 Introduction

Ring signatures, introduced by [RST01], are a variant of digital signatures which
certify that one among a particular set of parties has signed a particular message,
without revealing which specific party is the signer. This set is called a “ring.”



Ring signatures can be useful, for example, to certify that certain leaked infor-
mation comes from a privileged set of government or company officials without
revealing the identity of the whistleblower, to issue important orders or direc-
tives without setting up the signer to be a scapegoat for repercussions, or to
enable untraceable transactions in cryptocurrencies (as in Monero [Mon]).

In a ring signature scheme, just as in a traditional digital signature scheme,
any party can create a key pair for signing and verification, and publish the
verification key. Signers can produce signatures that verify with respect to any
set of verification keys that includes their own, and unforgeability guarantees
that no party can produce a valid signature with respect to a set of verification
keys without possessing a corresponding secret key.

But what guarantee does a ring signature scheme provide if a purported
signatory wishes to denounce a signed message — or alternatively, if a signa-
tory wishes to later come forward and claim ownership of a signature? Given
the motivation of anonymity behind the notion of a ring signature, a natural
first intuition might be that parties should be able neither to denounce nor to
claim a signature in a convincing way. However, depending on the threat model,
we believe that the opposite guarantees — that is, to guarantee the ability to
denounce or claim signatures — may be useful too, as elaborated below. Fur-
thermore, whatever one’s preference, a guarantee one way or the other seems
more desirable than no guarantee either way.

Prior security definitions for ring signatures do not conclusively provide these
guarantees one way or the other. That is, a non-signer might be able to repudiate
a signature that he did not produce (“repudiability”), or this might be impossible
(“unrepudiability”). Similarly, a signer might be able to later convincingly claim
that a signature he produced is indeed his own (“claimability”), or be unable to
do so (“unclaimability”).

The most detailed taxonomy of security definitions for ring signatures was
given by [BKM09], which presents a series of anonymity guarantees of increasing
strength. A natural anonymity guarantee defined by [BKM09], called “anonymity
against adversarially chosen keys,” is informally described as follows: an adver-
sary who controls all but t ≥ 2 parties in a ring, and who may produce his own
malformed key pairs as well as corrupt honest parties’ keys, must have negligible
advantage at guessing which of the t honest parties produced a given signature.
This anonymity definition might allow a party to ascertain whether a given sig-
nature was produced by her own signing key, and perhaps also to convince others
of this fact — but it does not guarantee or prohibit either of these capabilities.

On the other hand, the strongest of the anonymity definitions of [BKM09]
(called “anonymity against full key exposure”) requires that even if an adversary
compromises every single party in a ring, the adversary cannot identify the
signers of past signatures. It is relatively straightforward to see that under such
a strong anonymity guarantee, Alice would have no way to convince anyone that
she did not produce the objectionable message; indeed, she herself cannot tell
the difference between a signature produced using her own signing key and one
produced using someone else’s.
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The ability to identify whether one’s own signing key was used to produce
a particular signature can be a feature or a bug. To protect anonymity of past
signatures against a very strong adversary who might compromise all the secret
keys in a ring, it seems desirable to prevent distinguishing one’s own signatures
from those generated by someone else. On the other hand, without the ability
to distinguish, it would be virtually impossible to tell if someone had stolen
your signing key. Moreover, as discussed below, it could be beneficial in certain
circumstances for members of a ring to have the ability to disown signatures of
messages that they have strong reasons to denounce; and conversely, in some
circumstances the signer of a message might later wish to prove to the world
that he was the one who produced a particular signature in the past.

We have now identified four potentially useful notions for ring signatures:
repudiability, unrepudiability, claimability, and unclaimability. The main contri-
butions in this paper consist both of new definitions and constructions of each of
these notions. Before diving into an overview of definition and constructions, we
provide some discussion of why each of these notions — some of which directly
oppose each other — may be meaningful and desirable: the following scenarios
explore a few of the circumstances in which various of the above guarantees might
be appropriate. Though some of the scenarios are phrased somewhat whimsically,
we believe that each scenario illustrates a meaningful threat model motivating
the definition concerned.

Scenario 1 (Repudiability) Let us consider a hypothetical tale, wherein two
candidates Alice and Bob are running for president in the land of Oz. Oz is
notorious for its petty partisan politics and its tendency to prefer whomever
appears friendlier in a series of nationally televised grinning contests between
the main-party candidates. At the peak of election season, a disgruntled citizen
Eve decides to help out her preferred candidate Bob by publishing the following
message, which goes viral on the social networks of Bob supporters:

I created a notorious terrorist group and laundered lots of money!
Signed: Alice or Eve or Alice’s campaign chairman.

Of course, the virally publicized message does not actually incriminate Alice
at all, since any one of the signatories could have produced it. However, perhaps
there is nothing that Alice can do to allay the doubt in the minds of her suspicious
detractors. As mentioned above, ring signatures are deliberately designed to
allow anyone to attach anyone else’s name to a signature, without the latter’s
knowledge or consent. Despite this, there could be realistic situations in which
non-signing members of a ring associated with a particular message could suffer
serious consequences through no fault of their own, perhaps due to the real signer
adversarially trying to damage their reputation. In light of this, perhaps it would
be desirable in some contexts for the owner of a verification key to be able to
denounce messages, e.g., to clear her name of a crime or hate speech accusation
that might otherwise impact her life in terms of reputation, job prospects, or
incarceration.
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Scenario 2 (Claimability) Our next story concerns a talented brewery employee
who developed new statistical techniques to test the quality of beers. Naturally,
his employer was protective of its competitive advantage since other breweries at
the time may not have been using similar statistical methods. Yet, in the interest
of science, they allowed him to publish his results — on condition of anonymity.3

A credible way to prove authorship at a later date, after the need for anonymity
has ceased to exist, might be very useful — especially in case of competing claims
by impostors. As we see here, claiming authorship of an anonymous work may
become appropriate after a passage of time. The next example illustrates quite
a different type of situation in which claimability at the signer’s discretion may
be valuable.

Consider an employee Emily who is concerned about unethical practices at
her company, and takes it upon herself to expose what is going on and publish a
critical commentary. Concerned about her job security and possible retribution,
as well as the credibility of her allegations, she maintains her anonymity using
ring signatures. It emerges, in fact, that similar practices are prevalent across
the industry: related revelations drive a wider movement of reform. Some time
later, after her company has substantially reformed its practices and her fears
of retribution have been allayed — perhaps by her promotion, or by a change
in leadership — Emily seeks to reveal her identity and add her voice to the
growing movement, providing her solidarity, legitimation, and follow-up story.
In addition, if following the reforms, those involved in the earlier unethical prac-
tices were subject to stigma or even prosecution, claimability of her earlier ring
signatures would allow Emily to exculpate herself.

Scenario 3 (Unrepudiability and unclaimability) Let us return to the government
of the fictional country of Oz. The parliament of Oz is mired in partisan grid-
lock, with legislators from each party ruthlessly voting down any bills, however
reasonable, proposed by members of the opposing party — preventing any laws
at all from being enacted and effectively shutting down the government, which
is in no party’s interest. Suppose that instead of directly proposing a new law, a
legislator of Oz anonymously publishes the text of the proposed bill using a ring
signature scheme:

Proposed: that free ice cream shall be provided every Tuesday.4

Signed: a member of the Parliament of Oz.

If the signer used an unclaimable ring signature scheme, then she could not
decide to reveal her identity upon a later change of heart, allowing legislators of
both parties to support or oppose the bill on its merits without worrying about
purely political considerations.

3 This is the true story of William Sealy Gosset’s invention of the Student’s t-test at
Guinness Brewery in 1908 [Man00].

4 Even if each party might support this legislation, they may be unwilling to do so if
it were proposed by the other party, decrying their respective opponents as either
fiscally irresponsible or in the pocket of Big Ice Cream.
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Unclaimability and unrepudiability may be particularly useful guarantees
in scenarios where the placement of whole groups of people under duress is a
substantial concern. For instance, in circumstances where an employer or author-
itarian government may coercively compel individuals to provide a repudiation
or proof of authorship (e.g. signing randomness) for a signature, the provable
inability to do so convincingly may be essential. Unrepudiability may also be
desirable in situations in which members of a ring are likely to have conflict-
ing individual incentives but there is a possibility of collective benefit in case of
cooperation, as in a prisoner’s dilemma scenario.

Summary of technical contributions. We formalize repudiability, unrepudi-
ability, claimability, and unclaimability of ring signatures, as well as strength-
ened anonymity and unforgeability definitions which are compatible with each of
these notions. We show that unclaimability implies unrepudiability (intuitively,
because a failed repudiation can be used as a claim). Anonymity against adver-
sarially chosen keys is the strongest anonymity notion compatible with repudi-
ability and claimability, and anonymity against full key exposure is implied by
unclaimability and equivalent to unrepudiability.

We provide three constructions based on different assumptions, one for each
of the three notions of repudiability, claimability, and unclaimability. Perhaps
the most surprising of these is unclaimability, which guarantees that the signer
cannot later credibly convince others that she produced a particular signature. A
natural first intuition is that meaningful notions of unclaimability might be im-
possible to achieve, since a signer can always remember the signing randomness
(and later present it as “proof” of having produced a signature). The key insight
for our definition and construction of unclaimable ring signatures is that the
signing randomness does not constitute a convincing claim if anyone in the ring
can also produce credible signing randomness for any signature in which they
are implicated. Our construction of unclaimable ring signatures is an augmen-
tation of the lattice-based ring signature scheme of [BK10] that adds additional
algorithms allowing anyone in the ring to generate credible signing randomness;
this capability is achieved via lattice trapdoors.

Our construction of repudiable ring signatures is based on verifiable random
functions (VRFs), which are implied by either the (strong) RSA assumption,
assumptions on bilinear maps, or NIWIs and commitments; see [Bit17,GHKW17]
and references therein for more detailed discussion of the assumptions that imply
VRFs. Our construction does not use standard ring signatures as a building
block, and as such can also be viewed as a new construction of standard ring
signatures. Our construction of claimable ring signatures, on the other hand, is
a simple and generic black-box transformation from any standard ring signature
scheme to a claimable one. We overview our contributions in more detail below.

1.1 Definitional contributions

Repudiability. We define a repudiable ring signature scheme as a ring signature
scheme that is equipped with additional algorithms Repudiate and VerRepud as
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follows. Repudiate takes as input a signing key sk, a ring signature σ, and a “ring”
R (i.e., a set of verification keys), and outputs a repudiation ξ. VerRepud takes
as input a ring R, a signature σ, a repudiation ξ, and a verification key vk, and
outputs a a single bit indicating whether or not ξ is a valid repudiation attesting
that σ was not produced by vk. The two requirements for a ring signature scheme
to be repudiable are, informally, as follows.

1. Correctness: Any member of a ring must be able to produce valid repudiations
of any signature that he did not produce.

2. Soundness: A cheating signer must not be able to produce a valid signature
with respect to a ring, and also be able to produce valid repudiations of that
signature under every verification key in that ring that he owns.

Once a ring signature scheme is equipped with these additional repudiation
algorithms, the standard definitions of unforgeability and anonymity against ad-
versarially chosen keys are insufficient to capture the natural guarantees that
would be desired for a repudiable ring signature scheme: we need the release
of repudiations not to compromise the unforgeability or anonymity of any fu-
ture signatures. Accordingly, we modify the definitions of unforgeability and
anonymity for repudiable ring signatures (Definitions 12 and 13), by additionally
giving the adversary access to a repudiation oracle. This ensures that repudia-
tions of past signatures do not affect the security guarantees of future signatures.
See Section 3.1 for formal definitions of repudiability.

Claimability. We define a claimable ring signature scheme as a ring signature
scheme equipped with additional algorithms Claim and VerClaim as follows. Claim
takes as input a signing key sk, a signature σ, and a ring R, and outputs a claim
ζ. VerClaim takes a input a ring R, a verification key vk, a signature σ, and a
claim ζ, and outputs a single bit indicating whether or not ζ is a valid claim
attesting that σ was produced by vk. The three requirements for a claimable
ring signature scheme are, informally, as follows.

1. Correctness: Any honest signer must be able to produce a valid claim with
respect to any signature that he produced.

2. Soundness: No adversary can produce a valid claim with respect to a sig-
nature produced by an honest signer, even if the adversary can choose the
message and ring with respect to which the signature is produced, and can
insert malformed verification keys into the ring.

3. No framing: No adversary can produce a signature together with a valid
claim of that signature on behalf of an honest (non-signing) party.

As above, once a ring signature scheme is equipped with these additional
claiming algorithms, the standard definitions of unforgeability and anonymity
against adversarially chosen keys are insufficient. We modify the definitions of
anonymity and unforgeability for claimable ring signatures (Definitions 18 and
19), by additionally giving the adversary access to a claim oracle. See Section
3.3 for formal definitions of repudiability.

Repudiability and claimability are compatible, i.e., a ring signature scheme
can be both repudiable and claimable. Indeed, our repudiable and claimable
constructions together give rise to such a scheme. Notably, the unforgeability
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and anonymity definitions corresponding to the natural notion of a repudiable-
and-claimable ring signature scheme are not the conjunction of unforgeabil-
ity and anonymity for repudiable ring signatures and for claimable ring sig-
natures. Rather, the unforgeability and anonymity definitions for a repudiable-
and-claimable ring signature scheme involve a stronger adversary which is si-
multaneously given access to both a repudiation oracle and a claim oracle. See
Section 3.5 for further discussion on repudiable-and-claimable schemes.

Unclaimability We also introduce unclaimable ring signature schemes, in which
the signer provably cannot convincingly claim that she was the one who produced
the signature. As briefly mentioned above, while the signer can always save the
signing randomness and reveal it along with her secret key in an attempt to claim
authorship of a signature, it is not always true that this constitutes a convincing
claim. In particular, such a claim is not credible if any member of the ring can
take a valid signature and produce fake randomness that produces the desired
signature using her own signing key.

The idea that a non-signer can adaptively produce fake randomness is remi-
niscent of deniable encryption [CDNO97], in which an encryptor and/or recipient
is required to produce fake randomness “explaining” that a particular ciphertext
is an encryption of an adversarially chosen message.

We define an unclaimable ring signature scheme to capture just this require-
ment: that is, any member of the ring must be able to produce fake signing
randomness for a signature that is distributed indistinguishably from real sign-
ing randomness. Intuitively, the only information potentially possessed by a
signer but not by the other members of the ring is the signing randomness,
so non-signers that can generate convincing simulated signing randomness can
also convincingly simulate any additional information that might be released by
the signer in an attempt to claim the signature. We consider a strong flavor of
this definition in which the indistinguishability property, described informally
below, is statistical.

1. Indistinguishability: Any member of a ring must be able to produce fake sign-
ing randomness given a signature. The signature and fake signing randomness
must be distributed statistically close to an honestly generated signature and
corresponding signing randomness used by that individual to sign the same
message, even given all verification keys and signing keys.

.

Remark 1. Even under this definition, if the signer chooses a message to sign
that corresponds to a secret known only to herself, then she may still be able to
convince others that she was the signer. For instance, if the signed message is the
output of a one-way function, she may be able to convince others that she was the
signer by subsequently revealing the preimage. Even more flagrantly, the signed
message could contain a signature using a standard (non-ring) signature scheme,
directly identifying the signer. This property is rather inherent: if knowledge of
the contents of the message itself at the time of signing are enough to identify
the signer, then no security property on the signature scheme can enforce that
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Repudiable VRF (Section 4)

Unrepudiable
RS anonymous against
FKE (Section 3.2)

Claimable
Transformation from
any RS (Section 5)

Unclaimable SIS (Section 6)

Claimable

Repudiable
Unrepudiable

Unclaimable

Fig. 1: Summary of our results and assumptions relied on. VRF = verifiable
random function, RS = ring signature, FKE = full key exposure, SIS = short
integer solution problem.

the signer remains hidden, since the identification of the signer is unrelated to
the signature and based only on the signed message.

Indeed, ring signatures were not designed to provide anonymity for signers
who want to identify themselves, but rather for those who desire anonymity.
Similarly, our unclaimability definition does not guarantee unclaimability for
those who want to identify themselves, but rather provides credibility for a
signer who wants to later be able to claim (e.g., under duress) that she could
not convincingly claim the signature even if she wanted to. In particular, even
an adversary with unlimited computational power who obtains the secret keys
belonging to every member of the ring and a purported signing randomness from
an alleged signer, he still will not be convinced of the identity of the signer, since
fake signing randomness from the right distribution can be produced for every
member of the ring.

Unrepudiability Unclaimability intuitively guarantees that no member of the
ring can convincingly prove that she was the signer. A related, weaker notion
that might be desirable in some circumstances is that of unrepudiability, which
guarantees that no member of the ring can convincingly prove that she was not
the signer. Unrepudiability is equivalent to anonymity against full key exposure
and is implied by unclaimability.

1.2 Overview of our constructions

Our repudiable construction Our construction relies on ZAPs (two-round
public-coin witness-indistinguishable proofs) and verifiable random functions
(VRFs) as building blocks.5 Our building blocks have some overlap with those
of the ring signature construction of [BKM09], which uses ZAPs, public-key en-
cryption (PKE), and a digital signature scheme. Both our scheme and theirs use
ZAPs to achieve anonymity of the ring signatures, but with different approaches:
the statements proven by the ZAPs are quite unrelated in the two constructions.
Moreover, in our scheme, we do not need PKE or signature schemes, and instead

5 VRFs imply ZAPs, so it suffices to assume VRFs. [GO92,DN07]
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use VRFs directly to achieve unforgeability and repudiability. The structure of
our construction is thus very different from that of [BKM09].

At a very high level, each signing key in our construction contains a tuple of
four VRF keys. A signature consists of the output of each of the signer’s VRFs
on the message, along with a ZAP proof that (several of) the VRF values in
the signature are correct w.r.t. the VRF verification key of some member of the
ring. A repudiation for individual i consists of a ZAP proof that some of the
VRF values in the signature are different from the correct values for party i’s
VRFs evaluated at the message. One complication arises because we must guar-
antee that the release of a repudiation for individual i on a message does not
subsequently allow a different member of the ring to produce a signature on the
message that cannot be repudiated by individual i. We overcome this difficulty
by relying on the witness indistinguishability property of the ZAP and ensuring
that the repudiation does not reveal the actual VRF outputs of the repudia-
tor; that is, the ZAP proof is produced with the VRF proof as a witness. The
specific statement proven by the ZAPs is that some specific combination of at
least two of the purported VRF outputs is correct. Although in the honest usage
of the scheme, all four are produced correctly, we design the specific structure
of the statements proved in order to allow a hybrid argument to argue indis-
tinguishability between signatures of different signers in a ring. This scheme of
proving the correctness of VRF outputs turns out also to imply unforgeability,
not only repudiability, so we do not need to rely on any underlying signature
scheme as building block. (In other words, our scheme can also be seen as a new
construction of standard ring signatures based on VRFs.)

Our claimable construction We give a generic transformation from any stan-
dard ring signature scheme RS to a claimable one. The transformation uses
commitment schemes, standard signatures, and PRFs (which are all achievable
from one-way functions). The basic idea is to take a signature σRS under RS and
append to it a commitment c to (vk, σRS) where vk is the verification key of
the signer. The verification algorithm simply checks whether σRS verifies. The
claim consists of a decommitment revealing that c is a commitment to (vk, σRS).
Intuitively, by the hiding property of the commitment scheme, the identity of
the signer is hidden until he chooses to publish a claim.

The simple transformation just described runs into a couple of problems
when examined in detail. First, what if a signer commits to (σRS, vk

′) where
vk′ is not his own key but that of someone else in the ring? This ability would
violate equation (6) of Definition 17 (claimability). To prevent such behavior, our
construction actually commits to a standard (non-ring) signature on (vk, σRS).
The unforgeability property of standard signatures then guarantees, intuitively,
that a signer cannot convincingly make a claim with respect to any verification
key unless he knows a corresponding signing key.

A second issue encountered by the scheme thus far described is that the signer
must remember the commitment randomness in order to produce a claim. It is
preferable that the signer not be stateful between signing and claiming; indeed,
Definition 17 requires this. To resolve this, our construction derives commitment
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randomness from a PRF. For similar reasons, the signing randomness for the
standard (non-ring) signature in our construction is also derived from a PRF.

Remark 2. Among the constructions presented in this paper, claimability is by
far the simplest. Moreover, as a generic transformation, it has the advantage of
adding minimal efficiency overhead to the existing state of the art in ring signa-
tures. The simplicity of achieving claimability is perhaps unsurprising in light of
the natural intuition that claiming should be possible simply by remembering the
signing randomness. As evidenced by unclaimability, this intuition is not strictly
true in general, as in certain schemes, producing signing randomness may not
prove authorship. In a nutshell, our generic transformation ensures that signing
randomness is indeed a convincing proof of authorship in the resulting scheme,
and moreover builds into the scheme a simple method of efficiently recovering
the signing randomness without storing it explicitly.

Our unclaimable construction Our construction of unclaimable ring signa-
tures is an extension of the SIS-based ring signature scheme of Brakerski and
Kalai [BK10]. The construction is based on trapdoor sampling. In this overview,
we describe a simplified version of the scheme. The full scheme is described in
Section 6. The basic idea for obtaining unclaimability is that each identity cor-
responds to a public matrix Ai ∈ Zn×mq sampled together with a secret trapdoor
Ti. A signature will consist of short vectors xi ∈ Zmq such that∑

i

Aixi = y,

where y is a target value. For this overview, we can think of y as the output of
a random oracle on the message; in the actual construction, y will be obtained
as the sum of additional matrix-vector products. In order to sign the message,
signer i first samples short vectors xj for each j 6= i. Then, using the lattice
trapdoor Ti, he samples a short vector xi such that the equation

xi = y −
∑
j 6=i

Ajxj

is satisfied. The signature is the list of vectors σ = (xi)i. Using properties of lat-
tice trapdoors, it follows that the distribution over (xi)i can be made statistically
close no matter which trapdoor was used to produce the signature. Moreover,
given a vector x∗ to be produced, we can sample random coins that will yield that
vector under either the ordinary sampling algorithm or the trapdoor sampling
algorithm. Consequently, we obtain an algorithm that can produce explanatory
randomness for a signature under any identity in the ring.

Removing the random oracle to obtain ring signatures in the plain model
(and unclaimable ones) requires several complications. [BK10] first describes
a basic ring signature scheme with weaker unforgeability properties, in which
the target vector y is determined using additional matrix-vector products for
matrices that depend on the bits of the message. They then amplify the security
of the scheme through a sequence of transformations that ultimately yield a
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scheme with full unforgeability. In Section 6, we first define an algorithm for
producing explanatory randomness for their basic scheme, and then describe how
to modify this algorithm for each modification of the basic scheme, ultimately
yielding an unclaimable ring signature scheme based on the SIS assumption.

Remark 3. The idea that a non-signer of a given signature can adaptively pro-
duce fake signing randomness is reminiscent of deniable encryption [CDNO97],
in which an encryptor of a given ciphertext can adaptively produce fake ran-
domness consistent with it being an encryption of a different message. In this
context, it may seem somewhat surprising that our construction relies on a rel-
atively standard assumption (SIS) while many natural definitions of deniable
encryption are not known to be achievable without heavier assumptions such
as indistinguishability obfuscation [SW14,CPP18]. A subtle difference that is
significant here is that a deniably encrypted message must still be recoverable
by the honest decryptor, while in the unclaimable ring signature setting, the
signer’s identity need not be recoverable by anyone.

1.3 Other related work

Several constructions of ring signatures based on lattice assumptions have been
proposed (e.g., [BK10,MBB+13,BLO18]). The only other construction of ring
signatures based on ZAPs is [BKM09], to our knowledge. Numerous other ring
signature constructions have been proposed, mostly based on various assump-
tions on bilinear maps, many but not all of which are in the random oracle model
(e.g., [Ngu05,SS10,BCC+15]).

Two additional works in the lattice trapdoor literature bear mentioning: the
seminal [Ajt99], and the more recent [MP12]. The latter is more recent than
[GPV08], whose trapdoors our unclaimable construction relies on (this reliance
is carried over from the [BK10] construction).

Ring signatures with additional guarantees Since the original proposal of ring
signatures by [RST01], various variant definitions have been proposed. For ex-
ample, linkable ring signatures [LWW04] allow identification of signatures that
were produced by the same signer, without compromising the anonymity of the
signer within the ring. An enhancement to this notion called designated linka-
bility [LSW06] does not allow linkability by default, but instead allows links to
be revealed at will by a designated party. Another notion called traceable ring
signatures [FS07] considers a setting where signatures are generated with respect
to “tags” and each member may sign at most a single message (say, a vote) with
respect to a particular tag, or else his identity will be revealed. Accountable ring
signatures [XY04,BCC+15] allow a signer to assign the power to de-anonymize
her signature to a specific publicly identified party.

It may seem that some of these variants of ring signature schemes have
properties that would be useful for constructing claimable ring signatures as
introduced in this paper. This implication is unsurprising in the context of our
results: all of the above types of ring signature schemes in fact imply claimable
ring signatures, since our construction of claimable ring signatures is a generic
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transformation from any ring signature scheme. It is unclear if leveraging the
additional features of variant schemes would be more desirable than applying
our generic transformation, which has very low overhead and moreover can be
applied to a simpler, more efficient ring signature scheme that may lack these
additional properties.

Group signatures Group signatures [CvH91] are a different type of signature
that allow signing w.r.t. a set of verification keys and provide anonymity of the
signer within that set. This concept differs most strikingly from ring signatures
in that there is a central authority that (1) sets up the group (i.e., set of sign-
ers) and issues keys to members of the group and (2) has the power to revoke
the anonymity of the signer of a signature. Notions such as (un)linkability, de-
scribed above, have been applied to the group signature setting as well. Notably,
there has also been proposed a notion of deniable group signatures [IEH+16],
in which the group manager may issue proofs that a particular group member
did not sign a particular signature. This bears a little resemblance to our notion
of repudiability in ring signatures; however, the presence of a central author-
ity in the group signature setting means these problems are technically rather
disparate. [LNWX17] construct lattice-based deniable group signatures; how-
ever, their technique for deniability is very different from ours, and relies on
zero-knowledge proofs of plaintext inequality for LWE ciphertexts, which do not
suffice in our setting.

2 Anonymity and unforgeability of ring signatures

This section overviews standard ring signature definitions: syntax, correctness,
anonymity, and unforgeability. We express the anonymity and unforgeability def-
initions differently from prior work, as explained in their respective subsections.
However, our definitions are equivalent to the correspondingly named definitions
from prior work. Throughout the paper, k denotes the security parameter.

Definition 1 (Ring signature). A ring signature scheme is a triple of PPT
algorithms RS = (Gen,Sign,Verify), satisfying the three properties of correctness
(Definition 2), anonymity (Definitions 5–6), and unforgeability (Definition 8).
The syntax of Gen, Sign, and Verify follows.

– Gen(1k) takes k as input and outputs verification key vk and signing key sk.
– Sign(R, sk,m) takes as input a signing key sk, a message m, and a set of

verification keys R = {vk1, . . . , vkN}, and outputs a signature σ. The set R
is also known as a “ring.”

– Verify(R, σ,m) takes as input a set R of verification keys, a signature σ, and
a message m, and outputs a single bit indicating whether or not σ is a valid
signature on m w.r.t. R.

Where it may not be clear from context, we sometimes write RS.Gen,RS.Sign,RS.Verify
to denote the Gen,Sign,Verify algorithms belonging to RS.

Definition 2 (Correctness). A ring signature scheme RS = (Gen,Sign,Verify)
satisfies correctness if there is a negligible function ε s.t. for any N = poly(k),
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any (vk1, sk1), . . . , (vkN , skN )← Gen(1k), any i ∈ [N ], and any message m,

Pr [Verify(R,Sign(R, ski,m),m) = 1] = 1− ε(k) , (1)

where R = {vk1, . . . , vkN}. RS satisfies perfect correctness if (1) holds for ε = 0.

2.1 Anonymity

Prior work, notably [RST01,BKM09], has presented several ring signature anonymity
definitions. Two of the definitions from prior work are relevant to this paper:
anonymity against adversarially chosen keys and against full key exposure.

This section presents a new, generalized anonymity definition parametrized
by oracle sets, and expresses the two relevant anonymity definitions as instantia-
tions of the generalized definition. This generalized definition is useful to consol-
idate the existing definitions and make clear their relationship to one another; it
captures not only the two definitions we rely on here, but also others from prior
work. Moreover, the generalized definition will be essential to concisely express
the new anonymity definitions that we introduce in later sections for anonymity
of repudiable and claimable ring signature schemes (in Sections 3.1 and 3.3 re-
spectively). In a nutshell, this is because the new definitions need to allow the
adversary access to additional oracles related to repudiation and/or claiming.

The generalized definition follows. It is parametrized by sets of oracles O1,O2

and an additional parameter α ∈ {0, 1, 2} that limits the adversary’s corruptions.

Definition 3 ((O1,O2, α)-anonymity). Let O1,O2 be sets of oracles, where
each oracle in the set is parametrized by a list of key-pairs. Define Corr(vk1,sk1),...,(vkN ,skN )

to take as input i ∈ [N ] and output ωi ← Gen−1(vki, ski).
6

A ring signature scheme RS = (Gen,Sign,Verify) satisfies (O1,O2, α)-anonymity
if for any PPT adversary A and any polynomial N = poly(k), Pr[b′ = b] in the
above game is negligibly close to 1/2. That is, formally, ∀ PPT A = (A1,A2),
N = poly(k), there is a negligible function ε such that

Pr


(vk1, sk1), . . . , (vkN , skN )← Gen(1k)

((m∗, i∗0, i
∗
1, R

∗), s)← AO1,Corr
1 (vk1, . . . , vkN )

b← {0, 1}
σ ← Sign(R∗ ∪ {vki∗0 , vki∗1}, ski∗b ,m

∗)

b′ ← AO2,Corr
2 (s, σ)

: b′ = b ∧ |{i∗0, i∗1} ∩ I| ≤ α

 < 1

2
+ε(k) ,

(2)

6 The function Gen−1 takes as input a verification key vk and signing key sk produced
by Gen, and produces the randomness used by Gen to produce this key pair. That
is, it samples from the set {ω : Gen(1k;ω) = (vk, sk)}. In practice we will only ever
invoke Gen−1 on a key pair produced by Gen, so we could invert efficiently by simply
remembering the randomness used by Gen, but for the purposes of this definition
we will describe it as a sampling procedure. Upon the first invocation on an input i,
Corr samples ωi ← Gen−1(vki, ski), stores it, and outputs it. If Corr is queried twice
on the same input i then it outputs the same ωi that was previously stored.
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where I is the set of queries to the corruption oracle; and the notation AO,Corr
means that for each oracle O in O, A has oracle access to O(vk1,sk1),...,(vkN ,skN ),
and A also has oracle access to Corr(vk1,sk1),...,(vkN ,skN ).

Definitions 5 and 6 are instantiations of Definition 3. They are equivalent to
the correspondingly named definitions in [BKM09].

Definition 4 (Signing oracle OSign). For a ring signature scheme RS, the
oracle OSign(vk1,sk1),...,(vkN ,skN ) is defined to take as input i ∈ [n], a message m,
and a set R, and output RS.Sign(R ∪ {vki}, ski,m). When the oracle is invoked
with respect to a single key pair (i.e., OSign(vk,sk)), we treat the oracle as taking
only two inputs, m and R, since i is superfluous in this case.

Definition 5 (Anonymity against adversarially chosen keys). A ring sig-
nature scheme RS = (Gen,Sign,Verify) satisfies anonymity against adversarially
chosen keys if it is ({OSign},∅, 0)-anonymous. Moreover, RS satisfies adap-
tive anonymity against adversarially chosen keys if it is ({OSign}, {OSign}, 0)-
anonymous.

Definition 5 captures the guarantee that as long as there are at least two
honest parties in a ring (represented by i∗0, i

∗
1), even if all other parties in the

ring are corrupted by an adversary, the adversary cannot tell which of the honest
parties produced a signature. One can also consider an even stronger definition
where the adversary may corrupt all but one or even all of the parties in the
ring, as in Definition 6.

Definition 6 (Anonymity against full key exposure). A ring signature
scheme RS = (Gen,Sign,Verify) satisfies anonymity against full key exposure if
it is ({OSign},∅, 2)-anonymous.

Remark 4. Adaptive variants of anonymity were not discussed in prior work. In
this paper, we refer primarily to adaptive anonymity against adversarially chosen
keys: this is the strongest notion compatible with repudiability and claimability.
Definition 6 does not include an adaptive version because adaptivity does not
give the adversary any additional power when he can corrupt all the keys.

2.2 Unforgeability

The first unforgeability definition that follows is parametrized by an oracle set,
taking a similar approach to our anonymity definitions above. In this section,
we only give one instantiation of the parametrized definition of unforgeability.
We will give other instantiations of Definition 7 in Sections 3.1 and 3.3.

Definition 7 (O-unforgeability). Let O be a set of oracles, where each oracle
in the set is parametrized by a list of key-pairs. A ring signature scheme RS =
(Gen,Sign,Verify) is O-unforgeable if for any PPT A and any N = poly(k),
there is a negligible function ε such that

Pr

 (vk1, sk1), . . . , (vkN , skN )← Gen(1k)
(R∗,m∗, σ∗)← AO,OSign,Corr(vk1, . . . , vkN )
b← Verify(R∗, σ∗,m∗)

:
b = 1 ∧R∗ ⊆ {vk1, . . . , vkN} \ I
∧Q ∩ {(·,m∗, R∗)} = ∅

 < ε(k) ,
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where the notation AO,OSign,Corr is defined as in Definition 3, and I and Q are
the sets of queries made to the corruption and signing oracles respectively.

We refer to the event that the conditions on the right-hand side of the colon
in the above probability expression are met as a “successful forgery.”

Definition 8 (Unforgeability of ring signatures). A ring signature scheme
RS = (Gen,Sign,Verify) is unforgeable if it is ∅-unforgeable.

3 New definitions: (un)repudiability and (un)claimability

3.1 Repudiable ring signatures

Repudiability addresses the question of whether ring members can prove that
they did not sign a particular message (when they in fact did not sign it).

Definition 9 (Repudiable ring signature). A repudiable ring signature scheme
is a ring signature scheme with an additional pair of algorithms (Repudiate,VerRepud),
satisfying the four properties of correctness (Definition 2), repudiability (Defi-
nition 11), anonymity (Definition 12), and unforgeability (Definition 13). The
syntax of Repudiate and VerRepud follows.

– Repudiate(R, sk, σ) takes as input a signing key sk, a ring signature σ, and
a set of verification keys R = {vk1, . . . , vkN}, and outputs a repudiation ξ.

– VerRepud(R, vk, σ, ξ) takes as input a set R of verification keys, a signature
σ, a repudiation ξ, and an identity vk, and outputs a single bit indicating
whether or not ξ is a valid repudiation of signature σ for identity vk.

Definition 10 (Repudiation oracle ORpd). For a repudiable ring signature
scheme RS, the oracle ORpd(vk1,sk1),...,(vkN ,skN ) is defined to take as input i ∈ [n],
a signature σ, and a set R, and output RS.Repudiate(R ∪ {vki}, ski, σ). When
the oracle is invoked with respect to a single key pair (i.e., ORpd(vk,sk)), we treat
the oracle as taking only two inputs, σ and R, since i is superfluous in this case.

Additionally, we define the oracle ORpd
〈σ∗〉
(vk1,sk1),...,(vkN ,skN ) to output ⊥ when

it receives the signature σ∗ as input, and otherwise to give the same response as
ORpd(vk1,sk1),...,(vkN ,skN ).

Repudiability requires two conditions, expressed by equations (3) and (4)
below. Intuitively, (3) captures the requirement “good people can repudiate,”
i.e., that for any (possibly maliciously generated) signature, an honest party
who did not produce it should be able to successfully repudiate. (4) captures the
requirements that “bad people cannot repudiate a signature they produced,”
i.e., addressing the case where the malicious signature and repudiation are both
produced using the key being verified, and thus we want the signer to be unable
to produce a valid repudiation.

Definition 11 (Repudiability). A ring signature scheme Σ = (Gen,Sign,Verify)
satisfies repudiability if equipped with algorithms (Repudiate,VerRepud) such that
the following conditions hold.
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1. (Non-signers can repudiate) Let O = {OSign}. For any (possibly adversarial)
PPT signing algorithm ASign, there exists a negligible function ε such that

Pr


(vk, sk)← Gen(1k)

(σ,m,R′)← AO,ORpd(vk,sk)

Sign (vk)

ξ ← Repudiate(R′, sk, σ)
b← VerRepud(R′, vk, σ, ξ)
b′ ← Verify(R′, σ,m)

:
b = 1 ∨ b′ = 0
∨Q ∩ {(·,m,R′)} 6= ∅

 > 1− ε(k) .

(3)
2. (Signer cannot repudiate) For any (possibly adversarial) sign-and-repudiate

algorithm AS&R, there is a negligible function ε such that for any N = poly(k),

Pr


(vk1, sk1), . . . , (vkN , skN )← Gen(1k)
(σ,R′,m, {ξvk}vk∈R′\R)← AOS&R(R)
∀vk ∈ R′ \R, bvk ← VerRepud(R′, vk, σ, ξvk)
b′ ← Verify(R′, σ,m)

:
R′ ∩R = ∅ ∨

∨
vk∈R′\R

bvk = 0

∨b′ = 0 ∨Q ∩ {(·,m,R′)} 6= ∅

 > 1− ε(k) ,

(4)
where R = {vk1, . . . , vkN}, O = {OSign,ORpd}, and Q is the set of OSign queries.

Remark 5. Equation 4 guarantees that a party possessing a set of signing keys
cannot repudiate under all of these keys, as long as some key in the ring is
honestly generated. If the adversary generates all keys in the ring, then he may be
able to produce a repudiation under every key in the ring. However, this does not
undermine the purpose of repudiability: indeed, if presented with repudiations
under every key in a ring, one can confidently conclude that all keys in the
ring were generated dishonestly, and thus that all parties in the ring effectively
colluded to produce each signature under that ring. Similarly, given repudiations
for a subset of the identities in a ring, one can conclude that either one of the
remaining identities in the ring produced the signature or all of the remaining
identities in the ring colluded maliciously to produce the signature. That is,
either way, at least one of the remaining identities is responsible for the signature.

Anonymity and unforgeability of repudiable ring signatures The defi-
nitions of anonymity and unforgeability need to be adapted for repudiable ring
signature schemes, to incorporate a repudiation oracle as described next.

Definition 12 (Anonymity of repudiable ring signatures). A repudiable
ring signature scheme (Gen,Sign,Verify, (Repudiate,VerRepud)) satisfies anonymity
against adversarially chosen keys if (Gen,Sign,Verify) is ({OSign,ORpd},∅, 0)-
anonymous (Definition 3) Moreover, it satisfies adaptive anonymity against ad-

versarially chosen keys if (Gen,Sign,Verify) is ({OSign,ORpd}, {OSign,ORpd〈σ〉}, 0)-
anonymous, where σ is the challenge signature in Equation 2.

Recall from Remark 4 that adaptive anonymity against adversarially chosen
keys is the strongest anonymity notion compatible with repudiability.

Definition 13 (Unforgeability of repudiable ring signatures). A repudi-
able ring signature scheme (Gen,Sign,Verify, (Repudiate,VerRepud)) is unforge-
able if (Gen,Sign,Verify) is {ORpd}-unforgeable (Definition 7).
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3.2 Unrepudiable ring signatures

We next consider a notion where it is not possible for a party to prove to others
that he did not produce a particular signature. In fact, though it may not be
immediately apparent, a natural formalization of this notion is expressed by
the definition of anonymity against full key exposure (Definition 6): that is,
the strongest of the anonymity definitions given in Section 2. The following
paragraphs justify this claim with detailed intuition.

Recall that anonymity against full key exposure (FKE) preserves signer
anonymity even against an adversary that obtains all of the secret keys of all
members of a ring. A ring signature scheme that satisfies repudiability could not
also satisfy anonymity against FKE, because of the following attack: the adver-
sary obtains all secret keys in the ring, attempts to repudiate using each secret
key, and identifies as the signer the one secret key with respect to which the
repudiation algorithm does not produce a valid repudiation. With overwhelming
probability, by definition of repudiability, there is exactly one such secret key.

This informal argument establishes that anonymity against FKE must imply
any reasonable notion of unrepudiability. Then are the two notions equivalent?
While there arguably exist meaningful definitions of unrepudiability that are
weaker than anonymity against FKE, we believe anonymity against FKE is the
most reasonable definition of unrepudiability, as explained next.

Any reasonable definition of unrepudiability should capture the intuitive re-
quirement that non-signers cannot behave distinguishably from signers. A little
more precisely, for any protocol that could be executed by a non-signer Nancy
with respect to a signature σ and her verification key vk′, the signer Sigmund
of that signature must be able to engage in the same protocol with respect to
his own verification key vk and behave indistinguishably from Nancy. In other
words, we require that if Nancy’s secret key were stolen, the thief would be un-
able to tell whether σ was produced by Nancy or by someone else. Indeed, if
Nancy were stateless and did not remember what signatures she had produced
in the past, or simply lent her secret key to someone else who used it to produce
signatures, then she herself would not be able to tell. The definition of anonymity
against FKE embodies almost exactly this requirement — but instead of requir-
ing anonymity against the thief who steals just Nancy’s key, the definition makes
the stronger requirement that anonymity must hold even against a thief who has
every secret key in the ring corresponding to σ.

Is a weaker definition, which only rules out unilateral repudiations by a single
party, a meaningful definition of unrepudiability? Perhaps. However, it is more
in keeping with the intuitive goals and standard properties of ring signatures to
protect against adversaries that may have many or all secret keys in a ring: that
is, to rule out even the possibility of multiple ring members colluding to produce
a repudiation for some ring member. Thus we arrive at the following definition.

Definition 14 (Unrepudiable ring signature scheme). A ring signature
scheme is unrepudiable if it satisfies anonymity against full key exposure.
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3.3 Claimable ring signatures

Claimability addresses whether the actual signer can prove later that they were
the signer, without remembering the signing randomness.

Definition 15 (Claimable ring signature). A claimable ring signature scheme
is a ring signature scheme with an additional pair of algorithms (Claim,VerClaim),
satisfying the four properties of correctness (Definition 2), claimability (Defi-
nition 17), anonymity (Definition 18), and unforgeability (Definition 19). The
syntax of Claim and VerClaim follows.

– Claim(R, sk, σ) takes as input a signing key sk, a ring signature σ, and a set
of verification keys R = {vk1, . . . , vkN}, and outputs a claim ζ.

– VerClaim(R, vk, σ, ζ) takes as input a set R of verification keys, a signature
σ, a claim ζ, and an identity vk, and outputs a single bit indicating whether
or not ζ is a valid claim of signature σ for identity vk.

Definition 16 (Claim oracle OClaim). For a claimable ring signature scheme
RS, the oracle OClaim(vk1,sk1),...,(vkN ,skN ) is defined to take as input i ∈ [n], a set
R, and a signature σ, and output RS.Claim(R, sk, σ). When the oracle is invoked
with respect to a single key pair (i.e., OClaim(vk,sk)), we treat the oracle as taking
only two inputs, R and σ, since i is superfluous in this case.

Additionally, we define the oracle OClaim
〈σ∗〉
(vk1,sk1),...,(vkN ,skN ) to output ⊥

when it receives the signature σ∗ as input, and otherwise to give the same re-
sponse as OClaim(vk1,sk1),...,(vkN ,skN ).

Claimability requires three conditions, expressed by equations (5), (6), and
(7) below. Informally, (5) requires that honest signers can successfully claim
their signatures, (6) requires that adversarial parties cannot successfully claim
a signature that they did not produce, and (7) requires that adversarial parties
cannot produce a signature along with a claim that appears to be produced by
an honest party (that is, falsely framing the honest party as the signer).7

Definition 17 (Claimability). A ring signature scheme (Gen,Sign,Verify) is
claimable if equipped with algorithms (Claim,VerClaim) such that the following
conditions hold.

1. (Honest signer can claim) There exists a negligible function ε such that for
any N = poly(k) and (vk1, sk1), . . . , (vkN , skN )← Gen(1k) and any i ∈ [N ],
it holds for any message m that

Pr [σ ← Sign(R, ski,m) : VerClaim(R, vki, σ,Claim(R, ski, σ)) = 1] > 1−ε(k),
(5)

where R = {vk1, . . . , vkN}.

7 Our definition does not guarantee that all signatures that verify (possibly a superset
of all honestly generated signatures) can be claimed by someone; requiring this could
be a reasonable alternative definition. See the full version [PS19] for more discussion.
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2. (Non-signers cannot claim) Let O = {OSign}. For any (possibly adversar-
ial) PPT sampling-and-claiming algorithm AClaim = (A1,A2), there exists a
negligible function ε such that

Pr



(vk, sk)← Gen(1k)

(R′,m, s)← AO,OClaim(vk,sk)

1 (vk)
σ ← Sign(R′ ∪ {vk}, sk,m)

(ζ, vk′)← AO,OClaim(vk,sk)

2 (R′ ∪ {vk}, σ, s)
b← VerClaim(R′ ∪ {vk}, vk′, σ, ζ)
b′ ← Verify(R′ ∪ {vk}, σ,m)

:
b = 1 ∧ b′ = 1
∧vk′ 6= vk

 < ε(k).

(6)
3. (Malicious signer cannot frame an honest party) For any PPT adversary
AS&C, there exists a negligible function ε such that

Pr


(vk, sk)← Gen(1k)

(R′,m, σ, ζ)← AO,OClaim(vk,sk)

S&C (vk)
b← VerClaim(R′ ∪ {vk}, vk, σ, ζ)
b′ ← Verify(R′ ∪ {vk}, σ,m)

:
b = 1 ∧ b′ = 1
∧Q ∩ {(·, σ)} = ∅

 < ε(k). (7)

where O = {OSign} and Q is the set of queries made to oracle OClaimvk,sk.

Anonymity and unforgeability of claimable ring signatures The def-
initions of anonymity and unforgeability must be adapted for claimable ring
signature schemes, to allow the adversary a claim oracle as described next.

Definition 18 (Anonymity of claimable ring signatures). A claimable
ring signature scheme (Gen,Sign,Verify, (Claim,VerClaim)) satisfies anonymity
against adversarially chosen keys if (Gen,Sign,Verify) is ({OSign,OClaim},∅, 0)-
anonymous (Definition 3). Moreover, the repudiable ring signature satisfies adap-
tive anonymity against adversarially chosen keys if (Gen,Sign,Verify) is

({OSign,OClaim}, {OSign,OClaim〈σ〉}, 0)-anonymous ,

where σ is the challenge signature in the anonymity experiment (Equation (2)).

Recall from Remark 4 that adaptive anonymity against adversarially chosen
keys is the strongest anonymity notion compatible with claimability.

Definition 19 (Unforgeability of claimable ring signatures). A claimable
ring signature scheme (Gen,Sign,Verify, (Claim,VerClaim)) is unforgeable if (Gen,Sign,Verify)
is {OClaim}-unforgeable (Definition 7).

3.4 Unclaimable ring signatures

An unclaimable ring signature scheme has the property that the signer cannot
later convince anyone of her identity. That is, for any function that the true
signer can compute given the signing randomness and the secret key, any other
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member of the ring can compute an indistinguishable function. The result is that
even an adversary holding all ring members under duress cannot figure out who
produced a given signature. This is true even if the ring members under duress
attempt to cooperate with the adversary.

To achieve this, it suffices for any member of the ring to be able to extract
signing randomness distributed indistinguishably from true signing randomness,
that would produce the given signature under their secret key. More formally,
the following guarantee should hold.

Definition 20 (Unclaimable ring signatures). A unclaimable ring signa-
ture scheme is a ring signature scheme augmented with an additional algorithm
ExtractRandomness as follows.

– ExtractRandomness(R, sk, σ,m) takes as input a ring R, a secret key sk, a
signature σ and a message m. If sk is one of the secret keys for ring R, and
σ is a signature on m with respect to R, then it outputs randomness ρ.

ExtractRandomness must satisfy the following condition.

– (Statistical unclaimability) Let R be the distribution of signing randomness.
For any N = poly(k) there is a negligible function ε such that the follow-
ing holds. Let (vk1, sk1), (vk2, sk2) ← Gen(1k). For any message m and any
vk3, . . . , vkN and sk3, . . . , skN , let R = {vk1, . . . , vkN} and S = {(i, vki, ski)}i∈[N ].
Let ρ← R, σ1 ← Sign(R, sk1,m; ρ), and ρ1 ← ExtractRandomness(R, sk2, σ1,m).
Let ρ2 ← R and σ2 ← Sign(R, sk2,m; ρ2). Then (S, ρ1, σ1) ≈ε (S, ρ2, σ2).

Definition 20 is unusual among the definitions in this paper, in that it gives
a statistical rather than a computational guarantee. We opted to give the sta-
tistical definition because it is simpler, it is a stronger guarantee, and our con-
struction in this case achieves the statistical guarantee. One could also consider
a computational definition.

Remark 6 (Claimability is not the opposite of unclaimability). According to these
definitions, unclaimability is not technically the opposite of claimability (even
when ignoring the fact that the formal definitions give a statistical guarantee
for unclaimability but a computational guarantee for claimability). Claimability
requires the ability to “voluntarily claim” a signature without remembering the
signing randomness, whereas unclaimability rules out the ability to “claim under
duress” even given the signing randomness. For voluntary claims, the natural and
stronger definition is to guarantee the ability to claim adaptive, without “plan-
ning ahead” and without the storage requirement of remembering the signing
randomness. In contrast, when considering attempts to claim under duress, the
natural and stronger definition is to rule out the possibility of successful claims
even in the presence of the signing randomness.

Remark 7 (Unclaimability protects honest signers). An adversarial signer who
wants to claim can devise ways of credibly later claiming a ring signature, even
when using an unclaimable ring signature scheme.8 This does not decrease the

8 For example, an adversarial signer might use a PRG output as his signing random-
ness, or append it to his message, and remember the preimage. If he later revealed
the preimage, it would likely serve as a credible claim to authorship of the signature.
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utility of an unclaimable ring signaature scheme for honest signers who want
their signatures to be unclaimable.

Unclaimability implies unrepudiability Any unclaimable ring signature
scheme is also unrepudiable. Recall that the definition of unclaimability captures
the idea that for any function that the true signer can compute given the signing
randomness and the secret key, any other member of the ring can compute an
indistinguishable function. Intuitively, the implication follows from the fact that
repudiation would require a non-signer to behave in a way that distinguishable
from any possible behavior of the actual signer.

Theorem 1. Any unclaimable ring signature scheme is also unrepudiable.

3.5 Repudiable-and-claimable ring signatures

Suppose that (Gen,Sign,Verify) is a ring signature scheme, and there are al-
gorithms Repudiate, VerRepud, Claim, and VerClaim such that, taken together
with (Gen,Sign,Verify), they form a repudiable ring signature scheme and a
claimable ring signature scheme respectively. The seven algorithms together
do not necessarily satisfy the natural notion of a “repudiable-and-claimable”
scheme. This is not only syntactic: in certain cases, security might in fact not
hold in the 7-algorithm scheme. The natural security definition for a repudiable-
and-claimable ring signature scheme is to include both repudiation and claim
oracles throughout the repudiability, claimability, anonymity, and unforgeability
definitions. More discussion and formal definitions are given in the full version.

4 Repudiable construction

Due to space constraints, all proofs are deferred to the full version (attached in
supplementary materials). We begin by defining the building blocks.

ZAPs are two-message public coin witness indistinguishable proofs [DN07].

Definition 21 (ZAP). A ZAP for an NP language L with witness relation
RL is a triple of algorithms ZAPL = (ZAP.SetupL,ZAP.ProveL,ZAP.VerifyL),
where ZAP.Setup and ZAP.Prove are PPT and ZAP.Verify is polynomial-time
and deterministic, satisfying the following properties.

Public coin. For some polynomial ` = `(k), ZAP.Setup is the algorithm that
on input 1k, outputs a uniformly random element of {0, 1}`.

Completeness. For any (x,w) ∈ RL, ρ ∈ {0, 1}`(k), we have
Prπ←ZAP.Prove(ρ,x,w)[ZAP.Verify(ρ, π, x) = 1] = 1.

Adaptive soundness. There exists a negligible function ε such that
Prρ←ZAP.Setup(1k)[∃(x, π) : x /∈ L ∧ ZAP.Verify(ρ, π, x)] ≤ ε(k).

Witness indistinguishability. For any sequences {ρk}k∈N, {xk}k∈N, {w0,k}k∈N,
{w1,k}k∈N, where for all k, ρk ∈ {0, 1}`(k), xk ∈ L and (xk, w0,k), (xk, w1,k) ∈
RL, the following pair of ensembles is computationally indistinguishable:

{ZAP.Prove(ρk, xk, w0,k)}k∈N
c
≈ {ZAP.Prove(ρk, xk, w1,k)}k∈N.
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In this work, for simplicity, we will assume use of a ZAP for some NP-
complete language LNP (with witness relation RLNP

) and for any L ∈ NP with
witness relation RL, we define ZAP.ProveL and ZAP.VerifyL as follows.

– ZAP.ProveL takes as input a triple (ρ, x, w). If (x,w) /∈ RL, then output ⊥.
Otherwise, use an NP reduction on (x,w) to get a pair (xNP, wNP) ∈ RLNP ,
and output ZAP.Prove(ρ, x, w).

– ZAP.VerifyL takes as input a triple (ρ, π, x), uses the same NP reduction to
obtain xNP (which is in LNP iff x ∈ L), and outputs ZAP.Verify(ρ, π, x).

Next, we recall the definition of verifiable random functions (VRFs) [MRV99].

Definition 22 (VRF). A verifiable random function (VRF) is a tuple of algo-
rithms VRF = (VRF.Gen,VRF.Eval,VRF.Prove,VRF.Verify), where Gen and Verify
are PPT and Eval and Prove are polynomial time and deterministic, satisfying:

Complete provability With probability at least 1 − 2−Ω(k) over (pk, sk) ←
VRF.Gen(1k), we have for all inputs x that
Pr[VRF.Verify(pk, x,VRF.Eval(sk, x),VRF.Prove(sk, x)) = 1] > 1− 2−Ω(k).

Unique provability For all pk, x, y1, y2, τ1, τ2 with y1 6= y2, for either i = 1
or i = 2 it holds that Pr[VRF.Verify(pk, x, yi, τi) = 1] < 2−Ω(k).

Residual pseudorandomness Let A = (A1,A2) be a PPT adversary, where
both A1 and A2 get oracle access to the VRF evaluation and prove algo-

rithms. Let (pk, sk)← VRF.Gen(1k), and let (x, s)← AVRF.Eval(sk,·),VRF.Prove(sk,·)
1 (1k, pk).

Let b← {0, 1}, and let v be either VRF.Eval(sk, x) or uniformly random, de-

pending on the choice bit b. Let b′ = AVRF.Eval(sk,·),VRF.Prove(sk,·)
2 (1k, v, s).

Then there is a negligible function ε such that Pr[b = b′ and x /∈ Q] <
1/2 + ε(k), where Q is the set of oracle queries made by A to either oracle.

For simplicity, we assume that Eval takes inputs x of any length, i.e., x ∈ {0, 1}∗.

Definition 23. The verification failure probability of a VRF VRF is

Pr

[
(pk, sk)← VRF.Gen(1k)
b← VRF.Verify(pk, x,VRF.Eval(sk, x),VRF.Prove(sk, x))

: b = 0

]
.

The residual pseudorandomness property still holds even if the adversary
queries many key pairs at once, and may adaptively learn some of the secret
keys (then, residual pseudorandomness holds for the uncorrupted keys only).

Lemma 1 (Parallel VRF Game). Let VRF be a a VRF. Then ∀ PPT A =
(A1,A2) and all N = poly(k), there is a negligible function ε such that

Pr


(pk1, sk1), . . . , (pkN , skN )← VRF.Gen(1k)

(m∗, s)← AV,Corr1 (vk1, . . . , vkN )
∀i ∈ [N ], yi,0 ← VRF.Eval(ski,m

∗)
∀i ∈ [N ], yi,1 ← $
b← {0, 1}
b′ ← A2(s, (yi,b)i∈[N ]\C)

: b = b′ ∧ ∀i ∈ [N ] \ C, (i,m∗) /∈ Q

 < 1/2+ε(k) ,

(8)

22



where oracle V maps (i,m) to (y, τ) = (VRF.Eval(ski,m),VRF.Prove(ski,m)),
oracle Corr maps i to ski, and C,Q are the sets of queries to Corr,V respectively.

4.1 Construction

Construction 1 Our construction R-RS is parametrized by ZAP, VRF, and M ,
where: ZAP is a ZAP; VRF is a VRF with input domain {0, 1}∗, whose Verify
algorithm takes ν bits of randomness and whose verification failure probability
(Definition 23) is ε; and M is a polynomial satisfying M ≥ (ν+k)/ log2(1/ε).9

R-RS.Gen(1k)

1. (vk1VRF, sk
1
VRF), . . . , (vk4VRF, sk

4
VRF)← VRF.Gen(1k).

Let vkVRF = (vk1VRF, . . . , vk
4
VRF) and skVRF = (sk1VRF, . . . , sk

4
VRF).

2. ρ← ZAP.Setup(1k).
3. α = (α1, . . . , αM )← ({0, 1}ν)M .
4. Output vk = (vkVRF, ρ,α) and sk = (skVRF, vk).

Hereafter, we (implicitly) use the following convention to parse a ring R.

Write R = {vk1, . . . , vkN}.
For each i ∈ [N ],write vki = (vkiVRF = (vki,1VRF, . . . , vk

i,4
VRF), ρi,αi = (αi1, . . . , α

i
M )).

(9)

Definition 24. Let L be the following NP language.{(
R,m,ϕ, (y1, y2, y3, y4)

)
: ∃i∗, τ1, τ2, τ3, τ4, γ s.t. (b1 ∨ b2) ∧ (b3 ∨ b4)

where ∀η ∈ {1, 2, 3, 4}, bη =
∧

i∈[N ],j∈[M ]

VRF.Verify(vki
∗,η
VRF, (R,m,ϕ), yη, τη;αij ⊕ γ)

}
.

We now present the Sign and Verify algorithms of our construction.

R-RS.Sign(R, sk,m)

1. Parse R as described above and sk = ((sk1VRF, . . . , sk
4
VRF), vk).

2. If vk /∈ R output ⊥ and halt.
3. Define i∗ ∈ [N ] such that vki∗ = vk.
4. γ ← {0, 1}ν . (This is used as part of the ZAP witness in Step 6.)
5. ϕ ← {0, 1}k. (This is used as a salt for the VRF input in Step 7, and

output in Step 8.)
6. For η ∈ {1, 2, 3, 4}, let yη = VRF.Eval(skηVRF, (R,m,ϕ)) and τη = VRF.Prove(skηVRF, (R,m,ϕ)).

Let y = (y1, . . . , y4).
7. For each i ∈ [N ], let πi ← ZAP.ProveL(ρi, (R,m,ϕ,y), (i∗, τ1,⊥, τ3,⊥, γ)).

Let π = (π1, . . . , πN ).
8. Output σ = (π,y, ϕ).

R-RS.Verify(R, σ,m)

9 As explained in the full version, a satisfactory value of M can be set even without
knowledge of ε. If ε happens to be known, a smaller value of M can be chosen.
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1. Parse R as above and σ = ((π1, · · · , πN ),y, ϕ).
2. Output

∧
i∈[N ] ZAP.VerifyL(ρi, πi, (R,m,ϕ,y)).

Next, we describe the repudiation algorithms for R-RS.

Definition 25. Let L′ be the following NP language:{(
R,m,ϕ, (y1, . . . , y4), vk = (vkVRF, ρ,α)

)
: ∃i∗, y′1, . . . , y′4, τ ′1, . . . , τ ′4, γ s.t.

((b′1 ∧ b′2) ∨ (b′3 ∧ b′4)) ∧ vk = vki∗ , where ∀η ∈ {1, 2, 3, 4},

b′η =

(
y′η 6= yη ∧

∧
i∈[N ],j∈[M ]

VRF.Verify(vki
∗,η
VRF, (R,m,ϕ), y′η, τ

′
η;αij ⊕ γ)

)}
.

R-RS.Repudiate(R, sk, σ)

1. Parse R as above, sk = ((sk1VRF, . . . , sk
4
VRF), vk), and σ = (π,y, ϕ).

2. If vk /∈ R output ⊥ and halt.
3. Define i∗ ∈ [N ] such that vki∗ = vk.
4. For η ∈ {1, 2}: let y′η = VRF.Eval(skηVRF, (R,m,ϕ)) and let τ ′η = VRF.Prove(skηVRF, (R,m,ϕ)).
5. γ ← {0, 1}ν . (This is used as part of the ZAP witness in Step 6.)
6. For each i ∈ [N ], let ξi ← ZAP.ProveL′(ρi, (R,m,ϕ,y, vk), (i∗, y′1, y

′
2,⊥,⊥, τ ′1, τ ′2,⊥,⊥, γ)).

7. Output ξ = (ξ1, . . . , ξN ).

R-RS.VerRepud(R, vk, σ, ξ)

1. Parse R as above. If vk 6∈ R, output 1 and halt.
2. Parse σ = (π,y, ϕ), and ξ = (ξ1, . . . , ξN ).
3. Output

∧
i∈[N ] ZAP.VerifyL′(ρi, ξi, (R,m,ϕ,y, vk)).

Remark 8. As written, the size of the VRF input (R,m,ϕ) scales with the size
of R, and we have assumed that the VRF can take variable-length inputs. When
this is not the case, or when a smaller-input VRF is desirable for efficiency
reasons, the scheme can be straightforwardly modified using a collision-resistant
hash function h, and evaluating the VRF on h(R,m,ϕ).

Theorem 2. Let VRF be a VRF and ZAP be a ZAP. Then R-RS is a repudiable
ring signature scheme.

Proofs are deferred to the full version ([PS19]).

5 Claimable transformation

In this section, we give a simple black-box transformation from any ring signature
to a claimable ring signature scheme. If the original scheme is repudiable, the
resulting scheme is moreover claimable-and-repudiable. We assume familiarity
with the standard notions of commitments, standard signatures, and PRFs. We
use standard syntax for these; the full version gives detailed syntax definitions.
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5.1 The transformation

Construction 2 Our transformation C-RS is parametrized by the following: RS,
a ring signature scheme; Σ, a standard signature scheme; Com, a commitment
scheme; and PRF, a PRF. For convenience, and w.l.o.g., we assume that the
randomness of Com and Σ and the output of PRF.Eval are all in {0, 1}ν .

C-RS.Gen(1k)

1. Let (vkRS, skRS)← RS.Gen(1k).
2. Let (vkΣ , skΣ)← Σ.Gen(1k).
3. Let skPRF ← PRF.Gen(1k).
4. Output vk = (vkRS, vkΣ) and sk = (vk, skRS, skΣ , skPRF).

Hereafter, we implicitly parse verification and signing keys of C-RS as vk =
(vkRS, vkΣ) and sk = (vk, skRS, skΣ , skPRF) respectively. Also, for a ring R =(
vk1 = (vk1RS, vk

1
Σ), . . . , vkN = (vkNRS, vk

N
Σ )
)
, we write RS(R) to denote (vk1RS, . . . , vk

N
RS).

C-RS.Sign(R, sk,m)

1. Let σRS ← RS.Sign(RS(R), skRS,m).
2. Let rΣ = PRF.Eval(skPRF, (vk, σRS, 0)).
3. Let σΣ = Σ.Sign(skΣ , (vk, σRS); rΣ).
4. Let rCom = PRF.Eval(skPRF, (vk, σRS, 1)).
5. Let c = Com((vk, σΣ); rCom).
6. Let σ = (σRS, c).
7. If C-RS.VerClaim(R, vk, σ,C-RS.Claim(R, sk, σ)) = 1, output σ.
8. Otherwise, output (⊥,⊥).

C-RS.Verify(R, σ = (σRS, c),m)

1. If σRS = ⊥, output 0.
2. Otherwise, output RS.Verify(RS(R), σRS,m).

C-RS.Claim(R, sk, σ = (σRS, c))

1. Let r′Σ = PRF.Eval(skPRF, (vk, σRS, 0)).
2. Let r′Com = PRF.Eval(skPRF, (vk, σRS, 1)).
3. Let σ′Σ = Σ.Sign(skΣ , (vk, σRS); r′Σ).
4. If c 6= Com(σ′Σ , r

′
Com), output ζ = ⊥.

5. Otherwise, output ζ = (r′Com, σ
′
Σ).

C-RS.VerClaim(R, vk, σ = (σRS, c), ζ = (r′Com, σ
′
Σ))

1. Let c′ = Com((vk, σ′Σ); r′Com).
2. Output (c = c′) ∧Σ.Verify(vkΣ , σ

′
Σ , (vk, σRS)).

If RS is a repudiable ring signature scheme then we additionally define
C-RS.Repudiate and C-RS.VerRepud as follows.

C-RS.Repudiate(R, sk, σ = (σRS, c))

1. Output RS.Repudiate(RS(R), sk, σRS).

C-RS.VerRepud(R, vk, σ = (σRS, c), ξ)

1. Output RS.VerRepud(RS(R), sk, σRS, ξ).

Theorem 3. C-RS is a claimable ring signature scheme. Moreover, if RS is a
repudiable ring signature scheme, then C-RS is repudiable-and-claimable.
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6 Unclaimable construction

In this section we show how to construct unclaimable ring signatures from lattice
assumptions. The scheme is exactly the SIS-based ring signature scheme of Brak-
erski and Kalai [BK10], augmented with an additional algorithm ExtractRandomness.

6.1 Lattice trapdoor sampling

We first give a very brief summary of necessary background on lattice trapdoors;
see [GPV08] and the full version [PS19] for details Let q ∈ N, m′ ∈ N, and β ∈ Z
be functions of security parameter n. The (inhomogeneous, average-case) short

integer solution (SISq,m,β) assumption states that given A ← Zn×m′q , v ← Znq ,

it is computationally hard to find x ∈ Zm′q such that Ax = v and ‖x‖ ≤ β.

For polynomial m′, β and prime q ≥ β · ω(
√
n log n), the SIS problem is known

to be as hard as approximating worst-case lattice problems, in particular the
Shortest Independent Vectors Problem (SIVP), to within a factor of β · Õ(

√
n)

[MR07,GPV08].
Let DΛ,s,c denote the discrete Gaussian distribution over n-dimensional lat-

tice Λ, centered at c ∈ Rn and with parameter s. We note the existence of the
following algorithms, described in [GPV08].

– There is an algorithm TrapdoorSamp that on input a security parameter 1n

produces a matrix A ∈ Znq and a trapdoor T , where A is statistically close to

uniform and T is a short basis for the lattice Λ⊥(A).
– There is an algorithm SampleDist sampling from the discrete Gaussian DZm′ ,s,0.
– There is an algorithm SampleCond that on input a matrix A, trapdoor T ,

parameter s and vector u, produces a sample x distributed statistically close
to the discrete Gaussian distribution DZm′ ,s,0 conditioned on Ax = u. We

have that ‖x‖2 ≤ s
√
n with probability 1.

We will also require additional algorithms that given output values of the
algorithms SampleDist and SampleCond, respectively, sample randomness under
which the algorithm produces the desired output.

– There is an algorithm ExplainDist that on input an image vector x and pa-
rameter s, samples from the distribution {ρ|SampleDist(s; ρ) = x}.

– There is an algorithm ExplainCond that on input matrix A, trapdoor T , pa-
rameter s, vector u and image vector x, samples randomness ρ that yields
output x under algorithm SampleCond with inputs (A, T, s, u), i.e. samples
from the distribution {ρ|SampleCond(A, T, s, u; ρ) = x}.

We describe the algorithms ExplainDist and ExplainCond in the full version. We
will use a slight modification of the SampleCond algorithm of [GPV08] that uses
the basis randomization technique of [CHKP10]. We need the following lemma.

Lemma 2. Let (A1, T1) and (A2, T2) be sampled from TrapdoorSamp, let y ∈
Znq , and let s ≥ max(‖T̃1‖, ‖T̃2‖) · ω(

√
log n), where the tilde denotes Gram-

Schmidt orthogonalization. Sample vectors x1 and x′2 from SampleDist. Let x2 ←
SampleCond(A2, T2, s, y−A1x1), and let x′1 ← SampleCond(A1, T1, s, y−A2x

′
2).

Then (A1, T1, A2, T2, x1, x2) and (A1, T1, A2, T2, x
′
1, x
′
2) are statistically close.
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Intuitively, this lemma says that the two trapdoors induce the same distribution
on sampled vectors. This follows immediately from Lemma 3.3 of [CHKP10]

6.2 The basic construction of [BK10]

We now describe the construction of [BK10], which first constructs a “basic”
scheme, then augments it to fully secure ring signatures in a series of steps.

Let the message space be {0, 1}`, and let X = {x ∈ Zm′q : ‖x‖2 ≤ s
√
m′} for

some s = ω(
√
n log n log q) be the set of “short” vectors.

The key generation algorithm samples a matrix with an SIS trapdoor, and
an additional set of 2` matrices, two corresponding to each bit of the message.
It additionally samples a target vector y, and outputs the matrices and target
vector as the verification key and the trapdoor as the signing key.

BK-RS.Gen(1k)

1. Let (A, T )← TrapdoorSamp(1k).

2. For (i, b) ∈ [`]× {0, 1}, let Ai,b ← Zn×m′q .
3. Let y ← Znq .
4. Output vk = (A, (Aj,b)(j,b)∈[`]×{0,1}, y) and sk = (vk, T ).

The signing algorithm proceeds as follows. A target vector y is selected from
the lexicographically first verification key. For each identity in the ring, short
vectors are sampled for matrices corresponding to each bit of the message to be
signed, as well as the additional matrix. Finally, the trapdoor is used to obtain
a short vector sampled from the same distribution conditioned on Equation 10.
The signature consists of the list of short vectors.

BK-RS.Sign(R, sk,m; ρ)

1. Parse R = (vk1, . . . , vkN ) and sk = (vk, T ).

2. For i ∈ [N ], parse vki = (Ai, (A
(i)
j,b)(j,b)∈[`×{0,1}, yi).

3. Let y = yi, where i ∈ [N ] is such that vki is lexicographically first.
4. If vk 6∈ R, output ⊥ and halt.
5. Define i∗ ∈ [N ] be such that vki∗ = vk.

6. Using trapdoor TA for Ai∗ , we can sample (x
(i)
j )i∈[N ],j∈{0}∪[`] such that∑

i∈[N ]

Aix
(i)
0 +

∑
i∈[N]

j∈[`]

A
(i)
j,mj

x
(i)
j = y. (10)

That is, for (i, j) ∈ [N ] × {0} ∪ [`] other than the pair (i∗, 0), we invoke

algorithm SampleDist to sample x
(i)
j ∈ independently from the discrete

Gaussian distribution X . Finally, we invoke algorithm SampleCond use

the trapdoor T for Ai∗ to sample x
(i∗)
0 from a distribution statistically

close to the distribution X conditioned on Equation 10 being satisfied.

7. Output σ = (x
(i)
j )i∈[N ],j∈{0}∪[`].
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The verification procedure simply checks that each vector in the signature
has short entries and that Equation 10 is satisfied.

BK-RS.Verify(R, σ,m)

1. Parse R = (vk1, . . . , vkN ).

2. For i ∈ [N ], parse vki = (Ai, (A
(i)
j,b)(j,b)∈[`×{0,1}, yi).

3. Parse σ = (x
(i)
j )i∈[N ],j∈{0}∪[`].

4. For each x
(i)
j for i ∈ [N ], j ∈ {0}∪ [`], if x

(i)
j /∈ X then immediately reject.

5. Let y = yi, where i ∈ [N ] is such that Ai∗ is lexicographically first.
6. Accept if Equation 10 above is satisfied, and otherwise reject.

We now augment the basic [BK10] ring signature scheme with additional
algorithm ExtractRandomness that produces “explaining randomness.” The al-
gorithms ExplainDist and ExplainCond referenced below are described in the full
version.

BK-RS.ExtractRandomness(R, sk, σ,m)

1. Parse R = (vk1, . . . , vkN ) and sk = (vk, T ).

2. For i ∈ [N ], parse vki = (Ai, (A
(i)
j,b)(j,b)∈[`×{0,1}, yi).

3. Parse σ = (x
(i)
j )i∈[N ],j∈{0}∪[`].

4. If vk 6∈ R, output ⊥ and halt.
5. Define i∗ ∈ [N ] be such that vki∗ = vk.
6. For (i, j) ∈ [N ] × {0} ∪ [`] s.t. (i, j) 6= (i∗, 0), run ExplainDist to sample

randomness ρ
(i)
j giving output x

(i)
j from discrete Gaussian sampling.

7. Run ExplainCond to sample random coins ρ
(i∗)
0 that produce output x

(i∗)
0

under the conditional random sampling algorithm using trapdoor T .

8. Output (ρ
(i)
j ).

Theorem 4. Under the SISq,m′,β assumption, BK-RS is a unclaimable ring sig-
nature scheme satisfying a weak notion of unforgeability in which the challenge
is sampled at random at the beginning of the experiment.

6.3 Unclaimability for the full ring signature scheme of [BK10]

The ring signature scheme above satisfies a weak notion of unforgeability, in
which the forgery message is sampled at random by the challenger and sent to the
forger in the beginning of the experiment. To achieve full unforgeability, [BK10]
provide a sequence of four reductions to construct schemes satsifying successively
stronger notions of unforgeability. We give a brief overview of these reductions
and the corresponding modifications of the ExtractRandomness algorithm.

The first modified scheme appends a description of the ring to the message
to be signed, so ExtractRandomness is simply invoked on a different message.

The second modification is the most complicated, and introduces a variant
of chameleon hash functions. A chameleon hash function h is sampled during
Gen and is included in the verification key vk. During Sign, randomness r is
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sampled from a certain distribution, and a value y = h(m, r) is computed, where
m is the message to be signed and h is the hash function corresponding to
the lexicographically first identity in the ring. The previous signature scheme is
invoked on y = h(m, r), where m is the message and h is the hash function for the
lexicographically first identity in the ring; then, r is appended to the resulting
signature. Now the only randomness to explain is r and the previous signature
scheme’s randomness. So the only change to ExtractRandomness is that it now
also gives random coins resulting in a particular r, which is straightforward.

The third modification simply computes a signature under the previous
scheme of every prefix of the message, and outputs these |m| signatures as its
signature. The final modification has Gen additionally output a random pad α,
and computes a signature on m ⊕ α1 where α1 is the pad for the lexicographi-
cally first identity in the ring. For each of these we simply invoke the previous
ExtractRandomness algorithm on a different message. This yields the following.

Theorem 5. Assuming SISq,m′,β, [BK10] ring signatures augmented with the
above ExtractRandomness algorithm is an unclaimable ring signature scheme.
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