
Efficient Pseudorandom Correlation Generators:
Silent OT Extension and More

Elette Boyle1, Geoffroy Couteau2, Niv Gilboa3, Yuval Ishai4,
Lisa Kohl2, and Peter Scholl5

1 IDC Herzliya
2 Karlsruhe Institute of Technology

3 Ben-Gurion University of the Negev
4 Technion

5 Aarhus University

Abstract. Secure multiparty computation (MPC) often relies on corre-
lated randomness for better efficiency and simplicity. This is particularly
useful for MPC with no honest majority, where input-independent corre-
lated randomness enables a lightweight “non-cryptographic” online phase
once the inputs are known. However, since the amount of randomness
typically scales with the circuit size of the function being computed, se-
curely generating correlated randomness forms an efficiency bottleneck,
involving a large amount of communication and storage.
A natural tool for addressing the above limitations is a pseudorandom
correlation generator (PCG). A PCG allows two or more parties to se-
curely generate long sources of useful correlated randomness via a lo-
cal expansion of correlated short seeds and no interaction. PCGs enable
MPC with silent preprocessing, where a small amount of interaction used
for securely sampling the seeds is followed by silent local generation of
correlated pseudorandomness.
A concretely efficient PCG for Vector-OLE correlations was recently ob-
tained by Boyle et al. (CCS 2018) based on variants of the learning parity
with noise (LPN) assumption over large fields. In this work, we initiate a
systematic study of PCGs and present concretely efficient constructions
for several types of useful MPC correlations. We obtain the following
main contributions:
– PCG foundations. We give a general security definition for PCGs.

Our definition suffices for any MPC protocol satisfying a stronger
security requirement that is met by existing protocols. We prove that
a stronger security requirement is indeed necessary, and justify our
PCG definition by ruling out a stronger and more natural definition.

– Silent OT extension.We present the first concretely efficient PCG
for oblivious transfer correlations. Its security is based on a vari-
ant of the binary LPN assumption and any correlation-robust hash
function. We expect it to provide a faster alternative to the IKNP
OT extension protocol (Crypto 2003) when communication is the
bottleneck. We present several applications, including protocols for
non-interactive zero-knowledge with bounded-reusable preprocess-
ing from binary LPN, and concretely efficient related-key oblivious
pseudorandom functions.

– PCGs for simple 2-party correlations. We obtain PCGs for
several other types of useful 2-party correlations, including (authen-
ticated) one-time truth-tables and Beaver triples. While the latter
PCGs are slower than our PCG for OT, they are still practically
feasible. These PCGs are based on a host of assumptions and tech-
niques, including specialized homomorphic secret sharing schemes
and pseudorandom generators tailored to their structure.

– Multiparty correlations. We obtain PCGs for multiparty correla-
tions that can be used to make the (input-dependent) online commu-
nication of MPC protocols scale linearly with the number of parties,
instead of quadratically.

1 Introduction

Correlated secret randomness is a valuable resource for secure multi-party com-
putation (MPC). A simple example is a common random key that is given to two
parties, who can later use it as a one-time pad for secure message transmission.
In the context of MPC, a more useful example is a random oblivious transfer
(OT) correlation, in which one party is given a pair of random bits (more gener-
ally, strings) (s0, s1) and the other party is given the pair (r, sr) for a random bit
r. The OT correlation can serve as a basis for general MPC protocols with no
honest majority [40, 54, 49]. Other kinds of two-party correlations that are useful
for MPC include oblivious linear-function evaluation (OLE) correlations [58, 50,
3], multiplication triples (also known as “Beaver triples”) [8, 10, 29], and one-time
truth tables [47, 28, 30].

The above types of correlated randomness are commonly used to imple-
ment efficient MPC protocols in the preprocessing model. Such protocols con-
sist of an offline, input-independent preprocessing phase, where many indepen-
dent instances of the correlated randomness are generated, followed by a fast
online phase that consumes this correlated randomness for the purpose of se-
curely evaluate a given function of the inputs. In many cases, the online phase
is “information-theoretic”6 and its computational complexity is only a small-
constant times higher than that of an insecure function evaluation. Most impor-
tantly for the present work, the online phase of such protocols typically outper-
forms all competing approaches in terms of concrete efficiency.

A major challenge in implementing such offline-online protocols is that the
preprocessing phase needs to securely generate and store a large amount of cor-
related randomness. This is typically done by using a special-purpose interactive
MPC protocol, which involves a significant amount of communication and com-
putation for each gate of a circuit that should be evaluated in the online phase.
A dream goal would be to replace this source of correlated randomness with
short correlated seeds, which can be “silently” expanded without any interac-
tion to produce a large amount of pseudorandom correlated randomness. This
6 This can be formalized by requiring that the joint states of the parties in the end of
the offline phase can be swapped by computationally indistinguishable states, given
which the online protocol is secure against computationally unbounded parties.

2

process should emulate an ideal process for generating the target distribution
not only from the point of view of outsiders, but also from the point of view of
insiders who can observe the correlated seeds. We refer to such an object as a
pseudorandom correlation generator, or PCG for short.

A bit more precisely, a two-party PCG is defined as follows. Let (R0, R1) be a
target correlation, defined by some efficient sampling algorithm C that on input
1λ outputs a pair of correlated strings (r0, r1). For instance, C(1λ) may output
n = λ3 independent instances of an OT correlation. A PCG is a pair of efficient
algorithms (Gen,Expand) such that:

– Gen samples a pair of short correlated seeds (k0, k1)
$← Gen(1λ),

– Expand is a local deterministic seed expansion algorithm mapping ki to ri ←
Expand(i, ki), where |ri| > |ki|.

We would like the outputs (r0, r1) resulting from this process to be “indistin-
guishable” from an ideal sample (R0, R1) generated by C(1λ), even to a party
who receives one of the seeds kb.

A useful special case of PCG was recently considered by Boyle et al. [14], who
constructed (under variants of the Learning Parity with Noise assumption [12])
a concretely efficient PCG for the vector OLE (VOLE) correlation. The VOLE
correlation over a field F samples a random scalar x ∈ F and vectors u,v ∈ Fn,
and outputs r0 = (u,v) to one party (the “sender”) and r1 = (x,w = ux + v)
to the other party (the “receiver”). The VOLE correlation is useful for secure
computation of functions that employ scalar-vector products over large fields,
such as ones arising in the context of linear algebra and keyword search [3].

Designing efficient PCGs for a wider class of correlations is strongly moti-
vated by the goal of improving the efficiency of general MPC in the preprocess-
ing model, where the preprocessing phase is used to securely generate the PCG
seeds. We refer to this as MPC with silent preprocessing. More concretely, such
a protocol consists of three phases: (1) an interactive setup phase for securely
distributing the seed generation algorithm Gen; in the end of this phase, which
involves a small amount of communication, only the short seeds are stored for
later use; (2) a silent seed expansion phase, where the seeds are expanded into
long correlated randomness via a local computation of Expand and without any
interaction; (3) a final online phase where the correlated randomness is con-
sumed to evaluate a given function of the inputs. One could employ Phase 1
when deciding that an MPC interaction might take place in the future, Phase 2
when interaction seems likely to take place in the near future, and Phase 3 to
carry out the MPC interaction once the inputs are available. The low communi-
cation footprint of silent preprocessing can eliminate traffic analysis attacks that
aim to anticipate future MPC plans. Finally, another benefit of the PCG-based
approach is that it can help reduce the cost of protecting MPC protocols against
malicious parties. Indeed, since Phase 2 does not involve any interaction, it suf-
fices to protect Phase 1 and Phase 3 against malicious parties, which is typically
much cheaper.

3

Several different kinds of PCG constructions are implicit in the MPC liter-
ature. These include PCGs for simple multi-party linear correlations from any
pseudorandom generator [38, 26], for general correlations from indistinguisha-
bility obfuscation [45, 42], for so-called “bilinear” correlations from homomor-
phic secret sharing [16], for restricted variants of OT correlations from key-
homomorphic pseudorandom functions [60] and, most recently, for VOLE corre-
lation from LPN [14]. With the exception of linear multi-party correlations [38,
26] and VOLE correlations [14], none of these prior constructions seem appealing
from a practical point of view. In particular, there was no prior approach (even
a heuristic one) for constructing a concretely efficient PCG for OT correlations.

1.1 Our Contributions

In this work, we initiate a more systematic study of pseudorandom correla-
tion generators. Our contributions are on both the foundational side, where we
present new definitions, impossibility results and connections with other primi-
tives, and the applied side, with concretely efficient constructions for commonly
used MPC correlations, including OT correlations and others. Our most practi-
cal PCG constructions handle restricted (yet still useful) classes of correlations,
while our more general constructions can handle much larger classes of correla-
tions, at the expense of a bigger seed size and higher computational costs (and,
for some of them, public-key-style assumptions such as lattice-based or pairing-
based cryptography).

We now give a more detailed account of our contributions. Unless noted
otherwise, we refer to MPC with computational security against semi-honest
(i.e., passive) and static (i.e., non-adaptive) adversaries who may corrupt an
arbitrary subset of parties.

Foundations of Pseudorandom Correlation Generators. Our first goal
is to present a general security definition for the intuitive notion of PCG de-
scribed above. As pointed out in [38], this is not quite as straightforward as
one might imagine, and previous works side-stepped the problem by taking an
ad-hoc approach. To motivate our general definition, we start by discussing the
most natural alternative.

Ruling Out a Simulation-Based Definition. Recall that the ultimate de-
sire would be that in any protocol, one can securely replace an ideal correlated
randomness functionality C with pseudo-randomness obtained from expanding
the correlated seeds of a PCG for C. This would indeed follow from a natu-
ral simulation-based security definition for PCG as a computationally secure,
dealer-assisted protocol for computing the randomized functionality defined by
C. Concretely, in the two-party case, the simulation-based definition requires
the existence of a simulator S such that the real distribution (kb,Expand(k1−b)),
where (k0, k1) are generated by Gen (capturing the view of a corrupted party b
jointly with the output of the uncorrupted party 1− b) is computationally indis-
tinguishable from the ideal distribution (S(rb), r1−b), where (r0, r1) are sampled

4

by C. Unfortunately, we show (building on [45], and extending an informal ar-
gument from [38]) that such a definition is impossible to realize even for simple
correlations. Intuitively, the impossibility follows from the fact that in the real
distribution kb “explains” the output of the honest party in an efficiently verifi-
able way, whereas such an explanation of r1−b cannot be generated from rb in
the ideal distribution.

A General PCG Definition. To get around the above impossibility, we
present a relaxed indistinguishability-based definition of PCG security, general-
izing the specialized security definition for the VOLE correlation from [14]. Our
definition requires that given its PCG key kb, corrupted party b cannot distin-
guish the true expanded output of the honest party r1−b = Expand(1 − b, k1−b)
from a random output r1−b consistent with the correlation C and its own ex-
panded output rb = Expand(b, kb). In other words, we replace the ideal distribu-
tion in the above simulation-based definition by (kb, [r1−b |Rb = Expand(kb)]).
Note that the latter distribution involves reverse-sampling from R1−b condi-
tioned on a fixed value for Rb, which may not be well-defined. However, in this
work we only consider additive correlations, where (R0, R1) are additive secret
shares (over a finite Abelian group) of a sample from some core distribution. For
such additive correlations, the reverse-sampling is well-defined and is computa-
tionally efficient. More broadly, our general PCG definition is meaningful when
this reverse-sampling is efficient.

Limitations. Our PCG definition is not good enough for generating correlated
randomness in all applications. Indeed, the impossibility of the simulation-based
definition discussed above implies such simple counterexamples for randomized
functionalities. Concretely, for any C to which the impossibility result applies,
there is a trivial MPC protocol for C given correlated randomness from C in which
each party outputs its correlated randomness. However, the impossibility result
shows that using any PCG for C would render this simple protocol insecure. We
show, under standard cryptographic assumptions, that a similar impossibility
holds even if one restricts attention to MPC for deterministic functionalities.
Concretely, we show a protocol which uses correlated randomness C to realize
a deterministic functionality with statistical security against malicious parties,
but which becomes completely insecure (even against semi-honest parties) when
C is replaced by a specific PCG for C that meets our indistinguishability-based
definition.

A Plug-and-Play Use of PCG. We complement the above negative results
by a positive result, showing that our PCG definition does suffice to imply our
“ultimate desire” in the context of most applications. Concretely, we put forward
a slightly stronger security requirement for MPC with preprocessing, such that
in any protocol satisfying this requirement, a PCG can be used as a drop-in re-
placement for correlated randomness. The stronger security requirement asserts
that security still hold even if the ideal correlation functionality (R0, R1) is re-
placed by a corruptible functionality that allows corrupted party b to pick its own

5

randomness r∗b , and then delivers to the uncorrupted party a sample r1−b from
the conditional distribution [r1−b |Rb = r∗b]. It fortunately turns out that natural
MPC protocols in the preprocessing model already satisfy this stronger security
requirement. This allows for a plug-and-play use of PCGs in many application
scenarios.

Relation with Homomorphic Secret Sharing. A (two-party) homomor-
phic secret sharing (HSS) scheme [18, 21] for a function class F splits a secret x
into two shares (x0, x1), such that given any f ∈ F one can efficiently evaluate
additive shares of f(x) via local computation on the shares. We show a two-way
relation between PCG and HSS. First, we show that a PCG for any additive
correlation (as defined above) can be reduced to HSS for a related function class
F , generalizing and formalizing a previous observation from [16]. In particular,
HSS for general circuits implies PCG for all additive correlations, which include
most of the useful MPC correlations as special cases. (This is only a feasibility
result, which does not directly imply concretely efficient constructions.) Second,
we show that some converse is also true: a PCG for the degree-d “tensoring” cor-
relation, obtained by picking a random vector X ∈ Rn and outputting additive
shares of all products of at most d entries of X, implies HSS for the class F of
degree-d (n-variate) polynomials over Rn, where the share size grows linearly
with n and the homomorphic evaluation time grows linearly with nd.

Silent OT Extension. A central contribution of this work is the first concretely
efficient construction of PCG for the oblivious transfer (OT) correlation. From an
asymptotic point of view, our PCG can achieve an arbitrary polynomial stretch,
assuming: (1) The binary Learning Parity with Noise (LPN) assumption [12]
with a conservative choice of parameters, and (2) A correlation-robust hash
function [46]. The hash function primitive, which is only used in a black-box
way, can be instantiated in practice by a general-purpose hash function or block
cipher. Assuming LPN with a linear number of samples and inverse-polynomial
noise rate holds for the dual of a near-linear time encodable code (such as the
codes proposed in [44, 34, 1, 3]), which is still a conservative assumption, the
computational complexity of Expand is nearly linear in the output length.7

In a nutshell, our efficient PCG for OT applies the PCG for VOLE from [14]
over a large extension field F2λ , except for restricting the sender’s output u to
be over the base field. This yields n correlated instances of random OT that can
be converted into standard OT by using a correlation-robust hash function, as
in [46]. See Section 2 for more details.

By applying a secure two-party protocol for distributing Gen, we obtain a
silent OT extension protocol that generates n pseudo-random OT instances us-
ing a small number of OTs, with a total of O(nε) bits of communication for any
ε > 0. This should be compared with existing OT extension protocols [9, 46] that
7 In Section 1.1 below we describe an alternative LPN-based approach to constructing
PCG for OT that dispenses with assumption (2), but requires at least quadratic
computation in the output length n.

6

do not require the LPN assumption but where the communication complexity is
bigger than n.

Concrete Efficiency. Our LPN-based PCG for OT is very attractive in terms
of concrete efficiency, and we expect it to outperform state-of-the-art OT exten-
sion protocols [46, 7, 55] in settings where communication is the bottleneck. To
give a few data points, our PCG can expand a pair of seeds of length 10KB into
a million instances of random 128-bit string-OT, of total size 16MB (receiver)
and 32MB (sender), in an estimated8 time of around a second on a single core
of a modern CPU. Alternatively, seeds of length 7KB can be expanded into 65
thousand OTs at roughly half the amortized computational cost. Factoring in the
cost of securely distributing Gen (with semi-honest security, building on [32]), the
amortized communication complexity of our silent OT extension protocol is 0–3
bits for each random 128-bit string-OT. To put that into context, state-of-the-
art OT extension protocols [46, 7] require 128 bits of communication per random
128-bit string-OT and can generate around 10 million OTs per second [41] over
a fast network, so the price we pay for the (much) lower communication com-
plexity seems quite modest. Even for the easier case of random bit-OT, the best
previous OT extension protocol [55] required roughly 80 bits of communication
per OT.

Other PCG Constructions. We present an assortment of practically feasible
PCGs for other useful two-party correlations, based on a variety of underlying
tools and assumptions.

– PCG for Constant-Degree Polynomials from LPN. We show that a general-
ization of the LPN-based VOLE generator from [14] can be used to obtain
a PCG for any constant-degree additive correlation, namely a correlation
that additively secret-shares a vector of degree-d polynomials of a random
X ∈ Fn for some constant d ≥ 2. This PCG relies on LPN over F in a similar
noise regime as the PCG for OT from Section 1.1. In fact, by increasing the
computation time (but still keeping it polynomial), one can use the LPN
assumption in a parameter regime that is not known to imply public-key en-
cryption [2], let alone OT. The main caveat is that even for generating simple
degree-d correlations, such as Ω(n) Beaver triples (d = 2), the computational
complexity of Expand is bigger than nd. While much slower than our PCG
for OT, this construction may still be practically feasible for d = 2 even with
reasonably large n. We leave the question of obtaining more efficient variants
of this construction to future work.
As discussed in Section 1.1, this PCG construction implies (2-party) HSS
schemes for constant-degree polynomials from LPN. By additionally assum-

8 We caution that we have not implemented our constructions. Our estimates are
based on counting basic operations and estimating their cost; the actual running
times may vary due to other costs we neglected such as cache misses. We leave the
task of optimizing and implementing our constructions to future work.

7

ing a standard OT protocol, it implies secure two-party computation proto-
cols for constant-degree polynomials in which the communication complexity
is nearly linear in the input size. Using the techniques from [18, 25], it also
implies an “almost-sublinear” general secure computation protocol: for any
constant c > 1 and layered boolean circuit of size s (and assuming binary
LPN and OT), there is a secure two-party computation protocol with polyno-
mial computation and total communication bounded by s/c. We stress again
that these are mainly feasibility results because of the high computational
cost of this PCG construction.

– PCG for One-Time Truth Tables from any PRG. One-time truth tables
(OTTT) are a type of correlation that allow secure evaluation of a public
lookup table in MPC, on a secret-shared input [47, 28, 30], and are well-
suited to computations such as the S-box of AES. For MPC with active
security, the correlation outputs need to be authenticated with information-
theoretic MACs, as in the recent TinyTable protocol [28]. We present a
very simple PCG for authenticated OTTT using only a distributed point
function (DPF) [39, 19], which in turn can be efficiently constructed from any
pseudorandom generator (PRG). This PCG follows naturally from a building
block of the silent OT extension construction (as we explain in Section 2). It
compresses the storage cost of an authenticated OTTT fromO(λn) bits down
to O(λ log n) bits, for a table of size n, giving a reduction in size of over 20x
for a length-256 table such as the AES S-box. There is a concretely efficient
protocol to distribute the seed generator Gen with semi-honest security by
using the distributed DPF key generation protocol from [32]. While a similar
protocol with malicious security is considerably more expensive, even a naive
approach based on general-purpose secure computation (e.g., using recent
protocols such as [51]) is feasible in practice, enabling the compressed storage
benefit of the PCG-based approach.

– PCGs from Homomorphic Secret Sharing. We give practically feasible PCG
constructions for OLE and (authenticated) Beaver triple correlations, which
are useful for arithmetic MPC protocols such as SPDZ [29]. For these con-
structions we use HSS based on ring-LWE [23, 31, 22] and the BGN (pairing-
based) cryptosystem [13, 18, 16]. To expand the seeds, we rely on a multi-
variate quadratic (MQ) assumption based PRG, which limits the stretch to
sub-quadratic, but allows for reasonable computational efficiency. For exam-
ple, with our ring-LWE-based PCG we estimate that one should be able to
expand a pair of 3GB seeds into 17GB of authenticated Beaver triples in
a 128-bit field, at a rate of around 6 thousand triples per second; various
tradeoffs are possible between seed size and computation time, and we also
explore an iterative variant which produces triples in small batches. Securely
computing Gen to distribute the seeds is relatively cheap compared to the ex-
pansion phase, and the overall performance should be comparable to recent
work on actively secure triple generation with much more interaction [53].
With BGN, we estimate around 200ms for computing an OLE correlation
over ZN for small N (say, N < 10). Although much more expensive than
our silent OT extension, an advantage of the ring-LWE-based constructions,

8

beyond the richer class of correlations, is that they can be extended to the
multi-party setting, as we discuss next.

PCGs for Multi-Party Correlations. Finally, we present a general transfor-
mation for extending certain classes of PCGs from the 2-party to the multi-party
setting. This can be applied to PCGs for simple bilinear correlations, including
VOLE and Beaver triples, giving the first non-trivial, efficient PCG constructions
in the multi-party setting. The transformation applies to most of our 2-party
PCGs, including the LPN-based PCG for constant-degree correlations.

On top of the silent preprocessing feature, an appealing application of our
multi-party PCGs is in obtaining secure M -party computation protocols with
total communication complexity O(Ms +M2 · sε) (for circuit size s and con-
stant 0 < ε < 1). The O(Ms) term is the cost of the (information-theoretic)
online phase, and the O(M2 · sε) term is the cost of distributing the PCG seed
generation, which is the only part of the protocol requiring pairwise communi-
cation. This should be contrasted with OT-based MPC protocols, which have
total communication complexity Ω(M2s) [40, 43] . Protocols with such commu-
nication complexity (without the silent preprocessing feature) could previously
be based on different flavors of somewhat homomorphic encryption [35, 27, 29].
We get the first such protocol that only relies on LPN and OT, and the first
practically feasible protocol that has sublinear-communication offline phase and
information-theoretic online phase.

Table 1. Summary of the New PCG Constructions. Costs are estimated
based on one core of a modern laptop.

PCG Section 5 [15] [15] [15] [15] [15]

Assumption LPN PRG* LPN deg-d HSS
+ MQ/LPN

SXDH
+ LPN

LWE
+ MQ

Correlations OT* OTTT* deg-d deg-d/2 deg-2 deg-d

Efficiency 1M OT/s† - - - 5 OLE/s‡ 6000/s**

Multiparty 7 7 4 4 7 4

(bilinear corr.)
* PRG stands for an arbitrary pseudorandom generator, OT for random
oblivious transfer, and OTTT for authenticated one-time truth-table cor-
relation.
† With average communication of 0.2 bits/OT.
‡ For OLE correlation over a small (constant size) ring.
** For generating authenticated Beaver triples over a 128-bit prime field.

9

Additional Applications. From our silent OT extension protocol, we obtain
the following additional results:

– Oblivious Pseudorandom Functions (OPRFs). An OPRF [36] is a two-party
protocol for securely evaluating a pseudorandom function, whose key is
known by one party, on a secret input known by the second party. OPRFs
serve as the main building blocks in recent protocols for private set intersec-
tion [56]. Our silent OT construction can be used to obtain a form of batch
OPRF with cost as little as 1 bit of communication per OPRF evaluation on
a random input, leading to around a factor two reduction in communication
for these protocols.

– Reusable-Preprocessing NIZK. Consider the following setting for non-interactive
zero knowledge (NIZK) with reusable interactive setup: In an offline setup
phase, before the statements to be proved are known, the prover and the
verifier interact to securely generate correlated random seeds. The seeds can
then be used to prove any polynomial number of statements by having the
prover send a single message to the verifier for each statement. Such a no-
tion was recently constructed in [14], building on [24], using their PCG for
VOLE. Our silent OT extension can be used to obtain an improved reusable-
preprocessing NIZK system for NP, under the standard LPN assumption
over F2. As compared to the reusable NIZK of [14], our NIZK relies on a
more standard assumption (LPN over F2 versus large F), and the setup cost
is independent of both the number of statements and their size (whereas
in [14], the setup cost was independent of the number of statements, but
grows linearly with a bound on their size). On the down side, our OT-based
NIZK protocols do not have the computational complexity advantages of the
VOLE-based constructions from [14].

– Efficient Secure Matrix Multiplication. As a stepping stone towards silent OT
extension, we construct a PCG for a generalization of VOLE called subfield
VOLE. This can be seen as a form of batch VOLE where the u value is
reused across several instances, and can be applied to compute secret-shared
tensor products and matrix multiplication more efficiently. Compared with
naively using a PCG for standard VOLE, we reduce the seed size by at least
a O(log n) factor.

Finally, our PCG for OTTT yields the following application.

– Improved 2-PC with Sublinear Online Communication. Standard approaches
to secure computation with preprocessing (e.g., SPDZ) still require online
communication that is linear in the circuit size. Recently, Couteau [25]
demonstrated asymptotic feasibility of information-theoretic secure 2-party
computation (2-PC) in the preprocessing model for a natural class of circuits
(namely, “layered” circuits), with sublinear online communication,O(s/ log log s)
for circuit size s. However, this comes at the cost of generating and storing
O(s2) bits of correlated randomness.
Our compressed one-time truth-table (OTTT) construction allows one to
match the asymptotic complexity of [25], while reducing the amount of cor-

10

related randomness from quadratic to quasilinear in the circuit size, in ex-
change for settling for computational security and assuming the existence of
one-way functions.

1.2 Paper Organization

In this extended abstract we only present our main techniques and results. For
the full details of constructions and other results, we refer to the full version of
this work [15]. We begin in Section 2 with an overview of our techniques, followed
by preliminaries in Section 3. In Section 4, we present our PCG definition and
foundational results. Section 5 contains our PCGs for subfield-VOLE and OT,
leading to our silent OT extension construction.

2 Technical Overview of Constructions

In this section we give a high-level overview of the techniques that underly our
different PCG constructions.

2.1 Background

Our PCG constructions rely on different types of homomorphic secret sharing
(HSS) and function secret sharing (FSS) schemes. Informally, HSS is a form of
secret sharing that allows a secret x to be split up into shares k0, k1, such that
a party holding ki can locally obtain an additive secret share of f(x), for some
function f . FSS is the dual notion: starting with a function f , and splitting
into shares f0, f1 such that each share fi hides f , but can be used to obtain
an additive sharing of f(x) for some public input x.9 FSS for a class of point
functions (i.e., functions f which evaluate to 0 on all but a single input) is
called a distributed point function [39], and can be constructed very efficiently
based on a pseudorandom generator (PRG) [19]. There are HSS constructions
for branching programs based on DDH [18] or lattices [22], or general circuits
from strong forms of fully homomorphic encryption [31].

2.2 Overall methodology

At a high level, our constructions can all be seen as examples of the follow-
ing blueprint: construct an HSS scheme that can homomorphically evaluate the
composition of a pseudorandom generator (PRG) with a function f that uses
the expanded randomness to compute the desired correlation. This can be used
to obtain PCGs for any additive correlation; i.e., that outputs random additive
shares of some distribution. Of course, the main challenge lies in instantiating
this efficiently, since plugging in even a low-degree PRG to an off-the-shelf HSS
9 FSS is actually equivalent to HSS for a related class of functions, but we differentiate
between the two for convenience, depending on the applications.

11

scheme is typically not practical. We instead use specialized HSS constructions
that pair well with our carefully chosen PRGs.

As a stepping stone, our constructions implicitly construct a compressible
form of HSS, which allows the sharing of inputs from some distribution D, such
that the share size is smaller than an uncompressed output of D, and we can still
compute some useful function f on the expanded inputs. We typically choose D
to be a sparse distribution on vectors, or another similarly compressible distri-
bution. We then convert these long D-vectors to slightly shorter (but still long)
random-looking vectors, by homomorphically multiplying by a compressive lin-
ear map. Under a suitable LPN-type assumption, this combination of expanding
the compressed D-vector followed by linear compression acts as a PRG in the
above blueprint, and we can proceed to homomorphically compute the desired
correlation.

For example, when D samples a sparse, low-weight vector e over F2, and the
linear map is a random matrixH, then distinguishing (H, e·H) from random is as
hard as the problem of decoding a random binary linear code, which corresponds
to the standard LPN assumption [12, 2]. Another example is when D outputs
a tensor product of two short, uniform vectors. Recovering the short vectors
given only (x⊗y) ·H is the problem of solving a random system of multivariate
quadratic equations (MQ problem), which is believed to be hard for a suitable
choice of parameters [57, 63, 11, 4]. In particular, the decision version of MQ is
polynomially reducible to its search version [11].

We remark that the resulting PRGs do not necessarily conform to standard
metrics of simplicity, such as low degree or low locality, and in isolation may
appear somewhat unnatural. This exemplifies an interesting observation that
“HSS-friendliness” may indeed be a new type of metric that does not directly
align with those previously studied.

2.3 Silent OT Extension

As a building block for silent OT extension, we start by constructing a PCG for a
two-party correlation we call subfield vector oblivious linear evaluation (subfield
VOLE). This correlation works over a field Fq, and a subfield Fp, where q = pr.
It first samples a random x ∈ Fq, u ∈ Fnp ,v ∈ Fnq , then outputs (u,v) to the
sender and (x,w = ux+v) to the receiver.10 Our construction is a generalization
of the vector-OLE construction from [14]: when p = q the correlation is exactly
vector-OLE, but using q > p opens up additional applications. For example,
viewing x ∈ Fq as a vector x ∈ Frp, subfield VOLE can be seen as computing
additive shares of the r×n tensor product x⊗u, which can be useful for secure
two-party matrix multiplication, and other linear algebra tasks. Compared with
using r copies of VOLE [14] to achieve the same task, we reduce the seed size
by a O(log n) factor and obtain more efficient computation.

10 We view elements of Fp embedded into Fq throughout, so that the multiplication
u · x happens over Fq.

12

To build a PCG for subfield VOLE, we consider a compressible distribution
D that outputs random sparse vectors of weight t and length n′. First, notice
that we can compress a secret-sharing of the j-th unit vector ej ∈ {0, 1}n

′
, using

a distributed point function (DPF) for the point (j, 1): evaluating a DPF key on
input i produces a random share of 0 on all inputs except i = j, where it outputs
a share of 1. Hence, performing all n′ evaluations results in shares of the entire
vector ej . This easily extends to weight t vectors, by naively using t DPFs and
summing up the shares of the t unit vectors (this step can be optimized with a
multi-point DPF as described in [14]).

Although it may appear that this only allows us to compress sparse vectors,
and not perform any useful HSS computations afterwards, we observe that with
a small tweak we can use this to build HSS for the family of randomized functions

F = {fH : Fq → Fnq , x 7→ x · e ·H | e $← HWt, H ∈ Fn
′×n
p } (1)

where HWt is the distribution that outputs a random weight-t vector over Fn′

p

(with each entry either 0 or uniform). We remark that a naive description of
the class F gives functions with very high degree, which could not be evaluated
using simple HSS schemes, which highlights the importance of tailoring a specific
solution.

To upgrade the above sketch to get HSS for F , we make one small modifica-
tion: using t DPFs that output shares over Fq, we specify the i-th DPF by the
point (ji, yi ·x) for some random index ji and yi ∈ F∗p, instead of (ji, 1) as before.
When evaluating the DPFs, the parties now obtain additive shares of e ·x, where
e contains all t yi’s in random positions. Since additive secret sharing is linear,
any linear map H can then be locally applied on the shares.

If H ∈ Fn′×n
p is a compressive linear map with n < n′, the vector u = e ·H

is pseudorandom under a suitable form of the LPN (or syndrome decoding)
assumption. Concretely, we require that a t-noisy random codeword in the code
whose parity check matrix is H is pseudorandom. This immediately yields a
subfield VOLE generator, where each party’s seed contains a set of DPF seeds,
and the sender additionally gets the points (ji, yi), and the receiver gets x, since
additive shares of x · u can be locally converted to the (v,w) components of a
VOLE correlation.

Our next observation, inspired by the OT extension protocol of Ishai et
al. [46], is that subfield VOLE already gives as a restricted form of oblivious
transfer, known as correlated OT or ∆-OT. If we run subfield VOLE over F2,
embedded in F2r , then the VOLE sender obtains a set of pairs ui

$← F2, vi
$← F2r ,

while the VOLE receiver gets x $← F2r and wi = x · ui + vi, for i = 1, . . . , n.
Now switch the roles of sender and receiver, so the VOLE sender becomes an
OT receiver with choice bit ui and string vi. If ui = 0 then vi = wi, whilst if
ui = 1 then vi = wi − x, hence, this is exactly a 1-out-of-2 OT where the OT
sender’s (formerly VOLE receiver’s) messages are all of the form (wi, wi − x).

On its own, this type of ∆-OT is already useful for many applications such as
garbled circuits and secure computation with information-theoretic MACs [61,
59]. However, most importantly, following [46], the parties can locally convert

13

such a correlated OT into an OT on random strings, using a hash function
that is pseudorandom under correlated inputs. This gives us a PCG for random
oblivious transfer, where the seed size is essentially that of t distributed point
functions, or O(tλ log n) bits. Combining this with an efficient secure protocol for
setting up a pair of DPF keys [32], we obtain our silent OT extension protocol,
which produces n pseudorandom string-OTs with o(n) bits of communication.

2.4 One-Time Truth Tables

We next show how to adapt the above approach to produce authenticated, one-
time truth table correlations, which can be used to efficiently perform table
lookups in MPC [47, 28, 30]. This construction is straightforward given the above
description of our subfield-VOLE generator, so we informally explain it here and
defer the complete description to the full version.

The correlation we want to produce, for a lookup table T : [n]→ {0, 1}m, is
an additive secret-sharing of

(
α, {yi, γi}i∈[n]

)
where yi = T (s+ i mod n), γi = yi · α ∈ F2λ (2)

for α $← F2λ , s
$← [n]. Here, the yi’s are equal to T shifted by a random offset

s, while the γi’s are information-theoretic MACs on yi under the key α, used to
obtain active security in the MPC protocol.

Our starting point is the observation from [52] that the yi’s can be generated
locally, given secret-shares of a random unit vector. This is because, if es ∈
{0, 1}n is the s-th unit vector, then we have

T (s+ i mod n) =

n∑
j=1

es[j] · T (i+ j mod n)

which is linear in es. We can further obtain the γi’s (namely, the authenticated
γi = yi · α) if we additionally have secret-shares of the corresponding scaled
vector α · es.

The core observation is that a DPF gives precisely a compressed secret sharing
of such a secret vector (1||α) · es ∈ ({0, 1}1+λ)n: requiring only O(λ log n) bits
in the place of O(λn).

More concretely, this leads to the following, simple approach for a PCG to
generate shares of (2): use the previous DPF-based construction of HSS for the
family in (1) over F2, with t = 1, x = (1‖α) for α $← F2λ , and H the linear map
induced by T in the equation above. The resulting PCG has seed size essentially
the same as one DPF, which isO(λ log n) bits. This gives a large compression over
the previous, practical approach from [28], which required O(λn) bits per table.
Expanding the PCG is relatively cheap in practice, since in 2-PC applications
only a single entry of each table is ever used, and this can be computed on-the-fly
with O(n) PRG evaluations.

14

A downside of this construction is that it seems difficult to produce the
necessary PCG seeds with good concrete efficiency in the malicious setting, since
the only known approach in this setting requires evaluating a PRG inside 2-
PC [32]. However, our result is still interesting for a preprocessing phase with
semi-honest security, or when a trusted dealer is present. Alternatively, if one can
afford the cost of distributing Gen with malicious security via general-purpose
2-PC, the resulting correlated seeds only require a small amount of storage, and
their local expansion is (automatically) secure against malicious parties.

2.5 PCGs for Constant-Degree Polynomials from LPN

We construct PCGs for constant-degree polynomials, using again function se-
cret sharing for multi-point functions together with LPN. At a high level, the
construction builds upon the fact that given two sparse vectors a, b, their tensor
product a ⊗ b is sparse as well, hence shares of a ⊗ b can be compressed using
an FSS, as for vector-OLE generators and silent OT extension. Then, a com-
pressive mapping can be applied to obtain x⊗ y from a⊗ b, where x = (a ·H)
and y = (b · H) are pseudorandom under the LPN assumption, thanks to the
bilinearity of the tensor product (and linearity of H). This immediately leads
to a PCG for bilinear functions, which can be easily generalized to a PCG for
constant-degree polynomials. However, the share size grows as O(td), where t is
the number of noisy coordinates in the LPN instance, and d is the degree of the
polynomial. The computation cost grows as O(n2d), where n is the input size.

2.6 PCGs from Ring-LWE and BGN-based HSS

We construct PCGs for more general two-party correlations, building upon the
specific structure of homomorphic encryption-based HSS schemes [31, 22] and
group-based HSS schemes [18, 20, 16]. Our key observation is that in both HSS
schemes encodings of large pseudorandom strings can be compressed efficiently
using an “HSS-friendly PRG” as described in Section 2.2. For the ring-LWE
based construction, we obtain compression with a PRG based on the multivari-
ate quadratic equations problem, and present several ways of optimizing this
with batching techniques for homomorphic encryption, which lead to different
tradeoffs for seed size and computational cost.

The group-based approach requires more involved techniques: The underly-
ing HSS scheme uses two types of encodings, where so-called level-1 encodings
are ElGamal ciphertexts, and level-2 encodings are shares of sk · x for a vector
x, where sk is the secret key of the homomorphic encryption scheme. Then, a
special HSS operation allows to compute level-2 encodings of bilinear functions
applied to a level-1 encoding and a level-2 encoding. Using two parallel instances
of the PCG for vector-OLE of [14] allows us to efficiently compress shares of
y and sk · y, where y is a pseudorandom vector and sk is a shared value, to
only O(λt log n) bits, under the LPN assumption with t noisy coordinates. Fur-
thermore, encrypting short random sparse vectors suffices for homomorphically
evaluating a specific LPN-based PRG directly on the level-1 encodings, as long

15

as they support evaluation of degree-2 functions. This can be ensured by using
BGN-style pairing-based encryption for the group-based HSS. Since the HSS
comes with an inverse-polynomial error probability, we further develop a new
method to efficiently remove the faulty outputs, building upon our silent OT
extension protocol.

For both schemes, we discuss various optimizations and provide detailed ef-
ficiency estimations.

2.7 Multi-Party PCGs

As our final contribution, we construct multi-party PCGs for a useful class of
bilinear correlations. Concretely, for a given bilinear map e : G1 × G2 → GT ,
we consider M -party correlations of the form {(ai, bi, ci)}i∈[M], consisting of
additive secret shares of random elements a ∈ G1, b ∈ G2, and their image
c = e(a, b) ∈ GT . For appropriate choice of groups and bilinear operation, this
captures M -party OT, M -party vector OLE, M -party Beaver triples, and more.

Our construction approach provides a semi-generic transformation from any
PCG for a corresponding 2-party correlation {(a, c1), (b, c2)} for random a, b, and
c1 + c2 = e(a, b), if the PCG satisfies an additional programmability property.
Roughly, this property requires a way of “reusing” the inputs a and b across
instances without compromising security.

The M -party construction leverages this structure by executing M(M − 1)
pairwise instances of the underlying 2-party PCG, for all the “cross-terms.”
Namely, we think of each ai and bi from the final M -party correlation as play-
ing the role of a or b in the 2-party correlation, with all possible partners. The
desired M -party additive shares ci can then be derived by combining cii = aibi
(computable locally) together with {cij , cji}j∈[M]\{i} resulting from the 2-party
correlations for pairs (ai, bj) and (aj , bi). The resulting M -party PCG keys con-
sist of M(M − 1) keys from the 2-party PCG, together with short expandable
shares of 0 for rerandomization.

We observe that the necessary programmability property is satisfied by our
subfield VOLE construction and the 2-party VOLE PCG from [14], as well as the
2-party bilinear PCGs constructed in this work (including OT and Beaver triples)
from group-based and lattice-based HSS and from LPN (in the full version [15]).
As a corollary, we obtain M -party variants of these correlations with quadratic
blowup in computation and share size. Interestingly, our silent OT extension
construction does not seem to support the necessary programmability, since the
resulting sender message pairs are implicitly defined as a function of the receiver’s
bit selections.

3 Preliminaries

We say that a function negl : N→ R+ is negligible if it vanishes faster than every
inverse polynomial. For two families of distributions X = {Xλ} and Y = {Yλ}

16

indexed by a security parameter λ ∈ N, we write X
c
≈ Y if X and Y are com-

putationally indistinguishable (namely, any family of circuits of size poly(λ) has
a negligible distinguishing advantage), X

s
≈ Y if they are statistically indistin-

guishable (namely, the above holds for arbitrary distinguishers), and X ≡ Y if
the two families are identically distributed.

Notation. We usually denote matrices with capital letters (A,B,C) and vectors
with bold lowercase (x,y). By default, vectors are assumed to be row vectors.
We write A|i,j to denote the entry (i, j) of a matrix A. Given a vector x of length
|x| = n, the notation HW (x) denotes the Hamming weight x, i.e., the number
of its nonzero entries. Given a distribution D, we denote by Im(D) the image of
D (i.e., its support set).

3.1 Function Secret Sharing

Informally, an FSS scheme for a class of functions C is a pair of algorithms
FSS = (FSS.Gen,FSS.Eval) such that:

– FSS.Gen given a function f ∈ C outputs a pair of keys (K0,K1);,
– FSS.Eval, given Kb and input x, outputs yb such that y0 and y1 form additive

shares of f(x).

The security requirement is that each key Kb computationally hide f , except for
revealing the input and output domains of f . For a formal definition, see e.g.
[19].

Some applications of FSS require applying the evaluation algorithm on all
inputs. Following [19, 14], given an FSS scheme (FSS.Gen,FSS.Eval), we denote
by FSS.FullEval an algorithm which, on input a bit b, and an evaluation key Kb

(which defines the input domain I), outputs a list of |I| elements of G corre-
sponding to the evaluation of FSS.Eval(b,Kb, ·) on every input x ∈ I (in some
predetermined order). While FSS.FullEval can always be realized with |I| invoca-
tions of FSS.Eval, it is typically possible to obtain a more efficient construction.
Below, we recall some results from [19] on FSS schemes for useful classes of
functions.

Distributed Point Functions. A distributed point function (DPF) [39] is an
FSS scheme for the class of point functions fα,β : {0, 1}` → G which satisfy
fα,β(α) = β, and fα,β(x) = 0 for any x 6= α. A sequence of works [39, 17, 19]
has led to highly efficient constructions of DPF schemes from any pseudorandom
generator (PRG), which can be implemented in practice using block ciphers such
as AES.

Theorem 1 (PRG-based DPF [19], Theorems 3.3 and 3.4). Given a
PRG G : {0, 1}λ → {0, 1}2λ+2, there exists a DPF for point functions fα,β :

{0, 1}` → G with key size ` · (λ+ 2) + λ+ dlog2 |G|e bits. For m = d log |G|λ+2 e, the
key generation algorithm Gen invokes G at most 2(`+m) times, the evaluation

17

algorithm Eval invokes G at most `+m times, and the full evaluation algorithm
FullEval invokes G at most 2`(1 +m) times.

Note that a naive construction of FullEval from Eval would require 2`(`+m)
invocations of G.

FSS for Multi-Point Functions. Similarly to [14], we use FSS for multi-point
functions. A k-point function evaluates to 0 everywhere, except on k specified
points. When specifying multi-point functions we often view the domain of the
function as [n] for n = 2` instead of {0, 1}`.

Definition 2 (Multi-Point Function [14]). An (n, t)-multi-point function
over an abelian group (G,+) is a function fS,y : [n]→ G, where S = (s1, · · · , st)
is an ordered subset of [n] of size t and y = (y1, · · · , yt) ∈ Gt, defined by
fS,y(si) = yi for any i ∈ [t], and fS,y(x) = 0 for any x ∈ [n] \ S.

We assume that the description of S includes the input domain [n] so that
fS,y is fully specified.

A Multi-Point Function Secret Sharing (MPFSS) is an FSS scheme for the
class of multi-point functions, where a point function fS,y is represented in a
natural way. We assume that an MPFSS scheme leaks not only the input and
output domains but also the number of points t that the multi-point function
specifies. An MPFSS can be easily obtained by adding t instances of DPF; op-
timized constructions of MPFSS, using batch codes [48] to speed up the full
domain evaluation algorithm, were presented in [14].

3.2 Learning Parity with Noise

Our constructions rely on variants of the Learning Parity with Noise (LPN) as-
sumption [12] over either F2 or a large finite field F. Unlike the LWE assumption,
in LPN over F the noise is assumed to have a small Hamming weight. Concretely,
the noise is a random field element in a small fraction of the coordinates and
0 elsewhere. Similar assumptions have been previously used in the context of
secure arithmetic computation [58, 50, 3, 33, 37]. Unlike most of these works, the
flavors of LPN on which we rely do not require the underlying code to have
an algebraic structure and are thus not susceptible to algebraic (list-) decoding
attacks.

Definition 3 (LPN). Let D(R) = {Dk,q(R)}k,q∈N denote a family of distri-
butions over a ring R, such that for any k, q ∈ N, Im(Dk,q(R)) ⊆ Rq. Let C
be a probabilistic code generation algorithm such that C(k, q,R) outputs a ma-
trix A ∈ Rk×q. For dimension k = k(λ), number of samples (or block length)
q = q(λ), and ring R = R(λ), the (D,C,R)-LPN(k, q) assumption states that

{(A, b) | A $← C(k, q,R), e $← Dk,q(R), s $← Fk, b← s ·A+ e}
c
≈ {(A, b) | A $← C(k, q,R), b $← Rq}

18

Here and in the following, all parameters are functions of the security pa-
rameter λ and computational indistinguishability is defined with respect to λ.

When R = F2 and D is the Bernoulli distribution over Fq2, where each coor-
dinate is 1 with probability r and 0 otherwise, this corresponds to the standard
binary LPN assumption.

Note that the search LPN problem, of finding the vector can be reduced to
the decisional LPN assumption as defined above above when the code generator
C outputs a uniform matrix A [12, 5]. However, this is less relevant for us as we
are mainly interested in efficient variants with more structured codes. See [34]
for further discussion of search-to-decision reductions in the general case.

Example: LPN with Fixed Weight Noise. For a finite field F, we denote by
HWr(F) the distribution of uniform, weight r vectors over F; that is, a sample
fromHWr(F) is a uniformly random nonzero field element in r random positions,
and zero elsewhere. The (Berr(F)q,C,F)−LPN(k, q) assumption corresponds to
the standard (non-binary, fixed-weight) LPN assumption over a field F with code
generator C, dimension k, number of samples (or block length) q, and noise rate
r.

When the block length q and noise rate r are such that k random coordinates
will be all noiseless with non-negligible probability (e.g., when r is constant and
q = Ω(k2)), LPN can be broken via Gaussian elimination (cf. [6]). This attack
does not apply to our constructions, which typically have q = O(k).

Definition 4 (dual LPN). Let D(R) and C be as in Definition 3, n, n′ ∈ N
with n′ > n, and define C⊥(n′, n,R) = {B ∈ Rn′×n : A · B = 0, A ∈ C(n′ −
n, n′,R), rank(B) = n}.

For n = n(λ), n′ = n′(λ) and R = R(λ), the (D,C,R)-dual-LPN(n′, n)
assumption states that

{(H, b) | H $← C⊥(n′, n,R), e $← D(R), b← e ·H}
c
≈ {(H, b) | H $← C⊥(n′, n,R), b $← Rn}

The search version of the dual LPN problem is also known as syndrome
decoding. The decision version defined above is equivalent to primal variant of
LPN from Definition 3 with dimension k = n′−n and number of samples q = n′.
This follows from the simple fact that (s ·A+ e) ·H = s ·A ·H + e ·H = e ·H,
when H is the parity-check matrix of A.

Remark 5. For any code generation algorithm C where dual-LPN is hard, it must
hold that for H $← C⊥(n′, n′,R), H is full rank with overwhelming probability.
If that was not the case, then we could easily distinguish e ·H from uniform due
to a linear relation between some of its outputs.

Remark 6. As a concrete example of the actual flavor of the dual-LPN assump-
tion we will use, our construction of silent OT from Section 5 relies on the
dual-LPN assumption of Definition 3 with respect to a random linear code over

19

the field F2. For deriving our concrete parameters, we choose a regular error dis-
tribution of weight t, where a length-n′ error vector has t non-zero coordinates
spread across weight-1 blocks of length n′/t. This is known as the regular-LPN or
regular syndrome decoding problem. When n ≥ 216 and n′ = 4n, a fixed-weight
noise of t ≈ 32 suffices to achieve 80-bit security against the best known attacks
on this flavor of LPN, which all take time exponential in (n′/n) · t. We will also
consider alternative choices of linear codes (such as LDPC codes or quasi-cyclic
codes) to improve the concrete computational efficiency in our estimates; such
codes still lead to plausible variants of LPN and do not significantly improve
known attacks compared with random codes.

4 Pseudorandom Correlation Generators

In this section we put forward a general notion of pseudorandom correlation gen-
erator (PCG) and study some of its limitations, capabilities, and relation with
other primitives. We start with our formal definition of PCG in Section 4.1. We
then discuss in Section 4.2 a simpler and more natural simulation-based defi-
nition of PCG, that would suffice for all applications, but is not realizable. As
a second-best alternative, we show in Section 4.3 that PCGs can be used as a
drop-in replacement for correlated randomness in every protocol that meets a
slightly stronger security requirement, which is indeed met by natural MPC pro-
tocols in the correlated randomness model. In the full version [15], we also show
a two-way relation between PCGs for a useful class of “low-degree correlations”
and homomorphic secret sharing for low-degree polynomials.

4.1 Defining Pseudorandom Correlation Generators

At a high level, a pseudorandom correlation generator (PCG) for some relation
takes as input a pair of short, correlated seeds and outputs long correlated pseu-
dorandom strings, where the expansion procedure is deterministic and can be
applied locally.

For correctness we require that the expanded output of a PCG is indistin-
guishable from truly random correlated strings.

For security it would be natural and straightforward to require that we can
securely replace long correlated strings by short correlated seeds in any secure
protocol execution. Unfortunately, as shown in the following section, this security
requirement would be impossible to meet. Therefore, we will introduce (and
subsequently prove useful) an indistinguishability based security notion. Namely,
we require that an adversary given access to one of the short seeds kσ, cannot
distinguish the pseudorandom string R1−σ from a pseudorandom string that
is chosen at random conditioned on (R0, R1) being correlated (where Rσ =
PCG(kσ)). In other words, an adversary given access to a short seed cannot
learn more about the other party’s pseudorandom string than what is obvious
given access to its own pseudorandom string.

20

In order to formally define pseudorandom correlations, we first introduce the
concept of a correlation generator as a PPT algorithm outputting correlated
elements.

Definition 7 (Correlation Generator). A PPT algorithm C is called a cor-
relation generator, if C on input 1λ outputs a pair of elements in {0, 1}n×{0, 1}n
for n ∈ poly(λ).

In order to define security, we require the notion of a reverse-sampleable
correlation generator introduced in the following.

Definition 8 (Reverse-sampleable Correlation Generator). Let C be a
correlation generator. We say C is reverse sampleable if there exists a PPT
algorithm RSample such that for σ ∈ {0, 1} the correlation obtained via:

{(R′0, R′1) |(R0, R1)
$← C(1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

The following definition of pseudorandom correlation generators can be viewed
as a generalization of the definition of the pseudorandom VOLE generator in [14].
Note though that we do not enforce perfect correctness.

Definition 9 (Pseudorandom Correlation Generator (PCG)). Let C be a
reverse-sampleable correlation generator. A pseudorandom correlation generator
(PCG) for C is a pair of algorithms (PCG.Gen,PCG.Expand) with the following
syntax:

– PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs
a pair of seeds (k0, k1);

– PCG.Expand(σ, kσ) is a polynomial-time algorithm that given party index σ ∈
{0, 1} and a seed kσ, outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

– Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1) $← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computa-

tionally indistinguishable:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

21

Note that the above definition is trivial to achieve in general: We can let PCG.Gen
on input 1λ return (R0, R1)← C(1λ), and simply define Expand to be the identity.
Typically, we will be interested in non-trivial constructions of PCGs, in which the
seed size is significantly shorter than the output size. A pseudorandom generator
with image in {0, 1}n is a simple example for an expanding PCG for the equality
correlation {(R,R) | R ∈ {0, 1}n}. In the following we will be interested in
constructing PCGs for a much broader class of correlations, like OT correlations,
OLE correlations and (authenticated) Beaver triples.

4.2 Impossibility of a Simulation-Based Definition

A natural and useful alternative to the security definition we gave in Section 4, is
the following: In any secure protocol (say against semi-honest adversaries), one
can replace sampling a pair of strings from the correlation C by generating a pair
of seeds (which are later expanded) using a PCG for C without compromising se-
curity. Unfortunately, as sketched in [38], a non-trivial PCG construction cannot
satisfy such a simulation-based definition. Consider the simple protocol, where
P0 samples a pair (R0, R1) ← C(1λ) and sends R1 to P1, who simply outputs
R1. This protocol obviously realizes the protocol dictated by C, with one-sided
security against P1. But, if P0 instead generates (k0, k1) according to the seed
generation algorithm of the PCG and sends k1 to P1, a possible simulator runs
into the following problem. Simulating the above protocol given only the output
R1 corresponds to finding a short seed k1 that can be (deterministically) ex-
panded to R1. If the entropy in the second output of C exceeds the seed-length
|k1|, such a compression violates correctness, as it could be used to distinguish
R1 from a string that is indeed chosen via C.

In the full version, we present a formal and more general version of the above
argument for ruling out a simulation-based definition for non-trivial correlations,
based on a lower bound of Hubáček and Wichs [45].

4.3 Applying PCGs in Protocols with Correlated Randomness

In this section we show that one can use PCGs in a “plug-and-play” fashion
in protocols consuming correlated randomness sampled by a given functionality.
More precisely, we show that PCGs can be directly applied to any protocol using
a weaker form of correlated randomness, where corrupted parties can influence
their outputs.

A simple example is random OT, where the weaker functionality we can
realize allows a corrupt sender/receiver to choose its outputs, then the other
party’s outputs are sampled at random correspondingly. When using OT in an
MPC protocol, the OT is typically implemented from random OT by masking
the actual OT inputs with fresh random OT outputs. Allowing a corrupt party
to choose its own OT outputs does not affect the security of these protocols,
since (intuitively) this can only weaken security for the corrupt party and not
for honest parties. More generally, it turns out that many practical MPC proto-
cols, including those based on preprocessed multiplication triples for arithmetic

22

circuits [10, 29] and binary circuits [59, 61, 62], use this kind of corruptible, cor-
related randomness, since it is often easier to design a protocol that realizes
this.

More formally, the randomness is modelled by the functionality FCcorr∗ (Fig. 1),
where a corrupted party may first choose its own output, and then the honest
party’s output is computed with the reverse sampling algorithm for C. As we
show in the following, PCGs can be used to securely realize FCcorr∗, opening up
many important applications at no extra cost.

To realize FCcorr∗, we use a simple protocol, ΠCcorr∗, that calls FPCG.Gen
corr so

that each party obtains a seed kσ, which is then expanded to get the output
PCG.Expand(σ, kσ).

Functionality FCcorr∗

On input 1λ, the functionality does as follows:

– If no parties are corrupt, sample (R0, R1)
$← C(1λ).

– Otherwise, if Pσ is corrupt, wait to receive Rσ ∈ {0, 1}nσ from A, then
sample R1−σ

$← RSample(σ,Rσ).

The functionality outputs R0 to P0 and R1 to P1, and then halts.

Fig. 1. Corruptible correlated randomness functionality for a reverse-sampleable cor-
relation generator, C

Theorem 10. Let PCG = (PCG.Gen,PCG.Expand) be a secure PCG for a reverse-
sampleable correlation generator, C. Then the protocol Πcorr∗ securely realizes the
FCcorr∗ functionality against a static, malicious adversary.

5 Silent Oblivious Transfer Extension From LPN

In this section we present a protocol for silent OT extension, which allows to
generate n instances of random OT with sublinear communication complexity.
To this end, we first show how to tweak the construction of Boyle et al. [14] to
give correlated OT. Combining this observation with the OT extension technique
of Ishai et al. [46] we obtain a PCG for random OT. Finally, we show how to
use the protocol of Doerner and shelat [32] for secure computation of the seed,
giving sublinear OT extension.

5.1 Subfield Vector-OLE

Here, we introduce the notion of subfield vector oblivious linear evaluation (sV-
OLE), and show that sVOLE for Fq over subfield Fp ⊂ Fq gives 1-out-of-p
correlated OT. More precisely, a single big instance of sVOLE will give many

23

1-out-of-p OTs at once. Our construction of sVOLE comes with two additional
advantages: It enjoys lower computational costs, because matrix multiplications
are performed with a matrix over Fp, and for p = 2 we can reduce security to
the better-studied binary LPN problem, instead of its arithmetic variant over
larger fields.

Subfield VOLE is a form of vector oblivious linear evaluation (VOLE) over
Fq, which computes w = ux + v, where the vector u is restricted to lie over a
subfield Fp ⊂ Fq, for q = pr (and we multiply u with x ∈ Fq component-wise,
by viewing x as a vector over Fp). It outputs (u,v) to the sender and (x,w) to
the receiver.

The construction in Fig. 2 uses the function spreadn(S,y), which expands a
set S = (s1, . . . , s|S|) ⊂ [n] and a vector y ∈ F|S|p into the vector µ ∈ Fnp , where
µsi = yi for i = 1, . . . , |S|, and µj = 0 for j ∈ [n] \S. It is a generalization of the
VOLE generator from [14], which follows from the case p = q.

Construction GsVOLE

Parameters:

– Security parameter 1λ, integers n′ > n, q = pr, and noise weight t.
– A code generation algorithm C and Hn′,n

$← C(n′, n,Fp).
– A multi-point FSS scheme (MPFSS.Gen,MPFSS.FullEval).

Correlation: Output (u,v) and (x,w), where x ← Fq, u $← Fnp , v
$← Fnq

and w = ux+ v.

Gen: On input 1λ:

1. Pick a random size-t subset S of [n′], sorted in increasing order.
2. Pick a random vector y ∈ (F∗p)t and x

$← Fq.
3. Compute (K fss

0 ,K
fss
1)

$← MPFSS.Gen(1λ, fS,x·y).
4. Let k0 ← (m,n,K fss

0 , S,y) and k1 ← (m,n,K fss
1 , x).

5. Output (k0, k1).

Expand: On input (σ, kσ):

1. If σ = 0: parse k0 as (m,n,K fss
0 , S,y). Set µ ← spreadn′(S,y) in Fn

′
p .

Compute v0 ← MPFSS.FullEval(0,K fss
0) in Fn

′
q . Output (u,v) ← (µ ·

Hn′,n,−v0 ·Hn′,n).
2. If σ = 1: parse k1 as (m,n,K fss

1 , x). Compute v1 ←
MPFSS.FullEval(1,K fss

1) in Fn
′
q , and output (x,w ← v1 ·Hn′,n).

Fig. 2. PCG for subfield vector-OLE

24

Theorem 11. Suppose the (HWt,C,Fp)-dual-LPN(n′, n) assumption holds, and
that MPFSS is a secure multi-point FSS scheme. Then the construction GsVOLE

(Fig. 2) is a secure PCG for the subfield vector-OLE correlation.

Application to Correlated OT. Subfield VOLE immediately gives a PCG for
correlated OT (or ∆-OT). This is a batch of 1-out-of-2 OTs where the sender’s
strings are of the form (wi, wi ⊕ ∆) for some fixed string ∆, and is the main
building block in practical MPC protocols such as TinyOT [59] and authenti-
cated garbling [61, 62].

To obtain correlated OT, we run subfield VOLE with p = 2 and q = 2r,
so the VOLE sender obtains ui ∈ F2, vi ∈ F2r , while the VOLE receiver gets
x ∈ F2r and wi = x · ui + vi, for i = 1, . . . , n. Now switching the roles of sender
and receiver, the VOLE sender can be seen as an OT receiver with choice bit
ui and string vi. This gives us a correlated OT, since the OT sender (formerly
VOLE receiver) can compute the strings (wi, wi + x), and we have vi = wi if
ui = 0 and vi = wi + x if ui = 1.

Application to Matrix Multiplication. Our construction for subfield VOLE
can alternatively be seen as a PCG for tensor product : writing x ∈ Fq as x =
(x1, . . . , xr) ∈ Frp, and u = (u1, . . . , un) ∈ Fnp , sVOLE computes secret shares
of x ⊗ u, that is, xi · uj for every (i, j) ∈ [r] × [n]. This allows evaluation of
secret-shared tensor products in 2-PC, which can in turn be used for matrix
multiplication.

The seed size scales linearly in r, but this still improves upon the naive
way of using r PCGs for VOLE over Fp; the latter approach (with the VOLE
from [14]) has seed size O(rt · (λ log n + log p)) bits, whereas we reduce this to
O(t · (λ log n+ r log p)) bits, saving at least a log n factor when log p = O(λ).

5.2 PCG for Random Oblivious Transfer

In the full version [15], we give the formal construction of a PCG for the random
oblivious transfer correlation, based on GsVOLE. Given the above observation that
subfield VOLE implies correlated OT, this is straightforward, as we can apply
the OT extension technique of Ishai et al. [46], which converts correlated OTs
into random OTs using a suitable hash function. We extend this in a natural
way to generate 1-out-of-p random OTs using subfield VOLE over Fp. Note that
for security when applying the hash function, we now need q = λω(1).

We use a generalization of a correlation robust function, called Fp-correlation
robustness (defined in the full version). As recently shown in [41], this can be
instantiated with fixed-key AES modeled as a random permutation when p = 2.

Theorem 12. Suppose that H is an Fp-correlation robust hash function and
GsVOLE is a secure PCG. Then the silent OT construction (in the full version)
is a secure PCG for the random 1-out-of-p OT correlation.

25

5.3 From a PCG to Silent OT Extension

To construct an OT extension protocol, we can use 2-PC to securely compute
the Gen algorithm of GOT, and then have each party locally expand its out-
put using GOT.Expand. Applying Theorem 10 from Section 4.3, this realizes a
corruptible form of the ideal functionality for random oblivious transfer, where
corrupt parties may influence their random outputs.

To do this efficiently with semi-honest security, we use the black-box protocol
of Doerner and shelat [32] (also used in [14]) for setting up distributed point
function keys. For a single point function of domain size n, this requires O(log n)
OTs on O(λ)-bit strings, giving O(t log n) OTs for a multi-bit point function.
Implementing each OT with (non-silent) OT extension [46] costs O(λ) bits of
communication, plus a setup phase of λ base OTs. Putting this together, we
obtain the following.

Theorem 13. Suppose the (HWt,C,Fp)-dual-LPN(n′, n) assumption holds, and
an Fp-correlation robust hash function exists. Then there is a protocol that uses
O(λ) 1-out-of-2 OTs to realize n instances of random 1-out-of-p OT with semi-
honest security, using O(tλ log n) + poly(λ) bits of communication.

We remark that this gives OT with sublinear communication when t =
o(n/(λ log n)), which translates to an instance of LPN with noise rate 1/ω(λ log n).
If the matrixHn′,n in GsVOLE is uniformly random, the computational complexity
is dominated by O(n′ ·n) arithmetic operations; using more structured matrices
based on LDPC codes or quasi-cyclic codes, we get respective costs of O(n′) or
Õ(n′) arithmetic and PRG operations.

Concrete Efficiency. In the full version, we analyze these costs more con-
cretely and give a breakdown of the communication complexity, as well as some
approximate runtime estimates based on the cost of the main operations. For
example, for n ≤ 222 OTs, the PCG seed size is under 10kB and requires less
than 30kB of communication to create with the distributed setup procedure.
After setup, we estimate that these seeds can be expanded into 16MB of OTs
on 128-bit strings at a rate of around 1 million per second, or 2 million per
second when expanding to 1MB, using a single core of a CPU on a modern
laptop. When including the distributed setup procedure, in these two cases we
get an amortized communication complexity of just 0.2 and 2.6 bits per OT,
respectively.

Acknowledgements. We would like to thank Peter Rindal and Melissa Rossi for
helpful discussions and pointers, and the anonymous Crypto 2019 reviewers for
their comments.

E. Boyle, N. Gilboa, and Y. Ishai supported by ERC Project NTSC (742754).
E. Boyle additionally supported by ISF grant 1861/16 and AFOSR Award FA9550-
17-1-0069. G. Couteau supported by ERC Project PREP-CRYPTO (724307).

26

N. Gilboa additionally supported by ISF grant 1638/15 and a grant by the BGU
Cyber Center. Y. Ishai additionally supported by ISF grant 1709/14, NSF-BSF
grant 2015782, and a grant from the Ministry of Science and Technology, Israel
and Department of Science and Technology, Government of India. L. Kohl sup-
ported by ERC Project PREP-CRYPTO (724307), by DFG grant HO 4534/2-2
and by a DAAD scholarship. This work was done in part while visiting the FACT
Center at IDC Herzliya, Israel. P. Scholl supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
731583 (SODA), and the Danish Independent Research Council under Grant-ID
DFF-6108-00169 (FoCC).

References
1. Aguilar, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Efficient encryption

from random quasi-cyclic codes. Cryptology ePrint Archive, Report 2016/1194
(2016), http://eprint.iacr.org/2016/1194

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS. IEEE Computer Society Press (Oct 2003)

3. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: CRYPTO 2017, Part I.
LNCS, Springer, Heidelberg (Aug 2017)

4. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-
complexity cryptographic hash functions. In: ITCS 2017. LIPIcs (Jan 2017)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input lo-
cality. Journal of Cryptology (4) (Oct 2009)

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: ICALP
2011, Part I. LNCS, Springer, Heidelberg (Jul 2011)

7. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM CCS 2013. ACM Press (Nov
2013)

8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991, Pro-
ceedings. Lecture Notes in Computer Science, vol. 576, pp. 420–432. Springer
(1991), https://doi.org/10.1007/3-540-46766-1_34

9. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp.
479–488 (1996), https://doi.org/10.1145/237814.237996

10. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: EUROCRYPT 2011. LNCS, Springer, Heidelberg
(May 2011)

11. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with prov-
able security. In: EUROCRYPT 2006. LNCS, Springer, Heidelberg (May / Jun
2006)

12. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Advances in Cryptology - CRYPTO ’93, 13th An-
nual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 22-26, 1993, Proceedings. pp. 278–291 (1993), https://doi.org/10.1007/
3-540-48329-2_24

27

13. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
TCC 2005. LNCS, Springer, Heidelberg (Feb 2005)

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
CCS 2018. ACM Press (Oct 2018)

15. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent ot extension and more. Cryptology ePrint
Archive, Report 2019/448 (2019), https://eprint.iacr.org/2019/448

16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: Optimizations and applications. In: ACM CCS 2017. ACM Press (Oct / Nov
2017)

17. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: EUROCRYPT 2015,
Part II. LNCS, Springer, Heidelberg (Apr 2015)

18. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: CRYPTO 2016, Part I. LNCS, Springer, Heidelberg (Aug
2016)

19. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and exten-
sions. In: ACM CCS 2016. ACM Press (Oct 2016)

20. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: Optimizing
rounds, communication, and computation. In: EUROCRYPT 2017, Part II. LNCS,
Springer, Heidelberg (Apr / May 2017)

21. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA. pp. 21:1–21:21 (2018),
https://doi.org/10.4230/LIPIcs.ITCS.2018.21

22. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
fhe. In: EUROCRYPT ’19 (2019), https://eprint.iacr.org/2019/129

23. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS 2012. ACM (Jan 2012)

24. Chase, M., Dodis, Y., Ishai, Y., Kraschewski, D., Liu, T., Ostrovsky, R., Vaikun-
tanathan, V.: Reusable non-interactive secure computation. IACR Cryptology
ePrint Archive 2018, 940 (2018), https://eprint.iacr.org/2018/940

25. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: Advances in Cryptology - EUROCRYPT.
Springer (2019)

26. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: TCC 2005. LNCS, Springer, Heidelberg
(Feb 2005)

27. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Advances in Cryptology - EUROCRYPT 2001, In-
ternational Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding. pp. 280–299 (2001),
https://doi.org/10.1007/3-540-44987-6_18

28. Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol
for 2-party secure computation, or: Gate-scrambling revisited. In: CRYPTO 2017,
Part I. LNCS, Springer, Heidelberg (Aug 2017)

29. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO 2012. LNCS, Springer, Heidel-
berg (Aug 2012)

30. Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
In: NDSS 2017. The Internet Society (Feb / Mar 2017)

28

31. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its ap-
plications. In: CRYPTO 2016, Part III. LNCS, Springer, Heidelberg (Aug 2016)

32. Doerner, J., shelat, a.: Scaling ORAM for secure computation. In: ACM CCS 2017.
ACM Press (Oct / Nov 2017)

33. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: Efficient
actively secure two-party computation from oblivious linear function evaluation.
In: ACM CCS 2017. ACM Press (Oct / Nov 2017)

34. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-varshamov
bound and their cryptographic applications. In: ITCS 2014. ACM (Jan 2014)

35. Franklin, M.K., Haber, S.: Joint encryption and message-efficient secure computa-
tion. J. Cryptology 9(4), 217–232 (1996), https://doi.org/10.1007/BF00189261

36. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: TCC 2005. LNCS, Springer, Heidelberg (Feb 2005)

37. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: ASIACRYPT 2017, Part I. LNCS, Springer,
Heidelberg (Dec 2017)

38. Gilboa, N., Ishai, Y.: Compressing cryptographic resources. In: CRYPTO’99.
LNCS, Springer, Heidelberg (Aug 1999)

39. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: EU-
ROCRYPT 2014. LNCS, Springer, Heidelberg (May 2014)

40. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: 19th ACM STOC.
ACM Press (May 1987)

41. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. Cryptology ePrint Archive, Report 2019/074 (2019),
https://eprint.iacr.org/2019/074

42. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: ITCS 2016. ACM (Jan 2016)

43. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: A new approach to
efficient multi-party computation. In: CRYPTO 2018, Part III. LNCS, Springer,
Heidelberg (Aug 2018)

44. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: An efficient
authentication protocol based on ring-LPN. In: FSE 2012. pp. 346–365 (2012)

45. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: ITCS 2015. ACM (Jan 2015)

46. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: CRYPTO 2003. LNCS, Springer, Heidelberg (Aug 2003)

47. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: TCC 2013. LNCS,
Springer, Heidelberg (Mar 2013)

48. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: 36th ACM STOC. ACM Press (Jun 2004)

49. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Advances in Cryptology - CRYPTO 2008, 28th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Pro-
ceedings. pp. 572–591 (2008), https://doi.org/10.1007/978-3-540-85174-5\
_32

50. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: TCC 2009. LNCS, Springer, Heidelberg (Mar 2009)

29

51. Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling
for faster secure two-party computation. In: Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part III. pp. 365–391 (2018), https://doi.org/
10.1007/978-3-319-96878-0_13

52. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: ACNS
17. LNCS, Springer, Heidelberg (Jul 2017)

53. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In: EU-
ROCRYPT 2018, Part III. LNCS, Springer, Heidelberg (Apr / May 2018)

54. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA. pp. 20–31 (1988), https://doi.org/10.1145/62212.62215

55. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short se-
crets. In: CRYPTO 2013, Part II. LNCS, Springer, Heidelberg (Aug 2013)

56. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: ACM CCS 2016. ACM Press
(Oct 2016)

57. Matsumoto, T., Imai, H.: Public quadratic polynominal-tuples for efficient
signature-verification and message-encryption. In: EUROCRYPT’88. LNCS,
Springer, Heidelberg (May 1988)

58. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

59. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: CRYPTO 2012. LNCS, Springer,
Heidelberg (Aug 2012)

60. Scholl, P.: Extending oblivious transfer with low communication via key-
homomorphic PRFs. In: PKC 2018, Part I. LNCS, Springer, Heidelberg (Mar 2018)

61. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: ACM CCS 2017. ACM Press (Oct / Nov 2017)

62. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
ACM CCS 2017. ACM Press (Oct / Nov 2017)

63. Wolf, C.: Multivariate quadratic polynomials in public key cryptography. Cryptol-
ogy ePrint Archive, Report 2005/393 (2005), http://eprint.iacr.org/2005/393

30

