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Abstract. We present batching techniques for cryptographic accumula-
tors and vector commitments in groups of unknown order. Our techniques
are tailored for distributed settings where no trusted accumulator man-
ager exists and updates to the accumulator are processed in batches. We
develop techniques for non-interactively aggregating membership proofs
that can be verified with a constant number of group operations. We also
provide a constant sized batch non-membership proof for a large number
of elements. These proofs can be used to build the first positional vector
commitment (VC) with constant sized openings and constant sized pub-
lic parameters. As a core building block for our batching techniques we
develop several succinct proof systems in groups of unknown order. These
extend a recent construction of a succinct proof of correct exponentia-
tion, and include a succinct proof of knowledge of an integer discrete
logarithm between two group elements. We circumvent an impossibility
result for Sigma-protocols in these groups by using a short trapdoor-free
CRS. We use these new accumulator and vector commitment construc-
tions to design a stateless blockchain, where nodes only need a constant
amount of storage in order to participate in consensus. Further, we show
how to use these techniques to reduce the size of IOP instantiations, such
as STARKs. The full version of the paper is available online [BBF18b]

1 Introduction

A cryptographic accumulator [Bd94] is a primitive that produces a short
binding commitment to a set of elements together with short membership
and/or non-membership proofs for any element in the set. These proofs
can be publicly verified against the commitment. The simplest accumula-
tor is the Merkle tree [Mer88], but several other accumulators are known,
as discussed below. An accumulator is said to be dynamic if the commit-
ment and membership proofs can be updated efficiently as elements are
added or removed from the set, at unit cost independent of the number of
accumulated elements. Otherwise we say that the accumulator is static.
A universal accumulator is dynamic and supports both membership and
non-membership proofs.



A vector commitment (VC) is a closely related primitive [CF13]. It
provides the same functionality as an accumulator, but for an ordered list
of elements. A VC is a position binding commitment and can be opened at
any position to a unique value with a short proof (sublinear in the length
of the vector). The Merkle tree is a VC with logarithmic size openings.
Subvector commitments [LM18] are VCs where a subset of the vector
positions can be opened in a single short proof (sublinear in the size of
the subset).

The typical way in which an accumulator or VC is used is as a
communication-efficient authenticated data structure (ADS) for a re-
motely stored database where users can retrieve individual items along
with their membership proofs in the data structure. Accumulators have
been used for many applications within this realm, including account-
able certificate management [BLL00,NN98], timestamping [Bd94], group
signatures and anonymous credentials [CL02], computations on authen-
ticated data [ABC+12], anonymous e-cash [STS99b,MGGR13], privacy-
preserving data outsourcing [Sla12], updatable signatures [PS14,CJ10],
and decentralized bulletin boards [FVY14,GGM14].

Our present work is motivated by two particular applications of ac-
cumulators and vector commitments: stateless transaction validation in
blockchains, or “stateless blockchains” and short interactive oracle proofs
(IOPs) [BCS16].

“Stateless” blockchains. A blockchain has become the popular term
for a ledger-based payment system, in which peer-to-peer payment trans-
actions are asynchronously broadcasted and recorded in an ordered ledger
that is replicated across nodes in the network. Bitcoin and Ethereum
are two famous examples. Verifying the validity of a transaction requires
querying the ledger state. The state can be computed uniquely from the
ordered log of transactions, but provides a more compact index to the
information required for transaction validation.

For example, in Ethereum the state is a key/value store of account
balances where account keys are the public key addresses of users. In
Bitcoin, the state is the set of unspent transaction outputs (UTXOs). In
Bitcoin, every transaction completely transfers all the funds associated
with a set of source addresses to a set of target addresses. It is only valid
if every source address is the output of a previous transaction that has
not yet been consumed (i.e. “spent”). It is important that all nodes agree
on the ledger state.
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Currently, in Bitcoin, every node in the system stores the entire UTXO
set in order to verify incoming transactions. This has become cumber-
some as the size of UTXO set has grown to gigabytes. An accumulator
commitment to the UTXO set would alleviate this need. Transactions
would include membership proofs for all its inputs. A node would only
need to store the current state of the accumulator and verify transactions
by checking membership proofs against the UTXO accumulator state. In
fact, with dynamic accumulators, no single node in the network would be
required to maintain the entire UTXO set. Only the individual nodes who
are interested in a set of UTXOs (e.g. the users who can spend these out-
puts) would need to store them along with their membership proofs. Every
node can efficiently update the UTXO set commitment and membership
proofs for individual UTXOs with every new batch of transactions. The
same idea can be applied to the Ethereum key-value store using a VC
instead of an accumulator.

This design concept is referred to as a “stateless blockchain” [Tod16]
because nodes may participate in transaction validation without storing
the entire state of the ledger, but rather only a short commitment to
the state. The idea of committing to a ledgers state was introduced long
before Bitcoin by Sanders and Ta-Shma for E-Cash[STS99a]. While the
stateless blockchain design reduces the storage burden of node perform-
ing transaction validation, it increases the network communication due
to the addition of membership proofs to each transaction payload. A de-
sign goal is to minimize the communication impact. Therefore, stateless
blockchains would benefit from an accumulator with smaller membership
proofs, or the ability to aggregate many membership proofs for a batch
of transactions into a single constant-size proof.

Interactive oracle proofs (IOPs). Micali [Mic94] showed how prob-
abilistically checkable proofs (PCPs) can be used to construct succinct
non-interactive arguments. In this construction the prover commits to a
long PCP using a Merkle tree and then uses a random oracle to generate
a few random query positions. The prover then verifiably opens the proof
at the queried positions by providing Merkle inclusion paths.

This technique has been generalized to the broader class of interactive
oracle proofs (IOPs)[BCS16]. In an IOP the prover sends multiple proof
oracles to a verifier. The verifier uses these oracles to query a small subsets
of the proof, and afterwards accepts or rejects the proof. If the proof oracle
is instantiated with a Merkle tree commitment and the verifier is public
coin, then an IOP can be compiled into a non-interactive proof secure in
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the random oracle model [BCS16]. In particular, this compiler is used to
build short non-interactive (zero-knowledge) proof of knowledge with a
quasilinear prover and polylogarithmic verifier. Recent practical instan-
tiations of proof systems from IOPs include Ligero [AHIV17], STARKs
[BBHR18], and Aurora [BSCR+18].

IOPs use Merkle trees as a vector commitment. Merkle trees have
two significant drawbacks for this application: first, position openings are
not constant size, and second, the openings of several positions cannot
be compressed into a single constant size proof (i.e. it is not a subvector
commitment). A vector commitment with these properties would have
dramatic benefits for reducing the communication of an IOP (or size of
the non-interactive proof compiled from an IOP).

1.1 Summary of contributions

Our technical contributions consist of a set of batching and aggregation
techniques for accumulators. The results of these techniques have a wide
range of implications, from concrete practical improvements in the proof-
size of IOP-based succinct arguments (e.g. STARKS) and minimizing
the network communication blowup of stateless blockchains to theoretical
achievements in VCs and IOPs.

To summarize the theoretical achievements first, we show that it is
possible to construct a VC with constant size subvector openings and con-
stant size public parameters. Previously, it was only known how to con-
struct a VC with constant size subvector openings and public parameters
linear in the length of the vector. This has immediate implications for
IOP compilers. The Merkle-tree IOP compiler outputs a non-interactive
proof that is O(λq log n) larger (additive blowup) than the original IOP
communication, where q is the number of oracle queries, n is the maxi-
mum length1 of the IOP proof oracles, and λ is the Merkle tree security
parameter. When replacing the Merkle-tree in the IOP compiler with our
new VC, we achieve only O(rλ) blowup in proof size, independent of q
and n, but dependent on the number of IOP rounds r. In the special
case of a PCP there is a single round (i.e. r = 1). A similar result was
recently demonstrated [LM18] using the vector commitments of Catalano
and Fiore (CF) [CF13], but the construction requires the verifier to access
public parameters linear in n. It was not previously known how to achieve
this with constant size public parameters.

1 In each round of an IOP, the prover prepares a message and sends the verifier a
“proof oracle”, which gives the verifier random read access to the prover’s message.
The “length” of the proof oracle is the length of this message.
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Lai and Malavolta apply the CF vector commitments to “CS-proofs”,
a special case of a compiled IOP where the IOP is a single round PCP. In-
stantiated with theoretical PCPs [Kil92,Mic94], this results in the short-
est known setup-free non-interactive arguments (for NP) with random
oracles consisting of just 2 elements in a hidden order group and 240 ad-
ditional bits of the PCP proof for 80-bit statistical security. Instantiating
the group with class groups and targeting 100-bit security yields a proof
of ≈ 540 bytes. However, the verifier must either use linear storage or per-
form linear work for each proof verification to generate the public proof
parameters. In similar vein, we can use our new VCs to build the same
non-interactive argument system, but with sublinear size parameters (in
fact constant size). Under the same parameters our proofs are slightly
larger, consisting of 5 group elements, a 128-bit integer, and the 240 bits
of the PCP proof (≈ 1.3KB).

Our VCs also make concrete improvements to practical IOPs. Tar-
geting 100-bit security with class groups, replacing Merkle trees with our
VCs would incur only 1 KB per round of the IOP. In Aurora [BSCR+18],
it was reported that Merkle proofs take up 154 KB of the 222 KB proof
for a circuit of size 220. Our VCs would reduce the size of the proof to
less than 100 KB, a 54% reduction. For STARKs, a recent benchmark in-
dicates that the Merkle paths make up over 400 KB of the 600 KB proof
for a circuit of 252 gates [BBHR18]. With our VCs, under the same pa-
rameters the membership proofs would take up roughly 22 KB, reducing
the overall proof size to approximately 222 KB, nearly a 63% reduction.

Furthermore, replacing Merkle trees with our new VCs maintains good
performance for proof verification. Roughly, each Merkle path verification
of a k-bit block is substituted with k modular multiplications of λ-bit
integers. The performance comparison is thus log n hashes vs k multipli-
cations, which is even an improvement for k < log n. In the benchmarked
STARK example, Merkle path verification comprises roughly 80% of the
verification time.

1.2 Overview of techniques

Batching and aggregation. We use the term batching to describe a
single action applied to n items instead of one action per item. For ex-
ample a verifier can batch verify n proofs faster than n times verifying a
single membership proof. Aggregation is a batching technique that is used
when non-interactively combining n items to a single item. For example, a
prover can aggregate n membership proofs to a single constant size proof.
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Succinct proofs for hidden order groups. Wesolowski [Wes18] re-
cently introduced a constant sized and efficient to verify proof that a
triple (u,w, t) satisfies w = u2

t
, where u and w are elements in a group G

of unknown order. The proof extends to exponents that are not a power
of two and still provides significant efficiency gains over direct verification
by computation.

We expand on this technique to provide a new proof of knowledge of an
exponent, which we call a PoKE proof. It is a proof that a computation-
ally bounded prover knows the discrete logarithm between two elements
in a group of unknown order. The proof is succinct in that the proof
size and verification time is independent of the size of the discrete-log
and has good soundness. We also generalize the technique to pre-images
of homomorphisms from Zq to G of unknown order. We prove security
in the generic group model, where an adversarial prover operates over a
generic group. Nevertheless, our extractor is classical and does not get to
see the adversary’s queries to the generic group oracles. We also rely on
a short unstructured common reference string (CRS). Using the generic
group model for extraction and relying on a CRS is necessary to bypass
certain impossibility results for proofs of knowledge in groups of unknown
order [BCK10,TW12].

We also extend the protocol to obtain a (honest verifier zero-
knowledge) Σ-Protocol of DLOG in G. This protocol is the first succinct
Σ-protocol of this kind.

Distributed accumulator with batching. Next, we extend current
RSA-based accumulators [CL02,LLX07] to create a universal accumulator
for a distributed/decentralized setting where no single trusted accumula-
tor manager exists and where updates are processed in batches. Despite
this we show how membership and non-membership proofs can be effi-
ciently aggregated. Moreover, items can efficiently be removed from the
accumulator without a trapdoor or even knowledge of the accumulated
set. Since the trapdoor is not required for our construction we can ex-
tend Lipmaa’s [Lip12] work on accumulators in groups of unknown order
without a trusted setup by adding dynamic additions and deletions to the
accumulator’s functionality. Class groups of imaginary quadratic order are
a candidate group of unknown order without a trusted setup[BH01].

Batching non-membership proofs. We next show how our techniques
can be amplified to create a succinct and efficiently verifiable batch mem-
bership and batch non-membership proofs. We then use these batch proofs
to create the first vector commitment construction with constant sized
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batch openings (recently called subvector commitments [LM18]) and O(1)
setup. This improves on previous work [CF13,LRY16] which required su-
perlinear setup time and linear public parameter size. It also improves
on Merkle tree constructions which have logarithmic sized non-batchable
openings. The efficient setup also allows us to create sparse vector com-
mitments which can be used as a key-value map commitment.

Soundness lower bounds in hidden order groups. Certain families
of sigma protocols for a relation in a generic group of unknown order
can achieve at most soundness 1/2 per challenge [BCK10,TW12]. Yet,
our work gives sigma protocols in a generic group of unknown order that
have negligible soundness error. This does not contradict the known im-
possibility result because our protocols involve a CRS, whereas the family
of sigma protocols to which the 1/2 soundness lower bound applies do not
have a CRS. Our results are significant as we show that it suffices to have a
CRS containing two fresh random generic group generators to circumvent
the soundness lower bound.

Note that we only prove how to extract a witness from a successful
prover that is restricted to the generic group model. Proving extraction
from an arbitrary prover under a falsifiable assumption is preferable and
remains an open problem.

2 Preliminaries

Notation.

– a ‖ b is the concatenation of two lists a, b
– a is a vector of elements and ai is the ith component
– [`] denotes the set of integers {0, 1, . . . , `− 1}.
– negl(λ) is a negligible function of the security parameter λ
– Primes(λ) is the set of integer primes less than 2λ

– x
$← S denotes sampling a uniformly random element x ∈ S.

x
$← A(·) denotes the random variable that is the output of a ran-

domized algorithm A.
– GGen(λ) is a randomized algorithm that generates a group of un-

known order in a range [a, b] such that a, b, and a− b are all integers
exponential in λ.

2.1 Assumptions

The adaptive root assumption, introduced in [Wes18], is as follows.
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Definition 1. We say that the adaptive root assumption holds for
GGen if there is no efficient adversary (A0,A1) that succeeds in the fol-
lowing task. First, A0 outputs an element w ∈ G and some state. Then, a
random prime ` in Primes(λ) is chosen and A1(`, state) outputs w1/` ∈ G.
More precisely, for all efficient (A0,A1):

AdvAR
(A0,A1)

(λ) := Pr

u` = w 6= 1 :

G $← GGen(λ)

(w, state)
$← A0(G)

`
$← Primes(λ)

u
$← A1(`, state)

 ≤ negl(λ) .

The adaptive root assumption implies that the adversary can’t compute
the order of any non trivial element. For any element with known order
the adversary can compute arbitrary roots that are co-prime to the order.
This immediately allows the adversary to win the adaptive root game. For
the group ZN this means that we need to exclude {−1, 1}

We will also need the strong RSA assumption for general groups of
unknown order. The adaptive root and strong RSA assumptions are in-
comparable. The former states that it is hard to take a random root of
a chosen group element, while the latter says that it is hard to take a
chosen root of a random group element. In groups of unknown order that
do not require a trusted setup the adversary A additionally gets access
to GGen’s random coins.

Definition 2 (Strong RSA assumption). GGen satisfies the strong
RSA assumption if for all efficient A:

Pr

[
u` = g and ` is an odd prime :

G $← GGen(λ), g
$← G,

(u, `) ∈ G× Z $← A(G, g)

]
≤ negl(λ) .

2.2 Generic group model for groups of unknown order

We will use the generic group model for groups of unknown order as de-
fined by Damgard and Koprowski [DK02]. The group is parameterized by
two integer public parameters A,B. The order of the group is sampled
uniformly from [A,B]. The group G is defined by a random injective func-
tion σ : Z|G| → {0, 1}`, for some ` where 2` � |G|. The group elements are
σ(0), σ(1), . . . , σ(|G| − 1). A generic group algorithm A is a probabilistic
algorithm. Let L be a list that is initialized with the encodings given to
A as input. The algorithm can query two generic group oracles:
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– O1 samples a random r ∈ Z|G| and returns σ(r), which is appended
to the list of encodings L.

– When L has size q, the second oracle O2(i, j,±) takes two indices i, j ∈
{1, . . . , q} and a sign bit, and returns σ(xi ± xj), which is appended
to L.

Note that unlike Shoup’s generic group model [Sho97], the algorithm is
not given |G|, the order of the group G.

2.3 Argument systems

An argument system for a relation R ⊂ X ×W is a triple of randomized
polynomial time algorithms (Pgen,P,V), where Pgen takes an (implicit)
security parameter λ and outputs a common reference string (crs) pp. If
the setup algorithm uses only public randomness we say that the setup is
transparent and that the crs is unstructured. The prover P takes as input
a statement x ∈ X , a witness w ∈ W, and the crs pp. The verifier V takes
as input pp and x and after interaction with P outputs 0 or 1. We denote
the transcript between the prover and verifier by 〈V(pp, x),P(pp, x, w)〉
and write 〈V(pp, x),P(pp, x, w)〉 = 1 to indicate that the verifier accepted
the transcript. If V uses only public randomness we say that the protocol
is public coin.

Definition 3 (Completeness). We say that an argument system
(Pgen,P,V) for a relation R is complete if for all (x,w) ∈ R:

Pr
[
〈V(pp, x),P(pp, x, w)〉 = 1 : pp

$← Pgen(λ)
]

= 1.

We now define soundness and knowledge extraction for our protocols. The
adversary is modeled as two algorithms A0 and A1, where A0 outputs the
instance x ∈ X after Pgen is run, and A1 runs the interactive protocol
with the verifier using a state output by A0. In our soundness definition
the adversary A1 succeeds if he can make the verifier accept when no
witness for x exists. For the stronger argument of knowledge definition we
require that an extractor with access to A1’s internal state can extract a
valid witness whenever A1 is convincing. We model this by enabling the
extractor to rewind A1 and reinitialize the verifier’s randomness.

Definition 4 (Arguments (of Knowledge)). We say that an argu-
ment system (Pgen,P,V) is sound if for all poly-time adversaries A =
(A0,A1):
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Pr

[
〈V(pp, x),A1(pp, x, state)〉 = 1
and @w (x,w) ∈ R :

pp
$← Pgen(1λ)

(x, state)← A0(pp)

]
= negl(λ) .

Additionally, the argument system is an argument of knowledge if for
all poly-time adversaries A1 there exists a poly-time extractor Ext such
that for all poly-time adversaries A0:

Pr

 〈V(pp, x),A1(pp, x, state)〉 = 1
and (x,w′) 6∈ R :

pp
$← Pgen(1λ)

(x, state)← A0(pp)

w′
$← Ext(pp, x, state)

 = negl(λ) .

Any argument of knowledge is also sound. In some cases we may
further restrict A in the security analysis, in which case we would say the
system is an argument of knowledge for a restricted class of adversaries.
For example, in this work we construct argument systems for relations
that depend on a group G of unknown order. In the analysis we replace
G with a generic group and restrict A to a generic group algorithm that
interacts with the oracles for this group. For simplicity, although slightly
imprecise, we say the protocol is an argument of knowledge in the generic
group model.

Definition 5 (Non interactive arguments). A non-interactive ar-
gument system is an argument system where the interaction between P
and V consists of only a single round. We then write the prover P as

π
$← Prove(pp, x, w) and the verifier as {0, 1} ← Vf(pp, x, π).

The Fiat-Shamir heuristic [FS87] and its generalization to multi-round
protocols [BCS16] can be used to transform public coin argument systems
to non-interactive systems.

3 Succinct proofs for hidden order groups

In this section we present several new succinct proofs in groups of un-
known order. The proofs build on a proof of exponentiation recently
proposed by Wesolowski [Wes18] in the context of verifiable delay func-
tions [BBBF18]. We show that the Wesolowski proof is a succinct proof of
knowledge of a discrete-log in a group of unknown order. We then derive
a succinct zero-knowledge argument of knowledge for a discrete-log rela-
tion, and more generally for knowledge of the inverse of a homomorphism
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h : Zn → G, where G is a group of unknown order. Using the Fiat-Shamir
heuristic, the non-interactive version of this protocol is a special purpose
SNARK for the pre-image of a homomorphism.

3.1 A succinct proof of exponentiation

Let G be a group of unknown order. Let [`] := {0, 1, . . . , ` − 1} and let
Primes(λ) denote the set of odd prime numbers in [0, 2λ]. We begin by
reviewing Wesolowski’s (non-ZK) proof of exponentiation [Wes18] in the
group G. Here both the prover and verifier are given (u,w, x) and the
prover wants to convince the verifier that w = ux holds in G. That is, the
protocol is an argument system for the relation

RPoE =
{(

(u,w ∈ G, x ∈ Z); ⊥
)

: w = ux ∈ G
}
.

The verifier’s work should be much less than computing ux by itself. Note
that x ∈ Z can be much larger than |G|, which is where the protocol is
most useful. The protocol works as follows:

Protocol PoE (Proof of exponentiation) for RPoE [Wes18]

Params: G $← GGen(λ); Inputs: u,w ∈ G, x ∈ Z; Claim: ux = w

1. Verifier sends `
$← Primes(λ) to prover.

2. Prover computes the quotient q = bx/`c ∈ Z and residue r ∈ [`]
such that x = q`+ r.
Prover sends Q← uq ∈ G to the Verifier.

3. Verifier computes r ← (x mod `) ∈ [`] and accepts if Q`ur = w
holds in G.

The protocol above is a minor generalization of the protocol
from [Wes18] in that we allow an arbitrary exponent x ∈ Z, where as
in [Wes18] the exponent was restricted to be a power of two. This does
not change the soundness property captured in the following theorem,
whose proof is given in [Wes18, Prop. 2] (see also [BBF18a, Thm. 2]) and
relies on the adaptive root assumption for GGen.

Theorem 1 (Soundness PoE [Wes18]). Protocol PoE is an argument
system for Relation RPoE with negligible soundness error, assuming the
adaptive root assumption holds for GGen.

For the protocol to be useful the verifier must be able to compute r =
x mod ` faster than computing ux ∈ G. The original protocol presented
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by Wesolowski assumed that x = 2T is a power of two, so that computing
x mod ` requires only log(T ) multiplications in Z` whereas computing ux

requires T group operations.
For a general exponent x ∈ Z, computing x mod ` takes O((log x)/λ)

multiplications in Z`. In contrast, computing ux ∈ G takes O(log x) group
operations in G. Hence, for the current groups of unknown order, comput-
ing ux takes λ3 times as long as computing x mod `. Concretely, when ` is
a 128 bit integer, a multiplication in Z` is approximately 5000 time faster
than a group operation in a 2048-bit RSA group. Hence, the verifier’s
work is much less than computing w = ux in G on its own.

The PoE protocol can be generalized to a relation involving any ho-
momorphism φ : Zn → G for which the adaptive root assumption holds
in G. The details of this generalization are discussed in the full version.

3.2 A succinct proof of knowledge of a discrete-log

We next show how the protocol PoE can be adapted to provide an argu-
ment of knowledge of discrete-log, namely an argument of knowledge for
the relation:

RPoKE =
{(

(u,w ∈ G); x ∈ Z
)

: w = ux ∈ G
}
.

The goal is to construct a protocol that has communication complexity
that is much lower than simply sending x to the verifier. As a stepping
stone we first provide an argument of knowledge for a modified PoKE
relation, where the base u ∈ G is fixed and encoded in a CRS. Concretely
let CRS consist of the unknown-order group G and the generator g. We
construct an argument of knowledge for the following relation:

RPoKE∗ =
{(
w ∈ G; x ∈ Z

)
: w = gx ∈ G

}
.

The argument modifies the PoE Protocol in that x is not given to the
verifier, and the remainder r ∈ [`] is sent from the prover to the verifier:

Protocol PoKE∗ (Proof of knowledge of exponent) for Relation RPoKE∗

Params: G $← GGen(λ), g ∈ G; Inputs: w ∈ G; Witness: x ∈ Z;
Claim: gx = w

1. Verifier sends `
$← Primes(λ).

2. Prover computes the quotient q ∈ Z and residue r ∈ [`] such that
x = q`+ r. Prover sends the pair (Q← gq, r) to the Verifier.
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3. Verifier accepts if r ∈ [`] and Q`gr = w holds in G.

Here the verifier does not have the witness x, but the prover addition-
ally sends r := (x mod `) along with Q in its response to the verifier’s
challenge. Note that the verifier no longer computes r on its own, but
instead relies on the value from the prover. We will demonstrate an ex-
tractor that extracts the witness x ∈ Z from a successful prover, and
prove that this extractor succeeds with overwhelming probability against
a generic group prover. In fact, in the full version of the paper[BBF18b]
we present a generalization of Protocol PoKE∗ to group representations in
terms of bases {gi}ni=1 included in the CRS, i.e. a proof of knowledge of
an integer vector x ∈ Zn such that

∏
i g
xi
i = w. We will prove that this

protocol is an argument of knowledge against a generic group adversary.
The security of Protocol PoKE∗ above follows as a special case. Hence,
the following theorem is a special case of Theorem 7 in the full version.

Theorem 2. Protocol PoKE∗ is an argument of knowledge for relation
RPoKE∗ in the generic group model.

An attack. Protocol PoKE∗ requires the discrete logarithm base g to be
encoded in the CRS. When this protocol is applied to a base freely chosen
by the adversary it becomes insecure. In other words, Protocol PoKE∗ is
not a secure protocol for the relation RPoKE.

To describe the attack, let g be a generator of G and let u = gx

and w = gy where y 6= 1 and x does not divide y. Suppose that the
adversary knows both x and y but not the discrete log of w base u.
Computing an integer discrete logarithm of w base u is still difficult in
a generic group, however an efficient adversary can nonetheless succeed
in fooling the verifier as follows. Since the challenge ` is co-prime with x
with overwhelming probability, the adversary can compute q, r ∈ Z such
that q`+rx = y. The adversary sends (Q = gq, r) to the verifier, and the
verifier checks that indeed Q`ur = w. Hence, the verifier accepts despite
the adversary not knowing the discrete log of w base u.

This does not qualify as an “attack” when x = 1, or more gener-
ally when x divides y, since then the adversary does know the discrete
logarithm y/x such that uy/x = w.

Extending PoKE for general bases. To obtain a protocol for the
relation RPoKE we start by modifying protocol PoKE∗ so that the prover
first sends z = gx, for a fixed base g, and then executes two PoKE∗

style protocols, one base g and one base u, in parallel, showing that the
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discrete logarithm of w base u equals the one of z base g. We show that
the resulting protocol is a secure argument of knowledge (in the generic
group model) for the relation RPoKE. The transcript of this modified
protocol now consists of two group elements instead of one.

Protocol PoKE (Proof of knowledge of exponent)

Params: G $← GGen(λ), g ∈ G; Inputs: u,w ∈ G; Witness: x ∈ Z;
Claim: ux = w
1. Prover sends z = gx ∈ G to the verifier.

2. Verifier sends `
$← Primes(λ).

3. Prover finds the quotient q ∈ Z and residue r ∈ [`] such that
x = q` + r. Prover sends Q = uq and Q′ = gq and r to the
Verifier.

4. Verifier accepts if r ∈ [`], Q`ur = w, and Q′`gr = z.

The intuition for the security proof is as follows. The extractor first
uses the same extractor for Protocol PoKE∗ to extract the discrete loga-
rithm x of z base g. It then suffices to argue that this extracted discrete
logarithm x is a correct discrete logarithm of w base u. We use the adap-
tive root assumption to argue that the extracted x is a correct discrete
logarithm of w base u.

We can optimize the protocol to bring down the proof size back to a
single group element. We do so in the protocol PoKE2 below by adding
one round of interaction. The additional round has no effect on proof size
after making the protocol non-interactive using Fiat-Shamir. The protocol
is presented in the full version[BBF18b].

Theorem 3 (PoKE Argument of Knowledge). Protocol PoKE and
Protocol PoKE2 are arguments of knowledge for relation RPoKE in the
generic group model.

The PoKE argument of knowledge can be extended to an argument
of knowledge for the pre-image of a homomorphism φ : Zn → G. This is
included in the full version.

We can also construct a (honest-verifier) zero-knowledge version of
the PoKE argument of knowledge protocol using a method similar to the
classic Schnorr Σ-protocol for hidden order groups. This is covered in the
full version [BBF18b].
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3.3 Aggregating Knowledge of Co-prime Roots

Unlike exponents, providing a root of an element in a hidden order group
is already succinct (it is simply a group element). There is a simple aggre-
gation technique for providing a succinct proof of knowledge for multiple
co-prime roots x1, ..., xn simultaneously. This is useful for aggregating
PoKE proofs.

In the full version of the proof we describe the PoKCR. It is a proof
for the relation:

RPoKCR =
{(
α ∈ Gn; x ∈ Zn

)
: w = φ(x) ∈ G

}
.

4 Trapdoorless Universal Accumulator

In this section we describe a number of new techniques for manipulat-
ing accumulators built from the strong RSA assumption in a group of
unknown order. We show how to efficiently remove elements from the ac-
cumulator, how to use the proof techniques from Section 3 to give short
membership proofs for multiple elements, and how to non-interactively
aggregate inclusion and exclusion proofs. All our techniques are geared
towards the setting where there is no trusted setup. We begin by defin-
ing what an accumulator is and what it means for an accumulator to be
secure.

Our presentation of a trapdoorless universal accumulator mostly fol-
lows the definitions and naming conventions of [BCD+17]. Figure 1 sum-
marizes the accumulator syntax and list of associated operations. One
notable difference in our syntax is the presence of a common reference
string pp generated by the Setup algorithm in place of private/public
keys.

The security definition we follow [Lip12] formulates an undeniability
property for accumulators. For background on how this definition relates
to others that have been proposed see [BCD+17], which gives generic
transformations between different accumulators with different properties
and at different security levels.

The following definition states that an accumulator is secure if an ad-
versary cannot construct an accumulator, an element x and a valid mem-
bership witness wtx and a non-membership witness utx where wtx shows
that x is in the accumulator and utx shows that it is not. Lipmaa [Lip12]
also defines undeniability without a trusted setup. In that definition the
adversary has access to the random coins used by Setup.
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λ: Security Parameter
t: A discrete time counter
At: Accumulator value at time t
St: The set of elements currently accumulated
wt

x, u
t
x: Membership and non-membership proofs

pp: Public parameters implicitly available to all methods
upmsg: Information used to update proofs
Setup(λ, z)→ pp, A0 Generate the public parameters
Add(At, x)→ {At+1,upmsg} Update the accumulator
Del(At, x)→ {At+1,upmsg} Delete a value from the accumulator
MemWitCreate(At, S, x)→ wt

x Create an membership proof
NonMemWitCreate(At, S, x)→ ut

x Create a non-membership proof
MemWitUp(At, w

t
x, x,upmsg)→ wt+1

x Update an membership proof
NonMemWitUp(At, w

t
x, x,upmsg)→ ut+1

x Update a non-membership proof
VerMem(At, x, w

t
x)→ {0, 1} Verify membership proof

VerNonMem(At, x, u
t
x)→ {0, 1} Verify non-membership proof

Fig. 1. A trapdoorless universal accumulator.

Definition 6 (Accumulator Security (Undeniability)).

Pr

pp, A0 ∈ G $← Setup(λ)

(A, x,wx, ux)
$← A(pp, A0)

VerMem(A, x,wtx) ∧VerNonMem(A, x, utx)

 = negl(λ)

4.1 Accumulator construction

Several sub-procedures that are used heavily in the construction are sum-
marized below. Bezout(x,y) refers to a sub-procedure that outputs Be-
zout coefficients a, b ∈ Z for a pair of co-prime integers x, y (i.e. satisfying
the relation ax+ by = 1). ShamirTrick uses Bezout coefficient’s to com-
pute an (xy)-th root of a group element g from an x-th root of g and a
yth root of g. RootFactor is a procedure that given an element y = gx

and the factorization of the exponent x = x1 · · ·xn computes an xi-th
root of y for all i = 1, . . . , n in total time O(n log(n)). Naively this pro-
cedure would take time O(n2). It is related to the MultiExp algorithm
described earlier and was originally described by [STSY01].
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ShamirTrick(w1, w2, x, y): [Sha83]
1. if wx

1 6= wy
2 return ⊥

2. a, b← Bezout(x, y)
3. return wb

1w
a
2

Hprime(x):
1. y ← H(x)
2. while y is not odd prime:
3. y ← H(y)
4. return y

RootFactor(g, x1, . . . , xn):
1. if n = 1 return g
2. n′ ← bn

2
c

3. gL ← g
∏n′

j=1 xj

4. gR ← g
∏n

j=n′+1
xj

5. L←RootFactor(gR, x1, . . . , xn′)
6. R←RootFactor(gL, xn′+1, . . . , xn)
7. return L ‖ R

Groups of unknown order The accumulator requires a procedure
GGen(λ) which samples a group of unknown order in which the strong
root assumption (Definition 2) holds. One can use the quotient group
(Z/N)∗/{−1, 1}, where N is an RSA modulus, which may require a
trusted setup to generate the modulus N . Alternatively, one can use a
class group which eliminates the trusted setup. Note that the adaptive
root assumption requires that these groups have no known elements of low
order, and hence the group (Z/N)∗ is not suitable because (−1) ∈ (Z/N)∗

has order two [BBF18a]. Given an element of order two it is possible to
convince a PoE-verifier that gx = −y when in fact gx = y.

The basic RSA accumulator. We review he classic RSA accumula-
tor [CL02,Lip12] below, omitting all the procedures that require trapdoor
information. All accumulated values are odd primes. If the strong RSA
assumption (Definition 2) holds in G, then the accumulator satisfies the
undeniability definition [Lip12].

The core procedures for the basic dynamic accumulator are the fol-
lowing:

– Setup generates a group of unknown order and initializes the group
with a generator of that group.

– Add takes the current accumulator At, an element from the odd
primes domain, and computes At+1 = At.

– Del does not have such a trapdoor and therefore needs to reconstruct
the set from scratch. The RootFactor algorithm can be used for pre-
computation. Storing 2k elements and doing n · k work, the online

removal will only take (1− 1
2

k
) · n steps.

– A membership witness is simply the accumulator without the aggre-
gated item.

– A membership non-witness, proposed by [LLX07], uses the fact that
for any x 6∈ S, gcd(x,

∏
s∈S s) = 1. The Bezout coefficients (a, b) ←

Bezout(x,
∏
s∈S s) are therefore a valid membership witness. The ac-

tual witness is the pair (a, gb) which is short because |a| ≈ |x|.
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– Membership and non-membership witnesses can be efficiently updated
as in [LLX07]

Setup(λ):

1. G $← GGen(λ)

2. g
$← G

3. return G, g

Add(At, S, x):
1. if x ∈ S : return At
2. else :
3. S ← S ∪ {x}
4. upmsg← x
5. return Axt ,upmsg

Del(At, S, x):
1. if : x 6∈ S : return At
2. else :
3. S ← S \ {x}
4. At+1 ← g

∏
s∈S s

5. upmsg← {x,At, At+1}
6. return At+1,upmsg

MemWitCreate(A,S, x) :
1. wtx ← g

∏
s∈S,s 6=x s

2. return wtx

NonMemWitCreate(A,S, x) :
1. s∗ ←

∏
s∈S s

2. a, b← Bezout(s∗, x)
3. B ← gb

4. return utx ← {a,B}

VerMem(A,wx, x) :
1. return 1 if (wx)x = A

VerNonMem(A, ux, x) :
1. {a,B} ← ux
2. return 1 if AaBx = g

Theorem 4 (Security accumulator [Lip12]). Assume that the strong
RSA assumption (Definition 2) holds in G. Then the accumulator satisfies
undeniability (Definition 6) and is therefore secure.

Proof. We construct an ARSA that given an AAcc for the accumulator
breaks the strong RSA assumption. ARSA receives a group G← GGen(λ)

and a challenge g
$← G. We now run AAcc on input G and A0 = g.

AAcc returns a tuple (A, x,wx, ux) such that VerMem(A, x,wx) = 1 and
VerNonMem(A, x, ux) = 1. ARSA parses (a,B) = ux and computes
B · (wx)a as the xth root of g. x is an odd prime by definition and (B ·
wax)x = Bx · Ab = g. This contradicts the strong RSA assumption and
thus shows that the accumulator construction satisfies undeniability.

4.2 Batching and aggregation of accumulator witnesses

Aggregating membership witnesses Aggregating membership wit-
nesses for many elements into a single membership witness for the set is
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straightforward using ShamirTrick. However, verification of this mem-
bership witness is linear in the number of group operations. Note that the
individual membership witnesses can still be extracted from the aggre-
gated witness as wx = wyxy. Security, therefore, still holds for an accumu-
lator construction with aggregated membership witnesses. The succinct
proof of exponentiation (NI-PoE) enables us to produce a single mem-
bership witness that can be verified in constant time. The verification
VerAggMemWit simply checks the proof of exponentiation.

Aggregating existing membership witnesses for elements in several
distinct accumulators (that use the same setup parameters) can be done
as well. The algorithm MemWitX simply multiplies together the wit-
nesses wx for an element x ∈ A1 and wy for y ∈ A2 to create an in-
clusion proof wxy for x and y. The verification checks wx·yxy = Ay1A

x
2 . If

x and y are co-prime then we can directly recover wx and wy from the

proof wxy. In particular wx = ShamirTrick(Ay1, A1, w
y
xyA

−1
2 , y, x) and

wy = ShamirTrick(Ax2 , A2, w
x
xyA

−1
1 , x, y).

AggMemWit(A,wx, wy, x, y) :
1. wx·y ← ShamirTrick(A,wx, wy, x, y)
2. return wx·y,NI-PoE(wx·y, x · y,A)
MemWitCreate*(A, {x1, . . . , xn}) :
1. x∗ =

∏n
i=1 xi

2. wx∗ ←MemWitCreate(A, x∗)
3. return wx∗ ,NI-PoE(x,wx∗ , A)
VerMem*(A, {x1, . . . , xn}, w = {wx, π}):
1. return NI-PoE.verify(

∏n
i=1 xi, w,A, π)

MemWitX(A1, A2, wx, wy, x, y) :
1. return wxy ← wx · wy

VerMemWitX(A1, A2, wxy, x, y) :
1. if gcd(x, y) 6= 1
2. return ⊥
3. else
4. return wx·y

xy ← Ay
1A

x
2

Distributed accumulator updates In the decentralized/distributed
setting, the accumulator is managed by a distributed network of partici-
pants who only store the accumulator state and a subset of the accumula-
tor elements along with their membership witnesses. These participants
broadcast their own updates and listen for updates from other partici-
pants, updating their local state and membership witnesses appropriately
when needed.

We observe that the basic accumulator functions do not require a trap-
door or knowledge of the entire state, summarized in Figure 2. In particu-
lar, deleting an item requires knowledge of the item’s current membership

1 The condition that gcd(x, y) = 1 is minor as we can simply use a different set of
primes as the domains for each accumulator. Equivalently we can utilize different
collision resistant hash functions with prime domain for each accumulator. The
concrete security assumption would be that it is difficult to find two values a, b
such that both hash functions map to the same prime. We utilize this aggregation
technique in our IOP application (Section 6.2).

19



witness (the accumulator state after deletion is this witness). Moreover,
operations can be performed in batches as follows:

The techniques are summarized as follows:

– BatchAdd An NI-PoE proof can be used to improve the amor-
tized verification efficiency of a batch of updates that add elements
x1, ..., xm at once and update the accumulator to At+1 ← Ax

∗
t . A net-

work participant would check that x∗ =
∏
i xi and verify the proof

rather than compute the m exponentiations.
– BatchDel Deleting elements in a batch uses the AggMemWit func-

tion to a compute the aggregate membership witness from the indi-
vidual membership witnesses of each element. This is the new state of
the accumulator. A NI-PoE proof improves the verification efficiency
of this batch update.

– CreateAllMemWit It is possible for users to update membership
and non-membership witnesses [LLX07]. The updates do not require
knowledge of the accumulated set S but do require that every ac-
cumulator update is processed. Since this is cumbersome some users
may rely on service providers for maintaining the witness. The ser-
vice provider may store the entire state or just the users witnesses.
Creating all users witnesses naively requires O(n2) operations. Using
the RootFactor algorithm this time can be reduced to O(n log(n))
operations or amortized O(log(n)) operations per witness.

– CreateManyNonMemWit Similarly to CreateAllMemWit it is
possible to create m non-membership witness using O(max(n,m) +
m log(m)) operations. This stands in contrast to the naive algorithm
that would take O(m · n) operations. The algorithm is in Figure 4.2.

Add(At, x):
1. return Ax

t

BatchAdd(At, {x1, . . . , xm}):
1. x∗ ←

∏m
i=1 xi

2. At+1 ← Ax∗
t

3. return At+1,NI-PoE(x∗, At, At+1)
DelWMem(At, w

t
x, x):

1. if VerMem(At, w
t
x, x) = 1

2. return wt
x

BatchDel(At, (x1, w
t
x1

) . . . , (xm, w
t
xm

)):
1. At+1 ← wt

x1

2. x∗ ← x1
3. for i← 2, i ≤ m
4. At+1 ← ShamirTrick(At+1, w

t
xi
, x, xi)

5. x∗ ← x∗ · xi
6. return At+1,NI-PoE(x∗, At+1, At)
CreateAllMemWit(S) :
1. return RootFactor(g, S)

Fig. 2. Distributed and stateless accumulator functions.
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CreateManyNonMemWit(A,S, {x1, . . . , xm}):
1. x∗ =

∏m
i=1 xi

2. {a,B} = NonMemWitCreate(A,S, x∗)
3. return BreakUpNonMemWit(A, {a,B}, {x1, . . . , xm})
BreakUpNonMemWit(A, {a,B}, {x1, . . . , xm}):
1. if m = 1 return {a,B}
2. xL =

∏m/2
i=1 xi

3. xR =
∏m

i=bm/2c+1 xi

4. BL = BxRA

⌊
a

xL

⌋
, aL = a mod xL

5. BR = BxLA

⌊
a

xR

⌋
, aR = a mod xR

6. uL = BreakUpNonMemWit(A, {aL, BL}, {x1, . . . , xbm/2c})
7. uR = BreakUpNonMemWit(A, {aR, BR}, {xbm/2c+1, . . . , xm})
8. return uL||uR

Fig. 3. Algorithm for creating multiple non membership witnesses

Batching non-membership witnesses A non-membership witness ux
for x in an accumulator with state A for a set S is ux = {a, gb} such that
as∗ + bx = 1 for s∗ ←

∏
s∈S s. The verification checks Aagbx = g. Since

gcd(s∗, x) = 1 and gcd(s∗, y) = 1 if and only if gcd(s∗, xy) = 1, to batch
non-membership witnesses we could simply construct a non-membership
witness for x · y. A prover computes a′, b′ ← Bezout(s∗, xy) and sets
uxy ← a′, gb

′
. This is still secure as a non-membership witness for both x

and y because we can easily extract a non-membership witness for x as
well as for y from the combined witness (a′, B′) by setting ux = (a′, (B′)y)
and uy = (a′, (B′)x).

Unfortunately, |a′| ≈ |xy| so the size of this batched non-membership
witness is linear in the number of elements included in the batch. A
natural idea is to set uxy = (V,B) ← (Aa

′
, gb
′
) ∈ G2 instead of (a′, B) ∈

Z×G as the former has constant size. The verification would check that
V Bxy = g. This idea doesn’t quite work as an adversary can simply
set V = gB−xy without knowing a discrete logarithm between A and
V . Our solution is to use the NI-PoKE2 protocol to ensure that V was
created honestly. Intuitively, soundness is achieved because the knowledge
extractor for the NI-PoKE2 can extract a′ such that (a′, B) is a standard
non-membership witness for xy.

The new membership witness is V,B, π ← NI-PoKE(A,v;b). The size
of this witness is independent of the size of the statement. We can further
improve the verification by adding a proof of exponentiation that the
verification equation holds: NI-PoE(x · y,B, g · V −1). Lastly, recall from
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Section 3 that the two independent NI-PoKE2 and NI-PoE proofs can be
aggregated into a single group element.
We present the non-membership protocol bellow as
NonMemWitCreate*. The verification algorithm VerNonMem*
simply verifies the NI-PoKE2 and NI-PoE.

NonMemWitCreate*(A, s∗, x∗) : //
A = gs

∗
, s∗ =

∏
s∈S s, x =

∏
xi, xi ∈ Primes(λ)

1. a, b← Bezout(s∗, x∗)
2. V ← Aa, B ← gb

3. πV ← NI-PoKE2(A, V ; a) // V = Aa

4. πg ← NI-PoE(x∗, B, g · V −1)// Bx = g · V −1

5. return {V,B, πV , πg}
VerNonMem*(A, u = {V,B, πV , πg}, {x1, . . . , xn}):
1. return NI-PoKE2.verify(A, V, πV ) ∧ NI-PoE.verify(

∏n
i=1 xi, B, g · V

−1, πg)

Batch accumulator security We now formally define security for an
accumulator with batch membership and non-membership witnesses. The
definition naturally generalizes Definition 6. We omit a correctness defi-
nition as it follows directly from the definition of the batch witnesses. We
assume that correctness holds perfectly.

Definition 7 (Batch Accumulator Security (Undeniability)).

Pr

pp, A0 ∈ G $← Setup(λ)

(A, I, E,wI , uE)
$← A(pp, A0) :

VerMem*(A, I, wI) ∧VerNonMem*(A,S, uS) ∧ I ∩ S 6= ∅

 = negl(λ)

From the batch witnesses wI and uS we can extract individual accu-
mulator witnesses for each element in I and S. Since the intersection of
the two sets is not empty we have an element x and extracted witnesses
wx and ux for that element. As in the proof of Theorem 4 this lets us
compute and xth root of g which directly contradicts the strong RSA
assumption. Our security proof will be in the generic group model as it
implies the strong RSA assumption, the adaptive root assumption and
can be used to formulate extraction for the PoKE2 protocol. Our secu-
rity proof uses the interactive versions of PoKE2 and PoE protocols but
extraction/soundness holds for their non-interactive variants as well.

Theorem 5. The batch accumulator construction presented in Sec-
tion 4.2 is secure (Definition 7) in the generic group model.

For the security proof see the full version[BBF18b].
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Aggregating non-membership witnesses In the full version of the
paper [BBF18b] we show how non-membership witnesses can be aggre-
gated non-interactively. Multiple independently created non-membership
witnesses can be aggregated into a single witness. We can use similar
batching techniques as discussed above to make this witness constant
sized.

5 Batchable Vector Commitments with Small Parameters

5.1 VC Definitions

We review briefly the formal definition of a vector commitment. We only
consider static commitments that do not allow updates, but our scheme
can naturally be modified to be dynamic.

Vector commitment syntax A VC is a tuple of four algorithms:
VC.Setup, VC.Com, VC.Open, VC.Verify.

1. VC.Setup(λ, n,M)→ pp Given security parameter λ, length n of the
vector, and message space of vector componentsM, output public pa-
rameters pp, which are implicit inputs to all the following algorithms.

2. VC.Com(m) → τ, com Given an input m = (m1, ...,mn) output a
commitment com and advice τ .

3. VC.Update(com,m, i, τ)→ τ, com Given an input message m and po-
sition i output a commitment com and advice τ .

4. VC.Open(com,m, i, τ) → π On input m ∈ M and i ∈ [1, n], the
commitment com, and advice τ output an opening π that proves m
is the ith committed element of com.

5. VC.Verify(com,m, i, π) → 0/1 On input commitment com, an index
i ∈ [n], and an opening proof π output 1 (accept) or 0 (reject).

If the vector commitment does not have an VC.Update functionality we
call it a static vector commitment.

Definition 8 (Static Correctness). A static vector commitment
scheme VC is correct if for all m ∈Mn and i ∈ [1, n]:

Pr

VC.Verify(com,mi, i, π) = 1 :
pp← VC.Setup(λ, n,M)
τ, com← VC.Com(m)
π ← V C.Open(com,mi, i, τ)

 = 1

The correctness definition for dynamic vector commitments also in-
corporates updates. Concretely whenever VC.Update is invoked the un-
derlying committed vector m is updated correctly.
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Binding commitments The main security property of vector commit-
ments (of interest in the present work) is position binding. The security
game augments the standard binding commitment game

Definition 9 (Binding). A vector commitment scheme VC is position
binding if for all O(poly(λ))-time adversaries A the probability over pp←
VC.Setup(λ, n,M) and (com, i,m,m′, π, π′)← A(pp) the probability that
VC.Verify(com,m, i, π) = VC.Verify(com,m′, i, π′) = 1 and m 6= m′ is
negligible in λ.

5.2 VC construction

We first present a VC construction for bit vectors, i.e. using the message
space M = {0, 1}. We then explain how this can be easily adapted for a
message space of arbitrary bit length.

Our VC construction associates a unique prime2 integer pi with each
ith index of the bitvector m and uses an accumulator to commit to the set
of all primes corresponding to indices where mi = 1. The opening of the
ith index to mi = 1 is an inclusion proof of pi and the opening to mi = 0
is an exclusion proof of pi. By using our accumulator from Section 4, the
opening of each index is constant-size. Moreover, the opening of several
indices can be batched into a constant-size proof by aggregating all the
membership witnesses for primes on the indices opened to 1 and batching
all the non-membership witnesses for primes on the indices opened to 0.

The VC for vectors on a message space of arbitrary bit length is
exactly the same, interpreting the input vector as a bit vector. Opening
a λ-bit component is then just a special case of batch opening several
indices of a VC to a bit vector. The full details are in Figure 4 of the full
version[BBF18b].

Both the accumulator’s CRS as well as PrimeGen can be represented
in constant space independent of n. This means that the public param-
eters for the vector commitment are also constant-size and independent
of n, unlike all previous vector commitments with O(1) size openings
[CF13,LRY16,LM18]. The batch opening of several (mixed value) indices
consists of 2 elements in G for the aggregate membership-witness and an
additional 5 elements in G for the batch non-membership witness, plus
one λ-bit integer.

2 Examples include Hprime (described earlier), or alternatively the function that maps
i to the next prime after f(i) = 2(i+ 2) · log2(i+ 2)2, which maps the integers [0, N)
to smaller primes than Hprime (in expectation).
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Aggregating Openings, Key-Value commitment and Optimiza-
tions In the full version [BBF18b] we describe how vector commitment
openings can be non-interactively aggregated. We also discuss how a vec-
tor commitment with constant sized setup can be used as a commitment
to a key-value map as well as several optimizations

5.3 Key-Value Map Commitment

Our vector-commitment can be used to build a commitment to a key-value
map. A key-value map can be built from a sparse vector. The key-space
is represented by positions in the vector and the associated value is the
data at the keys position. The vector length is exponential in the key
length and most positions are zero (null). Our VC commitment naturally
supports sparse vectors because the complexity of the commitment is
proportional to the number of bit indices that are set to 1, and otherwise
independent of the vector length.

6 Applications

6.1 Stateless Blockchains

UTXO commitment We first consider a simplified blockchain design
which closely corresponds to Bitcoin’s UTXO design where users own
coins and issue transaction by spending old coins and creating new coins.
We call the set of unspent coins the UTXO set. Updates to the blockchain
can be viewed as asynchronous updates to the UTXO set. In most cur-
rent blockchain designs (with some exceptions[MGGR13,BCG+14]) nodes
participating in transaction validation store the whole UTXO set and use
it to verify whether a coin was unspent. Instead, we consider a blockchain
design where the network maintains the UTXO set in a dynamic ac-
cumulator [STS99a,TMA13,Tod16,Dra]. We instantiate this accumulator
with our new construction from Section 4.1, taking advantage of our dis-
tributed batch updates and aggregate membership proofs.

Each transaction block will contain an accumulator state, which is a
commitment to the current UTXO set. To spend a coin, a user provides
a membership witness for the coin (UTXO) that is being spent inside a
transaction. Any validator (aka miner) may verify the transactions against
the latest accumulator state and also uses BatchDel to delete all spent
coins from the accumulator, derive its new state, and output a proof of
correctness for the deletions. The proof is propagated to other validators
in the network. For the newly minted coins, the validator uses BatchAdd
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to add them to the accumulator and produce a second proof of correctness
to propagate. Other validators are able to verify that the accumulator was
updated correctly using only a constant number of group operations and
highly efficient arithmetic over λ-bit integers.

In this design, users store the membership witnesses for their own
coins and are required to update their witnesses with every block of
transactions. It is plausible that users use third-party services to help
with this maintenance. These services are not trusted for integrity, but
only for availability. Note that a may produce many (e.g. n) membership
witnesses at once in O(n log(n)) time using the CreateAllMemWit al-
gorithm

Accounts commitment Some currencies such as Ethereum [Woo14]
use an account-based system where the state is a key-value map. A trans-
action updates the balances of the sending and the receiving accounts. To
enable stateless validation in this setting, a user can provide proofs of the
balances of the sending and receiving accounts in the current ledger state.
Instead of using an accumulator to commit to this state, we use the new
key-value map commitment from Section 5.3. This commitment supports
batch distributed updates, similar to our new accumulator. Using the
aggregation of vector commitment openings a miner or validator can per-
form the aggregation and batching operations without storing the state
providing efficient proofs that the openings are correct. Other nodes can
verify these opening proofs efficiently requiring only a constant number
of group operations.

6.2 Short IOPs

Merkle tree paths contribute significant overhead to both the proof size of
a compiled IOP proof and its verification time. Vector commitments with
smaller openings than Merkle trees, or batchable openings (i.e. subvector
commitments), can help reduce this overhead [LM18]. Using our new VCs,
the opening proof for each round of the compiled IOP is just 4 group
elements in G and a λ-bit integer (plus one additional element for the
VC commitment itself). Instantiating G with a class group of quadratic
imaginary order and tuning security to 128-bits requires elements of size
approximately 2048-bits [HM00]. Thus, the VC openings contribute 8320
bits to the proof size per IOP round. When applied to the “CS-proof”
SNARK considered by Lai and Malavolta, which is based on a theoretical
PCP that checks 3 bits per query and has 80 queries, the proof size is
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5 · 2048 + 128 + 3 · 80 = 10608 bits, or 1.3 KB. This is the shortest
(theoretical) setup-free SNARK with sublinear public parameters to date.

Our VCs also achieve concrete improvements to practical IOPs. Tar-
geting 100-bit security in the VC component and otherwise apples-
to-apples comparisons with benchmarks for Aurora [BSCR+18] and
STARKS [BBHR18], we can conservatively use 2048-bit class group el-
ements. With these parameters, our VCs reduce the size of the Aurora
proofs on a 220 size circuit from 222 KB to less than 100 KB, a 54%
reduction, and the size of STARK proofs for a circuit of 252 gates from
600 KB to approximately 222 KB, a 63% reduction. This rough estimate
is based on the Merkle path length 42 and round number 21 extrapolated
from the most recent STARK benchmarks for this size circuit [BBHR18].

Replacing Merkle trees with our VCs does not significantly impact
the verification cost, and in some cases it may even improve verification
time. Recall that verifying a batch VC proof costs approximately one
lamdba-bit integer multiplication and a primality check per bit. Further-
more, using the optimization described in the full version eliminates the
primality checks for the verifier (at a slight cost to the prover). Computing
a SHA256 hash function (whether SHA256 or AES with Davies-Meyer)
is comparable to the cost of a λ-bit integer multiplication. Thus, as a
loose estimate, replacing each Merkle path per query with a single λ-bit
multiplication would achieve a factor log n = 36 reduction. In STARKS,
Merkle paths are constructed over 256-bit blocks of the proof rather than
bits, thus the comparison is 36 hashes vs 256 modular multiplications.
The Merkle path validation accounts for 80% of the verification time.

While using our vector commitment has many benefits for IOPs, there
are several sever downsides. Our vector commitment is not quantum se-
cure as a quantum computer can find the order of the group and break
the Strong-RSA assumption. Merkle trees are more plausibly quantum
secure. Additionally, the prover for an IOP instantiated with our vector
commitment would be significantly slower than one with a Merkle tree.
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[PS14] Henrich Christopher Pöhls and Kai Samelin. On updatable redactable
signatures. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay,
editors, ACNS 14, volume 8479 of LNCS, pages 457–475. Springer, Heidel-
berg, June 2014.

[Sha83] Adi Shamir. On the generation of cryptographically strong pseudorandom
sequences. ACM Transactions on Computer Systems (TOCS), 1(1):38–44,
1983.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

[Sla12] Daniel Slamanig. Dynamic accumulator based discretionary access control
for outsourced storage with unlinkable access - (short paper). In Ange-
los D. Keromytis, editor, FC 2012, volume 7397 of LNCS, pages 215–222.
Springer, Heidelberg, February / March 2012.

[STS99a] Tomas Sander and Amnon Ta-Shma. Auditable, anonymous electronic
cash. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,
pages 555–572. Springer, Heidelberg, August 1999.

[STS99b] Tomas Sander and Amnon Ta-Shma. Flow control: A new approach for
anonymity control in electronic cash systems. In Matthew Franklin, editor,
FC’99, volume 1648 of LNCS, pages 46–61. Springer, Heidelberg, February
1999.

[STSY01] Tomas Sander, Amnon Ta-Shma, and Moti Yung. Blind, auditable mem-
bership proofs. In Yair Frankel, editor, FC 2000, volume 1962 of LNCS,
pages 53–71. Springer, Heidelberg, February 2001.

[TMA13] Peter Todd, Gregory Maxwell, and Oleg Andreev. Reducing UTXO: users
send parent transactions with their merkle branches. bitcointalk.org, Oc-
tober 2013.

[Tod16] Peter Todd. Making UTXO Set Growth Irrelevant With Low-Latency
Delayed TXO Commitments . https://petertodd.org/2016/delayed-txo-
commitments, May 2016.

[TW12] Björn Terelius and Douglas Wikström. Efficiency limitations of S-protocols
for group homomorphisms revisited. In Ivan Visconti and Roberto De
Prisco, editors, SCN 12, volume 7485 of LNCS, pages 461–476. Springer,
Heidelberg, September 2012.

[Wes18] Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology
ePrint Archive, Report 2018/623, 2018. https://eprint.iacr.org/2018/623.

[Woo14] Gavin Wood. Ethereum: A secure decentralized transaction ledger.
http://gavwood.com/paper.pdf, 2014.

30


