
Strong Asymmetric PAKE
based on Trapdoor CKEM

Tatiana Bradley, Stanislaw Jarecki, and Jiayu Xu
{tebradle,sjarecki,jiayux}@uci.edu

University of California, Irvine

Abstract. Password-Authenticated Key Exchange (PAKE) protocols
allow two parties that share a password to establish a shared key in a
way that is immune to offline attacks. Asymmetric PAKE (aPAKE)
[21] adapts this notion to the common client-server setting, where the
server stores a one-way hash of the password instead of the password
itself, and server compromise allows the adversary to recover the
password only via the (inevitable) offline dictionary attack. Most
aPAKE protocols, however, allow an attacker to pre-compute a
dictionary of hashed passwords, thus instantly learning the password on
server compromise. Recently, Jarecki, Krawczyk, and Xu formalized a
Universally Composable strong aPAKE (saPAKE) [24], which requires
the password hash to be salted so that the dictionary attack can only
start after the server compromise leaks the salt and the salted hash.
The UC saPAKE protocol shown in [24], called OPAQUE, uses 3
protocol flows, 3-4 exponentiations per party, and relies on the
One-More Diffie-Hellman assumption in ROM.
We propose an alternative UC saPAKE construction based on a novel
use of the encryption+SPHF paradigm for UC PAKE design [27, 20].
Compared to OPAQUE, our protocol uses only 2 flows, has comparable
costs, avoids hashing onto a group, and relies on different assumptions,
namely Decisional Diffie-Hellman (DDH), Strong Diffie-Hellman (SDH),
and an assumption that the Boneh-Boyen function fs(x) = g1/(s+x) [9] is
a Salted Tight One-Way Function (STOWF). We formalize a UC model
for STOWF and analyze the Boneh-Boyen function as UC STOWF in
the generic group model and ROM.
Our saPAKE protocol employs a new form of Conditional Key
Encapsulation Mechanism (CKEM), a generalization of SPHF, which
we call an implicit-statement CKEM. This strengthening of SPHF
allows for a UC (sa)PAKE design where only the client commits to its
password, and only the server performs an SPHF, compared to the
standard UC PAKE design paradigm where the encrypt+SPHF
subroutine is used symmetrically by both parties.

1 Introduction

Passwords are the most common form of authentication on the Internet, and
the almost-universal password authentication method is password-over-TLS. In

this method, the user (client) sends their encrypted password over TLS to a
server, who then decrypts the password and verifies it against a locally stored
password file. The password file does not contain the correct password pw in
cleartext, but rather a random salt s and a salted password hash Fs(pw), which
is a randomized one-way function of the password. Function F must be a (salted)
tight one-way function [7] in the sense that an attacker who compromises the
server and learns its password file (s, Fs(pw)), can find pw only by running an
exhaustive offline dictionary attack, at cost which is linear in the number of
tested password guesses.

However, there are at least two major disadvantages of password-over-TLS:
(1) the cleartext password is handled by the server during login, which could
leak the password without an offline dictionary attack if the server is
compromised; and (2) a Public Key Infrastructure (PKI) is needed to
authenticate the server to the client, and the client loses all security if the TLS
channel uses a compromised public key, e.g., due to a phishing attack (see also
multiple other PKI attacks listed in [24]). Both problems of password-over-TLS
are well known and have been partly addressed by the literature on Password
Authentication Key Exchange (PAKE). Only one existing PAKE proposal,
however, maintains password-over-TLS’s advantage of forcing a full offline
dictionary attack after server compromise, while mitigating its disadvantages of
potential cleartext password leakage and reliance on PKI. We propose another,
and to motivate our contribution we first discuss past work on PAKE.

Cryptographic PAKE and aPAKE protocols. Standard PAKE,
introduced by Bellovin and Merritt in [4], formalized in a game-based
indistinguishability approach by Bellare et al. [3], and in the Universally
Composable (UC) framework by Canetti et al. [14], considers secure key
exchange between two parties who share the same password. Because
passwords have low entropy, PAKE protocols cannot prevent the active
attacker from performing an online impersonation attack by guessing the
password, but they do guarantee security against offline attacks, i.e., active
attacks must be the only way to verify a guessed password. Crucially, PAKE
requires only passwords as inputs, and does not rely on authentic distribution
of public keys via PKI, thus solving problem (2) of the password-over-TLS
method. However, the shared-password PAKE model of [3, 14] makes problem
(1) even worse: to participate in the protocol, the server needs to store, not
just briefly handle, the cleartext password.

To solve problem (1) and (2) together, Bellovin and Merritt [5] introduced
the notion of asymmetric PAKE (aPAKE), a.k.a. augmented or verifier-based,
which allows the server party to execute the protocol on a one-way function of
the password instead of the password itself. This notion was formalized in the
simulation-based approach by Boyko et al. [11], and in the UC framework by
Gentry et al. [21]. There are several aPAKE’s proposed in the literature, both
in the simulation-based model [11, 30, 29, 7] and in the UC model [21, 26, 22].
Several aPAKE protocols have also been proposed with only ad-hoc security
arguments – see [24] for their discussion.

2

In all the above aPAKE protocols, however, passwords are hashed via some
deterministic one-way function, making password files vulnerable to
pre-computation attacks: An attacker who pre-computes a list of hashes for all
passwords in an assumed dictionary can instantly find a user’s password on
server compromise. This attack is allowed by aPAKE models because, despite
guaranteeing that the offline attack takes work linear in the dictionary size,
they do not require that this work be done before server compromise [11, 21].

All aPAKE protocols using a deterministic one-way function allow for the
password hash to be randomized if the random salt assigned to a given user
account is “public” i.e., if it is revealed in the authentication protocol. This
makes the pre-computation attack harder, because the adversary must engage
in the online protocol to gather the (public) salt values assigned to user accounts,
and pre-compute separate (pw , Fs(pw)) tables for each user-specific salt value s.
Yet the core of the problem remains: the adversary can pre-compute hash values
for a dictionary of the most probable passwords, thus learning the real password
immediately on server compromise.

Strong aPAKE. To prevent pre-computation attacks, Jarecki, Krawczyk, and
Xu have recently proposed a UC strong aPAKE (saPAKE) notion [24], which
enforces that the offline dictionary attack takes O(|D|) work after server
compromise. Strong aPAKE thus bridges the security gap between
password-over-TLS and PAKE, with no cleartext passwords on the server, no
reliance on PKI, and no instant password retrieval on server compromise.

In the same paper [24] presented an efficient UC saPAKE protocol, called
OPAQUE: It relies on standard prime-order groups, the client C and server S
make respectively only 4 and 3 (multi-)exponentiations, and the protocol has
3 message flows.1 The security of OPAQUE relies on ROM and an interactive
hardness assumption of One-More Diffie-Hellman (OMDH), which states that an
adversary who is allowed n queries to the Diffie-Hellman oracle (·)k can compute
the (·)k function on at most n out of n+ 1 random challenge group elements.

Our saPAKE Contribution. We propose a new UC saPAKE construction
family based on a novel application of the encryption+SPHF paradigm. Our
saPAKE construction requires ROM, as OPAQUE [24] does2, it has only 2
message flows, and it has comparable computational costs to OPAQUE, with 1
variable-base multi-exponentiation and (at most) 11 fixed-base exponentiations
for the client and 2 variable-base multi-exponentiations and 2 fixed-base
exponentiations for the server. Unlike OPAQUE, it does not require hashing
onto a curve, which simplifes its implementation over some curves. Our

1 The conference paper [24] reported it as 2 message flows but the full version [25]
explain why 3 flows seem necessary.

2 ROM appears to be a minimal model necessary to achieve UC aPAKE [21], and
thus UC saPAKE. To satisfy the UC (s)aPAKE notion, we need some idealized
computation model (e.g., RO or a generic group) that allows us to “count” the
number of times F (x) is called in the adversary’s local computation, and also to
extract the effective inputs x on which the adversary computes F values.

3

protocol is also based on different hardness assumptions, namely DDH and
Strong DH, and any assumptions necessary for the (hashed) Boneh-Boyen
function Fs(x) = g1/(s+H(x)) [9] to realize what we call a Salted Tight One-Way
(STOWF) function. The protocol family we show can also be used with
different STOWF function candidates, possibly leading to further efficiency
improvements and weaker security assumptions for saPAKE’s.

Our Approach: Using implicit-statement and CCA-secure CKEM. Our
approach is inspired by the encryption+SPHF paradigm in UC PAKE design,
which began with the work of [27, 20]. In this paradigm, both the client C
and the server S commit to their passwords, respectively pwC and pwS, using
an encryption scheme Enc whose public key pk is in the CRS. Party C uses
the ciphertext cS sent by S to derive a secret key kC via a Smooth Projective
Hash Function (SPHF) on input statement xC = (pwC, cS, pk), where the SPHF
operates on language L of statements (pw , c, pk) such that c = Encpk (pw).
Recall that an SPHF allows the hashing party C to compute a projection key
hpC such that S can derive the secret key kC given only the projection key hpC
and a witness for xC ∈ L. The witness is the randomness r that S used to
encrypt cS = Encpk (pwS; r), and r is a valid witness for the client’s statement
(pwC, cS, pk) ∈ L only if cS also encrypts pwC, i.e., if pwC = pwS. The protocol
is symmetrical, i.e. server S follows the same process with C’s ciphertext to form
kS, and the final key is a combination of the two keys, e.g. kC ⊕ kS.

It is not immediately clear how to apply this paradigm to the setting of
saPAKE, because S cannot use the same SPHF as C, as it does not hold pw , but
only the password file (s, z) for z = Fs(pw). Benhamouda and Pointcheval [7]
showed how to solve this problem in the context of a game-based aPAKE (but
not strong aPAKE) by using SPHF’s for two different languages, one to verify
the client’s encryption of pw using a (randomized but with public salt) one-way
function F (pw) held by the server, and another to verify the server’s encryption
of z = F (pw). (Jutla and Roy [26] also applied this approach in the context of
a UC aPAKE.) In saPAKE, however, the client cannot compute z = Fs(pw), as
the random salt s must be private on the server, so it is not clear how to adopt
this approach to the saPAKE setting.

Instead, we condense the encryption+SPHF paradigm so that a single
SPHF authenticates both the client and the server. To do this, we start from a
generalized SPHF protocol called a Conditional Key Encapsulation Mechanism
(CKEM), introduced by Benhamouda, Couteau, Pointcheval, and Wee [6] as an
Implicit Zero-Knowledge protocol, and we strengthen its security properties so
that the CKEM public message m, which corresponds to the SPHF projection
key, can be used as a one-time secret authenticator: If S uses our CKEM to
verify that C’s ciphertext cC encrypts pre-image pw of S’s password file
z = Fs(pw), then S’s CKEM message commits to its statement
xS = (pk , cC, Fs(pw)), and hence it can also act as S’s authentication to C. This
commitment cannot be publicly verifiable, since xS reveals Fs(pw), but the
statement-committing and statement-privacy properties of our CKEM require
that the commitment is verifiable only by a party (in our case, the client C)

4

that holds a witness for xS ∈ L. Furthermore, for the message m to work as an
authenticator for S in the UC model we need to make the sender’s statement
extractable by the ideal-world simulator. Moreover, standard CKEMs assume
that both parties have the full language statements as inputs, but in our case
the server’s statement involves a password file (s, z) which cannot be made
public. For that reason we develop a CKEM variant we call an Implicit
Statement CKEM, where the sender effectively encrypts the statement it
assumes in the CKEM message, and the receiver decrypts it and verifies that it
agrees with its witness.

Perhaps surprisingly, we can meet all these requirements by adding just one
(multi-)exponentiation for the receiver to the cost of the standard SPHF for the
same language L, with the slight caveat that SPHF-to-strong-CKEM compiler
assumes ROM. However, recall that realizing the UC (s)aPAKE functionality
already seems to require an idealized model like ROM, hence it is natural to use
ROM to reduce the cost of all the tools used in an saPAKE protocol.

Another cost-reducing feature of our saPAKE construction is that the
encryption scheme used by C to commit to a password does not need to be
non-malleable, but only indistinguishable. This weaker requirement lets us use
ElGamal encryption, which has half the cost of Cramer-Shoup encryption, and
the SPHF for the language L of “encryptions of password file pre-image” is
also correspondingly cheaper. This cost-saving is enabled by CCA-like security
of our implicit-statement CKEM, i.e., the CKEM for statement x = (pk , c, z) is
secure even to the adversary who has access to a trapdoor-receiver oracle
(which corresponds to a decryption oracle in CCA encryption) as long as the
“trapdoor-decrypted” CKEM messages are different from the challenge CKEM
message.3 Indeed, the techniques we use to compile our (non-malleable) CKEM
from (malleable) SPHF resemble the Fujisaki-Okamoto transform [18] from
indistinguishable encryption to CCA-secure encryption.

On the use of idealized models. Our saPAKE scheme makes use of both the
(non-programmable) Random Oracle Model (ROM) and the (programmable)
Generic Group Model (GGM). However, GGM is isolated so that it is used only
in the offline parts of the protocol, i.e., we use it to show that the adversary
may only make offline queries after it steals a password file, and cannot perform
any meaningful pre-computation. By contrast, we use ROM in both the offline
and online parts of the protocol. As we have mentioned, it appears that some
programmable idealized computational model like the Random Oracle Model,
the Ideal Cipher Model, or the Generic Group Model, is necessary in any UC
(s)aPAKE, because of the strong constraints which the UC (s)aPAKE model
imposes on the local computation of the real-world adversary. Essentially, the
simulator must provide the adversary with a password file before it knows the
actual password, then detect offline password guesses, and, if a guess is correct,

3 These CCA-like properties were achieved already by the CKEM of [6] in the standard
model, i.e. without ROM. Here we show the same properties for implicit-statement
(and statement-private) CKEM’s, and we assume ROM to minimize the costs.

5

program the ideal model so that the password file turns out to correspond to the
correct password. That said, it may be possible to construct a UC (s)aPAKE
which uses ROM/IC/GGM only in the offline part. A similar argument was
used by VPAKE [7] in the context of a game-base aPAKE, to justify using both
GGM and ROM only in the security analysis of the offline dictionary attacks
on the password file. We analyze the security of our saPAKE protocol candidate
assuming GGM only in the offline part, and ROM in both the offline and the
online parts, where the latter choice is made to optimize the concrete effiency of
the resulting protocol.

Summary of Contributions. In summary, our contributions are as follows:

– We construct the first two round protocol that realizes the UC saPAKE
functionality of [24]. Our protocol is based on two primitives which we
introduce: implicit-statement trapdoor CKEM and salted tight one-way
functions (STOWF).

– We introduce and realize a strong notion of an implicit-statement conditional
key encapsulation mechanism (CKEM). Implicit-statement CKEM differs
from standard CKEM in that the sender’s statement is private to anyone
who does not a witness for it, and the receiver runs the protocol using only
a witness, and might not the same statement which the sender uses.

– We formalize the notion of a salted tight one way function (STOWF) as
a UC functionality FSTOWF, and we show that the (hashed) Boneh-Boyen
function Fs(x) = g1/(s+H(x)) realizes FSTOWF in the programmable generic
group model and ROM.

In Table 1 we summarize a comparison between our saPAKE protocol with
several previous work on asymmetric PAKE’s, in terms of efficiency, security
model, and security assumptions. We stress that there are other aPAKE protocol
proposals which were shown with only ad-hoc security arguments, and we refer
to [24] for references.

Paper Roadmap. In Section 2 we define the strong (simulation-sound and
statement-private) notion of implicit-statement CKEM described above, and
show a generic construction of such CKEM from an SPHF for the same
language in ROM. In Section 3 we propose the UC model for Salted Tight
One-Way Functions (STOWF), and we show that the (hashed) Boneh-Boyen
function Fs(x) = g1/(s+H(x)) realizes this UC functionality in GGM and ROM.
In Section 4 we show an saPAKE protocol based on these STOWF and CKEM
tools, and we show that it realizes the UC saPAKE functionality of [24] in
ROM assuming that function f is a UC STOWF. Finally, in Section 5 we show
a highly efficient instantiation of this UC saPAKE using the Boneh-Boyen
function as the STOWF and the generic CKEM construction of Section 2
applied to the specific language implied by this STOWF instantiation.

6

Security Client Server Rounds Assumptions

This work UC saPAKE 1v+11f 2v+2f 2 DDH, 2-SDH, GGM(1)

OPAQUE(2) [25] UC saPAKE 2v+2f 2v+1f 3 OMDH

Jutla-Roy [26] UC aPAKE O(1) pairings(3) 1 SXDH, MDDH

HJKLSX(4) [22] UC aPAKE 2v+4f 1v+4f 3 DDH

GMR(4) [21] UC aPAKE 1v+5f 2v+2f 3 DDH

VPAKE [7] GB aPAKE 3v+8f 3v+4f 2 or 1(5) DDH, GGM(1)

PAK-X [11] SIM aPAKE 3v+1f 2v+1f 3 DDH

Table 1. We compare several asymmetric PAKE protocol proposals regarding security
claims, number of rounds, security assumptions, and client and server efficiency, where v
and f are resp. variable-base (multi-)exponentiations and fixed-based exponentiations.
All protocols rely on ROM, except [7, 26] only in the offline part. GB and SIM indicate
resp. game-based and simulatability-based aPAKE security notions. (1) GGM used
only in the offline part; (2) OPAQUE costs reflect “multiplicative blinding” OPRF
optimization reported in [25]; (3) [26] also uses a significant number of exponentiations;
(4) GMR and HJKLSX are compilers from UC PAKE to UC aPAKE, here instantiated
with the two-round UC PAKE of [12] secure under DDH in ROM, with resp. 1v+4f
and 1v+2f costs for client and server; In the Ideal Cipher (IC) the UC PAKE of [12]
reduces these costs by resp. 3f and 1f for client and server; (5) The 1-flow version of
aPAKE of [7] uses a few more mostly fixed-base exponentiations.

2 Conditional Key Encapsulation Mechanisms

Notation. Throughout the paper, κ denotes the security parameter; “←”
denotes either a deterministic or a randomized assignment; and “←R” denotes
uniform sampling from a given set.

Basic CKEM. A Conditional Key Encapsulation Mechanism (CKEM)
scheme [6, 17, 16, 1, 28, 8] implements a transfer of a random key between two
parties, the sender and the receiver, under the condition that a given
statement, known by both parties, belongs to some language. A CKEM can be
implemented with a Smooth Projective Hash Function (SPHF), but it
generalizes SPHF to interactive and only computationally secure protocols.

Let L be an NP language, a subset of implicit universe U , and let R[L] be
an efficiently verifiable relation associated with L. A CKEM for language L is
a triple (PG,Snd,Rec) where PG is a parameter generation algorithm that on
input a security parameter κ outputs public parameters π, while Snd and Rec
are interactive algorithms executed resp. by Sender and Receiver, where Snd runs
on input parameters π, label ` identifying the protocol instance, and statement
x , and Rec runs on inputs π, `, x and a witness w , and both algorithms locally
output a key ck . (To reduce visual clutter we will denote inputs π, ` as indices,
e.g. Sndπ,`(x) will denote Snd(π, `, x), etc.) CKEM correctness requires that if
the sender and the receiver hold the same statement in L, and the receiver holds
a witness for it, then they output the same key, i.e. for all κ, `, all π ← PG(1κ)

7

and all (x ,w) ∈ R[L], if (ckS, ckR) ← [Sndπ,`(x),Recπ,`(x ,w)] then ckS = ckR.
The basic security property of CKEM is soundness, which states that if x /∈ L
then an efficient adversary interacting with Sndπ,`(x) cannot distinguish Snd’s
output key from a random string. In other words, if the sender generates its key
on a false statement then this key is pseudorandom to the receiver.

Trapdoor CKEM. Benhamouda et al. [6] defined a trapdoor CKEM, called
an Implicit Zero-Knowledge therein, which allows a simulator holding a global
trapdoor to compute the sender’s key even on false statements. This
simulatability property makes CKEM a stronger protocol building block
because it allows the simulator to perform any subsequent actions an honest
party would do using a key received via a CKEM on a statement proving
honest behavior. (Recall that the simulator typically does not have a witness
for such statement because it needs to simulate an honest party without
knowing its private data.) A trapdoor CKEM scheme includes two additional
algorithms, the trapdoor parameter generation procedure TPG, which outputs
parameters π together with a simulation trapdoor td , and a trapdoor receiver
algorithm TRec which satisfies the zero-knowledge property [6], which states
that for any (x ,w) ∈ R[L], an interaction with TRecπ,`(x , td) (including its
local output) is indistinguishable from an interaction with Recπ,`(x ,w).
Moreover, in parallel to zero-knowledge proofs, a trapdoor CKEM should
satisfy simulation-soundness [6], which states that for any x 6∈ L an adversary
interacting with Sndπ,`(x) cannot distinguish Snd’s output key from a random
string, even given access to oracle TRecπ,`′(x ′, td) for any (`′, x ′) 6= (`, x).

Implicit-Statement CKEM. We introduce a new CKEM variant we call an
implicit-statement CKEM, in which the receiver might not know the statement
used by the sender, and has only a witness as its input. This makes a difference
for languages where the same value can be a witness for many statements. Note
that in the context of saPAKE application a language of pre-images of a salted
hash function in an example of such language because password pw is a witness
to correctness of password file (s, fs(pw)) for every salt value s (see Section 3).
Recall also that an saPAKE server must hide the salt value, to prevent pre-
computation in a dictionary attack that can be staged after server compromise,
so the statement assumed by the saPAKE server cannot be sent to the client in
the clear. An implicit-statement CKEM allows the sender to embed its statement
into the CKEM message so that the receiver reconstructs it together with the
sender’s key only if this statement is matched by the receiver’s witness.

Since our implicit-statement CKEM construction is non-interactive we state
all definitions below in this context, but they can be easily adapted to the
interactive setting. Thus we define CKEM scheme as a tuple of non-interactive
algorithms (PG,TPG,Snd,Rec,TRec) where PG,TPG are as above, Sndπ,` on
input x outputs key ck and a message m, and Recπ,` and TRecπ,`, output
(ck , x) on inputs resp. (w ,m) and (td ,m). The implicit-statement CKEM
correctness requires that for all κ, ` and (x ,w) ∈ R[L] if π ← PG(1κ),
(ck ,m) ← Sndπ,`(x), and (ck ′, x ′) ← Recπ,`(w ,m) then (ck ′, x ′) = (ck , x). We

8

require two additional syntactic properties of CKEM: statement verification for
the receiver, which states that for all w ,m, ` if π ← PG(1κ) and
(ck , x) ← Recπ,`(w ,m) then (a) if x 6= ⊥ then (x ,w) ∈ R[L] and (b) if x = ⊥
then ck is a fresh uniform random string, and statement recovery for the
trapdoor receiver, which states that for all ` and x ∈ U , if (π, td) ← PG(1κ),
(ck ,m)← Sndπ,`(x), and (ck ′, x ′)← TRecπ,`(td ,m), then Pr[x ′ 6= x] ≤ negl(κ).

An implicit-statement CKEM scheme must satisfy the parameter
indistinguishability, zero-knowledge, and simulation soundness properties [6],
which we adjust to implicit-statement CKEM’s as follows:

(I) parameter indistinguishability: Distributions {π}π←PG(1κ) and
{π}(π,td)←TPG(1κ) are computationally indistinguishable.

(II) zero-knowledge: The zero-knowledge defined in [6] required that the real-
world receiver output Recπ,`(x ,w ,m) is indistinguishable from the simulator
output TRecπ,`(x , td ,m). By contrast, in implicit-statement CKEM, Rec runs
only on w , so it is not obvious what the corresponding ideal-world interaction
should be, because w might correspond to many statements. However, since we
require that Rec outputs statement x extracted from m along with key ck , and
that Rec outputs x 6= ⊥ only if (x ,w) ∈ R[L], the ZK property for implicit-
statement CKEM will compare Rec’s output with TRec’s output modified by a
wrapper that overwrites TRec’s output (ck , x) with ($,⊥) if w is not a witness
for x .4 Formally, implicit-statement CKEM is zero-knowledge if for every efficient
algorithm A = (A1,A2) we have:

{A2(st , ck , x)}(ck ,x)←Recπ,`(w ,m) ≈ {A2(st , ck , x)}(ck ,x)←Wrapw (TRecπ,`(td,m))

where (π, td)← TPG(1κ) and (st , `,w ,m)← A1(π, td) in both distributions, and
Wrapw is an algorithm which outputs (ck , x) on input (ck , x) if (x ,w) ∈ R[L]
and otherwise outputs (ck ′,⊥) for ck ′ ←R {0, 1}κ.

(III) simulation soundness: If x /∈ L then (ck ,m) ← Sndπ,`(x) is
indistinguishable from ($,m) even if the adversary interacts with a trapdoor
receiver on any (`′,m ′) 6= (`,m). Formally, for every efficient algorithm
A = (A1,A2):

{ATRecBlock(`,m)(π,·,td,·)
2 (st , ck ,m)} ≈ {ATRecBlock(`,m)(π,·,td,·)

2 (st , ck ′,m)}

where (π, td) ← TPG(1κ), (st , `, x) ← ATRec(π,·,td,·)
1 (π) s.t. x /∈ L,

(ck ,m) ← Sndπ,`(x), ck ′ ←R {0, 1}κ, and oracle TRecBlock(`,m)(π, ·, td , ·)
returns TRecπ,`′(td ,m ′) on any query (`′,m ′) 6= (`,m).

Statement Privacy. As said above, an implicit-statement CKEM can
support applications in which the statement assumed by the sender is hidden
from everyone except the receiver who holds the matching witness. This is
captured by the statement privacy property of CKEM, that for any statements

4 To see that this wrapper is necessary, observe that TRec should output (·, x) on
input m output by Snd(x), whereas Rec(w) outputs (·,⊥) if (x ,w) /∈ R[L].

9

x0, x1, both not in language L, an adversary cannot tell whether the sender’s
message is produced on x0 or x1. Formally, we call CKEM statement private if
for every efficient algorithm A = (A1,A2):

{ATRecBlock(`,m0)(π,·,td,·)
2 (st , ck0,m0)} ≈ {ATRecBlock(`,m1)(π,·,td,·)

2 (st , ck1,m1)}

for (π, td) ← TPG(1κ), and (st , `, x0, x1) ← ATRec(π,·,td,·)
1 (π) s.t. x0, x1 /∈ L,

(ck b,mb) ← Snd(π, `, xb) for b ∈ {0, 1}, and oracle TRecBlock(`,m)(π, ·, td , ·) acts
as in the definition of simulation soundness above.

Note on Statement Privacy: It may be surprising that we define statement
privacy only for incorrect statements, x0, x1 /∈ L. Indeed, there are many ways
to express the intuitive notion of statement privacy. We chose to state it only
for statements x0, x1 /∈ L but to allow the adversary to see both the sender’s
message m and the sender’s local output ck , for (ck ,m) ← Sndπ,`(xb) for
b = 0, 1. We could have instead allowed any adversarially chosen statements,
including those in L, but let the adversary see only the message m, and not the
sender’s local output ck . We cannot allow both because if the adversary
chooses (xb,wb) ∈ R[L] and then learns (ck ,m) ← Sndπ,`(xb), it can then run
the receiver algorithm on (wb,m) to test if it returns the same value ck . Our
choice to restrict statements works better in the context of the higher-level
saPAKE protocol of Section 4: Even though statement x used by the real-world
sender party might be true (which is the case if the two parties have matching
passwords), in the protocol simulation the statement is guaranteed to be false
(the saPAKE simulator does not know any party’s password when the protocol
starts), and therefore the above statement privacy property suffices.

CKEM Security and Privacy Combined. The notion of simulation
soundness and statement privacy can be combined into a single notion we call
simulatability. Let Sndsim

π,` be the following simulator algorithm: Sndsim
π,` picks an

arbitrary false statement x ′ 6∈ L, computes (ck ,m) ← Sndπ,`(x ′), picks
ck ′ ←R {0, 1}κ, and outputs (ck ′,m). We say that an implicit-statement
CKEM is simulatable if for any efficient algorithm A = (A1,A2):

{ATRecBlock(`,m)(π,·,td,·)
2 (st , ck0,m0)} ≈ {ATRecBlock(`,m′)(π,·,td,·)

2 (st , ck ′,m1)}

for (π, td)← TPG(1κ), and (st , `, x)← ATRec(π,·,td,·)
1 (π) s.t. x /∈ L, (ck0,m0)←

Sndπ,`(x) and (ck ′,m1)← Sndsim
π,`.

Lemma 1. An Implicit-statement CKEM is simulatable if and only if it is
simulation sound and statement private.

Proof Sketch: Simulatability implies simulation soundness because A1 can
output x0 = x1. Simulatability also implies statement privacy, because if
(ck0,m0) ≈ ($,m1), i.e., a distribution where the ck1 part of (ck1,m1) is
overwritten by a random string, and by simulation soundness
($,m1) ≈ (ck1,m1), then (ck0,m0) ≈ (ck1,m1). For the opposite direction,

10

since statement privacy implies (ck0,m0) ≈ (ck1,m1), and simulation
soundness implies (ck1,m1) ≈ ($,m1), together they imply that
(ck0,m0) ≈ ($,m1).

Relation to CCA Security and Privacy. We note that simulation soundness
and statement privacy for CKEM are analogous to CCA-security and CCA-
anonymity for public key KEM. If we view a statement as an encryption public
key, and its witness as a private key, then the Snd procedure is analogous to
public key KEM encryption and the Rec procedure is analogous to decryption.
Moreover, the TRec procedure can be used by the simulator to implement access
to the decryption oracle in the CCA security experiment: Recall that in the
CCA security notion of KEM the adversary receives a challenge KEM ciphertext
and must distinguish from random the KEM key encrypted in this ciphertext,
given access to a decryption oracle which blocks the challenge ciphertext. The
simulation soundness game follows the same structure, with the TRecBlock oracle
acting as the decryption oracle and the KEM message m playing the role of the
ciphertext. The CCA anonymity KEM game is similar to the CCA security game,
but with (key,ciphertext) challenge being generated on two randomly generated
public keys. If the public keys are implemented as language statement, and if the
language is a hard promise problem, i.e., if a random correct statement (=public
key) cannot be distinguished from a random incorrect statement, then statement
privacy implies CCA anonymity. Our notion of CKEM can be thus thought of
as a generalization of CCA secure and anonymous PKE to CCA secure and
anonymous witness encryption [19]. Indeed, the construction of simulation-sound
CKEM from an SPHF in Section 2.1 below can be seen as a generalization of
the Fujisaki-Okamoto transform [18] from IND PKE to CCA PKE.

2.1 Implicit-Statement CKEM Construction in ROM from SPHF’s

We construct a non-interactive implicit-statement CKEM which
is zero-knowledge, simulation sound, and statement private, for any language L
which has a statement private Smooth Projective Hash Function (SPHF) [15].
Our construction, which is secure in the Random Oracle Model (ROM), is
efficient: Its costs are as in the underlying SPHF plus, for the receiver, the cost
of verifying that a projection key and a hash were computed correctly given
the hash key. This verification can be done with a single multi-exponentiation
using known batch signature verification techniques. We first describe the
SPHF notion, and then show how to create a CKEM assuming an SPHF with
the desired properties. We exemplify this generic construction in Section 5.1 for
the case of language L used in our saPAKE construction.

Statement Private SPHF. We say that an algorithm tuple (Hash,PHash)
is an SPHF for language L ⊆ U (for U an implicit universe) if Hash on input
a statement x outputs a projection key hp and a hash value v,5 and PHash

5 Standard SPHF syntax uses two separate algorithms, KG → (hp, hk) and
Hash(x , hk)→ v, which we combine for notational convenience in our context.

11

on input a witness w and hp outputs another hash value v′. Procedure Hash
must be randomized and we will refer to its randomness as a hash key hk.
Note that we assume that procedure PHash does not take a statement x as
input, which is important for languages where one witness can correspond to
many statements. Correctness requires that for all (x ,w) ∈ R[L], if (v, hp) ←
Hash(x) then v ← PHash(w , hp). We will consider SPHF schemes that satisfy
the statistical smoothness and statement privacy properties, defined as follows:

(I) Smoothness: For all x 6∈ L

{v, hp}(v,hp)←Hash(x)

(s)
≈ {v′, hp}(v,hp)←Hash(x),v′←R{0,1}κ

(II) Statement Privacy: For all x0, x1 ∈ U close:

{hp}(v,hp)←Hash(x0)

(s)
≈ {hp}(v,hp)←Hash(x1)

CKEM Construction. Let SPHF = (Hash,PHash) be a statement private
SPHF for L, let H0 : {0, 1}∗ → ({0, 1}κ)2 and H1 : {0, 1}∗ → {0, 1}κ be hash
functions, and let (E,D) be an indistinguishable symmetric encryption with κ-bit
keys. Consider CKEM = (PG,TPG,Snd,Rec,TRec) defined as follows:

– PG(1κ) and TPG(1κ) output descriptions of H0 and H1 as π. The trapdoor td
output by TPG is access to the adversary’s queries to random oracles H0,H1.

– Sndπ,`(x):
1. Generate (v, hp)← SPHF.Hash(x ;hk) for random hk;
2. Compute (ek , ck)← H0(v), e← Eek (hk, x), and τ ← H1(v, hp, e, `);
3. Output (ck ,m) for m = (hp, e, τ).

– Recπ,`(w ,m) for m = (hp, e, τ):
1. Compute v ← SPHF.PHash(w , hp);
2. Compute (ek , ck)← H0(v), (hk, x)← Dek (e), and τ ′ ← H1(v, hp, e, `);
3. Output (ck , x) if τ ′= τ , (v, hp) = SPHF.Hash(x ;hk), and (x ,w)∈R[L];

Otherwise output (ck ,⊥) for ck ←R {0, 1}κ.

– TRecπ,`(td ,m) for m = (hp, e, τ):
1. Among adversary’s H1 queries find ṽ s.t. τ = H1(ṽ, hp, e, `);

If none or more than one ṽ found, output (ck ,⊥) for ck ←R {0, 1}κ;
2. If unique ṽ found, set (ek , ck)← H0(ṽ) and (hk, x)← Dek (e);
3. Output (ck , x) if (ṽ, hp) = SPHF.Hash(x ;hk);

Otherwise output (ck ,⊥) for ck ←R {0, 1}κ.

Theorem 1. If SPHF is a smooth and statement private SPHF for L and E is
an indistinguishable encryption, then the above is a zero-knowledge, simulation
sound, and statement private implicit-statement CKEM for L in ROM.

Due to limited space, we defer the full proof of Theorem 1 to the full version,
and give a short sketch of the main arguments below.

12

Proof of Theorem 1 (Sketch). Correctness, statement verification, and
parameter indistinguishability can be easily verified by inspection of the
protocol. In particular, correctness follows directly from correctness of the
SPHF and correctness of the encryption scheme E. Property (a) of statement
verification holds because Rec checks if (x ,w) ∈ L, and property (b) holds
because Rec picks a random ck when x = ⊥. Finally, parameter
indistinguishability holds trivially because PG and TPG generate public
parameters in an identical way.

Statement recovery holds because a sender message commits to values
(hp, e, τ) via the random oracle, and TRec, given access to the RO table, can
then deterministically compute the statement x . In particular, the sender sets
τ = H1(v, hp, e, `), where v is the SPHF value, so TRec will find v in the RO
table except with the negligible probability of a collision in H1. If v is found,
then TRec will get the same statement x from Dek (e) by correctness of the
symmetric encryption, as the key ek is deterministically computed by H0(v).

Zero-knowledge follows from the correctness of the underlying SPHF
scheme. Recall that zero-knowledge requires, essentially, that no efficient
adversary can distinguish between the outputs of Rec and TRec for valid
(statement,witness) pairs. We give an intuitive argument as to why this is the
case. In our construction, as long as Rec and TRec find the same SPHF hash
key v that was used to generate the message m, they will end up with the same
statement x , which will lead to identical outputs (if the message is invalid, i.e.,
not computed by Snd, this also will be detected). A challenge is then in
showing that Rec and TRec do indeed find the same SPHF hash value v.
Intuitively, this is the case because the adversary commits to message elements
hp and e along with hash value v via the random oracle hash H1. Because of
this commitment, TRec will find the hash value v in the random oracle table,
and can check its validity through the call to SPHF.Hash. By SPHF
correctness, if (w , x) ∈ R[L], and hp is valid, then Rec’s call to
SPHF.PHash(w , hp) will produce the same hash value v. Rec checks both that
A indeed committed to the hash value by checking if τ = H1(v, hp, e, `), and
checks the validity of the hash value through the call to SPHF.Hash. Rec also
checks directly if (x ,w) ∈ R[L], which is not performed by TRec (since TRec
has no witness w), but it is performed in the ZK experiment by the wrapper
Wrapw over the (ck , x) output of TRec. The full proof captures the above in a
sequence of game changes showing that adversary’s interactions with the Rec
and the (wrapped) TRec procedures are indistinguishable.

By Lemma 1, simulation soundness and statement privacy follow from the
simulatability property that captures them both. Simulatability of our CKEM
construction follows from the smoothness and statement privacy of the
underlying SPHF scheme, and the indistinguishability of the symmetric
encryption scheme. Simulatability requires that no efficient adversary can
distinguish between the real output (key, message) from Snd on input x0, and a
pair (random key, message) where the message is from Snd on input x1, even in
the presence of a trapdoor receiver oracle. Because the CKEM key is computed

13

as the hash of the SPHF hash value v, we know that the CKEM key will
appear random as long as the hash value is not known. SPHF smoothness gives
us that hash values v computed from SPHF.Hash(x ;hk) on x /∈ L appear
random and independent of projection keys hp as long as key hk used in this
hash remains secret. However, an encryption of the randomness hk used to
generate v is provided to the adversary, and the encryption key is in turn
created from H0(v). This is a circular encryption, but in the random oracle
model we avoid this circularity by first assuming that the adversary does not
query either H1 on v, which means that the encryption key appears random,
which in turn means, by indistinguishability of E, that the ciphertext e does
not reveal anything about hk. Further, if the adversary also does not query H1

on v, then the tag τ appears random as well. At this point, we can safely
invoke the SPHF smoothness property to say that v appears random and
independent of hp, and the probability of querying either random oracle on v is
then negligible. Finally, we use SPHF statement privacy, which gives us that
projection keys hp0, hp1 are indistinguishable if created via Hash on two
different statements not in the language L, to show that we may always create
the projection key with x1 without being detected.

3 Security of a Password File against Dictionary Attacks

In a strong asymmetric PAKE protocol, the salted function F used to hash a
password must be a one-way function. However, not all one-way functions will
work: To use the Encryption+SPHF approach to UC PAKE construction F
needs to have an arithmetic structure that admits an efficient SPHF for the
authentication protocol. Unfortunately, an arithmetic structure makes it harder
to characterize F ’s resistance to brute-force attacks, i.e., to lower-bound the
computational complexity of finding pw given (s, Fs(pw)) where s is a random
salt and pw is sampled from a polynomial-size “password dictionary” set D.

To quantify post-compromise resistance of a password file to brute-force
attacks, Benhamouda and Pointcheval introduced the notion of tight
one-wayness [7], which we will adapt to the case where the one-way function is
salted, i.e., randomized, as is necessary in an saPAKE, and we propose to
model the resulting Strong Tight One-Way Function (STOWF) notion with a
UC functionality. We explain why some STOWF candidates do not work for
our purposes, we propose a new STOWF candidate, an SPHF-friendly function
that uses the Boneh-Boyen signature [9] with the hashed password as a key
and the salt as a signed message, and we show that this function realizes the
FSTOWF functionality in the programmable Generic Group Model (GGM) and
the Random Oracle Model.

While it seems unavoidable to use GGM to analyze the fine-grained hardness
of an algebraic salted one-way function Fs, we do not rely on GGM in the
security analysis of the saPAKE protocol that uses (s, Fs(pw)) as the password
file. Abstracting the one-wayness property as a UC functionality FSTOWF helps
keep this argument modular, and in Section 4 we show an saPAKE protocol that

14

realizes the ideal saPAKE functionality given any realization of FSTOWF which
satisfies some additional properties which we explain below.

Modeling the Password File with Salted Tight One-Way Function.
Since we assume that passwords come from a polynomial-sized dictionary, the
adversary can learn the correct password by computing F (pw) for all passwords
pw in the dictionary. More precisely, if the argument pw is known to come from
some domain subset D then given z = f(pw) an algorithm that evaluates F on
any fraction ε of D will find pw with probability ε. This sets an upper bound
on the hardness for the problem of inverting F on a subdomain, and we call F
a tight one-way function (TOWF) [7] if this is also the lower bound, i.e., if for
any polynomial-size subset D of the domain of F any algorithm which runs in
time ε · |D| has at most ε probability of inverting F (x) for x←R D. For example,
this holds if function F is a random oracle. On the other hand, any additional
structure in the one-way function might make it not tight. For example, if F
is additively homomorphic, e.g. F (x) = gx where g generates a multiplicative
group, and D is an integer interval, then the Baby-Step Giant-Step algorithm
finds x given F (x) in time O(

√
|D|) with probability 1.

The goal of a strong asymmetric PAKE is to further constrain the
adversary so that an ε-advantage attacker must perform ε · |D| computation
after server compromise. This means that the password file must be created by
a randomized, a.k.a. salted, one-way function. Let {Fs}s∈R be a family of
functions that share the same domain and range and are indexed by values s
we call salt. Informally, we call {Fs} a family of salted tight one-way functions
(STOWF) if for any domain subset D ⊆ X it holds that any efficient algorithm
A that has ε probability of computing F−1s (z) given (s, z) = (s, Fs(x)) for
s ←R R and x←R D, must perform at least ε · |D| computation after receiving
(s, z) as an input. In other words, no efficient pre-computation can help the
adversary to avoid the post-compromise cost Ω(|D|) to recover pw given the
compromised server password file (s, Fs(pw)) if (s, pw)←R R×D.

Formally, STOWF is defined by a pair of efficient algorithms (PG,Eval) where
(1) PG(1κ) outputs a description of a function family F , with domain X, salt
domain R, and range Y , such that Fs : X → Y for every s ∈ R, and (2)
algorithm Eval evaluates Fs(x) given (s, x) ∈ R×X and the description of F .

Examples of Salted Tight One-Way Functions. In the
Password-over-TLS authentication used on the web today the server-held
password file is (s, z) for z = Fs(pw) = H(s, pw), and to authenticate the client
sends password pw ′ over the server-to-client PKI-authenticated TLS session
and the server accepts if H(s, pw ′) = z . This method enforces the
STOWF lower bound if H is a random oracle: If |s| = Ω(κ) then regardless of
any (efficient) pre-computation the adversary can recover the client’s password
only by computing H(s, x) for x ∈ D after server compromise. However, a plain
random oracle has no arithmetic structure, so it is not clear how to use it as a
STOWF in an saPAKE protocol.

15

The recently proposed PKI-free saPAKE scheme OPAQUE [24] gives a
different example of a tight STOWF. The syntax differs slightly, as the
password file is (s, Fs,r(pw)) where r is an additional randomness needed to
evaluate F , but the crux of the scheme is that s is implemented as a key k of
an Oblivious PRF (OPRF) function F ∗, and Fs,r(pw) includes public keys pkC

and pkS for the client and the server, the private key skS for the server, and a
ciphertext c ← Erw (skC) which encrypts the client private key skC under key
rw = F ∗k (pw) (see [24] for details). To authenticate, the client computes rw via
an OPRF instance with the server on resp. inputs pw and k, decrypts skC from
c, and the two parties run a standard AKE using resp. keys skC and skS. The
STOWF bound is enforced because from a server compromise the attacker
learns (k, c) and needs to compute skC = Drw (c) for rw = F ∗k (pw). The strong
UC OPRF properties [23], realizable efficiently in ROM, imply that F ∗ is
pseudorandom even if one holds key k, hence the only strategy for finding pw
(and skC) given (k, c) is to evaluate F ∗k on guesses pw ′ and verify if
sk ′C = Drw ′(c) for rw ′ = F ∗k (pw ′) corresponds to pkC.

A natural SPHF-friendly STOWF candidate is Fs(pw) = sH(pw) where
s ←R G, where G is a cyclic group in which the discrete logarithm problem is
hard, and H is an RO hash onto Zp . Using this function, we could create an
authentication protocol based on an efficient SPHF scheme for the language
that server-held value z = sH(pw) and client’s extractable password
commitment c = (gr, yrgH(pw ′)) for g, y ∈ G are of the correct form, and indeed
[7] construct their aPAKE based on this STOWF candidate along these lines.
This function realizes the UC STOWF functionality we define below in GGM,
and the proof is a straightforward adaptation of the proof that it satisfies a
game-based TOWF property given in [7]. However, this function is malleable in
the following sense: Given (s, z) for z = Fs(pw), it is easy to create (s ′, z ′) for
z ′ = Fs′(pw) and s ′ 6= s, by computing s ′ = sr and z ′ = z r for any r. This
creates a problem for UC security of saPAKE: An adversary who learns (s, z)
via server compromise can impersonate the server using a randomized file
(s ′, z ′) without learning pw via an offline attack, but the UC simulator cannot
detect that such impersonation attacks because if (s, z) is an STOWF
challenge and an adversary does not stage an offline attack then the simulator
does not know the trapdoor H(pw) = DL(s, z) needed to recognize (s, z , s ′, z ′)
as DDH tuples. One can prove UC security of a protocol based on this STOWF
function but the proof would use GGM in the online part, whereas we hope to
use GGM only to analyze the tightness of F against offline computation, and
not involve it in the analysis of the online protocol.6

Boneh-Boyen Function: SPHF-Friendly and Unforgeable STOWF.
Fortunately, we can avoid GGM in the security proof of saPAKE based on UC
secure STOWF by using the hashed Boneh-Boyen (BB) function
Fs(x) = g1/(s+H(x)) [9] as the STOWF candidate, where s ←R Zp and H hashes

6 Similar approach was taken by [7] who contain both GGM and ROM to the offline
part of analysis, while we contain GGM to the offline part but use ROM throughout.

16

onto Zp . We also define another STOWF candidate we call unhashed BB
function, fs(x) = g1/(s+x), which can be used to define F as Fs(x) = fs(H(x)).
The reason for introducing the unhashed BB function f is that the saPAKE
security proof will rely on the STOWF candidate f satisfying some additional
properties we define below, but it will implement the password file as
(s, fs(H(pw)). If f is instantiated as the unhashed BB then the saPAKE
protocol effectively uses the hashed BB function for its password file. This will
in particular imply that we can rely on the offline-hardness of STOWF F while
also benefitting of the algebraic properties of f .

UC Model for Salted Tight One-Way Function. We propose a UC
functionality FSTOWF, shown in Fig. 1, to model the offline security of the
password file in an ideal saPAKE scheme, i.e., the potential leakage of the
password file via server compromise and the offline dictionary attack possible
after this leakage. If a function realizes this UC functionality then for every
efficient real-world adversary A there exists an efficient ideal-world adversary
(simulator) SIM, such that A’s offline computation can be simulated by SIM on
access to FSTOWF, which essentially implements an ideal black-box point
function, namely a function which outputs 1 for x = pw and 0 for all x 6= pw .

Leak Function Value

– On (FVal, sid , x) from S: Store (sid , x) and send (FVal, sid , S) to A.

Offline Test Evaluation

– On (OfflineEval, sid , x′) from A: If there is a record (sid , x) return “correct
guess” if x = x′ and “wrong guess” otherwise.

Fig. 1. UC functionality FSTOWF for Tight One-Way Function (STOWF)

Modification of the UC Framework. The standard UC framework applied
to functionality FSTOWF does not express all required properties of the STOWF
function, because it does not impose a tight relation between the time
complexity of A and SIM. For example, the unhashed Boneh-Boyen function F
realizes FSTOWF in (programmable) GGM, but if A makes T generic group
model operations then SIM must be allowed to make O(T 2) queries to FSTOWF,
which means that A can test |D| passwords using only O(

√
|D|) group

operations, as is indeed possible if D is an integer interval. Using a hashed
Boneh-Boyen function heals this problem by effectively changing D into a
random subset of Zp , but we need to make an adjustment to the UC model so
that it imposes a tight relation between the work of the real-world adversary A
and the simulator SIM.

As pointed out in [21], in order for the UC (s)aPAKE model to enforce that
the real-world adversary performs some minimal local computation to offline test

17

each password, we need to change the UC framework slightly, so that both the
local computation of the real-world adversary and the OfflineTestPwd messages of
the simulator are accounted for by the environment. For example, when the real-
world adversary performs some local computation which corresponds to an offline
password verification, e.g. a random oracle query or a generic group model query,
this idealized computational element would send a special “flag” signal to the
environment. In the ideal world, the same flag would be sent to the environment
whenever FSTOWF receives an OfflineTestPwd query from the simulator. (In the
context of FSTOWF such flag will be sent on every OfflineEval message from the
ideal-world adversary.) If the environment’s view of the ideal-world and the real-
world executions are indistinguishable in such regime this would prevent the
simulator from sending OfflineTestPwd messages to the functionality without an
offline attack taking place in the real world.7

The necessity of such modification to the UC framework was also observed
by [24] in the context of saPAKE, because otherwise FaPAKE and FsaPAKE would
be equivalent. The only difference between aPAKE and saPAKE is that
OfflineTestPwd queries are allowed in saPAKE only after the adversary
compromises the server. However, if the timing of the local computation of the
real-world adversary and the simulator’s OfflineTestPwd queries is not observed
by the environment, then the simulator may accumulate all the offline
password tests made by the real-world adversary before server compromise,
and then send all the OfflineTestPwd queries these password tests represented
right after server compromise, effectively bypassing the intended enforcement
of no pre-computation of offline dictionary queries in the real-world.

Additional STOWF Properties. For the saPAKE application we need to
extend the STOWF notion with a secondary “leakage function” F̂ , because in
the saPAKE protocol of Section 4 the client will commit not to the (hashed)
password itself but to another algebraic function of it, which enables both
straight-line extraction of the committed password and an efficient SPHF that
the committed password is the pre-image of the STOWF function value stored
by the server. Formally, we extend the STOWF syntax to a triple of algorithms
(PG,Eval, Leak), where PG and Eval are as before except PG also outputs a
description of a leakage function F̂ with domain X and range Ŷ such that
F̂ : X → Ŷ , and (2) algorithm Leak evaluates F̂ (x) given x ∈ X and the
description of F̂ . When it is unambiguous, we will use the shorthand (PG, F, F̂)
to refer to a specific STOWF scheme.

We define the following three properties of an STOWF candidate. Since we will
claim them only about the unhashed BB function f we will use notation (PG, f, f̂)
to specify the properties below:

(I) One-time unforgeability. An efficient adversary who gets the server’s password
file (s, fs(x)) for random x ←R X and s ←R R, must be unable to generate an
alternate file (s ′, z ′) for z ′ = fs′(x) and s ′ 6= s, except with negligible probability.

7 In [21] the environment sends permissions to the real-or-ideal adversary rather than
receiving signals about the computation performed, but the effect seems the same.

18

(II) Leakage-function hiding. An efficient adversary who gets the server’s
password file (s, fs(x)) for random x ←R X and s ←R R, must be unable to

output f̂(x), except with negligible probability.

(III) Collision resistance. For all s ∈ R, if x1 6= x2 then fs(x1) 6= fs(x2).

Security of Boneh-Boyen Function as STOWF. We consider both the
unhashed and hashed Boneh-Boyen functions. The parameter generator PG(1κ)
for both functions fixes a prime-order cyclic group (G, p) two random group
elements g, g′ ←R G, and the randomness domain is R = Zp . The unhashed BB

function pair (f, f̂) is defined on domain X = Zp as fs(x) = g1/(s+x) and f̂(x) =

(g′)x, while the hashed BB function pair (F, F̂) is defined as Fs(x) = fs(H(x))

and F̂ (x) = f̂(H(x)) where H : {0, 1}∗ → Zp .
We make the following claims about the unhashed and hashed Boneh-Boyen

functions. Recall that the q-DDH assumption [10] says that given (g, gx, ..., gx
q

)
for x←R Zp no efficient algorithm can find (c, g1/(x+c)) for any c ∈ Zp .

Theorem 2. The unhashed Boneh-Boyen function f satisfies the properties of
one-time unforgeability, leakage-function hiding, and collision resistance under
the q-SDH assumption for q = 2.

Proof (Sketch). Boneh-Boyen [10] show that a signature/MAC scheme Sx(m) =
g1/(x+m for key x ←R Zp is unforgeable against chosen-message attack with
q queries under the q-SDH assumption. Our one-time unforgeability notion is
strictly weaker than this, because the adversary sees a signature z = Sx(m)
on only one randomly chosen message m = s. By a simple modification of
Lemma 9 of [10] adapted to the setting where the challenger does not generate
the public verification key, the BB function is one-time unforgeable under the
q-SDH assumption for q = 1. Similarly, the leakage-function hiding property
reduces to the 2-SDH assumption by a simple modification of the same reduction
from one-time unforgeability of f to q-SDH. Finally, collision resistance holds for
f because g is an element of group G of prime order p and division modulo p is
a one-to-one function. (Formally, the domain of fs must be restricted to exclude
message value x = −s mod p.)

Theorem 3. The unhashed Boneh-Boyen STOWF function realizes UC
functionality FSTOWF in the (programmable) Generic Group Model (GGM) for
G, assuming that the i-th generic group operation made by the real-world
adversary triggers i “offline password test computation” flags to the
environment, which allows the simulator to issue a batch of i OfflineTestPwd
queries to FSTOWF.

Proof (Sketch). The proof of the above theorem, included in [13], is a
straightforward generalization of the O(T 2) bound on the number of discrete
logarithm candidates which can be tested in GGM in T steps. Such
lower-bound holds because the i-th generic group operation can test at most i
new discrete logarithm candidates, limiting the total number of values tested in

19

T steps to
∑T
i=1(i) = O(T 2). Moreover, in the programmable GGM the

simulator can embed the result of OfflineTestPwd queries in the result of the
generic group operation: The “correct guess” response implies that the new
group element should collide with a specific previously computed element,
while for the “wrong guess” the new group element representation is a fresh
random string.

Theorem 4. The hashed Boneh-Boyen STOWF function realizes UC
functionality FSTOWF in the (programmable) Generic Group Model (GGM) for
G and (non-progammable) ROM, assuming that each generic group operation
made by the real-world adversary triggers O(1) “offline password test
computation” flags to the environment, which allows the simulator to issue a
batch of (amortized) O(1) OfflineTestPwd queries to FSTOWF.

Proof (Sketch). The proof is a modification of the proof of Theorem 3 utilizing a
theorem shown by Schnorr [31], which shows that for a polynomial-sized subset
D of random points in Zp , which we define as H outputs on values hashed by
the real-world adversary, the generic group model algorithm must make Ω(|D|)
operations to test if a discrete logarithm challenge is solved by the candidates
in set D.8

4 Strong aPAKE from Implicit-Statement CKEM

We show the saPAKE protocol we propose in Figure 2. The construction relies
on several building blocks: (1) hash function H : {0, 1}∗ → Zp modeled as a
random oracle; (2) zero-knowledge, simulation sound, and statement
private implicit-statement CKEM scheme (PG,Snd,Rec) for language L
described below; (3) one-time unforgeable, leakage-function hiding, and

collision-resistant UC STOWF scheme (PG, f, f̂); and (4) CPA-secure public
key encryption scheme (KG,Enc,Dec) on message space Ŷ , the range of the

leakage function f̂ . The common reference string (CRS) consists of a public

key pk ← KG(1κ), CKEM parameters π ← CKEM.PG(1κ), and functions (f, f̂)
generated by STOWF generator PG(1κ).

The high-level idea of this construction is as follows. The server S’s
password file contains a random salt and salted hash (s, z) for z = fs(hwS),
where hwS = H(pwS). To authenticate, client C encrypts its hashed password
hwC = H(pwC) under the public key pk from the CRS, and sends the resulting
ciphertext c to S. Server S uses the CKEM scheme to form a key kS and
message m conditioned on the statement xS = (s, z , c) that c encrypts the
same value hw as was used to form z = fs(hw). Client C uses hwC and the
randomness in c as its witness in the CKEM receiver procedure, which
computes the key kC. (The receiver algorithm also outputs the value xC implicit
in m, but this value is not used by the client.) The properties of CKEM

8 A variant of the theorem of Schnorr was also shown by Benhamouda-Pointecheval
[7], but customized to n-bit passwords for n < |p|/4.

20

guarantee that if xC does not match C’s witness then the client’s key kC will be
random independent of the server’s view, so S fails to authenticate to C.
Likewise, if C doesn’t have a witness for S’s statement xS for which S created
this CKEM message, then the server’s key kS will be independent of the client’s
view, so C fails to authenticate to S.

CKEM Language. The CKEM used in the saPAKE protocol saPAKE of Figure
2 is defined as follows:

Lpk = {(s, z , c) | ∃ (h, r) s.t. z = fs(h) and c = Encpk (f̂(h); r)} (1)

Since key pk is part of a CRS, we will leave it as implicit and refer to Lpk as

simply L. Note that if function f̂ is hard to invert then Encpk (f̂(m)) is not
a standard encryption scheme, as there is no efficient decryption procedure.
However, since it is used to encrypt a hashed password, i.e. m = H(pw), it
still implements a commitment with straight-line extractor in ROM, which the
simulator uses to extract the client’s password in the proof of Theorem 5 below.

Public parameters:
Parameters (pk , π, f, f̂) for
(pk , ·) ← KG(1κ),
π ← CKEM.PG(1κ),
and (f, f̂)← STOWF.PG(1κ)

Password Registration (offline):
On (StorePwdFile, sid ,C, pwS)
file[sid]← (s, z ← fs(hwS))

for hwS ← H(pwS)

Party C, on input
(CltSession, sid , ssid , S, pwC):

Party S, on input
(SvrSession, sid , ssid):

`← (sid , ssid) `← (sid , ssid)
hwC ← H(pwC) retrieve file[sid] = (s, z)
r ←R {0, 1}κ

c ← Encpk (f̂(hwC); r) -(flow1, sid , ssid , c)

xS ← (s, z , c)
(kS,m)← Sndπ,`(xS)

�(flow2, sid , ssid ,m)

w ← (hwC, r) output kS
(kC, xC)← Recπ,`(w ,m)
output kC

Steal password file: On A’s message (StealPwdFile, sid) send file[sid] to A

Fig. 2. Strong aPAKE scheme saPAKE based on an implicit-statement CKEM

4.1 Security Analysis

We now show that saPAKE is a secure realization of functionality FsaPAKE,
originally proposed by [24]. The formal security claim about protocol saPAKE
is as follows:

21

Theorem 5. The saPAKE protocol shown in Fig. 2 securely realizes
functionality FsaPAKE in ROM, provided that function f securely realizes
functionality FSTOWF and is (one-time) unforgeable, leakage-function hiding
and collision-resistant, PKE is a CPA-secure public-key encryption, and CKEM
is a zero-knowledge, simulatable CKEM for language L.

Public parameters: Parameters (pk , π, f, f̂) and secret trapdoors (sk , td)

for (pk , sk)← KG(1κ), (π, td)← CKEM.TPG(1κ), and (f, f̂)← STOWF.PG(1κ).
Assume that Z fixes (sid , ssid) and ` = (sid , ssid), and that all flows contain (sid , ssid).

�pwC Z -pwS

c ← Encpk (ŷ) for ŷ ←R Ŷ -c A -c
′

if c = c′: connect
d← Decsk (c′)

find (pw , h) ∈ TH s.t. f̂(h) = d
if none: pw ← ⊥
if more than one pw : abort
send (TestPwd, S, pw) to F
if “correct”: compromise
if “wrong”: interrupt
compromise :

if no record (s, z):
s ←R G; z ← fs(h)
record (s, z)

(kS,m)← Sndπ,`(s, z , c
′)

connect OR interrupt :
(kS,m)← Sndsim

π,`

if (c′,m ′) = (c,m): connect �m
′
A �m send (NewKey, S, kS) to F

(k̃C, (s̃, z̃ , c̃))← TRecπ,`(td ,m
′)

if S compromised ∧ (s̃, z̃ , c̃) = (s, z , c):
send Impersonate to F ,
if “correct”: compromise; if “wrong”: interrupt

find (pw , h) ∈ TH s.t. z̃ = fs̃(h)
if none: pw ← ⊥
if more than one pw : abort
send (TestPwd,C, pw) to F ;
if “correct”: compromise; if “wrong”: interrupt
compromise :

kC ← k̃C
connect OR interrupt :

kC ←R {0, 1}κ
send (NewKey,C, kC) to F

On A’s message (StealPwdFile, sid), find record (s, z), if no such record found send pair
(s, z) outut by SIMSTOWF on (FVal, sid ,C,S);
On query (OfflineEval, sid , h) from SIMSTOWF, find (pw ′, h) ∈ TH. If none found, reply
“wrong guess”, else send (OfflineTestPwd, sid , pw ′) to F and forward reply to SIMSTOWF.

Fig. 3. Simulator alg. SIM for saPAKE interacting with A, F and SIMSTOWF.

22

Due to space limits, we include here only the simulator for the protocol and
the quick overview of the proof ideas, defering the full proof of the theorem to
the full version of this paper [13]. To prove Theorem 5, we construct a
simulator SIM, shown in Figure 3, s.t. that for any efficient environment Z and
adversary A, the environment’s view of the real-world execution, where
adversary A interacts with the honest parties that execute protocol saPAKE, is
indistinguishable from its view of the ideal-world execution, where simulator
SIM (which uses A as an oracle) ineracts with the ideal-world honest parties
via the ideal functionality FsaPAKE. Without loss of generality, we assume that
A is a “dummy” adversary who merely passes all messages between Z and
SIM. In the description of the simulator in Figure 3 we shorten FsaPAKE as F .
Note that because by assumption function f securely realizes functionality
FSTOWF, there exists a simulator SIMSTOWF such that no efficient environment
can distinguish between interacting with the real STOWF protocol and with
SIMSTOWF and FSTOWF. The saPAKE protocol simulator SIM shown in Figure 3
uses this SIMSTOWF as a black box. It also uses the CKEM sender simulator
algorithm Sndsim defined for Lemma 1 in Section 2.

Proof Overview. The proof uses a sequence of games, starting from the real
world and ending at the ideal world. The first step is to let the game abort if
there is a collision in H, or H outputs 0. Then consider the case that A merely
passes all messages between C and S: if C and S use the same password then
they output the same key, otherwise C outputs an independent random key. The
resultant game is indistinguishable to the previous one due to CKEM correctness
and statement verification. Then according to the zero-knowledge property of
CKEM, we modify the client-side code so that it computes kC with the trapdoor
receiver TRec and trapdoor td instead of the standard receiver Rec and witness
w , and then performs a check that the client’s statement is in the language. Now
the witness w = (hwC, r) and the secret key sk are not used in the game, so we
change client’s ciphertext to a “dummy” one c ← Encpk (ŷ) for ŷ ←R Ŷ . After
that, in the case that (1) the ciphertext sent to S, c′, is new and invalid, or (2)
c′ = c, we let S output a random key kS and send a “dummy” message m on
a fixed false statement x ′; this move can be made due to CKEM simulatability.
Then we let C detect server impersonation and extract password guess, i.e.,
(1) if S is compromised, and (s̃, z̃ , c̃) = (s, z , c), or (2) if there is a pw s.t.
z̃ = fs̃(H(pw)), kC is decided according to whether pwC = pwS. Then we remove
the query H(pwC) from the client-side code, and postpone the H(pwS) query
until server compromise. Finally, when A compromises S, invoke SIMSTOWF to
simulate A’s view in offline password tests.

5 Efficient Instantiation of Strong aPAKE

The efficiency of the generic saPAKE construction in Fig. 2 depends on the
choices of the salted tight one-way function (STOWF), the encryption scheme,
and a CKEM. A particularly efficient instantiation of this framework, protocol

23

saPAKE-BB shown in Figure 4, results from implementing the STOWF scheme
(PG, f, f̂) as the unhashed Boneh-Boyen function fs(x) = g1/(s+x) for s ←R Zp

and f̂(x) = (g′)x for g, g′ ←R G (see Section 3). Since in the generic protocol in
Figure 2 function f is evaluated on hashed password hw ← H(pw), the server’s
password file (s, z) in protocol saPAKE-BB is effectively computed using the
hashed Boneh-Boyen function, i.e. z = fs(H(pw)) = g1/(s+H(pw)). PKE Enc is
instantiated as ElGamal, i.e. Encpk (m; r) = (c, d) = (gr, yr ·m) where pk = y for
y ←R G, and CKEM is implemented using the SPHF-based CKEM construction
of Section 2.1 instantiated for a language defined in equation (2) below.

In the following two subsections we explain how the generic CKEM scheme
of Section 2.1 is instantiated for a language implied by the above Enc and fs
choices, and then we discuss the implications of these choices to the efficiency of
protocol saPAKE-BB.

Public parameters: Prime-order cyclic Password Registration (offline):
group (G, p), random group elements On (StorePwdFile, sid ,C, pwS)

g, g′, y ←R G; hash functions H,H0,H1 file[sid]← (s, z ← g1/(s+hwS)) for
onto resp. Zp , ({0, 1}κ)2, and {0, 1}κ. s ←R Zp and hwS ← H(pwS).

Party C, on input
(CltSession, sid , ssid , S, pwC):

Party S, on input
(SvrSession, sid , ssid):

`← (sid , ssid) `← (sid , ssid)
hwC ← H(pwC) retrieve (s, z)← file[sid]
r ←R Zp

(c, d)← (gr, yr(g′)hwC) -(c, d)

hk ← (α, β, γ)←R Z3
p

(v, hp1, hp2)← ((gz−s)αcβdγ , zα(g′)γ , gβyγ)
hp← (hp1, hp2); xS ← (s, z , c, d)

(ek , kS)← H0(v); e← Eek (hk, xS)
τ ← H1(v, hp, e, `)

output kS
� (hp, e, τ)

v ← hp
hwC
1 · hpr2 where

(hp1, hp2)← hp
(ek , kC)← H0(v)
((α, β, γ), (s, z , c′, d′))← Dek (e)
τ ′ ← H1(v, hp, e, `)

output kC if τ ′ = τ , (c′, d′) = (c, d), z = g
1

s+hwC ,

and (v, hp1, hp2) = ((gz−s)αcβdγ , zα(g′)γ , gβyγ)
otherwise output kC ←R {0, 1}κ

Steal password file: On A’s message (StealPwdFile, sid), send file[sid] to A

Fig. 4. saPAKE-BB: Instantiation of protocol saPAKE with Boneh-Boyen STOWF,
ElGamal PKE, and SPHF-based CKEM

24

5.1 Efficient CKEM for Commitment to STOWF Preimage

Since the CKEM construction of Section 2.1 is based on SPHF, it is efficient
for language Lpk of “encryptions of a leakage function applied to the pre-image
of a tight one-way function,” defined in equation (1), if PKE Enc and STOWF

(f, f̂) are instantiated so that Lpk has an efficient SPHF. Recall that there are
efficient SPHF’s for “linear function” languages, i.e., languages whose relation
can be expressed as

R[L] = {(x ,w) s.t. x = (C,M) and C = w · M}

where C,M are resp. vector and matrix of elements of G, w is a vector of
integers, and product w · M denotes an exponentiation, e.g. if w = [α1, . . . , αn]
and M = [g1, . . . , gn]T then w ·M =

∏n
i=1 g

αi
i . If C and M are resp. 1×m and

n×m matrices in G then the following algorithms form an SPHF for L:

Hash(x ;hk) for x = (C,M) and hk ←R (Zp)m outputs (v, hp) = (C ·hk,M ·hk).

PHash(w , hp) outputs v = w · hp.
Correctness follows because if C = w ·M then w ·hp = w ·(M ·hk) = (w ·M)·hk =
C · hk, smoothness because (C,M) 6∈ L if and only if C is not in the row span
of M , in which case v = C · hk is independent of hp = M · hk, and statement
privacy holds if for every (C,M) in universe U matrix M has full row rank.

CKEM for ElGamal Encryption and Boneh-Boyen Function. If fs ,
f̂ , and Enc are defined as fs(h) = g1/(s+h), f̂(h) = (g′)h, and Ency(m; r) =
(gr, yrm) then language Lpk in equation (1) is an example of a linear function
language which admits an SPHF defined above. Note that if z = g1/(s+h) then
zh = gz−s , and therefore in this instantiation language Lpk becomes:

Lpk = {(s, z , c, d) | ∃ w = (h, r) s.t. (gz−s , c, d) = w ·
[

z 1 g′

1 g y

]
(2)

Note on shared group setting. Note that the Boneh-Boyen function parameters
are π = (G, p, g, g′) and the ElGamal public key is pk = (G, p, g, y). The two
schemes share group setting (G, p), but note that prime-order groups are
typically standardized and re-used across many cryptosystems. All group
elements g, g′, y in the CRS are chosen at random, because the unforgeability
of the Boneh-Boyen function assumes that base g is a random group element
and the leakage-function hiding property of STOWF assumes that base g′ is
another random group element. Note that while typically ElGamal encryption
is defined for a fixed group generator g, under the DDH assumption on G it
can also be instantiated with a random generator g.

Efficient CKEM for Lpk . The generic CKEM construction of Section 2.1
instantiated with the linear-language SPHF for Lpk results in the following
CKEM procedures (Snd,Rec) for π = (G, p, g, g′, y), hash functions
H0 : {0, 1}∗ → ({0, 1}κ)2 and H1 : {0, 1}∗ → {0, 1}κ, and IND-SKE encryption
scheme (E,D):

25

Sndπ(`, x) for x = (s, z , c, d):

1. Set (v, hp1, hp2)← ((gz−s)αcβdγ , zα(g′)γ , gβyγ) for (α, β, γ)←R Z3
p ;

2. Set hp← (hp1, hp2) and hk ← (α, β, γ);
3. Compute (ek , ck)← H0(v), e← Eek (hk, x), and τ ← H1(v, hp, e, `);
4. Output (ck ,m) for m = (hp, e, τ).

Recπ(`,w ,m) for w = (h, r) and m = (hp, e, τ):

1. Compute v ← hph1 · hpr2 where hp = (hp1, hp2);
2. Set (ek , ck)← H0(v), (hk, x)← Dek (e);
3. Parse (α, β, γ)← hk and (s, z , c, d)← x , and set τ ′ ← H1(v, hp, e, `);
4. Output (ck , x) if τ ′ = τ , (v, hp1, hp2) = ((gz−s)αcβdγ , zα(g′)γ , gβyγ)

and (gz−s , c, d) = (zh, gr, (g′)hyr);
Otherwise output (ck ,⊥) for ck ←R {0, 1}κ.

Note that Step 4 of Rec, which validates that (v, hp) = Hashpk (x ;hk) and
(x ,w) ∈ R[L], involves a verification of six multiexponentiation equations,
rather than their recomputation. Batch verification techniques, e.g. [2], allow
this to be done with a single multi-exponentiation. However, using fixed-base
exponentiations instead is likely to be more efficient, because when this CKEM
is used in the context of the saPAKE-BB protocol shown in Figure 4 the client
who runs CKEM Rec algorithm already knows that elements (c, d) are formed
correctly, and it will know the representation of (c, d) in bases (g, g′, y).
Likewise after verifying that z = g(1/(s+h)) for h = hwC, base z can be replaced
by base g in the verification equations for (v, hp1, hp2), hence all these values
can be verified by the client using at most 8 fixed-base exponentiations. (We
note that these costs can be reduced further if some of the base elements
g, g′, y are combined, i.e. if g′ is equated with either g or y, but we leave the
verification of security of such variants to future work.)

5.2 Communication and Computation Costs of Protocol saPAKE-BB

Protocol saPAKE-BB uses only 2 message flows whose total bandwidth is 7 group
elements and 2κ additional bits: c, d in flow1 and hp1, hp2 in flow2, as well as
z , c, d encrypted in e and κ bits each in salt s and hash τ . It is easy to see,
however, that (c, d) do not need to be included in the server’s ciphertext e, and
that they can intead be added to the inputs of hash τ . This optimized protocol
would thus take 5 group elements plus 2κ bits, which e.g., on EC-224 comes to
about 1120 + 320 = 1440 bits.

The client’s verification in the last step that (v, hp1, hp2) = Hashpk (x ;hk)
and that statement (s, z , c′, d′) extracted from the CKEM message m
corresponds to the client’s witness (hwC, r), can be implemented with a single
multi-exponentiation, but as explained in the previous subsection, it can also
be implemented with seven fixed-base exponentiation. The total computational
cost will therefore be dominated by 1 variable-base multi-exps and 11
fixed-base exps for the client, and 2 variable base multi-exps and 2 fixed-base
exps for the server.

26

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Advances in Cryptology – EUROCRYPT 2001. pp. 119–135. Springer
(2001)

2. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular
exponentiation and digital signatures. In: Advances in Cryptology – EUROCRYPT
1998. pp. 236–250. Springer (1998)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Advances in Cryptology – EUROCRYPT 2000. pp.
139–155. Springer (2000)

4. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: IEEE Symposium on Security and Privacy –
S&P 1992. pp. 72–84. IEEE (1992)

5. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-based
protocol secure against dictionary attacks and password file compromise. In: ACM
Conference on Computer and Communications Security – CCS 1993. pp. 244–250.
ACM (1993)

6. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: CRYPTO (2). Lecture
Notes in Computer Science, vol. 9216, pp. 107–129. Springer (2015)

7. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key
exchange: New models and constructions. IACR Cryptology ePrint Archive 2013,
833 (2013)

8. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on
intervals. In: Advances in Cryptology – ASIACRYPT 2004. pp. 515–529. Springer
(2004)

9. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption
without random oracles. In: Advances in Cryptology – EUROCRYPT 2004. pp.
223–238. Springer (2004)

10. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008), https://doi.
org/10.1007/s00145-007-9005-7

11. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated
key exchange using Diffie-Hellman. In: Advances in Cryptology – EUROCRYPT
2000. pp. 156–171. Springer (2000)

12. Bradley, T., Camenisch, J., Jarecki, S., Lehmann, A., Neven, G., Xu, J.: Password-
authenticated public-key encryption. In: ACNS. Lecture Notes in Computer
Science, vol. 11464, pp. 442–462. Springer (2019)

13. Bradley, T., Jarecki, S., Xu, J.: Strong asymmetric PAKE based on trapdoor
CKEM. IACR Cryptology ePrint Archive (2019), https://eprint.iacr.org/

2019/

14. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally
composable password-based key exchange. In: Advances in Cryptology –
EUROCRYPT 2005. pp. 404–421. Springer (2005)

15. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Advances in Cryptology -
EUROCRYPT 2002. pp. 45–64. Springer (2002)

16. Di Crescenzo, G.: Conditional oblivious transfer and timed-release encryption. In:
Financial Cryptography – FC 2000. pp. 74–89. Springer (2000)

27

17. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer
and timed-release encryption. In: Advances in Cryptology – EUROCRYPT 1999.
pp. 74–89. Springer (1999)

18. Fujisaki, F., Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In: Advances in Cryptology – CRYPTO 1999. pp. 537–554.
Springer (1999)

19. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: ACM Conference on Computer and Communications Security – CCS 2013. pp.
467–476. ACM (2013)

20. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Advances in Cryptology – EUROCRYPT 2003. pp. 524–543. Springer
(2003)

21. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based key
exchange resilient to server compromise. In: Advances in Cryptology – CRYPTO
2006. pp. 142–159. Springer (2006)

22. Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced
modular construction of asymmetric password-authenticated key exchange. In:
Security and Cryptography for Networks – SCN 2018. pp. 485–504. Springer (2018)

23. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: IEEE European Symposium on Security and Privacy – EuroS&P 2016. pp.
276–291. IEEE (2016)

24. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol secure
against pre-computation attacks. In: Advances in Cryptology – EUROCRYPT
2018 (2018)

25. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. IACR Cryptology ePrint Archive 2018,
163 (2018)

26. Jutla, C.S., Roy, A.: Smooth NIZK arguments. In: Theory of Cryptography – TCC
2018. pp. 235–262. Springer (2018)

27. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Advances in Cryptology – EUROCRYPT
2001. pp. 475–494. Springer (2001)

28. Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets and its
applications. In: Applied Cryptography and Network Security – ACNS 2007. pp.
207–225. Springer (2007)

29. MacKenzie, P.D.: More efficient password-authenticated key exchange. In: Topics
in Cryptology – CT-RSA 2001. pp. 361–377. Springer (2001)

30. MacKenzie, P.D., Patel, S., Swaminathan, R.: Password-authenticated key
exchange based on RSA. In: Advances in Cryptology – ASIACRYPT 2000. pp.
599–613. Springer (2000)

31. Schnorr, C.P.: Small generic hardcore subsets for the discrete logarithm: Short
secret DL-keys. Information Processing Letters 79(2), 93–98 (2001)

28

