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Abstract. We introduce hardness in relative entropy, a new notion
of hardness for search problems which on the one hand is satisfied by
all one-way functions and on the other hand implies both next-block
pseudoentropy and inaccessible entropy, two forms of computational
entropy used in recent constructions of pseudorandom generators and
statistically hiding commitment schemes, respectively. Thus, hardness in
relative entropy unifies the latter two notions of computational entropy
and sheds light on the apparent “duality” between them. Additionally,
it yields a more modular and illuminating proof that one-way functions
imply next-block inaccessible entropy, similar in structure to the proof
that one-way functions imply next-block pseudoentropy (Vadhan and
Zheng, STOC ‘12).
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1 Introduction

1.1 One-way functions and computational entropy

One-way functions [3] are on one hand the minimal assumption for complexity-
based cryptography [15], but on the other hand can be used to construct a
remarkable array of cryptographic primitives, including such powerful objects
as CCA-secure symmetric encryption, zero-knowledge proofs and statistical
zero-knowledge arguments for all of NP, and secure multiparty computation
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with an honest majority [5,7,6,14,20,16,9]. All of these constructions begin by
converting the “raw hardness” of a one-way function (OWF) to one of the
following more structured cryptographic primitives: a pseudorandom generator
(PRG) [1,22], a universal one-way hash function (UOWHF) [18], or a statistically
hiding commitment scheme (SHC) [2].

The original constructions of these three primitives from arbitrary one-way
functions [14,20,9] were all very complicated and inefficient. Over the past decade,
there has been a series of simplifications and efficiency improvements to these
constructions [11,12,8,21], leading to a situation where the constructions of two
of these primitives — PRGs and SHCs — share a very similar structure and
seem “dual” to each other. Specifically, these constructions proceed as follows:

1. Show that every OWF f : {0, 1}n → {0, 1}n has a gap between its “real
entropy” and an appropriate form of “computational entropy”. Specifically, for
constructing PRGs, it is shown that the function G(x) = (f(x), x1, x2, . . . , xn)
has “next-block pseudoentropy” at least n+ ω(log n) while its real entropy
is H (G(Un)) = n [21] where H (·) denotes Shannon entropy. For constructing
SHCs, it is shown that the function G(x) = (f(x)1, . . . , f(x)n, x) has “next-
block accessible entropy” at most n− ω(log n) while its real entropy is again
H (G(Un)) = n [11]. Note that the differences between the two cases are
whether we break x or f(x) into individual bits (which matters because the
“next-block” notions of computational entropy depend on the block structure)
and whether the form of computational entropy is larger or smaller than the
real entropy.

2. An “entropy equalization” step that converts G into a similar generator where
the real entropy in each block conditioned on the prefix before it is known.
This step is exactly the same in both constructions.

3. A “flattening” step that converts the (real and computational) Shannon
entropy guarantees of the generator into ones on (smoothed) min-entropy
and max-entropy. This step is again exactly the same in both constructions.

4. A “hashing” step where high (real or computational) min-entropy is converted
to uniform (pseudo)randomness and low (real or computational) max-entropy
is converted to a small-support or disjointness property. For PRGs, this
step only requires randomness extractors [14,19], while for SHCs it requires
(information-theoretic) interactive hashing [17,4]. (Constructing full-fledged
SHCs in this step also utilizes UOWHFs, which can be constructed from
one-way functions [20]. Without UOWFHs, we obtain a weaker binding prop-
erty, which nevertheless suffices for constructing statistical zero-knowledge
arguments for all of NP.)

This common construction template came about through a back-and-forth ex-
change of ideas between the two lines of work. Indeed, the uses of computational
entropy notions, flattening, and hashing originate with PRGs [14], whereas the
ideas of using next-block notions, obtaining them from breaking (f(x), x) into
short blocks, and entropy equalization originate with SHCs [11]. All this leads to
a feeling that the two constructions, and their underlying computational entropy
notions, are “dual” to each other and should be connected at a formal level.
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In this paper, we make progress on this project of unifying the notions of
computational entropy, by introducing a new computational entropy notion that
yields both next-block pseudoentropy and next-block accessible entropy in a clean
and modular fashion. It is inspired by the proof of [21] that (f(x), x1, . . . , xn)
has next-block pseudoentropy n+ ω(log n), which we will describe now.

1.2 Next-block pseudoentropy via relative pseudoentropy

We recall the definition of next-block pseudoentropy, and the result of [21] relating
it to one-wayness.

Definition 1.1 (next-block pseudoentropy, informal). Let n be a security
parameter, and X = (X1, . . . , Xm) be a random variable distributed on strings of
length poly(n). We say that X has next-block pseudoentropy at least k if there
is a random variable Z = (Z1, . . . , Zm), jointly distributed with X, such that:

1. For all i = 1, . . . ,m, (X1, . . . , Xi−1, Xi) is computationally indistinguishable
from (X1, . . . , Xi−1, Zi).

2.
∑m
i=1 H (Zi|X1, . . . , Xi−1) ≥ k.

Equivalently, for I uniformly distributed in [m], XI has conditional pseudoentropy
at least k/m given (X1, . . . , Xi−1).

It was conjectured in [10] that next-block pseudoentropy could be obtained
from any OWF by breaking its input into bits, and this conjecture was proven in
[21]:

Theorem 1.2 ([21], informal). Let f : {0, 1}n → {0, 1}n be a one-way func-
tion, let X be uniformly distributed in {0, 1}n, and let X = (X1, . . . , Xm) be
a partition of X into blocks of length O(log n). Then (f(X), X1, . . . , Xm) has
next-block pseudoentropy at least n+ ω(log n).

The intuition behind Theorem 1.2 is that since X is hard to sample given
f(X), then it should have some extra computational entropy given f(X). This
intuition is formalized using the following notion of “relative pseudoentropy,”
which is a renaming of [21]’s notion of “KL-hard for sampling,” to better unify
the terminology with the notions introduced in this work.

Definition 1.3 (relative pseudoentropy). Let n be a security parameter, and
(X,Y ) be a pair of random variables, jointly distributed over strings of length
poly(n). We say that X has relative pseudoentropy at least ∆ given Y if for all
probabilistic polynomial-time S, we have

KL (X,Y ‖ S(Y ), Y ) ≥ ∆,

where KL (· ‖ ·) denotes the relative entropy (a.k.a. Kullback–Leibler divergence).1

1 Recall that for random variables A and B with Supp(A) ⊆ Supp(B), the relative
entropy is defined by KL (A ‖B) = Ea←A [log(Pr [A = a] /Pr [B = a])].
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That is, it is hard for any efficient adversary S to sample the conditional distri-
bution of X given Y , even approximately.

The first step of the proof of Theorem 1.2 is to show that one-wayness implies
relative pseudoentropy (which can be done with a one-line calculation):

Lemma 1.4. Let f : {0, 1}n → {0, 1}n be a one-way function and let X be
uniformly distributed in {0, 1}n. Then X has relative pseudoentropy at least
ω(log n) given f(X).

Next, we break X into short blocks, and show that the relative pseudoentropy
is preserved:

Lemma 1.5. Let n be a security parameter, let (X,Y ) be random variables
distributed on strings of length poly(n), let X = (X1, . . . , Xm) be a partition of
X into blocks, and let I be uniformly distributed in [m]. If X has ∆ relative
pseudoentropy given Y , then XI has relative pseudoentropy at least ∆/m given
(Y,X1, . . . , XI−1).

Finally, the main part of the proof is to show that, once we have short blocks,
relative pseudoentropy is equivalent to a gap between conditional pseudoentropy
and real conditional entropy.

Lemma 1.6. Let n be a security parameter, Y be a random variable distributed
on strings of length poly(n), and X a random variable distributed on strings of
length O(log n). Then X has relative pseudoentropy at least ∆ given Y iff X has
conditional pseudoentropy at least H (X|Y ) +∆ given Y .

Putting these three lemmas together, we see that when f is a one-way function,
and we break X into blocks of length O(log n) to obtain (f(X), X1, . . . , Xm),
on average, the conditional pseudoentropy of XI given (f(X), X1, . . . , XI−1) is
larger than its real conditional entropy by ω(log n)/m. This tells us that the
next-block pseudoentropy of (f(X), X1, . . . , Xm) is larger than its real entropy
by ω(log n), as claimed in Theorem 1.2.

We remark that Lemma 1.6 explains why we need to break the input of
the one-way function into short blocks: it is false when X is long. Indeed, if f
is a one-way function, then we have already seen that X has ω(log n) relative
pseudoentropy given f(X) (Lemma 1.4), but it does not have conditional pseu-
doentropy noticeably larger than H (X|f(X)) given f(X) (as correct preimages
can be efficiently distinguished from incorrect ones using f).

1.3 Inaccessible entropy

As mentioned above, for constructing SHCs from one-way functions, the notion
of next-block pseudoentropy is replaced with next-block accessible entropy:

Definition 1.7 (next-block accessible entropy, informal). Let n be a secu-
rity parameter, and Y = (Y1, . . . , Ym) be a random variable distributed on strings
of length poly(n). We say that Y has next-block accessible entropy at most k if
the following holds.
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Let G̃ be any probabilistic poly(n)-time algorithm that takes a sequence

of uniformly random strings R̃ = (R̃1, . . . , R̃m) and outputs a sequence Ỹ =

(Ỹ1, . . . , Ỹm) in an “online fashion” by which we mean that Ỹi = G̃(R̃1, . . . , R̃i)

depends on only the first i random strings of G̃ for i = 1, . . . ,m. Suppose further
that Supp(Ỹ ) ⊆ Supp(Y ).

Then we require:
m∑
i=1

H
(
Ỹi|R̃1, . . . , R̃i−1

)
≤ k.

(Next-block) accessible entropy differs from (next-block) pseudoentropy in
two ways:

1. Accessible entropy is useful as an upper bound on computational entropy,
and is interesting when it is smaller than the real entropy H (Y ). We refer to
the gap H (Y )− k as the next-block inaccessible entropy of Y .

2. The accessible entropy adversary G̃ is trying to generate the random variables
Yi conditioned on the history rather than recognize them. Note that we take
the “history” to not only be the previous blocks (Ỹ1, . . . , Ỹi−1), but the coin

tosses (R̃1, . . . , R̃i−1) used to generate those blocks.

Note that one unsatisfactory aspect of the definition is that when the random
variable Y is not flat (i.e. uniform on its support), then there can be an adversary

G̃ achieving accessible entropy even larger than H (Y ), for example by making Ỹ
uniform on Supp(Y ).

Similarly to (and predating) Theorem 1.2, it is known that one-wayness
implies next-block inaccessible entropy.

Theorem 1.8 ([11]). Let f : {0, 1}n → {0, 1}n be a one-way function, let X be
uniformly distributed in {0, 1}n, and let (Y1, . . . , Ym) be a partition of Y = f(X)
into blocks of length O(log n). Then (Y1, . . . , Ym, X) has next-block accessible
entropy at most n− ω(log n).

Unfortunately, however, the existing proof of Theorem 1.8 is not modular like
that of Theorem 1.2. In particular, it does not isolate the step of relating one-
wayness to entropy-theoretic measures (like Lemma 1.4 does) or the significance
of having short blocks (like Lemma 1.6 does).

1.4 Our results

We remedy the above state of affairs by providing a new, more general notion
of hardness in relative entropy that allows us to obtain next-block inaccessible
entropy in a modular way while also encompassing what is needed for next-block
pseudoentropy.

Like in relative pseudoentropy, we will consider a pair of jointly distributed
random variables (Y,X). Following the spirit of accessible entropy, the adversary

G̃ for our new notion will try to generate Y together with X, rather than taking
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Y as input. That is, G̃ will take randomness R̃ and output a pair (Ỹ , X̃) =

G̃(R̃) = (G̃1(R̃), G̃2(R̃)), which we require to be always within the support of

(Y,X). Note that G̃ need not be an online generator; it can generate both Ỹ and

X̃ using the same randomness R̃. Of course, if (Y,X) is efficiently samplable

(as it would be in most cryptographic applications), G̃ could generate (Ỹ , X̃)
identically distributed to (Y,X) by just using the “honest” sampler G for (Y,X).

So, in addition, we require that the adversary G̃ also come with a simulator S,
that can simulate its coin tosses given only Ỹ . The goal of the adversary is to
minimize the relative entropy

KL
(
R̃, Ỹ

∥∥∥S(Y ), Y
)

for a uniformly random R̃. This divergence measures both how well G̃1 approxi-
mates the distribution of Y as well as how well S simulates the corresponding
coin tosses of G̃1. Note that when G̃ is the honest sampler G, the task of S
is exactly to sample from the conditional distribution of R̃ given G(R̃) = Y .
However, the adversary may reduce the divergence by instead designing the
sampler G̃ and simulator S to work in concert, potentially trading off how well
G̃(R̃) approximates Y in exchange for easier simulation by S. Explicitly, the
definition is as follows.

Definition 1.9 (hardness in relative entropy, informal version of Def-
inition 3.4). Let n be a security parameter, and (Y,X) be a pair of random
variables jointly distributed over strings of length poly(n). We say that (Y,X) is
∆-hard in relative entropy if the following holds.

Let G̃ = (G̃1, G̃2) and S be probabilistic poly(n)-time algorithms such that

Supp(G̃(R̃)) ⊆ Supp((Y,X)), where R̃ is uniformly distributed. Then writing

Ỹ = G̃1(R̃), we require that

KL
(
R̃, Ỹ

∥∥∥S(Y ), Y
)
≥ ∆.

Similarly to Lemma 1.4, we can show that one-way functions achieve this
notion of hardness in relative entropy.

Lemma 1.10. Let f : {0, 1}n → {0, 1}n be a one-way function and let X be
uniformly distributed in {0, 1}n. Then (f(X), X) is ω(log n)-hard in relative
entropy.

Note that this lemma implies Lemma 1.4. If we take G̃ to be the “honest” sampler
G̃(x) = (f(x), x), then we have:

KL (X, f(X) ‖S(Y ), Y ) = KL
(
R̃, Ỹ

∥∥∥S(Y ), Y
)
,

which is is ω(log n) by Lemma 1.10. That is, relative pseudoentropy (as in

Definition 1.3 and Lemma 1.4) is obtained by fixing G̃ and focusing on the
hardness for the simulator S, i.e. the divergence KL (X|Y ‖S(Y )|Y ). Furthermore,
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the step of breaking into short blocks (Lemma 1.5) is equivalent to requiring
the simulator be online and showing that relative pseudoentropy implies the
following notion of next-block relative pseudoentropy :

Definition 1.11 (next-block relative pseudoentropy, informal). Let n be
a security parameter, (X,Y ) be jointly distributed random variables over strings
of length poly(n), and let X = (X1, . . . , Xm) be a partition of X into blocks. We
say that X has next-block relative pseudoentropy at least ∆ given Y if for all
probabilistic polynomial-time S, we have

m∑
i=1

KL (Xi|X<i, Y ‖ S(X<i, Y )|X<i, Y ) ≥ ∆,

where we use the notation z<i = (z1, . . . , zi−1).
Here, the simulator S is required to be “online” in the sense that it cannot

simulate (X1, . . . , Xm) at once, but must simulate Xi only as a function of X<i

and Y .

In particular, Lemma 1.6 is thus equivalent to the statement that having ∆
next-block relative pseudoentropy for blocks of length O(log n) is equivalent to
having next-block pseudoentropy at least ∆+

∑m
i=1 H (Xi|X<i, Y ) in the sense

of Definition 1.1.
Conversely, we show that inaccessible entropy arises from hardness in relative

entropy by first requiring the generator G to be online and breaking the relative
entropy into blocks to obtain the following next-block hardness property.

Definition 1.12 (next-block hardness in relative entropy, informal). Let
n be a security parameter, and Y = (Y1, . . . , Ym) be a random variable distributed
on strings of length poly(n). We say that Y is ∆ next-block hard in relative
entropy if the following holds.

Let G̃ be any probabilistic poly(n)-time algorithm that takes a sequence

of uniformly random strings R̃ = (R̃1, . . . , R̃m) and outputs a sequence Ỹ =

(Ỹ1, . . . , Ỹm) in an “online fashion” by which we mean that Ỹi = G̃(R̃1, . . . , R̃i)

depends on only the first i random strings of G̃ for i = 1, . . . ,m. Suppose further
that Supp(Ỹ ) ⊆ Supp(Y ). Additionally, let S be a probabilistic poly(n)-time

algorithms such for all i = 1, . . . ,m, S takes as input R̂1, . . . , R̂i−1 and Yi and

outputs R̂i, where R̂j has the same length as R̃j. Then we require that for all

such (G̃,S), we have:

m∑
i=1

KL
(
R̃i, Ỹi|R̃<i, Ỹ<i

∥∥∥ R̂i, Yi|R̂<i, Y<i) ≥ ∆.
Observe that hardness in relative entropy can be seen as the specific case of

next-block hardness in relative entropy when there is only one block (i.e., setting
m = 1 in the previous definition).

Next, we fix the simulator, analogously to how relative pseudoentropy was
obtained by fixing the generator, and obtain next-block inaccessible relative
entropy :
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Definition 1.13 (next-block inaccessible relative entropy, informal).
Let n be a security parameter, and Y = (Y1, . . . , Ym) be a random variable
distributed on strings of length poly(n). We say that Y has next-block inaccessible
relative entropy at least ∆ if the following holds.

Let G̃ be any probabilistic poly(n)-time algorithm that takes a sequence

of uniformly random strings R̃ = (R̃1, . . . , R̃m) and outputs a sequence Ỹ =

(Ỹ1, . . . , Ỹm) in an online fashion, and such that Supp(Ỹ ) ⊆ Supp(Y ). Then we

require that for all such G̃, we have:

m∑
i=1

KL
(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i) ≥ ∆,
where R = (R1, . . . , Rm) is a dummy random variable independent of Y .

That is, the goal of the online generator G̃ is to generate Ỹi given the history
of coin tosses R̃<i with the same conditional distribution as Yi given Y<i. As
promised, there is no explicit simulator in the definition of next-block inaccessible
relative entropy, as we essentially dropped all R̂ variables from the definition
of next-block hardness in relative entropy. Nevertheless we can obtain it from
hardness in relative entropy by using sufficiently short blocks:

Lemma 1.14. Let n be a security parameter, let Y be a random variable dis-
tributed on strings of length poly(n), and let Y = (Y1, . . . , Ym) be a partition of
Y into blocks of length O(log n).

If (Y1, . . . , Ym) is ∆ next-block hard in relative entropy, then (Y1, . . . , Ym) has
next-block inaccessible relative entropy at least ∆− negl(n).

An intuition for the proof is that since the blocks are of logarithmic length, given
Yi we can simulate the corresponding coin tosses of R̃i of G̃ by rejection sampling
and succeed with high probability in poly(n) tries.

A nice feature of the definition of next-block inaccessible relative entropy
compared to inaccessible entropy is that it is meaningful even for non-flat random
variables, as KL divergence is always nonnegative. Moreover, for flat random
variables, it equals the inaccessible entropy:

Lemma 1.15. Suppose Y = (Y1, . . . , Ym) is a flat random variable. Then Y has
next-block inaccessible relative entropy at least ∆ if and only if Y has accessible
entropy at most H (Y )−∆.

Intuitively, this lemma comes from the identity that if Y is a flat random variable

and Supp(Ỹ ) ⊆ Supp(Y ), then H
(
Ỹ
)

= H (Y ) − KL
(
Ỹ
∥∥∥Y ). We stress that

we do not require the individual blocks Yi have flat distributions, only that the
random variable Y as a whole is flat. For example, if f is a function and X is
uniform, then (f(X), X) is flat even though f(X) itself may be far from flat.

Putting together Lemmas 1.10, 1.14, and 1.15, we obtain a new, more mod-
ular (and slightly tighter) proof of Theorem 1.8. The reduction implicit in the
combination of these lemmas is the same as the one in [11], but the analysis is
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different. (In particular, [11] makes no use of KL divergence.) Like the existing
proof of Theorem 1.2, this proof separates the move from one-wayness to a form of
hardness involving relative entropies, the role of short blocks, and the move from
hardness in relative entropy to computational entropy, as summarized in Figure 1.
Moreover, this further illumination of and toolkit for notions of computational
entropy may open the door to other applications in cryptography.

hardness in relative entropy

relative pseudoentropy
next-block hardness
in relative entropy

next-block relative pseudoentropy
next-block inaccessible

relative entropy

next-block pseudoentropy gap next-block inaccessible entropy

Fix G̃ Make online and split into blocks

Make online and split into blocks Fix S for short blocks

Assuming short blocks Assuming flat distribution

Fig. 1. Relationships between hardness notions.

We remark that another interesting direction for future work is to find a
construction of universal one-way hash functions (UOWHFs) from one-way
functions that follows a similar template to the above constructions of PRGs and
SHCs. There is now a construction of UOWHFs based on a variant of inaccessible
entropy [8], but it remains more complex and inefficient than those of PRGs and
SHCs.

2 Preliminaries

Notations. For a tuple x = (x1, . . . , xn), we write x≤i for (x1, . . . , xi), and x<i
for (x1, . . . , xi−1).

poly denotes the set of polynomial functions and negl the set of all negligible
functions: ε ∈ negl if for all p ∈ poly and large enough n ∈ N, ε(n) ≤ 1/p(n).
We will sometimes abuse notations and write poly(n) to mean p(n) for some
p ∈ poly and similarly for negl(n).
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ppt stands for probabilistic polynomial time and can be either in the uniform
or non-uniform model of computation. All our results are stated as uniform
polynomial time oracle reductions and are thus meaningful in both models.

For a random variable X over X , Supp(X)
def
= {x ∈ X : Pr[X = x] > 0}

denotes the support of X. A random variable is flat if it is uniform over its support.
Random variables will be written with uppercase letters and the associated
lowercase letter represents a generic element from its support.

Information theory.

Definition 2.1 (Entropy). For a random variable X and x ∈ Supp(X), the

sample entropy (also called surprise) of x is H∗x (X)
def
= log(1/Pr [X = x]). The

entropy H (X) of X is the expected sample entropy: H (X)
def
= Ex←X [H∗x (X)].

Definition 2.2 (Conditional entropy). Let (A,X) be a pair of random vari-
ables and consider (a, x) ∈ Supp(A,X), the conditional sample entropy of (a, x)

is H∗a,x (A|X)
def
= log(1/Pr [A = a |X = x]) and the conditional entropy of A

given X is the expected conditional sample entropy:

H (A|X)
def
= E

(a,x)←(A,X)

[
log

1

Pr [A = a |X = x]

]
.

Proposition 2.3 (Chain rule for entropy). Let (A,X) be a pair of ran-
dom variables, then H (A,X) = H (A|X) + H (X) and for (a, x) ∈ Supp(A,X),
H∗a,x (A,X) = H∗a,x (A|X) + H∗x (X).

Definition 2.4 (Relative entropy2). For a pair (A,B) of random variables
and (a, b) ∈ Supp(A,B) the sample relative entropy (log-probability ratio) is:

KL∗a (A ‖B)
def
= log

Pr [A = a]

Pr [B = a]
,

and the relative entropy of A with respect to B is the expected sample relative
entropy:

KL (A ‖B)
def
= E

a←A

[
log

Pr [A = a]

Pr [B = a]

]
.

Definition 2.5 (Conditional relative entropy). For pairs of random vari-
ables (A,X) and (B, Y ), and (a, x) ∈ Supp(A,X), the conditional sample relative
entropy is:

KL∗a,x (A|X ‖B|Y )
def
= log

Pr [A = a|X = x]

Pr [B = a|Y = x]
,

and the conditional relative entropy is:

KL (A|X ‖B|Y )
def
= E

(a,x)←(A,X)

[
log

Pr [A = a|X = x]

Pr [B = a|Y = x]

]
.

2 Relative entropy is also commonly referred to as Kullback–Liebler divergence, which
explains the standard KL notation. We prefer to use relative entropy to have more
uniformity across the notions discussed in this work.
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Proposition 2.6 (Chain rule for relative entropy). For pairs of random
variables (X,A) and (Y,B):

KL (A,X ‖B, Y ) = KL (A|X ‖B|Y ) + KL (X ‖Y ) ,

and for (a, x) ∈ Supp(A,X):

KL∗a,x (A,X ‖B, Y ) = KL∗a,x (A|X ‖B|Y ) + KL∗x (X ‖Y ) .

Proposition 2.7 (Data-processing inequality). Let (X,Y ) be a pair of ran-
dom variables and let f be a function defined on Supp(Y ), then:

KL (X ‖Y ) ≥ KL (f(X) ‖ f(Y )) .

Definition 2.8 (min relative entropy). Let (X,Y ) be a pair of random vari-
ables and δ ∈ [0, 1]. We define KLδmin (X ‖Y ) to be the quantile of level δ of
KL∗x (X ‖Y ), equivalently it is the smallest ∆ ∈ R satisfying:

Pr
x←X

[KL∗x (X ‖Y ) ≤ ∆] ≥ δ ,

and it is characterized by the following equivalence:

KLδmin (X ‖Y ) > ∆ ⇐⇒ Pr
x←X

[KL∗x (X ‖Y ) ≤ ∆] < δ .

Block generators

Definition 2.9 (Block generator). An m-block generator is a function G :
{0, 1}s →

∏m
i=1{0, 1}`i . Gi(r) denotes the i-th block of G on input r and |Gi| = `i

denotes the bit length of the i-th block.

Definition 2.10 (Online generator). An online m-block generator is a

function G̃ :
∏m
i=1{0, 1}si →

∏m
i=1{0, 1}`i such that for all i ∈ [m] and

r ∈
∏m
i=1{0, 1}si , G̃i(r) only depends on r≤i. We sometimes write G̃i(r≤i) when

the input blocks i+ 1, . . . ,m are unspecified.

Definition 2.11 (Support). The support of a generator G is the support of
the random variable Supp

(
G(R)

)
for uniform input R. If G is an (m+ 1)-block

generator, and Π is a binary relation, we say that G is supported on Π if
Supp

(
G≤m(R),Gm+1(R)

)
⊆ Π.

When G is an (m + 1)-block generator supported on a binary relation Π,

we will often use the notation Gw
def
= Gm+1 to emphasize that the last block

corresponds to a witness for the first m blocks.

Cryptography.

Definition 2.12 (One-way Function). Let n be a security parameter, t = t(n)
and ε = ε(n). A function f : {0, 1}n → {0, 1}n is a (t, ε)-one-way function if:

1. For all time t randomized algorithm A: Prx←Un

[
A
(
f(x)

)
∈ f−1

(
f(x)

)]
≤ ε,

where Un is uniform over {0, 1}n.
2. There exists a polynomial time algorithm B such that B(x, 1n) = f(x) for all

x ∈ {0, 1}n.

If f is (nc, 1/nc)-one-way for every c ∈ N, we say that f is (strongly) one-way.

11



3 Search Problems and Hardness in Relative Entropy

In this section, we first present the classical notion of hard-on-average search
problems and introduce the new notion of hardness in relative entropy. We then
relate the two notions by proving that average-case hardness implies hardness in
relative entropy.

3.1 Search problems

For a binary relation Π ⊆ {0, 1}∗ × {0, 1}∗, we write Π(y, w) for the predicate
that is true iff (y, w) ∈ Π and say that w is a witness for the instance y3. To
each relation Π, we naturally associate (1) a search problem: given y, find w
such that Π(y, w) or state that no such w exist and (2) the decision problem

defined by the language LΠ
def
= {y ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗, Π(y, w)}. FNP

denotes the set of all relations Π computable by a polynomial time algorithm
and such that there exists a polynomial p such that Π(y, w) ⇒ |w| ≤ p(|y|).
Whenever Π ∈ FNP, the associated decision problem LΠ is in NP. We now
define average-case hardness.

Definition 3.1 (Ddistributional search problem). A distributional search
problem is a pair (Π,Y ) where Π ⊆ {0, 1}∗ × {0, 1}∗ is a binary relation and Y
is a random variable supported on LΠ .

The problem (Π,Y ) is (t, ε)-hard if Pr
[
Π
(
Y,A(Y )

)]
≤ ε for all time t

randomized algorithm A, where the probability is over the distribution of Y and
the randomness of A.

Example 3.2. For f : {0, 1}n → {0, 1}n, the problem of inverting f is the search

problem associated with the relation Πf def
= {(f(x), x) : x ∈ {0, 1}n}. If f is

a (t, ε)-one-way function, then the distributional search problem
(
Πf , f(X)

)
of

inverting f on a uniform random input X ∈ {0, 1}n is (t, ε)-hard.

Remark 3.3. Consider a distributional search problem (Π,Y ). Without loss of
generality, there exists a (possibly inefficient) two-block generator G = (G1,Gw)
supported on Π such that G1(R) = Y for uniform input R. If Gw is polynomial-
time computable, it is easy to see that the search problem

(
ΠG1 ,G1(R)

)
is at

least as hard as (Π,Y ). The advantage of writing the problem in this “functional”
form is that the distribution (G1(R), R) over (instance, witness) pairs is flat,
which is a necessary condition to relate hardness to inaccessible entropy (see
Theorem 4.10).

Furthermore, if G1 is also polynomial-time computable and (Π,Y ) is
(poly(n),negl(n))-hard, then R 7→ G1(R) is a one-way function. Combined with
the previous example, we see that the existence of one-way functions is equivalent
to the existence of (poly(n),negl(n))-hard search problems for which (instance,
witness) pairs can be efficiently sampled.
3 We used the unconventional notation y for the instance (instead of x) because our

relations will often be of the form Πf for some function f ; in this case an instance is
some y in the range of f and a witness for y is any preimage x ∈ f−1(y).
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3.2 Hardness in relative entropy

Instead of considering an adversary directly attempting to solve a search problem
(Π,Y ), the adversary in the definition of hardness in relative entropy comprises

a pair of algorithm (G̃,S) where G̃ is a two-block generator outputting valid

(instance, witness) pairs for Π and S is a simulator for G̃: given an instance y,

the goal of S is to output randomness r for G̃ such that G̃1(r) = y. Formally, the
definition is as follows.

Definition 3.4 (hardness in relative entropy). Let (Π,Y ) be a distribu-
tional search problem. We say that (Π,Y ) is (t,∆)-hard in relative entropy
if:

KL
(
R̃, G̃1(R̃)

∥∥∥S(Y ), Y
)
> ∆ ,

for all pairs (G̃, S) of time t algorithms where G̃ is a two-block generator supported

on Π and R̃ is uniform randomness for G̃1. Similarly, for δ ∈ [0, 1], (Π,Y ) is
(t,∆)-hard in δ-min relative entropy if for all such pairs:

KLδmin

(
R̃, G̃1(R̃)

∥∥∥ S(Y ), Y
)
> ∆ .

Note that a pair (G̃, S) achieves a relative entropy of zero in Definition 3.4 if

G̃1(R) has the same distribution as Y and if G̃1

(
S(y)

)
= y for all y ∈ Supp(Y ).

In this case, writing G̃w
def
= G̃2, we have that G̃w

(
S(Y )

)
is a valid witness for Y

since G̃ is supported on Π.
More generally, the composition G̃w ◦ S solves the search problem (Π,Y )

whenever G̃1

(
S(Y )

)
= Y . When the relative entropies in Definition 3.4 are upper-

bounded, we can lower bound the probability of the search problem being solved
(Lemma 3.7) This immediately implies that hard search problems are also hard
in relative entropy.

Theorem 3.5. Let (Π,Y ) be a distributional search problem. If (Π,Y ) is (t, ε)-
hard, then it is (t′, ∆′)-hard in relative entropy and (t′, ∆′′)-hard in δ-min relative
entropy for every δ ∈ [0, 1] where t′ = Ω(t),4 ∆′ = log(1/ε) and ∆′′ = log(1/ε)−
log(1/δ).

Remark 3.6. As we see, a “good” simulator S for a generator G̃ is one for which
G̃1

(
S(Y )

)
= Y holds often. It will be useful in Section 4 to consider simulators S

which are allowed to fail by outputting a failure string r /∈ Supp(R̃), (e.g. r =

⊥) and adopt the convention that G̃1(r) = ⊥ whenever r /∈ Supp(R̃). With
this convention, we can without loss of generality add the requirement that
G̃1

(
S(Y )

)
= Y whenever S(Y ) ∈ Supp(R̃): indeed, S can always check that it

4 For the theorems in this paper that relate two notions of hardness, the notation
t′ = Ω(t) means that there exists a constant C depending only on the computational
model such that t′ ≥ C · t.
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is the case and if not output a failure symbol. For such a simulator S, observe
that for all r ∈ Supp(R̃), the second variable on both sides of the relative

entropy in Definition 3.4 is obtained by applying G̃1 on the first variable and can
thus be dropped, leading to a simpler definition of hardness in relative entropy:

KL
(
R̃
∥∥∥S(Y )

)
> ∆.

Theorem 3.5 is an immediate consequence of the following lemma.

Lemma 3.7. Let (Π,Y ) be a distributional search problem and (G̃, S) be a pair

of algorithms with G̃ = (G̃1, G̃w) a two-block generator supported on Π. Define the

linear-time oracle algorithm AG̃w,S(y)
def
= G̃w(S(y)). For ∆ ∈ R+ and δ ∈ [0, 1]:

1. If KL
(
R̃, G̃1(R̃)

∥∥∥S(Y ), Y
)
≤ ∆ then Pr

[
Π(Y,AG̃w,S(Y ))

]
≥ 1/2∆.

2. If KLδmin

(
R̃, G̃1(R̃)

∥∥∥ S(Y ), Y
)
≤ ∆ then Pr

[
Π(Y,AG̃w,S(Y ))

]
≥ δ/2∆.

Proof. We have:

Pr
[
Π
(
Y,AG̃w,S(Y )

)]
= Pr

[
Π(Y, G̃w(S(Y )))

]
≥ Pr

[
G̃1(S(Y )) = Y

]
(G̃ is supported on Π)

=
∑

r∈Supp(R̃)

Pr
[
S(Y ) = r ∧ Y = G̃1(r)

]

= E
r←R̃

Pr
[
S(Y ) = r ∧ Y = G̃1(r)

]
Pr
[
R̃ = r

]


= E
r←R̃

y←G̃1(r)

[
2−KL∗

r,y(R̃,G̃1(R̃)‖ S(Y ),Y )
]
.

Now, the first claim follows by Jensen’s inequality (since x 7→ 2−x is convex) and
the second claim follows by Markov’ inequality when considering the event that
the sample relative entropy is smaller than ∆ (which occurs with probability at
least δ by assumption).

Relation to relative pseudoentropy. In [21], the authors introduced the notion
of relative pseudoentropy5: for jointly distributed variables (Y,W ), W has rel-
ative pseudoentropy given Y if it is hard for a polynomial time adversary to
approximate—measured in relative entropy—the conditional distribution W
given Y . Formally:

5 As already mentioned in the introduction, this notion was in fact called “KL-hardness
for sampling” in [21] but we rename it here to unify the terminology between the
various notions discussed here.
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Definition 3.8 (Relative pseudoentropy, Def. 3.4 in [21]). Let (Y,W ) be
a pair of random variables, we say that W has relative pseudoentropy (t,∆)
given Y if for all time t randomized algorithm S, we have:

KL (Y,W ‖Y,S(Y )) > ∆ .

As discussed in Section 1.2, it was shown in [21] that if f : {0, 1}n → {0, 1}n
is a one-way function, then

(
f(X), X1, . . . , Xn) has next-bit pseudoentropy for

uniform X ∈ {0, 1}n (see Theorem 1.2). The first step in proving this result was
to prove that X has relative pseudoentropy given f(X) (see Lemma 1.4).

We observe that when (Y,W ) is of the form (f(X), X) for some function
f : {0, 1}n → {0, 1}n and variable X over {0, 1}n, then relative pseudoentropy

is implied by hardness in relative entropy by simply fixing G̃ to be the “honest
sampler” G̃(X) = (f(X), X). Indeed, in this case we have:

KL
(
X, G̃1(X)

∥∥∥S(Y ), Y
)

= KL (X, f(X) ‖ S(Y ), Y ) .

We can thus recover Lemma 1.4 as a direct corollary of Theorem 3.5.

Corollary 3.9. Consider a function f : {0, 1}n → {0, 1}n and define Πf def
=

{(f(x), x) : x ∈ {0, 1}n} and Y
def
= f(X) for X uniform over {0, 1}n. If f is

(t, ε)-one-way, then (Πf , Y ) is
(
t′, log(1/ε)

)
-hard in relative entropy and X has(

t′, log(1/ε)
)

relative pseudoentropy given Y with t′ = Ω(t).

Witness hardness in relative entropy. We also introduce a relaxed notion of
hardness in relative entropy called witness hardness in relative entropy. In this
notion, we further require (G̃, S) to approximate the joint distribution of (instance,
witness) pairs rather than only instances. For example, the problem of inverting
a function f over a random input X is naturally associated with the distribution(
f(X), X

)
. The relaxation in this case is analogous to the notion of distributional

one-way function for which the adversary is required to approximate the uniform
distribution over preimages.

Definition 3.10 (Witness hardness in relative entropy). Let Π be a binary
relation and (Y,W ) be a pair of random variables supported on Π. We say that
(Π,Y,W ) is (t,∆) witness hard in relative entropy if for all pairs of time t

algorithms (G̃,S) where G̃ is a two-block generator supported on Π, for uniform

R̃:

KL
(
R̃, G̃1(R̃), G̃w(R̃)

∥∥∥S(Y ), Y,W
)
> ∆ .

Similarly, for δ ∈ [0, 1], (Π,Y,W ) is (t,∆)-witness hard in δ-min relative entropy,
if for all such pairs:

KLδmin

(
R̃, G̃1(R̃), G̃w(R̃)

∥∥∥S(Y ), Y,W
)
> ∆ .
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We introduced hardness in relative entropy first, since it is the notion which is
most directly obtained from the hardness of distribution search problems. Observe
that by the data processing inequality for relative entropy (Proposition 2.7),
dropping the third variable on both sides of the relative entropies in Definition 3.10
only decreases them. Hence, hardness in relative entropy implies witness hardness
as stated in (Theorem 3.11). As we will see in Section 4 witness hardness in
relative entropy is the “correct” notion to obtain inaccessible entropy from: it is
in fact equal to inaccessible entropy up to 1/ poly losses.

Theorem 3.11. Let Π be a binary relation and (Y,W ) be a pair of random
variables supported on Π. If (Π,Y ) is (t, ε)-hard, then (Π,Y,W ) is (t′, ∆′) witness
hard in relative entropy and (t′, ∆′′) witness hard in δ-min relative entropy for
every δ ∈ [0, 1] where t′ = Ω(t), ∆′ = log(1/ε) and ∆′′ = log(1/ε)− log(1/δ).

Remark 3.12. The data processing inequality does not hold exactly for KLmin,
hence the statement about δ-min relative entropy in Theorem 3.11 does not
follow with the claimed parameters in a black-box manner from Theorem 3.5.
However, an essentially identical proof given in Appendix A yields the result.

4 Inaccessible Entropy and Hardness in Relative Entropy

In this section, we relate our notion of witness hardness in relative entropy
to the inaccessible entropy definition of [13]. Roughly speaking, we “split” the
relative entropy into blocks and obtain the intermediate notion of next-block
inaccessible relative entropy (Section 4.1) that we then relate to inaccessible
entropy (Section 4.2). Together, these results show that if f is a one-way function,
the generator Gf (X) =

(
f(X)1, . . . , f(X)n, X

)
has superlogarithmic inaccessible

entropy.

4.1 Next-block hardness and rejection sampling

Consider a binary relation Π and a pair of random variables (Y,W ) supported

on Π. Let G̃ be an online (m + 1)-block generator supported on Π and write

Ỹ≤m
def
= G̃(R̃≤m) for uniform R̃≤m. For such a generator G̃, it is natural to consider

simulators operating in an online manner. Specifically, an online simulator in
this context is a PPT algorithm S such that on input (R̂<i, Yi), S outputs R̂i
of the same length as R̃i. The goal of S is to output random coins such that
(R̃i, Ỹi) is “close” to (R̂i, Yi) conditioned on the past. This leads to the following
natural blockwise notion of hardness in relative entropy for online generators and
simulators.

Definition 4.1 (Next-block hardness in relative entropy). The joint dis-
tribution (Y1, . . . , Ym) is (t,∆) next-block hard in relative entropy if the following
holds.

Let G̃ be any time t online m-block generator supported on Y≤m and write

Ỹ≤m
def
= G̃(R̃≤m) for uniform R̃≤m. Let S be an online simulator and define
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inductively R̂i
def
= S(R̂<i, Yi) with R̂i having the same length as R̃i, where S is a

probabilistic algorithm that uses time at most t to compute R̂≤m.
Then we require:

m∑
i=1

KL
(
R̃i, Ỹi|R̃<i, Ỹ<i

∥∥∥ R̂i, Yi|R̂<i, Y<i) > ∆ .

Similarly, for δ ∈ [0, 1], we say that (Y1, . . . , Ym) is (t,∆)-next-block hard in
δ-min relative entropy if, with the same notations as above:

Pr
r≤m←R̃≤m

y≤m←G̃(r≤m)

[
m∑
i=1

KL∗yi,r<i,y<i

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥∥∥ R̂i, Yi|R̂<i, Y<i) ≤ ∆] < δ .

Observe that using the chain rule for relative entropy, the sum of relative
entropies appearing in Definition 4.1 is exactly equal to the relative entropies
appearing in Definition 3.4. Since, furthermore considering an online generator
G̃ and online simulator S is only less general than arbitrary pairs (G̃,S), we
immediately obtain the following theorem.

Theorem 4.2. Let (Π,Y ) be a distributional search problem. If (Π,Y ) is (t,∆)-
hard in relative entropy then (Y1, . . . , Ym) is (t,∆) next-block hard in relative
entropy.

Similarly, for any δ ∈ [0, 1], if (Π,Y ) is (t,∆)-hard in δ-min relative entropy
then (Y1, . . . , Ym) is (t,∆) next-block hard in δ-min relative entropy.

Proof. Immediate using the chain rule for relative (sample) entropy.

The next step is to obtain a notion of hardness that makes no reference to
simulators by considering, for an online block generator G̃, a specific simulator

SimG̃,T which on input (R̂<i, Yi), generates R̂i using rejection sampling until

G̃i(R̂≤i) = Yi. The superscript T is the maximum number of attempts after

which SimG̃,T gives up and outputs ⊥. The formal definition of SimG̃,T is given
in Algorithm 1.

For the rejection sampling simulator SimG̃,T , we will show in Lemma 4.5 that
the next-block hardness in relative entropy in Definition 4.1 decomposes as the
sum of two terms:

1. A term measuring how well G̃≤m approximates the distribution Y in an
online manner, without any reference to a simulator.

2. An error term measuring the failure probability of the rejection sampling
procedure due to having a finite time bound T .

As we show in Lemma 4.6, the error term can be made arbitrarily small by setting

the number of trials T in SimG̃,T to be a large enough multiple of m · 2` where
` is the length of the blocks of G̃≤m. This leads to a poly(m) time algorithm
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Algorithm 1 Rejection sampling simulator SimG̃,T for 1 ≤ i ≤ m
Input: yi ∈ {0, 1}∗, r̂<i ∈ ({0, 1}v ∪ {⊥})i−1

Output: r̂i ∈ {0, 1}v ∪ {⊥}
if r̂i−1 = ⊥ then

r̂i ← ⊥; return
end if
repeat

sample r̂i ← {0, 1}v

until G̃i(r̂≤i) = yi or ≥ T attempts

if G̃i(r̂≤i) 6= yi then
r̂i ← ⊥

end if

whenever ` is logarithmic in m. That is, given an online block generator G̃ for
which G̃≤m has short blocks, we obtain a corresponding simulator “for free”.
Thus, considering only the first term leads to the following clean definition of
next-block inaccessible relative entropy that makes no reference to simulators.

Definition 4.3 (Next-block inaccessible relative entropy). The joint dis-
tribution (Y1, . . . , Ym) has (t,∆) next-block inaccessible relative entropy, if for ev-

ery time t online m-block generator G̃ supported on Y≤m, writing Ỹ≤m
def
= G̃(R̃≤m)

for uniform R̃≤m, we have:

m∑
i=1

KL
(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i) > ∆ ,

where Ri is a “dummy” random variable over the domain of G̃i and independent of
Y≤m+1. Similarly, for δ ∈ [0, 1], we say that (Y1, . . . , Ym+1) has (t,∆)-next-block

inaccessible δ-min relative entropy if for every G̃ as above:

Pr
r≤m←R̃≤m

y≤m←G̃(r≤m)

[
m∑
i=1

KL∗yi,r<i,y<i

(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i) ≤ ∆] < δ ,

where (Ỹ≤m, R̃≤m) are defined as above.

Remark 4.4. Since Ỹ<i is a function of R̃<i, the first conditional distribution
in the KL is effectively Ỹi|R̃<i. Similarly the second distribution is effectively
Yi|Y<i. The extra random variables are there for syntactic consistency.

With this definition in hand, we can make formal the claim that, even as
sample notions, the next-block hardness in relative entropy decomposes as next-
block inaccessible relative entropy plus an error term.

Lemma 4.5. For a joint distribution (Y1, . . . , Ym), let G̃ be an online m-block

generator supported on Y≤m. Define (Ỹ1, . . . , Ỹm)
def
= G̃(R̃) for uniform random
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variable R̃ = (R̃1, . . . , R̃m) and let Ri be a “dummy” random variable over the

domain of G̃i and independent of Y≤m+1. We also define R̂i
def
= SimG̃,T (R̂<i, Yi)

and Ŷi = G̃(R̂≤i). Then, for all r ∈ Supp(R̃) and y
def
= G̃(r):

m∑
i=1

KL∗r,y

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥∥∥ R̂i, Yi|R̂<i, Y<i)
=

m∑
i=1

KL∗r,y

(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i)

+

m∑
i=1

log

 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
 .

Moreover, the running time of SimG̃,T on input R̂<i, Yi is O(|ri| ·T ), with at most

T oracle calls to G̃.

Proof. Consider r ∈ Supp(R̃) and y
def
= G̃(r). Then:

m∑
i=1

KL∗r,y

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥∥∥ R̂i, Yi|R̂<i, Y<i)
=

m∑
i=1

KL∗r,y

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥∥∥ R̂i, Ŷi|R̂<i, Ŷ<i)
=

m∑
i=1

(
KL∗r,y

(
R̃i|R̃<i, Ỹ≤i

∥∥∥ R̂i|R̂<i, Ŷ≤i)+ KL∗r,y

(
Ỹi|R̃<i, Ỹ<i

∥∥∥ Ŷi|R̂<i, Ŷ<i))
=

m∑
i=1

KL∗r,y

(
Ỹi|R̃<i, Ỹ<i

∥∥∥ Ŷi|R̂<i, Ŷ<i)
=

m∑
i=1

KL∗r,y

(
Ỹi|R̃<i

∥∥∥ Ŷi|R̂<i) ,
The first equality is because Yi = Ŷi since we are only considering non-failure
cases (ri 6= ⊥). The second equality is the chain rule. The penultimate equality is

by definition of rejection sampling: R̃i|R̃<i, Ỹ≤i and R̂i|R̂<i, Ŷ≤i are identical on

Supp(R̃i) since conditioning on Ŷi = y implies that only non-failure cases (ri 6= ⊥)

are considered. The last equality is because Ỹ<i (resp. Ŷ<i) is a deterministic

function of R̃<i (resp. R̂<i).

19



We now relate Ŷi|R̂<i to Yi|Y<i:

Pr
[
Ŷi = yi|R̂<i = r<i

]
= Pr

[
Ŷi = yi, Yi = yi|R̂<i = r<i

]
(Ŷi = yi ⇔ Ŷi = yi ∧ Yi = yi)

= Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
· Pr

[
Yi = yi|R̂<i = r<i

]
(Bayes’ Rule)

= Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
· Pr [Yi = yi|Y<i = y<i] ,

where the last equality is because when r ∈ Supp(R̃), R̂<i = r<i ⇒ Y<i = y<i
and because Yi is independent of R̂<i given Y<i (as R̂<i is simply a randomized
function of Y<i). The conclusion of the lemma follows by combining the previous
two derivations.

Observe that taking expectations with respect to a uniform R̃ on both sides
in the conclusion of Lemma 4.5, we get that next-block hardness in relative
entropy is equal to the sum of next-block inaccessible relative entropy and the
expectation of the error term coming from the rejection sampling procedure. The
following lemma upper bounds this expectation.

Lemma 4.6. Let G̃ be an online m-block generator, and let Li
def
= 2|G̃i| be the

size of the codomain of G̃i, i ∈ [m]. Then for all i ∈ [m], r<i ∈ Supp(R̃<i) and

uniform R̃i:

E
yi←G̃i(r<i,R̃i)

log
1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
 ≤ log

(
1 +

Li − 1

T

)
.

Proof (Proof of Lemma 4.6). By definition of SimG̃,T , we have:

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
= 1−

(
1− Pr

[
G̃i(r<i, R̃i) = yi

])T
.

Applying Jensen’s inequality, we have:

E
yi←G̃i(r<i,R̃i)

log

 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]


≤ log E
yi←G̃i(r<i,R̃i)

 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]


= log

 ∑
y∈Im(G̃i(r<i,·))

py
1− (1− py)T


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where py = Pr
[
G̃i(r<i, R̃i) = y

]
. Since the function x/

(
1− (1− x)T

)
is convex

(see Lemma A.1 in the appendix), the maximum of the expression inside the
logarithm over probability distributions {py} is achieved at the extremal points
of the standard probability simplex. Namely, when all but one py → 0 and the
other one is 1. Since limx→0 x/1− (1− x)T = 1/T :

log

 ∑
y∈Im(G̃i)

py
1− (1− py)T

 ≤ log

(
1 + (Li − 1) · 1

T

)
.

By combining Lemmas 4.5 and 4.6, we are now ready to state the main
result of this section, relating witness hardness in relative entropy to next-block
inaccessible relative entropy.

Theorem 4.7. Let Π be a binary relation and let (Y,W ) be a pair of random
variables supported on Π. Let Y = (Y1, . . . , Ym) where the bit length of Yi is at
most `. Then we have:

1. if (Π,Y,W ) is (t,∆) witness hard in relative entropy, then for every 0 < ∆′ ≤
∆, (Y1, . . . , Ym,W ) has (t′, ∆−∆′) next-block inaccessible relative entropy
where t′ = Ω(t∆′/(m22`)).

2. if (Π,Y,W ) is (t,∆) witness hard in δ-min relative entropy then for every 0 <
∆′ ≤ ∆ and 0 ≤ δ′ ≤ 1−δ, we have that (Y1, . . . , Ym,W ) has (t′, ∆−∆′) next-
block inaccessible (δ + δ′)-min relative entropy where t′ = Ω(tδ′∆′/(m22`)).

Proof. We consider an online generator G̃ supported on (Y1, . . . , Ym,W ) and

the simulator SimG̃,T . For convenience, we sometimes write Ym+1 for W . Define

R̃
def
= R̃≤m where R̃≤m is a sequence of independent and uniformly random

variables, Ỹ≤m+1
def
= G̃(R̃), G̃1(R̃)

def
= Y≤m and G̃w(R̃)

def
= Ỹm+1. We also write for

1 ≤ i ≤ m, R̂i
def
= SimG̃,T (R̂<i, Yi), Ŷi

def
= G̃(R̂≤i)i. Finally we define SG̃,T (Y )

def
=

R̂≤m.

Observe that (G̃1, G̃w) is a two-block generator supported on Π, so the pair

(G̃,SG̃,T ) forms a pair a algorithms as in the definition of witness hardness in
relative entropy (Definition 3.10). We focus on sample notions first, and consider

r ∈ Supp(R̃), y ∈ Supp(Ỹ≤m) and w ∈ Supp(Ỹm+1). First we use the chain rule
to isolate the witness block:

KL∗r,y,w

(
R̃, G̃1(R̃), G̃w(R̃)

∥∥∥SG̃,T (Y ), Y,W
)

= KL∗r,y,w

(
G̃w(R̃)|R̃, G̃1(R̃)

∥∥∥W |SG̃,T (Y ), Y
)

+ KL∗r,y,w

(
R̃, G̃1(R̃)

∥∥∥ SG̃,T (Y ), Y
)

= KL∗r,y,w

(
Ỹm+1|R̃≤m, Ỹ≤m

∥∥∥Ym+1|R≤m, Y≤m
)

+ KL∗r,y,w

(
R̃, G̃1(R̃)

∥∥∥ SG̃,T (Y ), Y
)
.
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Next, as in Theorem 4.2 we apply the chain rule to decompose the second
term on the right-hand side and obtain next-block hardness in relative entropy:

KL∗r,y,w

(
R̃, G̃1(R̃)

∥∥∥ SG̃,T (Y ), Y
)

=

m∑
i=1

KL∗r,y,w

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥∥∥ R̂i, Yi|R̂<i, Y<i) .
Finally, we use Lemma 4.5 to further decompose the right-hand side term

into inaccessible relative entropy and the rejection sampling error:

m∑
i=1

KL∗r,y,w

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥∥∥ R̂i, Yi|R̂<i, Y<i)
=

m∑
i=1

KL∗r,y

(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i)

+

m∑
i=1

log

 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
 .

Combining the previous derivations, we obtain:

m+1∑
i=1

KL∗r,y

(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i)
= KL∗r,y,w

(
R̃, G̃1(R̃), G̃w(R̃)

∥∥∥SG̃,T (Y ), Y,W
)

−
m∑
i=1

log

 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
 .

Now, the first claim of the theorem follows by taking expectations on both
sides and observing that when T = m · 2`/(∆′ ln 2), Lemma 4.6 implies that the
expected value of the rejection sampling error is smaller than ∆′.

For the second claim, we first establish using Lemma 4.6 and Markov’s
inequality that:

Pr
y≤m+1←Ỹ≤m+1

r←R̃

 m∑
i=1

log

 1

Pr
[
Ŷi = yi|R̂<i = r<i, Ŷ<i = y<i

]
 ≥ m · 2`

Tδ′ ln 2

 ≤ δ′
and we reach a similar conclusion by setting T = m · 2`/(δ′∆′ ln 2).

Remark 4.8. For fixed distribution and generators, in the limit where T grows
to infinity, the error term caused by the failure of rejection sampling in time T
vanishes. In this case, hardness in relative entropy implies next-block inaccessible
relative entropy without any loss in the hardness parameters.
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4.2 Next-block inaccessible relative entropy and inaccessible
entropy

We first recall the definition from [13], slightly adapted to our notations.

Definition 4.9 (Inaccessible Entropy). Let (Y1, . . . , Ym+1) be a joint distri-
bution.6 We say that (Y1, . . . , Ym+1) has t-inaccessible entropy ∆ if for all (m+1)-

block online generators G̃ running in time t and consistent with (Y1, . . . , Ym+1):

m+1∑
i=1

(
H(Yi|Y<i)−H(Ỹi|R̃<i)

)
> ∆ .

where (Ỹ1, . . . , Ỹm+1) = G̃(R̃1, . . . , R̃m+1) for a uniform R̃≤m+1. We say that
(Y1, . . . , Ym+1) has (t, δ)-max-inaccessible entropy ∆ if for all (m+1)-block online

generators G̃ running in time t and consistent with (Y1, . . . , Ym+1):

Pr
r≤m+1←R̃≤m+1

y≤m+1←G̃(r≤m+1)

[
m+1∑
i=1

(
H∗yi,y<i

(Yi|Y<i)−H∗yi,r<i

(
Ỹi|R̃<i

))
≤ ∆

]
< δ .

Unfortunately, one unsatisfactory aspect of Definition 4.9 is that inaccessible
entropy can be negative since the generator G̃ could have more entropy than
(Y1, . . . , Ym+1): if all the Yi are independent biased random bits, then a generator

G̃ outputting unbiased random bits will have negative inaccessible entropy. On
the other hand, next-block inaccessible relative entropy (Definition 4.3) does not
suffer from this drawback.

Moreover, in the specific case where (Y1, . . . , Ym+1) is a flat distribution7,
then no distribution with the same support can have higher entropy and in this
case Definitions 4.3 and 4.9 coincide as stated in the following theorem.

Theorem 4.10. Let (Y1, , . . . , Ym+1) be a flat distribution and G̃ be an (m+ 1)-

block generator consistent with Y≤m+1. Then for Ỹ≤m+1 = G̃(R̃≤m+1) for uniform

R̃≤m+1:

1. For every y≤m+1, r≤m+1 ∈ Supp(Ỹ≤m+1, R̃≤m+1), it holds that

m+1∑
i=1

(
H∗yi,y<i

(Yi|Y<i)−H∗yi,r<i

(
Ỹi|R̃<i

))
=

m+1∑
i=1

KL∗yi,y<i,r<i

(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i)
6 We write m+ 1 the total number of blocks, since in this section we will think of Ym+1

(also written as W ) as the witness of distributional search problem and (Y1, . . . , Ym)
are the blocks of the instance as in the previous section.

7 For example, the distribution (Y≤m, Ym+1) = (f(U), U) for a function f and uniform
input U is always a flat distribution even if f itself is not regular.
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In particular, (Y1, . . . , Ym+1) has (t,∆) next-block inaccessible δ-min relative
entropy if and only if it has (t, δ)-max-inaccessible entropy at least ∆.

2. Furthermore,

m+1∑
i=1

(
H (Yi|Y<i)−H

(
Ỹi|R̃<i

))
=

m+1∑
i=1

KL
(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i) ,
so in particular, (Y1, . . . , Ym+1) has (t,∆) next-block inaccessible relative
entropy if and only if it has t-inaccessible entropy at least ∆.

Proof. For the sample notions, the chain rule (Proposition 2.6) gives:

m+1∑
i=1

H∗yi,y<i
(Yi|Y<i) = H∗y (Y≤m+1) = log |Supp(Y≤m+1)|

for all y since Y is flat. Hence:

log|Supp(Y≤m+1)| −
m+1∑
i=1

H∗yi,y<i

(
Ỹi|R̃<i

)
=

m+1∑
i=1

(
H∗yi,y<i

(Yi|Y<i)−H∗yi,r<i

(
Ỹi|R̃<i

))
=

m+1∑
i=1

KL∗yi,y<i,r<i

(
Ỹi|R̃<i, Ỹ<i

∥∥∥Yi|R<i, Y<i) ,

so the second claim follows by taking the expectation over (Ỹ≤m+1, R̃≤m+1) on
both sides.

By chaining the reductions between the different notions of hardness consid-
ered in this work (hardness in relative entropy, next-block inaccessible relative
entropy and inaccessible entropy), we obtain a more modular proof of the theorem
of Haitner et al. [13], obtaining inaccessible entropy from any one-way function.

Theorem 4.11. Let n be a security parameter, f : {0, 1}n → {0, 1}n be a (t, ε)-
one-way function, and X be uniform over {0, 1}n. For ` ∈ {1, . . . , n}, decompose

f(X)
def
= (Y1, . . . , Yn/`) into blocks of length `. Then:

1. For every 0 ≤ ∆ ≤ log(1/ε), (Y1, . . . , Yn/`, X) has t′-inaccessible entropy at

least (log(1/ε)−∆) for t′ = Ω
(
t ·∆ · `2/(n2 · 2`)

)
.

2. For every 0 < δ ≤ 1 and 0 ≤ ∆ ≤ log(1/ε)− log(2/δ), (Y1, . . . , Yn/`, X) has
(t′, δ)-max-inaccessible entropy at least (log(1/ε)− log(2/δ)−∆) for t′ =
Ω
(
t · δ ·∆ · `2/(n2 · 2`)

)
.

Proof. Since f is (t, ε)-one-way, the distributional search problem
(
Πf , f(X)

)
where Πf = {(f(x), x) : x ∈ {0, 1}n} is (t, ε)-hard. Clearly, (f(X), X) is sup-
ported on Πf , so by applying Theorem 3.11, we have that (Πf , f(X), X) is
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(Ω(t), log(1/ε)) witness hard in relative entropy and (Ω(t), log(1/ε)− log(2/δ))
witness hard in δ/2-min relative entropy. Thus, by Theorem 4.7 we have that
(Y1, . . . , Yn/`, X) has

(
Ω
(
t ·∆ · `2/(n2 · 2`)

)
, log(1/ε)−∆

)
next-block inacces-

sible relative entropy and
(
Ω
(
t · δ ·∆ · `2/(n2 · 2`)

)
, log(1/ε)− log(2/δ)−∆

)
next-block inaccessible δ-min relative entropy, and we conclude by Theorem 4.10.

Remark 4.12. For comparison, the original proof of [13] shows that for ev-
ery 0 < δ ≤ 1, (Y1, . . . , Yn/`, X) has (t′, δ)-max-inaccessible entropy at least

(log(1/ε)− 2 log(1/δ)−O(1)) for t′ = Ω̃
(
t · δ · `2/(n2 · 2`)

)
, which in partic-

ular for fixed t′ has quadratically worse dependence on δ in terms of the
achieved inaccessible entropy: log(1/ε) − 2 · log(1/δ) − O(1) rather than our
log(1/ε)− 1 · log(1/δ)−O(1).

Corollary 4.13 (Theorem 4.2 in [13]). Let n be a security parameter,
f : {0, 1}n → {0, 1}n be a strong one-way function, and X be uniform over
{0, 1}n. Then for every ` = O(log n), (f(X)1...`, . . . , f(X)n−`+1...n, X) has
nω(1)-inaccessible entropy ω(log n) and (nω(1),negl(n))-max-inaccessible entropy
ω(log n).

Acknowledgements

We thank Muthuramakrishnan Venkitasubramaniam for an inspiring conversation
which sparked this work.

References

1. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo
random bits. In: Proceedings of the 23th Annual Symposium on Foundations of
Computer Science (FOCS). pp. 112–117 (1982)
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A Missing Proofs

Lemma A.1. For all t ≥ 1, f : x 7→ x
1−(1−x)t is convex over [0, 1].

Proof. We instead show convexity of f̃ : x 7→ f(1 − x). A straightforward
computation gives:

f̃ ′′(x) =
xt−2t

(
t(1− x)(xt + 1)− (1 + x)(1− xt)

)
(1− xt)3

so that it suffices to show the non-negativity of g(x) = t(1−x)(xt+1)−(1+x)(1−
xt) over [0, 1]. The function g has second derivative t(1− x)(t2 − 1)xt−2, which
is non-negative when x ∈ [0, 1], and thus the first derivative g′ is non-decreasing.
Also, the first derivative at 1 is equal to zero, so that g′ is non-positive over [0, 1]
and hence g is non-increasing over this interval. Since g(1) = 0, this implies that
g is non-negative over [0, 1] and f is convex as desired.

Theorem A.2 (Theorem 3.11 restated). Let Π be a binary relation and let
(Y,W ) be pair of random variables supported on Π. If (Π,Y ) is (t, ε)-hard, then
(Π,Y,W ) is (t′, ∆′) witness hard in relative entropy and (t′, ∆′′) witness hard in
δ-min relative entropy for every δ ∈ [0, 1] where t′ = Ω(t), ∆′ = log(1/ε) and
∆′′ = log(δ/ε).

Proof. We proceed similarly to the proof of Theorem 3.5. Let (G̃, S) be a pair of

algorithms with G̃ = (G̃1, G̃w) a two-block generator supported on Π. Define the

linear-time oracle algorithm AG̃w,S(y)
def
= G̃w(S(y)). Then

Pr
[
Π
(
Y,AG̃w,S(Y )

)]
= Pr

[
Π(Y, G̃w(S(Y )))

]
≥ Pr

[
G̃1(S(Y )) = Y

]
(G̃ is supported on Π)

=
∑

r∈Supp(R̃)

Pr
[
S(Y ) = r ∧ Y = G̃1(r)

]
≥

∑
r∈Supp(R̃)

w∈Supp(G̃2(R̃))

Pr
[
S(Y ) = r ∧ Y = G̃1(r) ∧W = w

]

= E
r←R̃

w←G̃2(r)

Pr
[
S(Y ) = r ∧ Y = G̃1(r) ∧W = w

]
Pr
[
R̃ = r ∧ G̃2(r) = w

]


= E
r←R̃

y←G̃1(r)

w←G̃2(r)

[
2−KL∗

r,y,w(R̃,G̃1(R̃),G̃2(R̃)‖ S(Y ),Y,W)
]
,

The witness hardness in relative entropy then follows by applying Jensen’s
inequality (since 2−x is convex) and the witness hardness in δ-min relative
entropy follows by Markov’s inequality by considering the event that the sample
relative entropy is smaller than ∆ (this event has density at least δ).

27


	Unifying computational entropiesvia Kullback–Leibler divergence

