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Abstract. We introduce a new cryptographic primitive: Proofs of Space-
Time (PoSTs) and construct an extremely simple, practical protocol for
implementing these proofs. A PoST allows a prover to convince a ver-
ifier that she spent a “space-time” resource (storing data—space—over
a period of time). Formally, we define the PoST resource as a trade-off
between CPU work and space-time (under reasonable cost assumptions,
a rational user will prefer to use the lower-cost space-time resource over
CPU work).

Compared to a proof-of-work, a PoST requires less energy use, as the
“difficulty” can be increased by extending the time period over which
data is stored without increasing computation costs. Our definition is
very similar to “Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike
the previous definitions, takes into account amortization attacks and
storage duration. Moreover, our protocol uses a very different (and much
simpler) technique, making use of the fact that we explicitly allow a
space-time tradeoff, and doesn’t require any non-standard assumptions
(beyond random oracles). Unlike previous constructions, our protocol
allows incremental difficulty adjustment, which can gracefully handle
increases in the price of storage compared to CPU work. In addition, we
show how, in a crypto-currency context, the parameters of the scheme
can be adjusted using a market-based mechanism, similar in spirit to the
difficulty adjustment for PoW protocols.

1 Introduction

A major problem in designing secure decentralized protocols for the internet is a
lack of identity verification. It is often easy for an attacker to create many “fake”
identities that cannot be distinguished from the real thing. Several strategies
have been suggested for defending against such attacks (often referred to as
“sybil attacks”); one of the most popular is to force users of the system to spend
resources in order to participate. Creating multiple identities would require an
attacker to spend a correspondingly larger amount of resources, making this
attack much more expensive.
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Any bounded resource can be used as the “payment”; one of the more com-
mon is computing resources, since they do not require any additional infras-
tructure beyond that already needed to access the Internet. In order to ensure
that users actually do spend the appropriate resource payment, the users must
employ a “proof of work”.

Proofs of work have been used for reducing spam [9], for defending against
denial-of-service attacks [23] and fairly recently, as the underlying mechanism
for implementing a decentralized bulletin-board—this is the technical heart of
the Bitcoin protocol [17].

While effective, proofs-of-work have a significant drawback; they require en-
ergy in direct proportion to the resource used (i.e., the amount of electricity
required to run the CPU during the proof of work generally depends linearly
on the amount of work being performed). This is especially problematic in the
context of the Bitcoin protocol, since the security of the system relies on all
honest parties constantly performing proofs of work. In addition to having an
environmental impact, this also sets a lower bound on transaction fees (since
rational parties would only participate in the protocol if their reward exceeds
their energy cost). Motivated in large part by the need to replace proofs-of-work
as a basis for crypto-currencies, two (very similar) proposals for Proofs of Space
(PoS) have been published [10,5]. Park et al. also designed an alternative crypto-
currency that is based on Proofs of Space [18], and several new crypto-currency
companies are also basing their protocols on similar ideas [15,1,2].

A PoS is a two-phase protocol3: it consists of an initialization phase and
(sometime later) an execution phase. In an (N0, N1, T )-PoS the prover shows
that she either (1) had access to at least N0 storage between the initialization
and execution phases and at least N1 space during the execution phase, or (2)
used more than T time during the execution phase.

At first glance, this definition might seem sufficient as a replacement for
proof-of-work. However, in contrast to work, space can be reused. Using the PoS
definition as a “resource payment” scheme thus violates two properties we would
like any such scheme to satisfy:

1. Amortization-Resistance: A prover with access to max (N0, N1) space
can, without violating the formal PoS security guarantee, generate an ar-
bitrary number of different (N0, N1, T )-PoS proofs while using the same
amount of resources as an honest prover generating a single proof; thus,
the amortized cost per proof can be arbitrarily low.

2. Rationally Stored Proofs: Loosely speaking, in a rationally stored proof
a verifier is convinced that a rational prover has expended a space resource
over a period of time. There may exist a successful adversarial strategy that
does not require the adversary to expend space over time, but this strategy
will be more costly than the honest one. If we are interested in designing a
crypto-currency that replaces CPU work with a space-based resource, our
proof of resource consumption must be a rationally stored proof, otherwise

3 For the purposes of this paper, we use the formal definitions of [10]
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rational parties will prefer to use the adversarial strategy, and we can no
longer claim that the crypto-currency is energy-efficient.
The cost of storage is proportional to the product of the storage space and the
time it is used (e.g., in most cloud storage services, it costs the same to store
10TB for two months or 20TB for one month4). Under the PoS definition, a
prover can pay an arbitrarily small amount by discarding almost all stored
data after the initialization phase and rerunning the initialization in the
execution phase (the prover only needs to store the communication from the
verifier in the initialization phase). More generally, a rational prover will
prefer to use computation over storage whenever the cost of storing the data
between the phases is greater than the cost of rerunning the initialization;
when this occurs the PoS basically devolves into a standard proof-of-work
in terms of energy usage.
Even if we ignore energy use, this is a problem if the PoS is used in a protocol
where the prover must generate many proofs, but only some will be verified:
the dishonest prover will not have to expend resources on the unverified
proofs in this case.

We note that though the definition of a PoS is insufficient to guarantee ratio-
nal storage, the existing PoS constructions actually do achieve this under some
parameters. However, this is more than just a definitional problem. Almost all
previous PoS constructions [10,5,22,12,21] are based on the memory-hardness of
labeling a specially-constructed directed graph, such that the label of each vertex
is a hash (random-oracle) of its predecessors in the graph. The constructions use
graph-pebbling games to show that correctly answering the verifier’s challengers
forces the prover to have either used the required amount of space or a much
larger amount of oracle queries.

In all of these constructions, the work performed by the honest prover in the
initialization phase is proportional to the work required to access the graph (i.e.,
O(N0)). It’s not clear how to increase the initialization costs without increasing
either the memory size or verification cost linearly. This strongly bounds the time
that can be allowed between the initialization and execution phases if we want
rational provers to use space resources rather than CPU work. In the Spacemint
protocol, for example, the authors suggest running the proofs every minute or
so [18]. If one wanted to run a proof only once a month, a rational miner might
prefer to rerun the initialization phase each time.

1.1 Our Contributions

“Fixed” Definition. In this paper, we define a new proof-of-resource-payment
scheme: a “Proof of Spacetime” (PoST), that we believe is better suited as a

4 Of course, this is also true for a local disk; during the interval in which we are using
the disk to store data A, we can’t use it to store anything else, so our “cost” is the
utility we could have gained over the same period (e.g., by renting out the disk to a
cloud-storage company).
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scalable energy-efficient replacement for proof-of-work. Our definition is similar
to a Proof of Space, but addresses both amortization and rationality of storage.

In a PoST, we consider two different “spendable” resources: one is CPU
work (i.e., as in previous proofs-of-work), and the second is “spacetime”: filling
a specified amount of storage for a specified period of time (during which it
cannot be used for anything else); we believe spacetime is the “correct” space-
based analog to work (which is a measure of CPU power over time). Like work,
spacetime is directly convertible to cost.

Rational Storage vs. Space Rather than require the prover to show ex-
actly which resource was spent in the execution phase, we allow the prover to
choose arbitrarily the division between the two, as long as the total amount of
resources spent is enough.

That is, the prover convinces a verifier that she either spent a certain amount
of CPU work, or reserved a certain amount of storage space for some specified
period of time or spent some linear combination of the two. However, by setting
parameters correctly, we can ensure that rational provers will prefer to use space-
time over work; when this is the case we say that a PoST is Rationally Stored
(we give a formal definition in Section 2.2). In situations where it is reasonable to
assume rational adversaries (such as in crypto-currencies), our definition opens
the door to new constructions that might not satisfy the PoS requirements. For
example, the PoS definition essentially requires a memory-hard function, while
our construction is rationally stored but is not memory-hard!

Simple, Novel Construction. We construct a PoST based on incompress-
ible proofs-of-work (IPoW); a variant of proofs-of-work for which we can lower-
bound the storage required for the proof itself. We give two simple candidate
constructions based on the standard “hash preimage” PoW and on storing part
of a single hash output. Our protocols and proofs use a very different technique
than existing proofs of space, and are much simpler to implement. (We note
that although the constructions are extremely simple, proving their security is
non-trivial.)

Incremental Difficulty Adjustment. Since the relative price of CPU and
storage may change over time, use of a PoST (or PoS) protocol in a crypto-
currency setting could require adjusting the parameters (in particular, if the
relative price of storage increases, it may no longer be rational to use storage
as the preferred resource). In existing PoS constructions, this appears to require
rerunning the entire initialization protocol. In contrast, our PoST construction
supports simple incremental difficulty adjustment—that is, users only have to
pay the marginal work cost between difficulty levels.

Market-Based Parameter Adjustment. A related issue when designing
a crypto-currency based on PoST (or PoS) is deciding when and how to adjust
the initialization difficulty. We show how to do this automatically via a market-
based mechanism (similar in spirit to the difficulty adjustment in PoW-based
crypto-currencies). The idea is to incentivize users to honestly report whether
they are recomputing or storing data (see Section 7 for details), allowing us
to build protocols that automatically increase the difficulty when the price of
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storage rises sufficiently (in which case we’d expect to see more users choosing
computation over storage). The detection technique is general, and may be of
independent interest—it can be applied to existing PoS constructions as well.

Different Parameter Regimes. In comparison with existing PoS construc-
tions, we think of the time between the initialization and proof phases as weeks
rather than minutes (this could enable, for example, a crypto-currency in which
the “miners” could be completely powered off for weeks at a time). One can
think of our constructions as complementary to the existing PoS constructions
for different parameter regimes—On the one hand, the proof phase of our PoST
protocol is less efficient (it requires access to the entire storage, so a proof might
take minutes rather than seconds, as is the case for the pebbling-based construc-
tions. This means it is not as well suited to very short periods between proofs ).
On the other hand—unlike the existing PoS constructions—the computational
difficulty of our initialization phase is tunable independently of the amount of
space, so it is possible to use it to prove reasonable storage size over long periods
(e.g., weeks or months). In this parameter regime, a proof that takes several
minutes would be reasonable.

Compared to pebbling-based constructions, the big loss of efficiency is on
the prover ’s side. In our construction, the prover must read the entire table in
order to generate a valid response to a challenge. This is indeed much worse
asymptotically. Of course this is a drawback of our construction, and improving
this is certainly a worthwhile goal. In practical terms, however, our efficiency
doesn’t preclude the use-cases we describe (e.g., even on a mid-range consumer
HDD, sequential throughput is about 150MB/s; this means reading through a
100GB table in about 10 minutes, which is reasonable even if challenges occur
every few hours, much less every few weeks).

Improvements to Spacemint. Finally, we propose a modification to the
Spacemint crypto-currency protocol that removes some restrictions on the types
of PoS protocols it can use—allowing it to use PoSTs rather than the specific
PoS constructions it is currently based on (for reasons of space, this description
is omitted here, but can be found in the eprint version).

1.2 Related Work

Random-Function-Inversion PoS. A recent work by Abusalah et al. [3] shows
how to construct a PoS protocol based on inverting a random function. This
construction is significantly simpler than the pebbling-based constructions (al-
though still more complex than our construction). However, the initialization
difficulty is also fixed, and it does not seem trivial to increase initialization dif-
ficulty without at the same time increasing verification difficulty linearly, and it
does not appear to support incremental difficulty adjustment. Hence it does not
appear suitable for long intervals between proofs.

Proofs of Storage/Retrievability. In a proof-of-storage/retrievability a prover
convinces a verifier that she is correctly storing a file previously provided by the
verifier [13,7,6,14,20]. The main motivation behind these protocols is verifiable
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cloud storage; they are not suitable for use in a PoST protocol due to high
communication requirements (the verifier must send the entire file to the server
in the first phase), and because they are not publicly verifiable. That is, if the
prover colludes with the owner of the file, she could use a very small amount of
storage space and still be able to prove that she can retrieve a large amount of
pseudorandom data.

Proofs of Replication. In a Proof of Replication [11], a party would like to prove
that they are storing multiple redundant copies of a file. The PoRep definitions
combine a PoS and a Proof of Retrievability. Similarly to the PoST definition,
PoReps don’t (and can’t) guarantee that the prover actually stores redundant
copies of the data, but instead make it an ε-Nash equilibrium (so a rational prover
does not lose much by doing so). The existing constructions of PoReps depend
on depth-robust graphs for the PoS and on sequential timing assumptions (the
prover must respond to a challenge quickly, and the timing assumptions ensure
that the prover cannot recompute its data in that time).

Memory-Hard Functions. Loosely speaking, a memory-hard function is a func-
tion that requires a large amount of memory to evaluate [19,4]. One of the main
motivations for constructing such functions is to construct proofs-of-work that
are “ASIC-resistant” (based on the assumption that the large memory require-
ment would make such chips prohibitively expensive). Note that the proposed
memory-hard functions are still proofs-of-work ; the prover must constantly uti-
lize her CPU in order to produce additional proofs. PoSTs, on the other hand,
allow the prover to “rest” (e.g., by turning off her computer) while still expend-
ing space-time (since expending this resource only requires that storage be filled
with data for a period of time).

Filecoin. Filecoin [15] is a crypto-currency protocol based on Proofs of Repli-
cation, whose underlying idea is to base the consensus algorithm resource on
“useful” space. The Filecoin whitepaper also defines a “Proof of Spacetime”,5

however in their definitions the proof must include a proof of the elapsed time
(requiring assumptions such sequential work timing assumptions). Moreover,
their constructions make use of very heavy cryptographic machinery (such as
zkSNARKS).

Permacoin. Miller, Juels, Shi, Parno and Katz proposed the Permacoin proto-
col, a cryptocurrency that includes, in addition to the standard PoWs, a special,
distributed, proof of retrievability that allows the cryptocurrency to serve as a
distributed backup for useful data [16]. In strict contrast to PoSTs, the Perma-
coin construction is amortizable by design—an adversary who stores the entire
dataset can reuse it for as many clients as it wishes. Thus, Permacoin still requires
regular PoWs, and cannot be used to replace them entirely with a storage-based

5 We note that the our PoST definitions precede theirs.
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resource. Also by design, clients require a large amount of communication to re-
trieve the data they must store, in contrast to PoSs and PoSTs in which clients
trade computation for communication.

2 Proofs of Spacetime

A PoST deals in two types of resources: one is processing power and the other
is storage. All our constructions are in the random oracle model—we model
processing power by counting the number of queries to the random oracle.

Modeling storage is a bit trickier. Our purpose is to allow an energy-efficient
proof-of-resource-consumption for rational parties, where we assume that the
prover is rewarded for each successful proof (this is, roughly speaking, the case
in Bitcoin). Thus, simply proving that you used a lot of space in a computation
is insufficient; otherwise it would be rational to perform computations without
pause (reusing the same space). Instead, we measure spacetime—a unit of space
“reserved” for a unit of time (and unusable for anything else during that time).
To model this, we separate the computation into two phases; we think of the
first phase as occurring at time t = 0 and the second at time t = 1 (after a unit
of time has passed). After executing the first phase, the prover outputs a state
σ ∈ {0, 1}∗ to be transferred to the second phase; this is the only information
that can be passed between phases. The size of the state |σ| (in bits) measures
the space used by the prover over the time period between phases.

Informally, the soundness guarantee of a PoST is that the total number of re-
source units used by the adversary is lower bounded by some specified value—the
adversary can decide how to divide them between processing units and spacetime
units.

We give the formal definition of a PoST in Section 2.2, in Section 3 we present
a simple construction of a PoST, and in Section 3.1 we prove its security.

2.1 Units and Notation

Our basic units of measurement are CPU throughput, Space and Time. These
can correspond to arbitrary real-world units (e.g., 230 hash computations per
minute, one Gigabyte and one minute, respectively). We define the rest of our
units in terms of the basics:

– Work: CPU×time; A unit of CPU effort expended (e.g., 230 hash computa-
tions).

– Spacetime: space×time; A space unit that is “reserved” for a unit of time
(and unusable for anything else during that time).

In our definitions, and in particular when talking about the behavior of ratio-
nal adversaries, we would like to measure the total cost incurred by the prover,
regardless of the type of resource expended. To do this, we need to specify the
conversion ratio between work and spacetime:
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Real-world Cost. We define γ to be the work-per-spacetime cost ratio in terms of
real-world prices. That is, in the real-world one spacetime unit costs as much as
γ work units (the value of γ may change over time, and depends on the relative
real-world costs of storage space and processing power).

We define the corresponding cost function, the real-world cost of a PoST to
be a normalized cost in work units: a PoST that uses |σ| spacetime units and x
work units has real-world cost c = γ|σ|+ x.

2.2 Defining a PoST Scheme

A PoST scheme consists of two phases, each of which is an interactive protocol
between a prover P = (Pinit, Pexec) and a verifier V = (Vinit, Vexec).

6 (for brevity,
we drop the init and exec subscripts when they are clear from the context.) Both
parties have access to a random oracle H(work).

Initialization Phase Both parties receive as input an id string id ∈ {0, 1}∗.
At the conclusion of this phase, both the prover and the verifier output state
strings (σP ∈ {0, 1}∗ and σV ∈ {0, 1}∗, respectively):

(σP , σV )←
〈
PH

(work)

init (id), V H
(work)

init (id)
〉
.

Execution Phase Both parties receive the id and their corresponding state
from the initialization phase. At the end of this phase, the verifier either
accepts or rejects (outV ∈ {0, 1}, where 1 is interpreted as “accept”). The
prover has no output:

(·, outV )←
〈
PH

(work)

exec (id, σP ), V H
(work)

exec (id, σV )
〉
.

The execution phase can be repeated multiple times without rerun-
ning the initialization phase. This is critical, since the initialization phase
requires work, while the execution phase is energy-efficient. Thus, although a
single execution of the PoST does not give any advantage over proof-of-work,
the amortized work per execution can be made arbitrary low.

PoST Parameters A PoST has three parameters: w, the Honest Initialization
Work, m, the Honest Storage Space, and f , the Soundness Bound.

Honest Initialization Work (w). This is the expected work performed by the
honest prover in the initialization phase. This should be “tunable” to ensure
that storing the output remains the rational choice rather than recomputing the
initialization as the space-time to work cost ratio changes.

6 Although the definition allows general interaction, in our construction the first phase
is non-interactive (the prover sends a single message) and the second consists of a
single round.
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If the cost of the initialization phase is too low, the adversary can generate a
proof more cheaply than an honest prover by deleting all data after initialization,
then rerunning the initialization just before the proof phase. In this case, the
adversary does not store any data between phases, so does not pay any space-
time cost. We formalize this in Definition 8 as a rationality attack. Note that
this is a general attack that also applies to PoS schemes—hence they
must also have a lower bound on the work required for initialization.

Honest Storage Space (m). This is the amount of storage the honest prover must
expend during the period between the initialization and execution phases (and
between successive execution phases).

Definition 1 (PoST). A protocol (P, V ) as defined above is a (w,m, ε, f)-PoST
if it satisfies the properties of completeness and f -soundness defined below.

Completeness

Definition 2 (PoST η-Completeness). We say that a PoST is η-complete if

for every id ∈ {0, 1}poly(k) and every oracle H(work),

Pr
[
outV = 1 : (σP , σV )←

〈
PH

(work)

init (id), V H
(work)

init (id)
〉
,

(·, outV )←
〈
PH

(work)

exec (id, σP ), V H
(work)

exec (id, σV )
〉]
≥ η .

When η = 1 completeness is perfect (in this case we sometimes omit the η).

Soundness We define a security game with two phases; each phase has a corre-
sponding adversary. We denote the adversary A = (A1,A2), where A1 and A2

correspond to the first and the second phases of the game. A1 and A2 can co-
ordinate arbitrarily before the beginning of the game, but cannot communicate
during the game itself (or between phases).

Definition 3 (PoST (n, s, T1, T2)-Security Game). Each phase of the secu-
rity game corresponds to a PoST phase:

1. Initialization. A1 chooses a set of ids {id1, . . . , idn} where idi ∈ {0, 1}∗. It
then interacts in parallel with n independent (honest) verifiers executing the
initialization phase of the PoST protocol, where verifier i is given idi as
input. Let σA be the output of A1 after this interaction and (σV1

, . . . , σVn
)

be the outputs of the verifiers.
2. Execution. The adversary A2(id1, . . . , idn, σA) interacts with n independent

verifiers executing the execution phase of the PoST protocol, where verifier i
is given (idi, σVi

) as input.7

7 Each of the verifiers runs a copy of the honest verifier code with independent random
coins; A2, however, can correlate its sessions with the verifiers.
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We say the adversary has succeeded if |σA | ≤ s, A1 makes at most T1 queries
to the oracle H(work), A2 makes at most T2 queries to the oracle and all of the
verifiers output 1 (we denote this event Succn,s,T1,T2)

Definition 4 (PoST f-Soundness). We say a PoST protocol is ε, f -sound
if for all T1, T2, s,≥ 0 and all n ≥ 1, every adversary A = (A1,A2) must satisfy
the following conditions in the PoST security game:

1. Rational Storage: If A1 made less than ε ·w queries to the work oracle, then
the probability of success is negligible (in the security parameter).

2. Space-Time Trade-Off: Pr [Succn,s,T1,T2 ] ≤ f(n, s, T1, T2).

The first condition checks that the adversary spends at least an ε fraction of
the honest work in the initialization phase. This prevents the adversary from
launching a “rationality attack”: if the initialization phase requires very little
computational effort, the prover can “throw out” the stored data from the ini-
tialization phase and rerun the phase to regenerate any needed data during the
execution phase. This would make its total space-time cost negligible (since the
“time” component vanishes).

The second condition bounds the trade-off between space-time and work.
Intuitively, a PoST satisfying this definition forces an adversary to trade space
for queries. The use of n ids rather than just one prevents an amortization
attack, wherein the adversary reuses the same space for different proofs. Näıvely,
to generate n proofs the prover would require n times the queries, splitting the
storage equally between them. Ideally using anything less we’d like the adversary
to fail with overwhelming probability. However, this is impossible to achieve, even
if it might be true for an individual PoST. This is because the adversary can
always “forget” the entire data for a subset of the n instances, and rerun the
initialization phase for those instances in the proof phase.

Rationally Stored Proofs of Work Our high-level goal in this paper is to
construct energy-efficient proofs, by forcing provers to use storage rather than
work. Unfortunately, our definitions (and contructions) don’t allow a prover to
prove they used storage (this is actually impossible if the adversary can simulate
the initialization phase without a lot of storage—which is always the case unless
communication in the initialization phase is proportional to storage or we use
non-standard assumptions). However, we can still give conditions under which a
rational prover (whose goal is to minimize expected total cost) would prefer to
use storage. As long as these conditions are met, it seems reasonable to assume
that real-world users would choose storage over work (especially in a crypto-
currency setting, where profit is the main motive for participating).

Definition 5 ((γ, ε′)-Rationally-Stored PoST). We say a PoST is (γ, ε′)-
rationally stored if, when the real-world cost of a space unit is less than γ, then
for any given resource budget C, the optimal execution strategy (maximizing the
expected number of successful PoST proofs for that budget) requires that at least
an ε′-fraction of the budget be used for storage).
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We don’t count the initialization cost in Definition 5. This is because it is only
incurred once, while the cost of the execution phase is incurred repeatedly.

We can identify a sufficient condition for a PoST to be rationally stored:

Lemma 1. If a (w,m, ε, f)-PoST is η-complete, and for all C > 0, s < ε′ ·C/γ
it holds that

∞∑
i=1

f(i, s, C − γ · s) < η · C/(γ ·m)

then it is (γ, ε′)-Rationally-Stored.

(Note that we assume f(i, s, T ) ≤ 1 for all values i,s and T — otherwise we use
instead f∗(i, s, T ) = min {1, f(i, s, T )}.)

Proof. Denote #G the random variable for the number of successful PoST proofs
produced by the adversary. Then

E [#G] =

∞∑
i=1

i · Pr [#G = i] =

∞∑
i=1

i ·
(

Pr [#G ≥ i]− Pr [#G ≥ i+ 1]
)

=

∞∑
i=1

Pr [#G ≥ i] .

By the definition of f -soundness, for an adversary using s space and C − γ · s
oracle queries, the expectation is thus bounded by

E [#G] ≤
∞∑
i=1

f(i, s, C − γ · s)

On the other hand, using the honest proof strategy, and allocating the entire
C budget to space will give C/(γ ·m) proofs, each successful with probability at
least η, hence the expected number of successful proofs for the honest space-only
strategy is η · C/(γ ·m).

Thus, the honest proof strategy generates, in expectation, more successful
proofs (i.e., higher reward) than any adversarial strategy that spends less than
an ε′ fraction of its budget on storage space. ut

Note that the adversary can always rerun the initialization phase instead of
storing data, so for any η-complete, (w,m, ε, f)-PoST we must have f(i, 0, i·w) ≥
η, hence if γ ·m > w the condition of Lemma 1 cannot be satisfied.

Comparison with the PoS definition As we remarked in the introduction,
an (N0, N1, T )-PoS does not give any formal security guarantees with respect
to the PoST definition (even if we ignore amortization), since it does not ad-
dress rationality attacks at all. In the other direction, even an optimally-sound
(w,m, f)-PoST can’t guarantee a (x, x, w)-PoS, for any x ∈ (0, w), since we don’t
place any lower bound on the space required to generate a proof—the adversary
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can always trade space for polynomial work. Thus, the parameters are not truly
comparable.

Note that even if we did add a space lower bound, similar to the PoS defi-
nition, in order to make use of it in practice one would have to add additional
non-standard assumptions (such as timing assumptions); this is because the ad-
versary can perform the space-time tradeoff at the level of entire PoS instances
(e.g., generate n instances, but use space for only a single instance at a time).

Thus, one can think of the two definitions as being targeted at different
“regimes”: a PoS forces the prover to use a lot of space, but is not well suited
to high storage costs and requires frequent proof phases (to prevent a space/-
time tradeoff), while the PoST definition does allow long periods of elapsed
time between proofs (with a suitably hard initialization step), but relies on the
rationality of the adversary to enforce use of storage rather than work.

Non-Interactive Proofs of SpaceTime (NIPSTs)

Sigma-PoST. A Sigma-PoST is a PoST scheme that has the form of a Sigma-
protocol: Pinit(id) sends a single commitment message to the verifier; Vinit re-
sponds with a random challenge string, after which Pinit sends a single response
message. For the execution phase, the commitment message is the same as the
initialization commitment (hence does not need to be resent); Vexec sends a ran-
dom challenge string, and Pexec responds in turn with a single message.

We note that our PoST construction is a Sigma-PoST.

Making Sigma-PoSTs Non-Interactive. The initialization phase of a Sigma-PoST
can be made non-interactive in the random oracle model by using the Fiat-
Shamir heuristic (replacing the verifier’s response with a hash of the commitment
message). However, interaction cannot be removed entirely—the execution phase
requires a challenge that cannot be predicted by the prover at initialization
time—hence, under standard assumptions it cannot be solely a function of the
prover’s inputs.

Using Proofs of Sequential Work. By introducing a sequential timing assump-
tion, we can make the proof entirely non-interactive; the idea is to use the output
of the initialization phase (or the previous execution phase if we’re running mul-
tiple times) as the input to a publicly-verifiable proof of sequential work (PoSW).
We can then use (a hash of) the output of the PoSW as the challenge to the
execution phase. If we assume a lower bound on the elapsed time for an adver-
sary to perform a given amount of sequential work, this construction ensures
that the adversary must have used sufficient spacetime resources between the
initialization and execution phases.

This NIPST construction appears to violate our main goal—it requires con-
tinuous CPU work even for an honest user. The trick is that a single PoSW
instance can be shared between an arbitrary number of provers, so the amor-
tized CPU cost vanishes as the number of users grows. Instead of using the
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previous proof directly as the input to the PoSW, we create a Merkle tree whose
leaves are the inputs from each prover, and use the root of the tree as the input
to the single, shared PoSW.

The full NIPST consists of (1) the initialization phase output, (2) a Merkle
path from the output to the root of the tree, (3) a PoSW whose input is the
Merkle root and (4) the execution phase proof, with the PoSW as the challenge.

We note that some PoSW constructions (such as that of Cohen and Pietrzak
[8]) don’t have unique proofs; an adversary can generate multiple different proofs
for the same input that will all be accepted by a verifier. When used in a NIPST,
this means the PoST execution-phase challenges come from a distribution that
can be biased by the adversary. However, our PoST construction can handle this
as long as the distribution has enough min-entropy (which must be the case,
since otherwise an adversary could solve the PoSW by trying to guess the result
and running the verifier to check—this can be done in parallel, so would violate
the sequential work security of the PoSW).

2.3 Constructing a PoST: High-Level Overview

Our proof of spacetime has each prover generate the data they must store on
their own. To ensure that this data is cheaper to store than to generate (and
to allow public verifiability), we require the stored data to be a proof-of-work.
We construct our protocol using the abstract notion of an incompressible-proof-
of-work (IPoW); this is a proof-of-work (PoW) that is non-compressible in the
sense that storing n different IPoWs requires n times the space compared to
storing one IPoW (we define them more formally below; see Section 2.4).

As long as the cost of storing an IPoW proof is less than the cost of re-
computing it, the prover will prefer to store it. However, this solution is very
inefficient: it requires the prover to send its entire storage to the verifier. In order
to verify the proof with low communication, instead of one large proof of work,
we generate a table containing τ entries; each entry in the table is a proof of
work that can be independently verified.

Why the Näıve Construction Fails. At first glance, it would seem that there is
an easy solution for verifying that the prover stored a large fraction of the table:

1. In the initialization phase: the prover commits to the table contents (using
a Merkle tree whose leaves are the table entries)

2. In the execution phase: the verifier sends a random set of indices to the
prover, who must then respond with the corresponding table entries and
commitment openings (merkle paths to the root of the tree).

Unfortunately, this doesn’t work: the prover can discard the entire table and
reconstruct only those entries requested by the verifier during the execution
phase.
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A Simple Solution. Our construction overcomes this problem by forcing the
prover to commit to the entire table at the time of the challenge, and only then
learn the random entries to be sent back (this is made non-interactive using
the Fiat-Shamir heuristic). Intuitively, the prover is forced to either reconstruct
a large fraction of the table (in which case it must either store many IPoWs,
or recompute them), or spend a lot of computational work trying to find a
commitment that will produce a “good” challenge. By setting the parameters
correctly, we can ensure that in the second case the amount of work the prover
must do is more than the initialization cost (see Section 3 for details).

2.4 Incompressible Proofs of Work

The standard definitions of PoWs do not rule out an adversary that can store a
small amount of data and can use it to regenerate an entire table of proofs with
very low computational overhead. Thus, to ensure the adversary must indeed
store the entire table we need a more restrictive definition:

An Incompressible Proof of Work (IPoW) can be described as a protocol
between a verifier V and a prover P :

1. The prover P is given a challenge ch as input, and outputs a “proof” π:
2. The verifier receives (ch, π) and outputs 1 (accept) or 0 (reject).

For simplicity, we denote IPoW (ch) the output of the honest prover on chal-
lenge ch (this is a random variable that depends on the random oracle and the
prover’s coins).

Defining an IPoW Let q#P denote the number of oracle calls made by P in the
protocol (this is a random variable that depends on ch and the random coins of
P ).

Definition 6 ((w′,m, f)-IPoW). A protocol is a (w′,m, f)-IPoW if:

1. E
[
q#P

]
≤ w′ (the honest prover’s expected work is bounded by w′),

2. |π| ≤ m (the honest prover’s storage is bounded by m) and
3. The IPoW is complete (c.f. Definition 7) and f -sound (c.f. Definition 8).

Definition 7 (IPoW Completeness). An IPoW protocol is complete if, for
every challenge ch, the probability that the verifier rejects is negligible in the
security parameter (the probability is over the coins of the prover and the random
oracle).

Definition 8 (IPoW f(n, s, T )-Soundness). We say A = (A1,A2) is an
[n, s, T ]-adversary if A1 outputs a string σ with length |σ| ≤ s, while A2 gets
σ as input, makes at most T queries to the random oracle and outputs n pairs
(ch1, π1, . . . , chn, πn).
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Denote Succ the event (over the randomness of A and the random oracle)
that all the challenges are distinct and ∀i ∈ [n] : V (chi, πi) = 1. An IPoW
protocol is f -sound if for every adversary and all n ≥ 1, s ≥ 0 and T ≥ 0

Pr [Succ] < f(n, s, T )

Note that we don’t restrict the number of queries A1 makes to the oracle.
As in the PoST definition, this condition bounds the trade-off between space-

time and work for the IPoW adversary. Ideally, we’d like f to be negligible when
s < n ·m and T < n · w′ (this implies that the adversary must either store the
same amount as the honest prover, or do enough work to reconstruct the proof
from scratch). Unfortunately, we can’t hope to achieve this; for example, for any
i ∈ (0, n). if an adversary stores only i IPoWs, and reconstructs the remaining
n − i, it will have overwhelming probability of success while storing i · m bits
and doing (n− i) · w′ work. Moreover, the adversary can always “forget” j bits
of storage and guess them correctly with 2−j probability. Thus, in any f -sound
IPoW, we must have, for all j ≥ 0 and i ∈ (0, n) that f(n, i·m−j, (n−i)·w′, T ) ≥
2−j−ε for some negligible ε (that depends on the completeness of the protocol).

3 Our Simple PoST Construction: The Details

Formally, we describe the protocol in the presence of two types of random oracles,
a “work” oracle H(work) and “Merkle” oracles Hi (for i 6= j, Hi and Hj are
independent random oracles).8 We assume the work oracle has a much higher
cost than the calls to the Merkle oracles (in implementation, we can think of the
Merkle oracles as a single iteration of a fast hash function, while the work oracle
can be implemented by a slower hash function or multiple sequential iterations).
In the analysis, we track the number of calls separately, using T to denote the
number of calls to H(work) and T ∗ the number of calls to the Merkle oracles.

The formal PoST protocol description appears as Protocol 1. To construct
it, we use a (w′,m, f)-IPoW. (We construct two oracle-based IPoW schemes in
Section 4.)

The soundness of our Simple PoST protocol is summarized in the following
theorem. (For our construction we allowA1 unbounded access to the work oracle,
so we don’t include a T1 parameter.)

Theorem 1 (PoST Soundness). Let kch be the min-entropy of the distri-
bution from which PoST challenges are sampled. The Simple PoST protocol,
instantiated with an f ′-sound IPoW, is f -sound for

f(n, s, T ∗1 , (T, T
∗)) = min{

min
ε∈(0,1)

{
f ′(ε · n · τ, s+ n · (kH + log T ∗ + τ), T ) + T ∗ · εk

}
+ (T ∗)2 · 2−kH + T ∗1 · 2−kch ,

2−kH ·(n−max{T∗1 ,T
∗})} .

8 This is just for convenience of notation, we can implement them all using a single
oracle by assigning a unique prefix to the oracle queries (e.g., Hi (x) = H (i||x).)
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Protocol 1 Simple-PoST
Public Parameters: kH : hash output size, k: security parameter, τ : table size and

IPoW (ch) is a (w′,m, f)-IPoW.
Storing Phase: (Performed by the prover P )
Inputs: id ∈ {0, 1}∗.
1. Generate an array G of size τ as follows:

For each 0 ≤ i < τ , set G[i]
def
= IPoW (id||i) (where the IPoW is given access to

H(work) as its underlying work oracle).
2. Run the proof phase with fixed challenge 0.
3. Publish the string id and the initial proof.

Proof Phase: (Performed by the prover P )
Upon receiving a challenge ch from the verifier V :

1: Construct a Merkle tree whose leaves are labeled with the entries of G, and
each internal node’s label is the output of the random oracle Hch on the con-
catenation of its children’s labels. Let com be the root label.

2: Parse Hch (com) as a set of k indices (i1, . . . , ik) ∈ {0, τ − 1}k.
3: Let πj be the Merkle path from the table entry G[ij ] to the root com. // The

first element of πj is the table entry itself.
4: Output com, π1, . . . , πk. // This can be made more communication efficient

by eliminating common labels.

The honest prover does not need any calls to H(work), but needs up to 2τ calls to the
Merkle oracle (or temporary space to store the Merkle tree).

Proof Phase: (Performed by the verifier V )
Generate a random challenge ch and send it to the prover. Wait to receive the list
com, π1 . . . , πk

1: Parse Hch (com) as a set of k indices (i1, . . . , ik) ∈ {0, τ − 1}k.
2: for all j ∈ {1, . . . , k} do
3: Verify that G[ij ] (the first element of πj) is a valid IPoW for the challenge
id||ij (using the oracle H(work)).

4: Verify that πj is a valid Merkle path from the leaf ij to the root com (using
the oracle Hch ).

5: end for
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(Note that the second term in the outer min is relevant only when n > max {T ∗1 , T ∗}.)
Corollary 1. When instantiated with the m-Partial-Hash IPoW, the Simple
PoST is f -sound for

f(n, s, T ∗1 , (T, T
∗)) = min

ε∈(0,1)

{
2−(ε·n·τ ·m−(T ·m+s+n·(kH+log T∗+τ)) + T ∗ · εk

}
+

(T ∗)2 · 2−kH + T ∗1 · 2−kch .

3.1 Security Proof

Proof (of Theorem 1). LetA = (A1,A2) be an adversary that wins the (n, s, T ∗1 , (T, T
∗))-

PoST security game with probability p. For every ε < 1, we can use A to con-

struct an IPoW adversary A(IPoW ) = (A(IPoW )
1 ,A(IPoW )

2 ) as follows:
Let ch1, . . . , chn be random challenges independently selected from a distri-

bution with min-entropy kch. 9

IPoW Adversary Initialization (A(IPoW )
1 ):.

1. Execute A1, recording the n ids id1, . . . , idn and storing its output σ.
2. Execute A2, with inputs id1, . . . , idn, σ and challenges ch1, . . . , chn. While

executing, keep track of all calls to Hchi . Denote com1, . . . , comn the first el-
ements of each A2 proof (which, for an honest prover, would each correspond
to the root of a merkle tree).

3. For all i ∈ [n]:
(a) Denote Qi the set of queries to Hchi

.
(b) For every q ∈ Qi, attempt to reconstruct a merkle tree with root Hchi (q).

Obviously, this may not be possible for every query q, and even when
possible may not result in a full tree. We will say a leaf (i, j) exists for q
if some subset of Qi comprises a valid Merkle path from the leaf j to the
root Hchi

(q). (Note that the reconstruction doesn’t make any additional
calls to the Merkle oracle, it just uses the stored results.)

(c) For all q, and every existing leaf (i, j) for q, run the IPoW verifier with
challenge idi||j to check if the leaf is a valid IPoW proof. In this case,
we say the leaf (i, j) is valid for q.

(d) We say a query q is ε-good if there exist ε · τ different leaves that are
valid for q.

(e) If there does not exist an ε-good query in Qi, output ⊥ and abort.
Otherwise, denote gi the index of the first ε-good query in Qi, and let
vi be a bit-vector indicating the valid leaves (vi,j = 1 iff (i, j) is a valid
leaf for qgi).

4. Output (σ, id1, . . . , idn, g1, . . . , gn, v1, . . . , vn).

Note that the output length for A(IPoW )
1 is s + n · kH + n · log T ∗ + n · τ =

s + n · (kH + log T ∗ + τ) bits (since for all i, |Qi| < T ∗, and assuming, w.l.o.g,
that the id size is kH—we can always use a hash of the id if its larger).

9 These can be chosen by hardwiring a seed in the code of both A(IPoW )
1 and A(IPoW )

2 ,
and computing chi using the Merkle oracle, which is not counted against the query
budget of A(IPoW )

2 .
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IPoW Adversary Prover (A(IPoW )
2 ):.

1. Run Steps 2 and 3 from the execution of A(IPoW )
1 .

2. For each i ∈ [n], reconstruct the Merkle tree rooted at Hchi (qgi) and for
every valid leaf (i, j), as indicated by vi, output idi||j as an IPoW challenge
and leaf (i, j) as the corresponding proof.

Note that A(IPoW )
2 makes at most T calls to the work oracle and T ∗ calls to the

Merkle oracle, since it executes A2 exactly once.

When A(IPoW )
2 succeeds, we’re guaranteed that for each of the n challenges

it can extract an ε-fraction of valid leaves, hence it outputs at least ε ·n · τ valid
IPoW proofs.

The storage space it requires is at most s+ n · (kH + log T ∗ + τ) bits. Thus,
A(IPoW ) is an (ε · n · τ, s+ n · (kH + log T ∗ + τ), T )-IPoW adversary.

IPoW Adversary Success Probability:. To bound the probability of success, we
first rule out two “catastrophic” events:

– A1 makes a query to Hchi . Since A1 makes at most T ∗1 queries in total to
the Merkle oracles, and chi is chosen from a distribution with min-entropy
kch, the probability of this occurring for challenge chi is at most T ∗1 · 2−kch .

– A2 finds a collision in Hchi
for some i. Since the Merkle oracle has output

length kH , and A2 makes at most T ∗ queries to Hchi
, by the Birthday Bound

the probability of finding any collision is less than (T ∗)2 · 2−kH .

Now, consider instance i of the PoST proofs generated by A2. We claim that
unless p < 2−kH , comi must be the result of a query A2 makes to Hchi

. To see
this, recall that we assume A1 did not query Hchi

on any input. Thus, if A2

did not receive comi as the result of an oracle query, the probability that it can
generate a valid Merkle path that terminates at comi is at most 2−kH .

Since A2 can make at most T ∗ Merkle queries, each execution of A2 can have
at most T ∗ potential Merkle roots for instance i.

Denote Badi the event that there are no ε-good queries in Qi. Denote Succ
the event that A2 is successful (for all n instances). We claim that for all i,

T ∗1 , . . . , T
∗
n such that Pr

[
Badi

∧n
j=1 |Qj | = T ∗j

]
> 0, it holds that

Pr

Succ

∣∣∣∣∣∣Badi

n∧
j=1

|Qj | = T ∗j

 < T ∗i · εk .

To see this, consider an execution of A2. In order for A2 to be successful, it
must output a good PoST proof for instance idi. This means it must output a
Merkle root comi and the k merkle paths from valid leaves that are selected by
Hchi

(comi).
For every new query qi made by A2, conditioned on Badi the probability

that Hchi
(qi) selects k valid leaves in any Merkle tree in A2’s view is at most εk;

this is because, conditioning on Badi, no Merkle tree in A2’s view has more than
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an ε-fraction of valid leaves. Since qi has not been previously queried, Hchi
(qi) is

independent of the view up to that point, hence the probability that k random
indices are all valid is at most εk. Since there are exactly T ∗i queries to Hchi ,
the claim follows by the union bound.

Denote Bad = Bad1 ∨ · · · ∨ Badn the event that for some i there did not
exist an ε-good query. Since A is bounded by T ∗ queries to the Merkle oracles,
it must hold that

∑n
i=1 |Qi| ≤ T ∗. Thus,

Pr [Succ ∧Bad]

= Pr

[
Succ ∧Bad ∧

n∑
i=1

|Qi| ≤ T ∗
]

= Pr

[
Succ ∧ (Bad1 ∨ · · · ∨Badn) ∧

n∑
i=1

|Qi| ≤ T ∗
]

=
∑

T∗1 ,...,T
∗
n

Pr

[
n∧
i=1

|Qi| = T ∗i

]
·

Pr

[
Succ ∧ (Bad1 ∨ · · · ∨Badn) ∧

n∑
i=1

|Qi| ≤ T ∗
∣∣∣∣∣
n∧
i=1

|Qi| = T ∗i

]

=
∑

T∗1 ,...,T
∗
n |∑n

i=1 T
∗
i ≤T

∗

Pr

[
n∧
i=1

|Qi| = T ∗i

]
Pr

[
Succ ∧ (Bad1 ∨ · · · ∨Badn)

∣∣∣∣∣
n∧
i=1

|Qi| = T ∗i

]

By the union bound,

≤
∑

T∗1 ,...,T
∗
n |∑n

i=1 T
∗
i ≤T

∗

Pr

[
n∧
i=1

|Qi| = T ∗i

]
n∑
i=1

Pr

Succ ∧Badi

∣∣∣∣∣∣
n∧
j=1

|Qj | = T ∗j


By the definition of conditional probability,

=
∑

T∗1 ,...,T
∗
n |∑n

i=1 T
∗
i ≤T

∗

Pr

[
n∧
i=1

|Qi| = T ∗i

]
·

n∑
i=1

Pr

Badi

∣∣∣∣∣∣
n∧
j=1

|Qj | = T ∗j

Pr

Succ

∣∣∣∣∣∣Badi

n∧
j=1

|Qj | = T ∗j


Since Pr [Badi] ≤ 1,

≤
∑

T∗1 ,...,T
∗
n |∑n

i=1 T
∗
i ≤T

∗

Pr

[
n∧
i=1

|Qi| = T ∗i

]
n∑
i=1

Pr

Succ

∣∣∣∣∣∣Badi

n∧
j=1

|Qj | = T ∗j
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By our bound on Pr [Succ|Badi] above,

≤
∑

T∗1 ,...,T
∗
n |∑n

i=1 T
∗
i ≤T

∗

Pr

[
n∧
i=1

|Qi| = T ∗i

]
n∑
i=1

(
T ∗i · εk

)

= εk
∑

T∗1 ,...,T
∗
n |∑n

i=1 T
∗
i ≤T

∗

Pr

[
n∧
i=1

|Qi| = T ∗i

]
n∑
i=1

T ∗i

≤ εk
∑

T∗1 ,...,T
∗
n |∑n

i=1 T
∗
i ≤T

∗

Pr

[
n∧
i=1

|Qi| = T ∗i

]
T ∗

≤ T ∗ · εk .

Therefore

Pr [¬Bad] ≥ Pr [Succ ∧ ¬Bad] = Pr [Succ]− Pr [Succ ∧Bad] ≥ p− T ∗ · εk .

Note that if the event Bad did not occur, and neither catastrophic event

occurred, then A(IPoW )
1 does not abort and A(IPoW )

2 is guaranteed to be suc-
cessful.

Since A(IPoW ) is a (ε ·n · τ, s+n · (kH + log T ∗+ τ), T )-IPoW adversary that
succeeds with probability p−T ∗ · εk, by the f ′-soundness of the IPoW it follows
that p < f ′(ε ·n ·τ, s+n ·(kH +log T ∗+τ), T )+T ∗ ·εk+(T ∗)2 ·2−kH +T ∗1 ·2−kch .

Finally, note that if n > max {T ∗1 , T ∗}, then there are at least n−max {T ∗1 , T ∗}
challenges which the adversary did not query at all; in this case its success prob-
ability is bounded by 2−kH ·(n−max{T∗1 ,T

∗}).
ut

4 Hash-Preimage IPoW

One of the most popular proofs of work is the hash-preimage PoW: given a
challenge ch ∈ {0, 1}kH , interpret the random oracle’s output as a binary fraction

in [0, 1] and find x ∈ {0, 1}kH s.t.

H(work)(ch||x) < p (1)

p is a parameter that sets the difficulty of the proof. For any adversary, the
expected number of oracle calls to generate a proof-of-work of this form is at
least 1/p.

At first glance, this might seem to be an incompressible PoW already—after
all, the random oracle entries are uniformly distributed and independent, so
compressing the output of a random oracle is information-theoretically impossi-
ble. Unfortunately, this intuition is misleading. The reason is that we need the
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proof to be incompressible even with access to the random oracle. However, given
access to the oracle, it’s enough to compress the input to the oracle. Indeed, the
hash-preimage PoW is vulnerable to a very simple compression attack: Incre-
ment a counter x until the first valid solution is found, but don’t store the zero
prefix of the counter. Since the expected number of oracle calls until finding a
valid x is only 1/p, on average that means only log 1

p bits need to be stored

(rather than the full length of an oracle entry).
We show that this is actually an optimal compression scheme. Therefore,

to make this an incompressible PoW, we instruct the honest user to use this

strategy, and store exactly the
⌈
log 1

p

⌉
least significant bits of the counter. We

note that 1
p is the expected number of attempts—in the worst case the prover

may require more; thus, we allow the prover to search up to k
p entries; the

verifier will check k possible prefixes for the log 1
p bits sent by the prover (with

overwhelming probability, there will be a valid solution in this range). Thus, the
verifier may have to make k oracle queries in the worst case in order to check a
proof (however, in expectation it will be only slightly more than one).10

Formally,

Definition 9 (w′-Hash-Preimage IPoW). The honest prover and verifier
are defined as follows: Set p = 1/w′.

Prover Given a challenge y, calls H(work) on the inputs {y||x}
x∈{0,1}log

k
p

in

lexicographic order, returning as the proof π the least significant log 1
p bits of

the first x for which H(work)(y||x) < p.
Verifier Given challenge y and proof π, verifies that |π| ≤ log 1

p and that there

exists a prefix z of length log k such that H(work)(y||z||π) < p (where π is
zero-padded to the maximum length).

The security of the Hash-Preimage IPoW is summarized in the following
theorem:

Theorem 2. The w′-hash-preimage protocol is a (w′, logw′, f)-IPoW for f(n, s, T ) =
2−(n logw′−s−n(2+log dT/ne)).

(The proof appears in Section 6.1.)

5 Partial Hash IPoW

Our choice of parameters for the IPoW is constrained by several real-world vari-
ables:

– The maximal time period between proofs that we would like to support
– The amount of storage we would like to fill

10 We note that this computation can be performed by the prover instead, but it will
simplify our analysis to assume the verifier performs the checks.
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– The cost of storage per time period
– The cost of a hash invocation
– The maximum cost we can tolerate for PoST initialization.

For the Hash Preimage IPoW, given a maximum initialization cost and the
cost of a hash invocation, we can upper bound the amount of storage we can fill:
each hash invocation can “contribute” at most a single bit to the total storage
(this is because the amount of space needed to store a single Hash-Preimage
IPoW is logarithmic in the expected number of hash invocations needed to gen-
erate the proof; hence the largest space is taken when each proof requires on
average only a single invocation).

If we would like to fill more space without increasing our initialization cost,
we need to use a different IPoW.

The Partial Hash IPoW is a simple solution that can fill up to k bits per
hash invocation (but at least one bit per invocation). In this case, the amount
of work per IPoW is always a single hash invocation, as is the verification cost.
We parameterize with the amount of space required to store an IPoW.

Formally,

Definition 10 (m-Partial-Hash IPoW). The honest prover and verifier are
defined as follows (where m is the space required to store an IPoW for the honest
user):

Prover Given a challenge y, calls H(work)(y) and returns as the proof the m
least-significant bits of H(work)(y).

Verifier Given challenge y and proof π, verifies that π consists of the m least-
significant bits of H(work)(y).

The security of the Partial-Hash IPoW is summarized in the following theo-
rem:

Theorem 3. The m-partial-hash IPoW protocol is a (1,m, f(n, s, T ) = 2−(n·m−(T ·m+s)))-
IPoW.

(For reasons of space, the proof is omitted here, but can be found in the eprint
version.)

6 IPoW Security Analysis

In the proofs of security for both of our IPoW schemes, we use the following
simple claim bounding the probability to compress a random string.

Let (Compress,Decompress) be an arbitrary pair of probabilistic algorithms

(possibly computationally unbounded), such that Compress : {0, 1}k 7→
{
{0, 1}k−m , bot

}
and Decompress : {0, 1}k−m 7→ {0, 1}k, and for all (x, y) ∈ {0, 1}k × {0, 1}k−m,
if y ∈ =(Compress(x)) then Decompress(y) = x. (That is, if Compress “suc-
ceeds” then decompression is perfect).
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Claim 1. Let Uk be a uniformly selected from {0, 1}k. Then Pr [Compress(Uk) 6= ⊥] ≤
2−m.

Proof. Denote Y = =(Compress) \ {⊥}. Then |Y | ≤ 2k−m. Note that since
decompression is perfect, for any y ∈ Y there can be only a single pre-image
(if we have x1 6= x2 such that Compress(x1) = y = Compress(x2), then for
at least one of them Decompress(y) will fail with non-zero probability). Let
X = {x|Compress(x) ∈ Y }. Then |X| ≤ 2k−m. By the definitions of p and X,
p = Pr [Compress(Uk) 6= ⊥] = Pr [Uk ∈ X], but since |X| ≤ 2k−m and Uk is
uniform, we have p ≤ 2−m. ut

6.1 Proof of Theorem 2

Proof. The honest prover uses w′ expected queries, by the setting of p = 1/w′

and stores log 1
p = logw′ bits. Given an (n, s, T )-adversary A = (A1,A2) that

succeeds with probability p, we can construct a compression algorithm as de-
scribed in Protocols 2 and 3.

Protocol 2 Hash-IPoW Decompression algorithm

1: function Decompress(Z)
2: Parse Z as (σ,∆1, . . . ,∆|X′|,∆|X′|+1, H(q1), . . . , H(qT ·n), H|X\Q, H|¬(X∪Q))

3: Reconstruct X̂ = {i|qi ∈ X ′} from ∆1, . . . ,∆|X′|: X̂i =
∑
j = 1i∆i. (note: we

know when we’ve reached ∆|X′|+1 when the sum is exactly T · n)
4: Execute A2 with σ as input

– For the ith query made by A2(σ):
• If i ∈ X̂ then reconstruct H(qi) by reading the k−m next bits and treating

them as a k-bit value with m zero MSBs
• If i /∈ X̂ then reconstruct H(qi) by reading the k next bits

The execution will give Q and X as output.
5: Reconstruct H|X \Q by reading the next (n − |X ′|)(k −m) bits and treating

them as (n− |X ′|) values
6: Reconstruct H|¬(X∪Q) by reading the next (2` − (n+ T · n− |X ′|))k bits.
7: end function

This algorithm can, with probability p, compress a string of length 2` · kH
into a string of length 2`kH − (n logw′ − s − n(2 + log dT/ne)) (the analysis of
the encoding length appears in the algorithm description). Thus, by Claim 1, we
must have p ≤ 2−(n logw′−s−n(2+log dT/ne)). ut

7 Market-Based Mechanisms for Difficulty Adjustment

One of the very nice properties of PoW-based cryptocurrency schemes is that
the tunable parameter of PoWs—their difficulty—can be set dynamically using
a market-based solution: by counting the number of published PoW solutions,
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Protocol 3 Hash-IPoW Compression algorithm

1: function Compress(H) // Treat H ∈ {0, 1}2
`·k as the truth table of a function:

H : {0, 1}` 7→ {0, 1}k
2: Run A1 to get σ. // Assume w.l.o.g that |σ| = s
3: Run A2 with σ and H as input.
4: Let X = (ch1||x1, . . . , chn||xn) be the outputs of A2, sorted lexicographically.
5: Let Q = (q1, . . . , qT ) be the set of oracle queries made by A2, sorted lexico-

graphically. (We can assume w.l.o.g. that |Q| = T .)
6: if ∀i, the logw′ MSBs of H(chi||xi) are all 0s then // the output of A2 verifies;

occurs w.p. p
7: Let X ′ = X ∩ Q = (x′1, . . . , x

′
|X′|), the subset of outputs that were also

queried.
8: for all j ∈ {1, . . . , |X ′|} do
9: Denote idx(j) the index of x′j in Q (i.e., qidx(j) = x′j).

10: Let ∆j = idx(j)− idx(j − 1) // we define idx(0) = 1
11: end for
12: Let ∆|X′|+1 = T −

∑|X′|−1
j=1 ∆j //

∑|X′|
j=1 ∆j = T

13: return (σ,∆1, . . . ,∆|X′|,∆|X′|+1, H(q1), . . . , H(qT ), H|X\Q, H|¬(X∪Q))
– We will represent ∆j in the following way:

•
⌊

∆j

dT/ne

⌋
represented in unary (between 0 and dT/ne one bits)

• a zero bit.
• ∆j mod (dT/ne) represented in binary (log dT/ne bits)

Since
∑
j ∆j ≤ T , the total number of bits in the unary representations

is at most n. Thus, in total we use at most n+ |X ′|(1 + log dT/ne) bits.
– We represent H(qi) as follows:
• If qi ∈ X ′, we store the k − logw′ LSBs of H(qi)
• Otherwise, we store the full k bits.

In total, this uses |X ′|(k − logw′) + (|Q| − |X ′|)k bits.
– We represent H|X\Q by storing the k − logw′ LSBs of each entry. The

entries are stored consecutively without padding. This uses (n−|X ′|)(k−
logw′) bits.

– We will represent H|¬(X∪Q) by storing the full entries. The entries are
stored consecutively without padding. This uses (2` − n − |Q| + |X ′|)k
bits.

All together, since |X ′| ≤ n, the length of the encoding is at most

Z = s+ n+ |X ′|(1 + log dT/ne) + |X ′|(k − logw′)+

(|Q| − |X ′|)k + (n− |X ′|)(k − logw′) + (2` − n− |Q|+ |X ′|)k

≤ 2`k − (n logw′ − s− n(2 + log dT/ne)) .

14: else
15: return ⊥
16: end if
17: end function
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we can estimate the total computational power expended on producing PoWs,
and thus update the difficulty accordingly.

A PoST scheme has two main tunable parameters—the amount of space it
requires (m), and the computational cost of initialization, or difficulty parameter
(w). The first parameter determines the cost of generating a good proof (since
amortized over multiple proofs, the initialization cost becomes irrelevant). This
parameter can be set dynamically in a similar fashion to the PoW-based schemes,
by counting the total amount of space invested over a specified time period.

The difficulty parameter, on the other hand, determines the rationality of
storage: the higher the cost of storage, the higher the difficulty parameter must be
set in order to ensure that rational provers will prefer storage over recomputing
the PoST. Unfortunately, the price of storage (relative to computation cost)
can’t readily be estimated simply by observing the PoST proofs (in particular,
the proofs generated by recomputing the initialization are identical to “honest”
proofs).

However, by choosing an appropriate incentive scheme, it turns out that
we can dynamically set the difficulty. The main idea is to give a prover two
identifiable options for generating proofs: the standard, storage-based PoST,
and an alternative that is computation-based. By giving a small “bonus” reward
for solutions that use the computation-based proofs, we incentivize users to
identify themselves as “computational solvers” when the price of storage is high
enough to make computation a more attractive option. When we observe that the
fraction of computational solvers changes, we can adjust the difficulty parameter
to compensate.

The challenge in instantiating such a scheme is that we must ensure that (1)
the difficulty of the alternative proof is equivalent to the difficulty of recomputing
the PoST proof and (2) that the work expended in the alternative proof is tied
to a specific instance of the PoST proof phase (i.e., that it can’t be amortized
across multiple instances).

To solve both of these problems, we use the PoST initialization itself as
the basis for the alternative proof. However, instead of allowing an arbitrary id
string, we require the id for the proof to be a function of the original id and the
challenge from the PoST proof phase.

7.1 PoSTs With Computation Bonus

More formally, we define a PoST with Computational Bonus to be a PoST
scheme with an additional “computational” prover Pbonus and corresponding
verifier Vbonus.

Definition 11 (PoST with Computational Bonus). P = (Pinit, Pexec, Pbonus)
, V = (Vinit, Vexec, Vbonus) is a (w,m, ε, f)-PoST with a computational bonus if
P ′ = (Pinit, Pexec) and V ′ = (Vinit, Vexec) comprise an (w,m, ε, f)-PoST and the
prover Pbonus and verifier Vbonus comprise a w′-PoW such that w′ ≤ w.

25



Computational Solvers Will Self-Identify To receive the computational
bonus, we will require the prover to send the proof for Pbonus. The expected
cost to compute this proof is w′, while the expected cost to recompute the
PoST initialization is w ≥ w′. Thus, the strategy of using Pbonus dominates the
strategy of recomputing the PoST, meaning that rational computational solvers
will self-identify.

Rational Storage is Still Preferred The adversary’s expected cost for using
the computational proof is w′. Thus, the expected number of successful proofs
for a given budget C using the bonus proof method is C/w′. Denote β the bonus
multiplier (i.e., a successful “standard” proof gets reward 1, while a computa-
tional bonus proof gets reward β).

Lemma 2. If a PoST is (γ, ε′)-rationally stored and β < η·w′
γ·m then the PoST

with a β computational bonus is (γ, ε′)-rationally stored.

Proof. Suppose the adversary uses α · C of its budget for the standard PoST
proofs (using an optimal adversarial strategy) and (1−α) ·C for computational
bonus proofs.

For every choice of α, if the adversary allocates less than ε′ · α · C of the
budget to storage, then the expected reward for the adversary is bounded by

E [#G] ≤ β · (1− α) · C/w′ + max
s∈[0,ε′·α·C/γ)

{ ∞∑
i=1

f(i, s, α · C − γs)

}

using the (γ, ε′)-rational storage property:

< β · (1− α) · C/w′ + η · α · C/(γ ·m)

By our assumption about β

: ≤ η · w′

γ ·m
· (1− α) · C/w′ + η · α · C/(γ ·m)

= η · (1− α) · C/(γ ·m) + η · α · C/(γ ·m) = η · C/(γ ·m) .

In particular, this holds for α = 1, which gives the desired result. ut

7.2 Constructing PoSTs with Computational Bonus (Sketch)

Given any (w,m, ε, f)-PoST with a non-interactive initialization phase (e.g.,
as can be construction from a Sigma-PoST), we can extend it to a PoST with
computational bonus by defining the following computational prover and verifier:

Let id be the id used in the PoST initialization phase. The computational
prover/verifier are defined to be

Pbonus(id, ch) := Pinit(id||ch) and Vbonus(id, ch) := Vinit(id||ch)
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The security of this construction (with w = w′)) follows immediately from
the rational storage condition of PoST soundness: this implies that PoST initial-
ization is a proof of work. Moreover, since we use the same parameters as the
underlying PoST (just with a different id), the cost is identical to initializing the
PoST.

7.3 Incremental Difficulty Adjustment

Although in our analysis we treat the initialization phase as a one-time operation
(and hence can amortize away its complexity), if we increase the difficulty, the
data generated by a previous init phase will no longer be valid (since the IPoWs
in our PoST table will not satisfy the new difficulty level).

However, a nice property of the hash-based Simple-PoSTs is that we can
incrementally increase the difficulty. For the Hash-Preimage IPoW, if we increase
difficulty from p to p′ < p, then on average p/p′ of the entries will already satisfy
the new difficulty level. Moreover, for those that do not, since we stored the last
index we reached in the search for a good solution, we can simply “continue”
running the Hash-IPoW solver where it left off. Thus, the total work we expend
(including the first initialization phase) will be only 1/p′. For the Partial-Hash
IPoW, increasing the difficulty means reducing the number of bits stored per
IPoW; this requires the prover to delete some data, and generate additional
IPoWs (increasing the number of table entries) in order to maintain the same
amount of space.

8 Discussion and Open Questions

Improving Proving Complexity. Compared to PoS, our prover complexity (at
least asymptotically) is much worse: the PoST prover has read the entire table
in order to generate a proof. It might be possible to combine the PoS pebbling-
based protocols with our IPoW construction to get both fast proving time and
finely-tunable difficulty—by having each pebble be an IPoW (whose challenge
is given by the hash of its predecessor pebbles).11 Proving the security of this
construction appears to be non-trivial, however.

Best-of-Both-Worlds?. All the existing PoS constructions that don’t require the
prover to read its entire data don’t support incremental difficulty adjustment.
An interesting open question is whether it is possible to get a “best of both
worlds” construction, combining low prover complexity with incremental diffi-
culty adjustment.

Constructing additional IPoW constructions using different techniques is also
an interesting open question.

11 Thanks to the anonymous reviewer who suggested this idea!
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