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Abstract. We study the relationship among public-key encryption (PKE)
satisfying indistinguishability against chosen plaintext attacks (IND-CPA
security), that against chosen ciphertext attacks (IND-CCA security),
and trapdoor functions (TDF). Specifically, we aim at finding a unified
approach and some additional requirement to realize IND-CCA secure
PKE and TDF based on IND-CPA secure PKE, and show the following
two main results.
As the first main result, we show how to achieve IND-CCA security via a
weak form of key-dependent-message (KDM) security. More specifically,
we construct an IND-CCA secure PKE scheme based on an IND-CPA
secure PKE scheme and a secret-key encryption (SKE) scheme satisfying
one-time KDM security with respect to projection functions (projection-
KDM security). Projection functions are very simple functions with re-
spect to which KDM security has been widely studied. Since the existence
of projection-KDM secure PKE implies that of the above two building
blocks, as a corollary of this result, we see that the existence of IND-CCA
secure PKE is implied by that of projection-KDM secure PKE.
As the second main result, we extend the above construction of IND-CCA
secure PKE into that of TDF by additionally requiring a mild require-
ment for each building block. Our TDF satisfies adaptive one-wayness.
We can instantiate our TDF based on a wide variety of computational
assumptions. Especially, we obtain the first TDF (with adaptive one-
wayness) based on the sub-exponential hardness of the constant-noise
learning-parity-with-noise (LPN) problem.

Keywords: chosen ciphertext security, trapdoor functions, key-dependent-
message security

1 Introduction

1.1 Background

Public-key encryption (PKE) is one of the most fundamental cryptographic
primitives. The most basic security requirement for PKE is indistinguishabil-
ity against chosen plaintext attacks (IND-CPA security) [23]. However, in many
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practical applications, PKE schemes should satisfy the stronger notion of indis-
tinguishability against chosen ciphertext attacks (IND-CCA security) [35,15] in
order to take active adversaries into consideration [10].

Since IND-CCA security is stronger than IND-CPA security, the existence
of IND-CCA secure PKE implies that of IND-CPA secure one. However, the
implication of the opposite direction is not known. While a partial negative
result was shown by Gertner, Malkin, and Myers [21], the question whether an
IND-CCA secure PKE scheme can be constructed from an IND-CPA secure one
has still been standing as a major open question in cryptography.

In addition to IND-CCA secure PKE, a family of trapdoor functions (TDF)
is also a fundamental primitive whose relationship with IND-CPA secure PKE
has been widely studied. It was shown that an IND-CPA secure PKE can be
constructed from TDF [40,6]. For the opposite direction, Gertner, Malkin, and
Reingold [22] showed a negative result stating that TDF cannot be built from
PKE in a black-box way.

In fact, in the random oracle model [7], we can construct both IND-CCA
secure PKE and TDF based solely on IND-CPA secure PKE using a simple and
unified derandomization technique [6,19]. However, in the standard model, we
cannot use such a simple derandomization technique successfully. Especially, in
order to construct IND-CCA secure PKE and TDF in the standard model by
circumventing the impossibility results [21,22], we need non-black-box techniques
or some additional requirements for the building block PKE scheme.

Hajiabadi and Kapron [24] tackled the above question, and as a main result,
they built a TDF based on a PKE scheme satisfying circular security [14] and
a randomness re-usability property called reproducibility [5]. Since their TDF
satisfies one-wayness under correlated products, based on the same assumption,
they also obtained a construction of IND-CCA secure PKE by relying on the
result by Rosen and Segev [38]. Their TDF construction is elegant and can
also be extended to deterministic encryption [4]. However, due to the somewhat
strong additional requirement of randomness re-usability, its instantiations are
limited to specific number theoretic assumptions.

In this work, we further study the above question. Especially, we aim at
finding a unified approach and some additional requirement to realize IND-CCA
secure PKE and TDF based on IND-CPA secure PKE.

1.2 Our Results

We show a unified approach to build IND-CCA secure PKE and TDF based
on IND-CPA secure PKE by additionally using secret-key encryption (SKE)
satisfying a weak form of key-dependent-message (KDM) security [9]. Roughly
speaking, an encryption scheme is said to be KDM secure if it can securely
encrypt a message of the form f(sk), where sk is the secret key and f is a
function. The details of our results are as follows.

IND-CCA Security via Key-Dependent-Message Security. As the first main re-
sult, we construct an IND-CCA secure PKE scheme based on an IND-CPA secure
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PKE scheme and an SKE scheme satisfying KDM security. The building block
SKE scheme is required to be one-time KDM secure with respect to projection
functions (projection-KDM secure). Projection functions are very simple func-
tions such that each output bit depends on at most a single bit of an input. An
SKE scheme satisfying one-time projection-KDM security can be built from a
wide variety of computational assumptions [11,3,12,13,16]. We obtain this result
based on a construction technique used by Koppula and Waters [30] who showed
how to construct IND-CCA secure attribute-based encryption (ABE) from IND-
CPA secure one using a pseudorandom generator (PRG) with a special security
property called hinting PRG. We extend the techniques of Koppula and Waters
in several aspects. See Section 2 for the details.

The existence of PKE satisfying projection-KDM security against chosen
plaintext attacks implies that of the above two building blocks. Therefore, as a
corollary of this result, we see that the existence of IND-CCA secure PKE is
implied by that of PKE with projection-KDM security (against CPA!).

Given our result and the result by Koppula and Waters, it is natural to ask
what is the relationship between hinting PRG and one-time KDM secure SKE.
To clarify this, we show that a one-time projection-KDM secure SKE scheme
can be built from a hinting PRG. This means that one-time projection-KDM
secure SKE is not a stronger assumption than hinting PRG.

Previously, Matsuda and Hanaoka [33] constructed an IND-CCA secure PKE
scheme from a PKE scheme satisfying the sender non-committing property and
an SKE scheme satisfying one-time KDM security with respect to circuits of
a-priori bounded size. We improve their result in the sense that our construction
requires weaker security properties for both of the underlying PKE and SKE
schemes compared to theirs.

On Black-Box Usage of Building Blocks. Our construction of an IND-CCA se-
cure PKE scheme is fully-black-box [36] and non-shielding [21]. A construction
of a PKE scheme is said to be shielding if the decryption algorithm of the
scheme does not call the encryption algorithm of the building block schemes,
and otherwise it is called non-shielding. We show that our construction being
a non-shielding construction is essential by showing that a fully-black-box and
shielding construction of an IND-CCA secure PKE scheme based on our as-
sumptions is impossible by extending the impossibility result shown by Gertner
et al. [21]. More specifically, we show that there is no fully-black-box and shield-
ing construction of an IND-CCA secure PKE scheme based on a projection-KDM
secure PKE scheme that trivially implies both of our building blocks.

Extension to TDF. As the second main result, we extend the above construction
of an IND-CCA secure PKE scheme into that of a TDF by additionally requiring
a mild requirement for each building block. Our TDF satisfies adaptive one-
wayness [27]. Adaptive one-wayness ensures that an adversary cannot invert a
function in the family even under the existence of the inversion oracle, and thus
it is a much stronger security property compared to ordinary one-wayness.

The additional requirements for the building blocks are as follows.
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– First, we require that the underlying IND-CPA secure PKE scheme have the
pseudorandom ciphertext property. Namely, a ciphertext of the underlying
IND-CPA secure PKE scheme needs to be indistinguishable from a uniformly
random element sampled from the ciphertext space of the scheme.

– Second, we require that the underlying projection-KDM secure SKE scheme
be randomness-recoverable. Namely, random coins used to encrypt a message
needs to be recovered together with the message in the decryption process.

Both of the above two requirements are mild in the following sense.
For the first requirement, a number of IND-CPA secure PKE schemes based

on concrete computational assumptions naturally have this property. In fact,
as far as we know, an IND-CPA secure PKE scheme satisfying the pseudoran-
dom ciphertext property can be constructed from any concrete computational
assumption implying IND-CPA secure PKE.

For the second requirement, the randomness-recovering property is easy to
achieve in the secret-key setting while this property is so hard to achieve in the
public-key setting that it immediately yields a TDF. Projection-KDM secure
PKE schemes based on projective hash functions [11,12,39] can easily be trans-
formed into SKE variants satisfying the randomness-recovering property. Also,
projection-KDM secure SKE schemes based on the learning-parity-with-noise
(LPN) and learning-with-errors (LWE) assumptions proposed by Applebaum,
Cash, Peikert, and Sahai [3] already satisfy this property. Moreover, even the
recent constructions of KDM secure PKE schemes based on the computational
Diffie-Hellman (CDH) and factoring assumptions [13,16] can be transformed into
one-time projection-KDM secure SKE with the randomness-recovering property.

As noted above, the additional requirements needed to realize a TDF are
mild. As a result, we can instantiate our TDF based on a wide variety of com-
putational assumptions. Especially, by combining the previous results [42,3], we
obtain the first TDF (with adaptive one-wayness) based on the sub-exponential
hardness of the constant-noise LPN problem. Moreover, we also obtain the first
TDF satisfying adaptive one-wayness based on the low-noise LPN assumption.
Previously to our work, a TDF satisfying ordinary one-wayness based on the
low-noise LPN assumption was shown by Kiltz, Masny, and Pietrzak [26].

1.3 Concurrent and Subsequent Works

Very recently, in a concurrent work, Lombardi, Quach, Rothblum, Wichs, and
Wu [31] showed how to construct a reusable designated-verifier non-interactive
zero-knowledge (DV-NIZK) argument system based on the combination of an
IND-CPA secure PKE scheme and a hinting PRG. In one of the steps in their
construction, they employed the construction methodology of Koppula and Wa-
ters [30], and a hinting PRG is used in the step.

Based on our technique in this paper, Lombardi et al. [32] (in their latest
update on May 23, 2019) and Kitagawa and Matsuda [28] independently and
concurrently observe that a hinting PRG used in Lombardi et al.’s reusable DV-
NIZK argument system can also be replaced with a one-time P-KDM secure
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SKE in exactly the same way as we do in our work. That is, these works show
that a reusable DV-NIZK argument system can be constructed from an IND-
CPA secure PKE scheme and a one-time P-KDM secure SKE scheme. This leads
to the first reusable DV-NIZK argument system based on the LPN assumption.

Furthermore, Kitagawa and Matsuda [28] show that using the reusable DV-
NIZK argument system above and our result on IND-CCA secure PKE, we
can transform a KDM-CPA secure PKE scheme into a KDM-CCA secure one
without requiring any additional assumption. This leads to the first KDM-CCA
secure PKE schemes based on the CDH and LPN assumptions.

1.4 Paper Organization

In Section 2, we show an overview of our techniques. In Section 3, we review
definitions of cryptographic primitives. In Section 4, we show our proposed IND-
CCA secure KEM. In Section 5, we prove the impossibility of fully-black-box
shielding constructions. Finally, in Section 6, we present our proposed TDF.

Many of the details are omitted due to the space limitation. See the full
version [29] for all the details.

2 Technical Overview

We give an overview of our techniques.

2.1 Achieving IND-CCA Security via Randomness-Recovering

One of classical mechanisms for achieving IND-CCA security is adopting a va-
lidity checking by re-encryption in the decryption process. In this technique, we
make an encryption scheme randomness-recoverable, that is, a randomness used
to generate a ciphertext is recovered during the decryption process. Then, when
decrypting the ciphertext, we can check that the ciphertext was well-formed by
re-encrypting the decrypted message using the recovered randomness.

Such a mechanism can be easily implemented in the random oracle model.
Fujisaki and Okamoto [19] showed that by designing the encryption algorithm as
Enc(pk, r∥m;H(r∥m)), we can construct an IND-CCA secure PKE scheme based
on the above strategy, where Enc(pk, ·; ·) is the encryption algorithm of an IND-
CPA secure PKE scheme and H is a hash function modeled as a random oracle.
On the other hand, in the standard model, realizing a randomness-recoverable
encryption scheme is difficult. Almost all existing such schemes are based on a
TDF with advanced security properties [34,38,27]. The main theme of this work
is how we implement the mechanism in the standard model when starting from
an IND-CPA secure PKE scheme.

A naive idea for our goal would be to design the encryption algorithm as
Enc(pk, r∥m; r), where Enc(pk, ·; ·) again denotes the encryption algorithm of an
IND-CPA secure PKE scheme. Unfortunately, it seems difficult to prove the
security of this construction based on its IND-CPA security, since in order to
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rely on IND-CPA security, we need to ensure that a message to be encrypted is
completely independent of the encryption randomness r.

A natural idea to remove the dependency is to use a variant of the hybrid en-
cryption paradigm. Namely, we design the encryption algorithm as (Enc(pk, s; r),
E(s, r∥m)), where E(s, ·) is the encryption algorithm of an SKE scheme. At first
glance, the dependency is removed, but the construction is in fact at a “dead-
lock” and it also seems difficult to prove its security. We can solve the dead-
lock by using the signaling technique4 recently introduced by Koppula and Wa-
ters [30] who showed how to construct IND-CCA secure ABE from IND-CPA
secure one using a PRG with a special security property called hinting PRG.

2.2 Partial Randomness-Recovering Using the Signaling Technique

We now use 2n public keys (pkvi )i∈[n],v∈{0,1} of the IND-CPA secure PKE scheme
to encapsulate a secret key s = (s1, . . . , sn) ∈ {0, 1}n of the SKE scheme, where
[n] := {1, . . . , n}. Below, let (skvi )i∈[n],v∈{0,1} be secret keys corresponding to
(pkvi )i∈[n],v∈{0,1}. Roughly, we “encode” each bit si of s as (ct

0
i , ct

1
i ), where

ctsii = Enc(pksii , 1; r
si
i ) and ct1−sii = Enc(pk1−sii , 0; r1−sii ).

Namely, we encapsulate s by using 2n ciphertexts (ct0i , ct
1
i )i∈[n]. During the de-

capsulation, we decrypt ct0i by using sk0i and set si := 0 if the decryption result
is 1 and si := 1 otherwise.

Of course, if we encrypt all of the random coins (rvi )i∈[n],v∈{0,1} used to
encapsulate s by the SKE scheme to make the resulting scheme randomness-
recoverable, it leads to a dead-lock as before. However, by using the signaling
technique used by Koppula and Waters, we can perform the validity check by
re-encrypting n out of 2n ciphertexts of the IND-CPA secure PKE scheme in
the decryption process, and solve the dead-lock as follows.

We say that “an encoding (ct0i , ct
1
i ) signals α” when ctαi encrypts 1. By us-

ing an (ordinary) PRG and adding a “tag” Ti to each encoding (ct0i , ct
1
i ) as

(ct0i , ct
1
i ,Ti), we can build a mechanism ensuring that it is statistically impossi-

ble to generate an encoding (ct0i , ct
1
i ,Ti) that signals both 0 and 1 at the same

time. In order to implement this mechanism, we also add some random strings to
the public key that are used to generate tags, but we ignore them for simplicity
in this overview. In this case, we can perform the validity check of the key en-
capsulation part (ct0i , ct

1
i ,Ti)i∈[n] by checking whether (ctsii )i∈[n] are well-formed

encryptions of 1 by re-encryption. This is intuitively because if we confirm that
these n ciphertexts are encryptions of 1, we can also be sure that the remaining n
ciphertexts (ct1−sii )i∈[n] are not encrypting 1 due to the added mechanism based
on the PRG and tags (Ti)i∈[n], and thus we can finish the pseudo-validity-check
of all 2n ciphertexts of the key encapsulation part. Thus, in this construction, in
addition to a message to be encrypted, the SKE scheme needs to encrypt only
n random coins (rsii )i∈[n] used to generate (ctsii )i∈[n].

4 Garg, Gay, and Hajiabadi [20] also used a similar technique called mirroring.
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2.3 Outline of the Proof: Necessity of KDM Secure SKE

We explain how to prove the IND-CCA security of the above construction. A
ciphertext of the scheme is of the form(

(ct0i , ct
1
i ,Ti)i∈[n], E(s, (rsii )i∈[n]∥m)

)
.

The general picture of the security proof is the same as that for the ordinary
hybrid encryption scheme, and thus we first eliminate the information of s from
the key encapsulation part (ct0i , ct

1
i ,Ti)i∈[n] and then complete the entire proof

by using the security of SKE.
We first explain how to eliminate the information of s from the key encapsu-

lation part. In the security proof, thanks to the validity check by re-encryption
in the decryption process, we can simulate the decryption oracle correctly by
using (sksii )i∈[n] instead of (sk0i )i∈[n]. In this case, we can change the distribu-

tion of (ct1−sii )i∈[n] in the challenge ciphertext by using the IND-CPA security

of the PKE scheme since (r1−sii )i∈[n] used to generate (ct1−sii )i∈[n] are not en-
crypted by the SKE scheme and the decryption oracle can be simulated without
(sk1−sii )i∈[n]. We can eliminate the information of s from the key encapsula-

tion part (ct0i , ct
1
i ,Ti)i∈[n] by changing (ct1−sii )i∈[n] encrypting 0 into ciphertexts

encrypting 1. This means that after this change, every encoding (ct0i , ct
1
i ,Ti)

contained in the challenge ciphertext signals 0 and 1 at the same time. While
an adversary cannot generate such an encoding that signals 0 and 1 at the same
time as noted above, the reduction algorithm can do it by programming random
strings contained in the public key that are used to generate tags (Ti)i∈[n].

Since we eliminate the information of s from the key encapsulation part
above, it seems that we can complete the entire security proof by using the
security of the SKE scheme. However, in order to do so, we need an SKE scheme
that satisfies KDM security. This is because the underlying SKE scheme needs to
encrypt (rsii )i∈[n], which is a message depending on the key s. Concretely, (rsii )i∈[n]
can be seen as f(s) for the function f that has (rvi )i∈[n],v∈{0,1} hardwired, and
given s ∈ {0, 1}n outputs (rsii )i∈[n]. Such a function is described as a very simple
form of functions called projection functions, for which KDM security has been
widely studied [11,3,12,2,13,16]. In our construction, we need an SKE scheme
satisfying only one-time KDM security with respect to projection functions,
since our construction is basically a hybrid encryption scheme. This is the reason
KDM secure SKE is needed for our construction of IND-CCA secure PKE.

The Construction by Koppula and Waters [30]. The construction we explained
so far is in fact almost the same as the PKE variant of the construction proposed
by Koppula and Waters, except that a one-time KDM secure SKE scheme is used
instead of a hinting PRG. Here, we briefly explain the notion of hinting PRG
and how it is used in their construction.

A hinting PRG is a PRG that, given an n-bit string x, outputs an (n+1) · ℓ-
bit string y0∥y1∥ · · · ∥yn, where yi is an ℓ-bit string for every i ∈ [n]. Then,
its security property requires that Y := y0∥(yi,0∥yi,1)i∈[n] ∈ {0, 1}(2n+1)·ℓ be
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indistinguishable from a uniformly random string in {0, 1}(2n+1)·ℓ, where yi,xi
=

yi and yi,1−xi
is a uniformly random string in {0, 1}ℓ for every i ∈ [n]. We see

that the locations where y1, · · · yn are placed in Y depend on the seed x, and
thus Y itself can be seen as a “hint” of the seed x. Therefore, we can say that the
security property of a hinting PRG requires that its output be pseudorandom
even if such a hint of the seed is revealed.

Koppula and Waters used a hinting PRG HPRG in their construction as
follows. When encrypting a message m, their scheme first generates a seed x =
(x1, · · · , xn) ∈ {0, 1}n of HPRG and computes y0∥y1∥ · · · ∥yn ← HPRG(x). Then,
it generates an encapsulation of x by generating an encoding (ct0i , ct

1
i ,Ti) of xi

in which yi is used as the encryption randomness for ctxi
i for every i ∈ [n]. Note

that ct1−xi
i is generated by using truly random coins. Moreover, it generates the

data encapsulation part as m⊕ y0. The resulting ciphertext is of the form(
(ct0i , ct

1
i ,Ti)i∈[n], m⊕ y0

)
.

When decrypting the ciphertext, we can first recover x and thus y0∥y1∥ · · · ∥yn ←
HPRG(x) from the encapsulation part. Since (y1, · · · , yn) are random coins used
to generate (ctxi

i )i∈[n], we can also perform the pseudo-validity-check of all 2n
ciphertexts of the key encapsulation part as we explained above. The security
proof of their construction also goes through in a similar fashion to the proof of
our construction, except that the security property of HPRG is utilized instead
of KDM security.

2.4 Extension to TDF

We explain how we extend the above construction of IND-CCA secure PKE
based on IND-CPA secure PKE and one-time KDM secure SKE, into a TDF.
More concretely, we explain how we make the above construction completely
randomness-recoverable.

In the above construction, there are two types of encryption randomness
that are not recovered in the decryption process. The first one is (r1−sii )i∈[n] for
the underlying IND-CPA secure PKE scheme. The other one is the encryption
randomness for the underlying SKE scheme. We require an additional require-
ment for each building block to make it possible to recover these two types of
encryption randomness.

First, to deal with (r1−sii )i∈[n] for the IND-CPA secure PKE scheme, we
require the underlying IND-CPA secure PKE scheme have the pseudorandom
ciphertext property. Namely, we require that a ciphertext of the underlying IND-
CPA secure PKE scheme be indistinguishable from a uniformly random element
sampled from the ciphertext space of the scheme. In the above construction,
recall that we encode each bit si of s as (ct

0
i , ct

1
i ,Ti), where ct

si
i = Enc(pksii , 1; r

si
i )

and ct1−sii = Enc(pk1−sii , 0; r1−sii ). We now modify the way si is encoded so that
ct1−sii is an element sampled from the ciphertext space uniformly at random.
We can still decode si correctly with overwhelming probability thanks to the
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signaling technique even if we add this modification.5 Then, we see that the issue
of recovering (r1−sii )i∈[n] is solved by designing the TDF such that (ct1−sii )i∈[n]
are directly sampled from the ciphertext space as part of an input to the TDF.

Second, to deal with the random coins for the SKE scheme, we simply re-
quire that the SKE scheme be randomness-recoverable. Namely, we require that
random coins used to encrypt a message be recovered with the message in the
decryption process. The randomness-recovering property is easy to achieve in the
secret-key setting, and it is also the case even if we require the SKE scheme to be
KDM secure. In fact, we can easily construct a one-time projection-KDM secure
SKE scheme that is randomness-recoverable by modifying existing projection-
KDM secure PKE schemes [11,12,39,13,16]. Moreover, the projection-KDM se-
cure SKE schemes based on the LPN and LWE assumptions proposed by Ap-
plebaum et al. [3] already satisfy this property.

With the help of these two additional requirements, we can modify our IND-
CCA secure PKE scheme into a TDF. Since our TDF is an extension of IND-CCA
secure PKE, it naturally satisfies adaptive one-wayness [27].

2.5 Optimizations and Simplifications

Finally, we explain several optimizations and simplifications that are applied in
the actual constructions.

The first optimization is on the number of key pairs of the underlying IND-
CPA secure PKE scheme. In the above overview, 2n key pairs of the underlying
IND-CPA secure PKE scheme are used to construct the key encapsulation part
(ct0i , ct

1
i ,Ti)i∈[n]. In our actual constructions, we use only two key pairs of the

underlying IND-CPA secure PKE scheme. More concretely, in our actual con-
structions, every encoding (ct0i , ct

1
i ,Ti) is generated by using the same pair of

public keys (pk0, pk1). In fact, if we allow a public parameter shared by all users
of the resulting schemes, even one of these public keys, pk1, can be put into the
public parameter, and a public key of the resulting IND-CCA secure scheme and
an evaluation key of the resulting TDF consist only of a single public key pk0 of
the underlying IND-CPA secure scheme. This optimization is possible by devis-
ing at which step of the hybrid games we switch the secret keys of the underlying
IND-CPA secure PKE scheme used to simulate the decryption oracle.

The second optimization is on how to make each tag Ti contained in each
encoding (ct0i , ct

1
i ,Ti). In the original signaling technique, a one-time signature

scheme is additionally used in order to generate tags. We show that we can re-
place a one-time signature scheme with a target collision resistant hash function.
Such a technique was previously used by Matsuda and Hanaoka [33]. Although
both of these primitives can be realized using only a one-way function as an as-
sumption [37], this improvement is critical when constructing a TDF since if we
attempt to use a one-time signature scheme for constructing a TDF, we would
need to recover the random coins used to generate a key pair of the one-time

5 While we cannot achieve perfect correctness by this modification, we can still achieve
almost-all-keys correctness [18]. For its formal definition, see Section 3.
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signature scheme during the inversion process. We can avoid this issue by the use
of a target collision resistant hash function instead. This modification is made
possible due to the use of a deferred analysis technique in the security proof.

Third, we make a simplification by using key encapsulation mechanism (KEM)
instead of PKE. In this overview, we have explained how to construct an IND-
CCA secure PKE scheme and a TDF based on IND-CPA secure PKE by ad-
ditionally using KDM secure SKE. In our actual proposals, we construct an
IND-CCA secure KEM (and a TDF) based on IND-CPA secure KEM and KDM
secure SKE. As explained above, in the original signaling technique, we use an
(ordinary) PRG. More precisely, in the original signaling technique, ctsii in each
encoding is generated as ctsii = Enc(pksii , 1∥ui; r

si
i ), where ui is a seed of PRG.

In our actual construction, in order to hide the use of a PRG from the descrip-
tion and simplify the construction, we use a KEM whose session-key space is
sufficiently larger than its randomness space. We can generically transform an
IND-CPA secure PKE scheme into a KEM with such a property. We show that
the signaling technique can be implemented by using such a KEM.

For the construction of TDF, we also add an optimization that is made
possible by the pseudorandom ciphertext property of the underlying IND-CPA
secure PKE scheme. By this optimization, an image of a function consists of n
ciphertexts of the IND-CPA secure PKE scheme corresponding to (ctsii )i∈[n], n
tags (Ti)i∈[n], and a ciphertext of the SKE scheme.

We finally remark that all of the above optimizations and simplifications can
be brought back to the construction of an IND-CCA secure ABE scheme based
on an IND-CPA secure one and a hinting PRG by Koppula and Waters [30].

3 Preliminaries

In this section, we review the basic notation and the definitions of main crypto-
graphic primitives. For the definitions of primitives that are not reviewed here,
see the full version of this paper [29].

Basic Notation. N denotes the set of natural numbers, and for n ∈ N, we define
[n] := {1, . . . , n}. For a discrete finite set S, |S| denotes its size, and x

r←− S
denotes choosing an element x uniformly at random from S. For strings x and
y, x∥y denotes their concatenation. For a (probabilistic) algorithm or a function
A, y ← A(x) denotes assigning to y the output of A on an input x, and if we
need to specify a randomness r used in A, we denote y ← A(x; r) (in which case
the computation of A is understood as deterministic on input x and r). Sup(A)

denotes the support of A. For any values x, y, (x
?
= y) is defined to be 1 if x = y

and 0 otherwise. λ denotes a security parameter. (P)PT stands for (probabilistic)
polynomial time. A function f(λ) is said to be negligible if f(λ) tends to 0 faster
than 1

λc for every constant c > 0. We write f(λ) = negl(λ) to denote that f(λ)
is a negligible function. poly(·) denotes an unspecified positive polynomial.
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3.1 Key Encapsulation Mechanism

Here, we review the definitions for a KEM. For the definition of correctness,
we formalize “almost-all-keys” correctness, which is naturally adapted from the
definition for PKE formalized by Dwork, Naor, and Reingold [18].

A key encapsulation mechanism (KEM) KEM consists of the three PPT al-
gorithms (KKG,Encap,Decap). KKG is the key generation algorithm that takes
1λ as input, and outputs a public/secret key pair (pk, sk). We assume that the
security parameter λ determines the ciphertext space C, the session-key space
K, and the randomness space R of Encap. Encap is the encapsulation algorithm
that takes a public key pk as input, and outputs a ciphertext/session-key pair
(ct, k). Decap is the (deterministic) decapsulation algorithm that takes a secret
key sk and a ciphertext ct as input, and outputs a session-key k or the invalid
symbol ⊥ /∈ K.

Letting ϵ : N → [0, 1], we say that a KEM KEM = (KKG,Encap,Decap) is
ϵ-almost-all-keys correct if we have

ErrKEM(λ) := Pr
(pk,sk)←KKG(1λ)

[
∃r ∈ R s.t.

Encap(pk; r) = (ct, k)
∧ Decap(sk, ct) ̸= k

]
= ϵ(λ).

(A public key pk under which incorrect decapsulation could occur is called er-
roneous.) Furthermore, we just say that KEM is correct (resp. almost-all-keys
correct) if ErrKEM(λ) is zero (resp. negl(λ)).

Now we review the security definitions for a KEM used in this paper, which
are IND-CCA security, IND-CPA security, and the pseudorandom ciphertext
property. For convenience, we will define the multi-challenge versions for the
latter two notions, which are polynomially equivalent to the single-challenge
versions via a standard hybrid argument.

Definition 1 (Security Notions for a KEM). Let KEM = (KKG,Encap,
Decap) be a KEM whose ciphertext and session-key spaces are C and K, respec-
tively. We say that KEM satisfies

– IND-CCA security if for all PPT adversaries A, we have AdvccaKEM,A(λ) :=
2 · |Pr[ExptccaKEM,A(λ) = 1]− 1/2| = negl(λ), where ExptccaKEM,A(λ) is defined as
in Figure 1 (left), and in the experiment, A is not allowed to submit ct∗ to
the decapsulation oracle Decap(sk, ·).

– IND-CPA security if for all PPT adversaries A and all polynomials ℓ = ℓ(λ),
we have Advmcpa

KEM,ℓ,A(λ) := 2 · |Pr[Exptmcpa
KEM,ℓ,A(λ) = 1]−1/2| = negl(λ), where

Exptmcpa
KEM,ℓ,A(λ) is defined as in Figure 1 (center).

– the pseudorandom ciphertext property if for all PPT adversaries A and all
polynomials ℓ = ℓ(λ), we have Advmprct

KEM,ℓ,A(λ) := 2 · |Pr[Exptmprct
KEM,ℓ,A(λ) =

1]− 1/2| = negl(λ), where Exptmprct
KEM,ℓ,A(λ) is defined as in Figure 1 (right).

3.2 Secret-Key Encryption

A secret-key encryption (SKE) scheme SKE consists of the three PPT algorithms
(K,E,D). K is the key generation algorithm that takes 1λ as input, and outputs



12 F. Kitagawa et al.

ExptccaKEM,A(λ) :

(pk, sk)← KKG(1λ)
(ct∗, k∗1)← Encap(pk)
k∗0 ← K
b

r←− {0, 1}
b′ ← ADecap(sk,·)(pk, ct∗, k∗b)

Return (b′
?
= b).

Exptmcpa
KEM,ℓ,A(λ) :

(pk, sk)← KKG(1λ)
∀i ∈ [ℓ] :
(ct∗i , k

∗
i,1)← Encap(pk)

k∗i,0
r←− K

b
r←− {0, 1}

b′ ← A(pk, (ct∗i , k∗i,b)i∈[ℓ])

Return (b′
?
= b).

Exptmprct
KEM,ℓ,A(λ) :

(pk, sk)← KKG(1λ)
∀i ∈ [ℓ] :
(ct∗i,1, k

∗
i,1)← Encap(pk)

(ct∗i,0, k
∗
i,0)

r←− C ×K
b

r←− {0, 1}
b′ ← A(pk, (ct∗i,b, k∗i,b)i∈[ℓ])

Return (b′
?
= b).

Fig. 1. Security experiments for a KEM: IND-CCA experiment (left), (Multi-challenge)
IND-CPA experiment (center), and the (multi-challenge) pseudorandom ciphertext
property experiment (right).

a secret key sk. We assume that the security parameter λ determines the secret
key space K and the message spaceM. E is the encryption algorithm that takes
a secret key sk and a plaintext m as input, and outputs a ciphertext ct. D is the
(deterministic) decryption algorithm that takes a secret key sk and a ciphertext
ct as input, and outputs a plaintext m or the invalid symbol ⊥ /∈ M. An SKE
scheme SKE = (K,E,D) is said to be correct if for all sk ∈ K and all m ∈ M, it
holds that D(sk,E(sk,m)) = m.

In our proposed constructions of a TDF, we will use an SKE scheme that
satisfies the “randomness-recovering decryption” property, which requires that
for an honestly generate ciphertext, the randomness used to generate it can be
recovered in the decryption process. We formally define the property as follows.

Definition 2 (Randomness-Recovering Decryption). Let SKE = (K,E,D)
be an SKE scheme whose secret key space is K, whose plaintext space is M,
and the randomness space of whose encryption algorithm E is R. We say that
SKE satisfies the randomness-recovering decryption property, if there exists a
deterministic PT algorithm RD (called the randomness-recovering decryption
algorithm) such that for all sk ∈ K, all m ∈ M, and all r ∈ R, we have
RD(sk,E(sk,m; r)) = (m, r).

Here, we recall KDM security of an SKE scheme. For simplicity, we only give
the definition for the single key setting, which is sufficient for our purpose.

Definition 3 (KDM Security). Let SKE = (K,E,D) be an SKE scheme with
a secret key space K and a plaintext space M. For a family of functions F
with domain K and range M and an adversary A, consider the experiment
ExptkdmSKE,F,A(λ) defined as in Figure 2 (left), where the KDM-encryption oracle
Okdm is described in Figure 2 (center).

We say that SKE is F-KDM secure if for all PPT adversaries A, we have
AdvkdmSKE,F,A(λ) := 2 · |Pr[ExptkdmSKE,F,A(λ) = 1]− 1/2| = negl(λ).

Furthermore, we say that SKE is one-time F-KDM secure if AdvkdmSKE,F,A(λ)
= negl(λ) for all PPT adversaries A that make a single KDM-encryption query.
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ExptkdmSKE,F,A(λ) :

sk← K(1λ)

b
r←− {0, 1}

b′ ← AOkdm(·,·)(1λ)

Return (b′
?
= b).

Okdm((f0, f1) ∈ F2) :
ct← E(sk, fb(sk))
Return ct.

ExptaowTDF,A(λ) :

(ek, td)← Setup(1λ)
x∗ ← Samp(1λ)
y∗ ← Eval(ek, x∗)

x′ ← AInv(td,·)(ek, y∗)

Return (x′
?
= x).

Fig. 2. The KDM security experiment for an SKE (left) scheme, the KDM-encryption
oracle used in the KDM security experiment (center), and the adaptive one-wayness
experiment for a TDF (right).

Function Families for KDM Security. We will deal with the following function
families for KDM security of an SKE scheme with key space K and plaintext
spaceM:

– P (Projection functions): A function is said to be a projection function if
each of its output bits depends on at most a single bit of its input. We denote
by P the family of projection functions with domain K and rangeM.

– Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size =
size(λ) is a polynomial, the function family with domain K and rangeM such
that each member in Bsize can be described by a circuit of size size.

3.3 Trapdoor Function

Here, we review the definitions for a TDF. As in the KEM case, for correctness,
we will define almost-all-keys correctness.

A trapdoor function (TDF) TDF consists of the four PPT algorithms (Setup,
Samp,Eval, Inv): Setup is the setup algorithm that takes 1λ as input, and outputs
an evaluation key/trapdoor pair (ek, td). We assume that the security parame-
ter λ determines the domain X . Samp is the domain sampling algorithm that
takes 1λ as input, and outputs a domain element x ∈ X . Eval is the evaluation
algorithm that takes an evaluation key ek and a domain element x as input, and
outputs some element y. Inv is the (deterministic) inversion algorithm that takes
a trapdoor td and an element y as input, and outputs some element x which
could be the invalid symbol ⊥ /∈ X .

Letting ϵ : N → [0, 1], we say that a TDF TDF = (Setup,Samp,Eval, Inv) is
ϵ-almost-all-keys correct if we have

ErrTDF(λ) := Pr
(ek,td)←Setup(1λ)

[
∃x ∈ X s.t. Inv(td,Eval(ek, x)) ̸= x

]
= ϵ(λ).

Furthermore, we just say that TDF is correct (resp. almost-all-keys correct) if
ErrTDF(λ) is zero (resp. negl(λ)).

Definition 4 (Adaptive One-wayness/(Ordinary) One-wayness). Let
TDF = (Setup,Samp,Eval, Inv) be a TDF with domain X . We say that TDF
is adaptively one-way if for all PPT adversaries A, we have AdvaowTDF,A(λ) :=



14 F. Kitagawa et al.

Pr[ExptaowTDF,A(λ) = 1] = negl(λ), where ExptaowTDF,A(λ) is defined as in Figure 2
(right), and in the experiment, A is not allowed to submit y∗ to the inversion
oracle Inv(td, ·).

Furthermore, we say that TDF is one-way if AdvaowTDF,A(λ) = negl(λ) for all
adversaries that never use the inversion oracle Inv(td, ·).

4 Chosen Ciphertext Security via KDM Security

In this section, we show our proposed construction of an IND-CCA secure KEM.
Specifically, in Section 4.1, we present the formal description of our proposed

KEM, state theorems regarding its correctness/security, and discuss its conse-
quences and extensions. Then, in Sections 4.2 and 4.3, we prove the correctness
and IND-CCA security of our proposed construction, respectively.

4.1 Our Construction

Let ℓ = ℓ(λ) be a polynomial, which will denote the session-key length of the
constructed KEM. Our construction uses the building blocks KEM, SKE, and
Hash with the following properties:

– KEM = (KKG,Encap,Decap) is a KEM such that (1) its session-key space
is {0, 1}4λ, (2) the randomness space of Encap is {0, 1}λ, and (3) the image
size of Decap(sk, ·) for any sk output by KKG(1λ) (other than ⊥) is at most
2λ.6

– SKE = (K,E,D) is an SKE scheme whose secret key space is {0, 1}n for some
polynomial n = n(λ) and whose plaintext space is {0, 1}n·λ+ℓ, and we denote
the randomness space of E by RSKE.

– Hash = (HKG,H) is a keyed hash function such that the range of H is {0, 1}λ,
which we are going to assume to be target collision resistant.

Using these building blocks, the proposed KEM KEMcca = (KKGcca,Encapcca,
Decapcca) is constructed as in Figure 3. Its session-key space is {0, 1}ℓ, and the
randomness space R of Encapcca is R = {0, 1}n × ({0, 1}λ)2n × {0, 1}ℓ ×RSKE.

For the correctness and security of KEMcca, the following theorems hold.

Theorem 1. Let ϵ = ϵ(λ) ∈ [0, 1]. If KEM is ϵ-almost-all-keys correct and SKE
is correct, then KEMcca is (ϵ+ n · 2−λ)-almost-all-keys correct.

Theorem 2. Assume that KEM is almost-all-keys correct and IND-CPA secure,
SKE is one-time P-KDM secure, and Hash is target collision resistant. Then,
KEMcca is IND-CCA secure.

The proofs of Theorems 1 and 2 are given in Sections 4.2 and 4.3, respectively.

6 These three requirements are without loss of generality for an IND-CPA secure
KEM: The properties (1) and (3) can be achieved by stretching a session-key of a
KEM with session-key space {0, 1}λ by using a PRG G : {0, 1}λ → {0, 1}4λ, and the
randomness space of Encap can also be freely adjusted by using a PRG.
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KKGcca(1
λ) :

∀v ∈ {0, 1} : (pkv, skv)← KKG(1λ)

A1, . . . ,An,B
r←− {0, 1}4λ

hk← HKG(1λ)
PK← (pk0, pk1, (Ai)i∈[n],B, hk)
SK← (sk0,PK)
Return (PK, SK).

Encapcca(PK) :
(pk0, pk1, (Ai)i∈[n],B, hk)← PK
s = (s1, . . . , sn)← K(1λ)

r01, . . . , r
0
n, r

1
1, . . . , r

1
n

r←− {0, 1}λ

k
r←− {0, 1}ℓ

ctSKE ← E(s, (rsii )i∈[n]∥k)
∀(i, v) ∈ [n]× {0, 1} :
(ctvi , k

v
i )← Encap(pkv; rvi )

h← H(hk, (ct0i , ct
1
i )i∈[n]∥ctSKE)

∀i ∈ [n] :

Ti ← ksii + si · (Ai + B · h) (†)

=

{
k0i if si = 0

k1i + Ai + B · h if si = 1

CT← ((ct0i , ct
1
i ,Ti)i∈[n], ctSKE)

Return (CT, k).

Decapcca(SK,CT) :
(sk0,PK)← SK
(pk0, pk1, (Ai)i∈[n],B, hk)← PK
((ct0i , ct

1
i ,Ti)i∈[n], ctSKE)← CT

h← H(hk, (ct0i , ct
1
i )i∈[n]∥ctSKE)

∀i ∈ [n] :

si ← 1− (Decap(sk0, ct0i )
?
= Ti)

(⋆)

=

{
0 if Decap(sk0, ct0i ) = Ti

1 otherwise

s← (s1, . . . , sn) ∈ {0, 1}n
m← D(s, ctSKE)
Parse m as ((rsii )i∈[n], k) ∈ ({0, 1}λ)n × {0, 1}ℓ.
If ∀i ∈ [n] :
Encap(pksi ; rsii ) = (ctsii ,Ti − si · (Ai + B · h))

then return k else return ⊥. (†)

Fig. 3. The proposed KEM KEMcca.
(†) h ∈ {0, 1}λ is treated as an element of {0, 1}4λ

by some canonical injective encoding (say, putting the prefix 03λ), and the arithmetic
is done over GF(24λ) where we identify {0, 1}4λ with GF(24λ). (⋆) We call this step the
find step.

Implications to Black-Box Constructions/Reductions. It is straightforward to
see that our construction uses the underlying primitives in a black-box manner.
As will be clear from our security proof, our reduction algorithms also treat
the underlying primitives and an adversary in a black-box manner. In fact, our
construction/reduction is fully black-box in the sense of [36]. Since there exists
a black-box construction of a target collision resistant hash function from a one-
way function, which can be trivially constructed from an IND-CPA secure PKE
scheme/KEM in a black-box manner, and since an IND-CCA/CPA PKE scheme
and KEM imply each other (in a black-box manner), we obtain the following
result as a corollary of our theorems.

Corollary 1. There exists a fully black-box construction of an IND-CCA secure
PKE scheme/KEM from an IND-CPA secure PKE scheme/KEM and a one-time
P-KDM secure SKE scheme that can encrypt plaintexts of length Ω(n ·λ), where
n = n(λ) is the secret key length of the SKE scheme.

Furthermore, since a P-KDM secure PKE scheme trivially implies both
an IND-CPA secure PKE scheme/KEM and a one-time P-KDM secure SKE
scheme, we obtain another corollary.
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Corollary 2. There exists a fully black-box construction of an IND-CCA secure
PKE scheme/KEM from a P-KDM secure PKE scheme.

In contrast to Corollary 2, in Section 5, we will show that there exists no
shielding black-box construction [21] of an IND-CCA1 secure PKE scheme from
a P-KDM secure PKE scheme.

In [33], Matsuda and Hanaoka showed a construction of an IND-CCA secure
PKE scheme/KEM from a PKE scheme satisfying the security notion called the
sender non-committing property and a one-time Bsize-KDM secure SKE scheme
(where size is related to the running time of the sender non-committing en-
cryption scheme). Although their construction uses the underlying primitives as
black-boxes, their security reduction (to the Bsize-KDM security of the underly-
ing SKE scheme) is non-black-box in the sense that the reduction needs to use
the description of one of the algorithms in the sender non-committing encryp-
tion scheme as a KDM-encryption query. Compared to the result by Matsuda
and Hanaoka, our results are superior in terms of both the strength of the as-
sumptions on the building blocks (IND-CPA security is weaker than the sender
non-committing property, and P-KDM security is weaker than Bsize-KDM secu-
rity), and the “black-boxness” of the reductions.

Hinting PRG vs. KDM Secure SKE. As mentioned earlier, the result of Koppula
and Waters [30], when specialized to PKE, implies that if there exists an IND-
CPA secure PKE scheme and a hinting PRG, one can realize an IND-CCA secure
PKE scheme. Given our result in this section and the result of [30], it is natural to
ask whether there exists an implication/separation between a (one-time) KDM
secure SKE scheme and a hinting PRG. We give a partial affirmative answer to
this question. Specifically, we show the following theorem.

Theorem 3. If there exists a hinting PRG, then for any polynomials m = m(λ)
and size = size(λ) ≥ m, there exists a one-time Bsize-KDM secure SKE scheme
whose plaintext space is {0, 1}m. Furthermore, for any polynomial m = m(λ),
there exists a fully black-box construction of a one-time P-KDM secure SKE
scheme with plaintext space {0, 1}m from a hinting PRG.

The formal proof of this theorem is given in the full version of this paper [29].
This result shows that the existence of a KDM-secure SKE scheme is not stronger
(as an assumption) than that of a hinting PRG. At this moment, it is not clear
if the implication of the opposite direction can be established.

Additional Remarks.

– If we adopt the syntax of a KEM in which there is a public parameter shared
by all users, then we can push pk1, (Ai)i∈[n], B, and hk in PK to a public
parameter, so that a key pair of each user consists only of a single key pair
(pk0, sk0) of the underlying IND-CPA secure KEM.

– Although our proposed construction satisfies only almost-all-keys correct-
ness, a minor variant of our construction can achieve perfect correctness,
by using a PKE scheme and a PRG, instead of a KEM, as done in the
Koppula-Waters construction [30].
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4.2 Proof of Correctness (Proof of Theorem 1)

Let PK = (pk0, pk1, (Ai)i∈[n],B, hk) be a public key. Using pk0, pk1, and B in PK,

we define the function f : {0, 1}3λ → {0, 1}4λ by

f(r, r′, h) :
[
(ct, k)← Encap(pk0; r); (ct′, k′)← Encap(pk1; r′); Return k−k′−B·h

]
.

We say that a public key PK is bad if (1) pk0 is erroneous, or (2) some of (Ai)i∈[n]
belongs to the image of f . Note that the image size of f is at most 23λ. Since each
Ai is chosen uniformly at random from {0, 1}4λ, when KKGcca(1

λ) is executed,

the probability that a bad PK is output is at most ϵ+ n · 2
3λ

24λ
= ϵ+ n · 2−λ.

Now, consider the case that (PK,SK) is output by KKGcca and PK is not bad.
Let R = (s = (s1, . . . , sn), (r

0
i , r

1
i )i∈[n], k, rSKE) ∈ {0, 1}n × ({0, 1}λ)2n × {0, 1}ℓ ×

RSKE be a randomness for Encapcca, and let (CT = ((ct0i , ct
1
i ,Ti)i∈[n], ctSKE), k) =

Encapcca(PK;R). Moreover, for each i ∈ [n], let s′i := 1− (Decap(sk0, ct0i )
?
= Ti).

Note that if s′i = si holds for all i ∈ [n], then the decryption result of ctSKE
using s′ = (s′1, . . . , s

′
n) as a secret key is exactly (rsii )i∈[n]∥k due to the correctness

of SKE. Thus, the validity check done in the last step of Decapcca never fails, and
Decapcca(SK,CT) will output k.

Hence, it remains to show that s′i = si holds for all i ∈ [n].

– For positions i with si = 0, we have (ct0i , k
0
i = Ti) = Encap(pk0; r0i ). Thus,

the property that pk0 is not erroneous implies Decap(sk0, ct0i ) = Ti, and we
have s′i = 0.

– For positions i with si = 1, we have (ct0i , k
0
i ) = Encap(pk0; r0i ) and (ct1i , k

1
i =

Ti−Ai−B ·h) = Encap(pk1; r1i ), where h = H(hk, (ct0i , ct
1
i )i∈[n]∥ctSKE). Since

Ai is not in the image of f , we have

Ai ̸= f(r0i , r
1
i , h) = k0i−k1i−B·h = k0i−(Ti−Ai−B·h)−B·h ⇐⇒ k0i ̸= Ti.

Furthermore, since pk0 is not erroneous, we have Decap(sk0, ct0i ) = k0i . These
together imply that we must have s′i = 1.

The above shows that s′i = si holds for all i ∈ [n].

Putting everything together, except for a probability at most ϵ+n · 2−λ over
(PK,SK)← KKGcca(1

λ), there exists no randomness R satisfying Encapcca(PK;R)
= (CT, k) and Decapcca(SK,CT) ̸= k simultaneously. □ (Theorem 1)

4.3 Proof of IND-CCA Security (Proof of Theorem 2)

Let ϵ : N → [0, 1] be such that KEM is ϵ-almost-all-keys correct. Let A be
any PPT adversary that attacks the IND-CCA security of KEMcca and makes
qdec = qdec(λ) > 0 decapsulation queries. We will show that for this A, there
exist PPT adversaries Btcr, {Bjcpa}j∈[4], B′cpa, and Bkdm (which makes a single
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KDM-encryption query) satisfying

AdvccaKEMcca,A(λ) ≤

2 · AdvtcrHash,Btcr
(λ) + 2 ·

∑
j∈[4]

Advmcpa

KEM,n,Bj
cpa
(λ) + 2qdec · Advmcpa

KEM,n,B′
cpa
(λ)

+ 2 · AdvkdmSKE,P,Bkdm
(λ) + 8ϵ+ n · 2−λ+3 + n(qdec + 1) · 2−4λ+1. (1)

This is negligible by our assumption, and thus will prove the theorem.
Our proof is via a sequence of games argument using the following six games.

Game 1: This is the IND-CCA experiment ExptccaKEMcca,A(λ). However, for mak-
ing it easier to describe the subsequent games, we change the ordering of the
operations for how the key pair (PK,SK) and the challenge ciphertext/session-
key pair (CT∗, k∗b) are generated so that the distribution of (PK,SK,CT∗, k∗b)
is identical to that in the original IND-CCA experiment.
Specifically, the description of the game is as follows:
– Generate PK = (pk0, pk1, (Ai)i∈[n],B, hk), SK = (sk0,PK), and CT∗ =

((ct∗0i , ct∗1i ,T∗i )i∈[n], ct
∗
SKE) as follows:

1. Compute (pkv, skv)← KKG(1λ) for v ∈ {0, 1}, and pick B
r←− {0, 1}4λ.

2. Compute s∗ = (s∗1, . . . , s
∗
n)← K(1λ), and pick r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n

r←− {0, 1}λ and k∗1
r←− {0, 1}ℓ.

3. Compute ct∗SKE ← E(s∗, (r
∗(s∗i )
i )i∈[n]∥k∗1).

4. Compute (ct∗vi , k∗vi )← Encap(pkv; r∗vi ) for every (i, v) ∈ [n]× {0, 1}.
5. Compute hk← HKG(1λ) and h∗ ← H(hk, (ct∗0i , ct∗1i )i∈[n]∥ct∗SKE).
6. Pick A1, . . . ,An

r←− {0, 1}4λ.
7. Compute T∗i ← k

∗(s∗i )
i + s∗i · (Ai + B · h∗) for every i ∈ [n].

8. Set PK ← (pk0, pk1, (Ai)i∈[n],B, hk), SK ← (sk0,PK), and CT∗ ←
((ct∗0i , ct∗1i ,T∗i )i∈[n], ct

∗
SKE).

– Then, pick the random session-key k∗0
r←− {0, 1}ℓ and the challenge bit

b
r←− {0, 1}, and run A(PK,CT∗, k∗b). From here on, A may start making

decapsulation queries.
– Decapsulation queries CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) are answered as fol-

lows: First, compute h← H(hk, (ct0i , ct
1
i )i∈[n]∥ctSKE). Next, compute si ←

1−(Decap(sk0, ct0i )
?
= Ti) for every i ∈ [n], and set s← (s1, . . . , sn). Then,

compute m ← D(s, ctSKE) and parse m as ((rsii )i∈[n], k) ∈ ({0, 1}λ)n ×
{0, 1}ℓ. Finally, if Encap(pksi ; rsii ) = (ctsii ,Ti − si · (Ai + B · h)) holds for
all i ∈ [n], then return k to A. Otherwise, return ⊥ to A.

– At some point, A terminates with output b′ ∈ {0, 1}.
For convenience, in the following we will use the following sets:

Szero :=
{
j ∈ [n]

∣∣∣ s∗j = 0
}

and Sone :=
{
j ∈ [n]

∣∣∣ s∗j = 1
}
= [n] \ Szero.

Game 2: Same as Game 1, except for an additional rejection rule in the de-
capsulation oracle. Specifically, in this game, if A’s decapsulation query
CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) satisfies h = H(hk, (ct0i , ct

1
i )i∈[n]∥ctSKE) = h∗,

then the decapsulation oracle immediately returns ⊥ to A.
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Game 3: Same as Game 2, except for how Ai’s for the positions i ∈ Szero
are generated. Specifically, in this game, Ai for every position i ∈ Szero is
generated by

Ai ← k∗0i − k∗1i − B · h∗. (2)

(At this point, Ai’s for the remaining positions i ∈ Sone are unchanged.)
Game 4: Same as Game 3, except for the behavior of the decapsulation oracle.

Specifically, for answering A’s decapsulation queries CT = ((ct0i , ct
1
i ,Ti)i∈[n],

ctSKE), the oracle in this game first computes h = H(hk, (ct0i , ct
1
i )i∈[n]∥ctSKE),

and returns ⊥ to A if h = h∗. (This rejection rule is the same as in Game 3.)
Otherwise, the oracle uses the “alternative decapsulation algorithm” AltDecap
and the “alternative secret key” SK′ defined below for computing the decap-
sulation result k returned to A.
AltDecap takes SK′ := (sk1,PK) and CT as input, and proceeds identically
to Decapcca(SK,CT), except that the “find step” (i.e. the step for computing
si’s) is replaced with the following procedure:

∀i ∈ [n] : si ←
(
Decap(sk1, ct1i )

?
= Ti − Ai − B · h

)
=

{
1 if Decap(sk1, ct1i ) = Ti − Ai − B · h
0 otherwise

.

Note that due to this change, the decapsulation oracle answers A’s queries
without using sk0.

Game 5: Same as Game 4, except for how Ai’s for the positions i ∈ Sone are
generated. Specifically, in this game, Ai for i ∈ Sone is also generated as in
Equation 2.
Note that due to this change, all of (Ai)i∈[n] are generated as in Equation 2.
Furthermore, T∗i = k∗0i holds for every i ∈ [n], no matter whether s∗i = 0 or
s∗i = 1. Indeed, this is the case for the positions i ∈ Szero by design. For the
positions i ∈ Sone, we have

T∗i = k∗1i + Ai + B · h∗ = k∗1i + (k∗0i − k∗1i − B · h∗) + B · h∗ = k∗0i .

Hence, in this game, values dependent on s∗ appear only in the plaintext of

ct∗SKE (i.e. (r
∗(s∗i )
i )i∈[n]∥k∗1).

Game 6: Same as Game 5, except that the information of the challenge bit b
is erased from the SKE ciphertext ct∗SKE. Specifically, in this game, ct∗SKE in
the challenge ciphertext CT∗ is generated by ct∗SKE ← E(s∗, 0n·λ+ℓ), instead

of ct∗SKE ← E(s∗, (r
∗(s∗i )
i )i∈[n]∥k∗1).

For j ∈ [6], let SUCj be the event that A succeeds in guessing the challenge
bit (i.e. b′ = b occurs) in Game j. By definition, we have AdvccaKEMcca,A(λ) =
2 · |Pr[SUC1]− 1/2|. Thus, the triangle inequality implies

AdvccaKEMcca,A(λ) ≤ 2 ·

∑
j∈[5]

|Pr[SUCj ]− Pr[SUCj+1]|+
∣∣∣∣Pr[SUC6]− 1

2

∣∣∣∣
 . (3)

In the following, we show how the terms appearing in Equation 3 are bounded.
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Lemma 1. There exist PPT adversaries Btcr, {Bjcpa}j∈[2], and B′cpa satisfying

|Pr[SUC1]− Pr[SUC2]| ≤ AdvtcrHash,Btcr
(λ) +

∑
j∈[2]

Advmcpa

KEM,n,Bj
cpa
(λ)

+ qdec · Advmcpa
KEM,n,B′

cpa
(λ) + 3ϵ+ n · 2−λ+1 + n(qdec + 1) · 2−4λ. (4)

Due to the space limitation, we give the formal proof of Lemma 1 in the full
version of this paper [29]. The proof relies on the target collision resistance of
the underlying keyed hash function Hash, and uses a deferred analysis (up to
Game 4) with (slight variants of) the arguments used in the proofs of Lemmas
2 to 4 stated below.

Lemma 2. There exists a PPT adversary B3cpa such that |Pr[SUC2]− Pr[SUC3]| =
Advmcpa

KEM,n,B3
cpa
(λ).

In Games 2 and 3, sk1 is not used. Moreover, r∗1i used to generate ct∗1i , is not
encrypted into ct∗SKE for i ∈ Szero. Thus, from A, we can construct a PPT adver-
sary B3cpa that attacks the IND-CPA security of KEM under the key pk1 with the
advantage stated in the lemma. For the formal proof, see the full version [29].

Lemma 3. |Pr[SUC3]− Pr[SUC4]| ≤ 2ϵ+ n · 2−λ+1 holds.

Proof of Lemma 3. Note that Game 3 and Game 4 proceed identically unless
A makes a decapsulation query CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) such that h =

H(hk, (ct0i , ct
1
i )i∈[n]∥ctSKE) ̸= h∗ and Decapcca(SK,CT) ̸= AltDecap(SK′,CT) hold

simultaneously. We call such a decapsulation query bad. In the following, we will
show that if PK is not “bad” in the sense specified below, a bad decapsulation
query does not exist in Game 3 and Game 4, and the probability that PK becomes
bad is bounded by 2ϵ+ n · 2−λ+1. This will prove the lemma.

Fix the following values in Game 3:

– (pk0, sk0), (pk1, sk1) ∈ Sup(KKG(1λ)) such that pk0 and pk1 are not erro-
neous, and hk ∈ Sup(HKG(1λ)).

– s∗ = (s∗1, . . . , s
∗
n) ∈ Sup(K(1λ)), r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n ∈ {0, 1}λ, k∗1 ∈ {0, 1}ℓ,

and r∗SKE ∈ RSKE.
– (ct∗vi , k∗vi ) = Encap(pkv; r∗vi ) for all (i, v) ∈ [n]× {0, 1}.
– ct∗SKE = E(s∗, (r

∗(s∗i )
i )i∈[n]∥k∗1; r∗SKE) and h∗ = H(hk, (ct∗0i , ct∗1i )i∈[n]∥ct∗SKE).

Let C be the ciphertext space of KEM. To define the notion of “badness” for a
public key, we introduce two types of functions based on the above fixed values.

– For each i ∈ Szero and v ∈ {0, 1}, we define the function ĝi,v : {0, 1}λ × C ×
({0, 1}λ \ {h∗})→ {0, 1}4λ ∪ {⊥} by

ĝi,v(r, ct
′, h) :

[
(ct, k)← Encap(pkv; r); k′ ← Decap(sk1−v, ct′);

If k′ = ⊥ then return ⊥ else return
(k−k′)·(−1)v−k∗0i +k∗1i

h−h∗

]
.
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We say that a string B ∈ {0, 1}4λ is bad if B belongs to the image of ĝi,v
for some (i, v) ∈ Szero × {0, 1}. Due to the property that the image size of
Decap(sk1−v, ·) is bounded by 2λ, the image size of ĝi,v (excluding ⊥) is

at most 23λ for every i ∈ Szero and v ∈ {0, 1}. Hence, when choosing B
r←−

{0, 1}4λ, the probability that B is bad is at most |Szero|·2· 2
3λ

24λ
= |Szero|·2−λ+1.

– For each B′ ∈ {0, 1}4λ and v ∈ {0, 1}, we define the function gB′,v : {0, 1}λ×
C × {0, 1}λ → {0, 1}4λ ∪ {⊥} by

gB′,v(r, ct
′, h) :

[
(ct, k)← Encap(pkv; r); k′ ← Decap(sk1−v, ct′);
If k′ = ⊥ then return ⊥ else return (k− k′) · (−1)v − B′ · h

]
.

For each B′ ∈ {0, 1}4λ, we say that a string A′ ∈ {0, 1}4λ is bad with respect
to B′ if A′ belongs to the image of gB′,0 or that of gB′,1. Again, due to
the property that the image size of Decap(sk1−v, ·) is bounded by 2λ, the
image size of gB,v (excluding ⊥) is at most 23λ for every B′ ∈ {0, 1}4λ and

v ∈ {0, 1}. Hence, for any fixed B′ ∈ {0, 1}4λ, when choosing Ai
r←− {0, 1}4λ

for all i ∈ Sone, the probability that some of {Ai}i∈Sone is bad with respect

to B′ is at most |Sone| · 2 · 2
3λ

24λ
= |Sone| · 2−λ+1.

We say that a public key PK generated in Game 3 is bad if (1) either pk0

or pk1 is erroneous, or (2) either B is bad or Ai for some i ∈ Sone is bad with
respect to B. By the union bound, the probability that PK is bad in Game 3 is
bounded by 2ϵ+ |Szero| · 2−λ+1 + |Sone| · 2−λ+1 = 2ϵ+ n · 2−λ+1.

To complete the proof, below we show that if PK = (pk0, pk1, (Ai)i∈[n],B,
hk) is not bad, then for any ciphertext CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) such

that h = H(hk, (ct0i , ct
1
i )i∈[n]∥ctSKE) ̸= h∗, we always have Decapcca(SK,CT) =

AltDecap(SK′,CT).
Let CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) be an arbitrary ciphertext satisfying h =

H(hk, (ct0i , ct
1
i )i∈[n]∥ctSKE) ̸= h∗. For each i ∈ [n], define

si := 1−
(
Decap(sk0, ct0i )

?
= Ti

)
, and

s′i :=
(
Decap(sk1, ct1i )

?
= Ti − Ai − B · h

)
.

We consider two cases and show that Decapcca(SK,CT) = AltDecap(SK′,CT)
holds in either case.

– Case 1: For all positions i ∈ [n], there exists a pair (r, v) ∈ {0, 1}λ ×
{0, 1} satisfying Encap(pkv; r) = (ctvi ,Ti − v · (Ai + B · h)).
In this case, we show that si = s′i holds for all i ∈ [n]. This in turn implies
that the output of Decapcca and that of AltDecap agree since these algorithms
proceed identically after they respectively compute s.
Fix i ∈ [n]. The condition of this case directly implies Decap(skv, ctvi ) =
Ti − v · (Ai + B · h). This in turn implies that if v = 0 then we have si = 0,
while if v = 1 then we have s′i = 1. In the following, we will show that

k′ := Decap(sk1−v, ct1−vi ) ̸= Ti − (1− v) · (Ai + B · h) (5)
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holds, which implies that if v = 0 then we have s′i = 0, while if v = 1 then we
have si = 1. Hence, combined together, we will obtain the desired conclusion
si = s′i (regardless of the value of v). Also, if k′ = ⊥, then Equation 5 is
obviously satisfied. Thus, below we consider the case k′ ̸= ⊥.
The argument for showing Equation 5 differs depending on whether i ∈ Szero
or i ∈ Sone. If i ∈ Szero, then since B is not bad, it is not in the image of ĝi,v.
Hence, we have

B ̸= ĝi,v(r, ct
1−v
i , h) =

(
Ti − v · (Ai + B · h)− k′

)
· (−1)v − k∗0i + k∗1i

h− h∗

⇐⇒ k′ ̸= Ti − v · (Ai + B · h)− (−1)v ·
(
(k∗0i − k∗1i − B · h∗) + B · h

)
(∗)
= Ti −

(
v + (−1)v

)
· (Ai + B · h) (∗∗)

= Ti − (1− v) · (Ai + B · h),

where the equality (*) uses Ai = k∗0i − k∗1i − B · h∗, which is how Ai is
generated for the positions i ∈ Szero in Game 3; The equality (**) is due to
v + (−1)v = 1− v for v ∈ {0, 1}.
Similarly, if i ∈ Sone, then since Ai is not bad with respect to B, it is not in
the image of gB,v. Hence, we have

Ai ̸= gB,v(r, ct
1−v
i , h) =

(
Ti − v · (Ai + B · h)− k′

)
· (−1)v − B · h

⇐⇒ k′ ̸= Ti − v · (Ai + B · h)− (−1)v · (Ai + B · h)

= Ti −
(
v + (−1)v

)
· (Ai + B · h) = Ti − (1− v) · (Ai + B · h),

where the last equality is again due to v + (−1)v = 1− v for v ∈ {0, 1}.
We have seen that Decap(sk1−v, ct1−vi ) ̸= Ti − (1 − v) · (Ai + B · h) holds
regardless of whether i ∈ Szero or i ∈ Sone, as required. Hence, as men-
tioned earlier, si = s′i holds for all i ∈ [n], and consequently we have
Decapcca(SK,CT) = AltDecap(SK′,CT).

– Case 2: There exists a position i ∈ [n] for which there exists no pair
(r, v) ∈ {0, 1}λ×{0, 1} satisfying Encap(pkv; r) = (ctvi ,Ti− v · (Ai +B · h)).
In this case, both Decapcca and AltDecap return ⊥. Indeed, the condition of
this case implies that there exists a position i ∈ [n] for which there exists
no r ∈ {0, 1}λ satisfying Encap(pksi ; r) = (ctsii ,Ti − si · (Ai + B · h)). Hence,
the validity check done in the last step of Decapcca cannot be satisfied at
the position i, and thus Decapcca outputs ⊥. Exactly the same argument
applies to AltDecap, and thus it also outputs ⊥. Hence, in this case we have
Decapcca(SK,CT) = AltDecap(SK′,CT) = ⊥.

As seen above, if PK is not bad, then for any CT with h ̸= h∗, we have
Decapcca(SK,CT) = AltDecap(SK′,CT), as desired. □ (Lemma 3)

Lemma 4. There exists a PPT adversary B4cpa such that |Pr[SUC4]− Pr[SUC5]| =
Advmcpa

KEM,n,B4
cpa
(λ).
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With a similar reason to for Lemma 2 above, from A, we can construct a PPT
adversary B4cpa that attacks the IND-CPA security of KEM under the key pk0 with
the advantage stated in the lemma. For the formal proof, see the full version [29].

Lemma 5. There exists a PPT adversary Bkdm that makes a single KDM-
encryption query and satisfies |Pr[SUC5]− Pr[SUC6]| = AdvkdmSKE,P,Bkdm

(λ).

In Games 5 and 6, s∗ is used only when generating ct∗SKE. Furthermore, we

can regard the message (r
∗(s∗i )
i )i∈[n]∥k∗1 encrypted in ct∗SKE as an output of a

projection function of s∗. Thus, from A, we can straightforwardly construct a
PPT adversary Bkdm that attacks the one-time P-KDM security of SKE with the
advantage stated in the lemma. For the formal proof, see the full version [29].

Lemma 6. Pr[SUC6] = 1/2 holds.

Proof of Lemma 6. This lemma is true because in Game 6, the information of
the challenge bit b is completely erased from A’s view. □ (Lemma 6)

Due to Lemmas 1 to 6 and Equation 3, we can conclude that there exist
PPT adversaries Btcr, {Bjcpa}j∈[4], B′cpa, and Bkdm (that makes a single KDM-
encryption query) satisfying Equation 1, as desired. □ (Theorem 2)

5 Impossibility of Shielding Black-Box Constructions

Gertner et al. [21] showed that there exists no shielding black-box construction
of an IND-CCA1 secure PKE scheme from an IND-CPA secure one. Recall that
a shielding black-box construction of a PKE scheme PKE = (KG,Enc,Dec) from
another PKE scheme pke = (kg, enc, dec) is such that the decryption algorithm
Dec in PKE does not use the encryption algorithm enc of pke. Put differently,
we have PKEpke = (KGkg,enc,dec,Enckg,enc,dec,Deckg,dec).

In this section, we extend Gertner et al.’s result and show the following result.

Theorem 4. There exists no shielding black-box construction of an IND-CCA1
secure PKE scheme from a P-KDM secure PKE scheme.

This theorem is proved as a corollary of Theorems 5 and 6 stated below.
We emphasize that this result does not contradict our result in Section 4.1

(in particular, Corollary 2), because our construction KEMcca is a non-shielding
black-box construction in which the decapsulation algorithm Decapcca uses the
encapsulation algorithm Encap of the underlying IND-CPA secure KEM.

We also note that our result seems incomparable to a similar result by Ha-
jiabadi and Kapron [24], who showed that a PKE scheme satisfying a form of
randomness-dependent-message (RDM) security is a primitive from which a non-
shielding black-box construction of an IND-CCA secure PKE scheme is possible
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while shielding black-box constructions of an IND-CCA1 secure PKE scheme are
impossible. (We note that they used a tailored definition of RDM security that
is different from the original definition by Birrell, Chung, Pass, and Telang [8].7)

Our impossibility of shielding black-box constructions is shown based largely
on the framework and technique of [21] and the technique of [24]. Informally,
[21] defined a distribution Φ of an oracle O = (O1,O2) such that O1 syntacti-
cally constitutes a PKE scheme, O2 is an attacker’s “breaking” oracle, and they
showed that the following two items hold with high probability over the choice
of O = (O1,O2)← Φ:

1. O1 constitutes an IND-CPA secure PKE scheme against any computation-
ally unbounded adversary AO1,O2 that makes polynomially many queries.

2. The IND-CCA1 security of any candidate shielding black-box construction
PKEO1 is broken (with more than a constant advantage) by some computa-
tionally unbounded adversary A′O1,O2 with polynomially many queries.

These two items imply (via a standard argument used in black-box separation
results) the impossibility of shielding black-box constructions of an IND-CCA1
secure PKE scheme from an IND-CPA secure one.

Since we use exactly the same distribution Φ of oracles O used by Gertner
et al., and the second item was already shown by them, for our result, we only
need to prove an extension of the first item, namely, O1 constitutes a P-KDM
secure PKE scheme with high probability over the choice of O = (O1,O2)← Φ.

In the following, we first recall the definition of the distribution Φ of oracles
O used by Gertner et al., then state their result corresponding to the item 2
above. Finally, we state our result corresponding to the item 1 above.

Definition 5 (Oracle Distribution for Separation [21]). Consider an ora-
cle O consisting of the suboracles (g, e,d,w,u) that are defined for each length
parameter n ∈ N and satisfy the following syntax8:

g : {0, 1}n → {0, 1}3n: This is an injective function. This oracle can be thought
of as the key generation process that takes a secret key sk ∈ {0, 1}n as input
and outputs a public key pk ∈ {0, 1}3n.

e : {0, 1}3n × {0, 1} × {0, 1}n → {0, 1}3n: For each pk ∈ {0, 1}3n, e(pk, ·, ·) :
{0, 1}×{0, 1}n → {0, 1}3n is an injective function. This oracle can be thought
of as the encryption process that takes a public key pk ∈ {0, 1}3n, a plaintext
m ∈ {0, 1}, and a randomness r ∈ {0, 1}n as input, and outputs a ciphertext
ct ∈ {0, 1}3n.

7 Roughly speaking, RDM security used by Hajiabadi and Kapron requires that n
ciphertexts encrypting the bit-decomposition of r = (r1, . . . , rn) are indistinguishable
from n ciphertexts that all encrypt 0 even if they are all encrypted under the same
random coin r itself. In the actual definition, an adversary is given multiple sets of
the above n ciphertexts. This setting is somewhat unnatural in the usage of PKE,
and a PKE scheme satisfying this security notion immediately implies a TDF with
one-wayness under correlated products.

8 Among O = (g, e,d,w,u), (g, e,d) (resp. (w,u)) corresponds to O1 (resp. O2) in
the above explanation.
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d : {0, 1}n × {0, 1}3n → {0, 1,⊥}: This oracle takes sk ∈ {0, 1}n and ct ∈ {0, 1}3n
as input, and if there exists (pk,m, r) ∈ {0, 1}3n × {0, 1} × {0, 1}n such that
pk = g(sk) and ct = e(pk,m, r), then it outputs m. Otherwise, this oracle
outputs ⊥. This oracle can be thought of as the decryption process.

w : {0, 1}3n × {0, 1}n → {0, 1}3n×n ∪ {⊥}: This oracle is associated with a “ran-
domness deriving” function Fw : {0, 1}3n×{0, 1}n → {0, 1}n×n.9 This oracle
takes pk ∈ {0, 1}3n and an index z ∈ {0, 1}n as input, and if there exists no
sk ∈ {0, 1}n such that pk = g(sk), then the oracle outputs ⊥. Otherwise, let
sk = (s1, . . . , sn) ∈ {0, 1}n be such that pk = g(sk). The oracle computes
(r1, . . . , rn) ← Fw(pk, z), and then cti ← e(pk, si, ri) for every i ∈ [n]. Fi-
nally, the oracle outputs (cti)i∈[n]. This oracle is a “weakening” oracle that
helps breaking the IND-CCA1 security of any shielding construction.

u : {0, 1}3n × {0, 1}3n → {⊤,⊥}: This oracle takes pk ∈ {0, 1}3n and ct ∈ {0, 1}3n
as input, and if there exists (sk,m, r) ∈ {0, 1}n × {0, 1} × {0, 1}n such that
pk = g(sk) and ct = e(pk,m, r), then the oracle outputs ⊤. Otherwise, the or-
acle outputs ⊥. This oracle can be thought of as the validity checking process
of a ciphertext ct with respect to a public key pk.

We define the distribution Φ of an oracle O = (g, e,d,w,u) as follows: For
each n ∈ N, pick g, e, and Fw uniformly at random, and then define d, w, and
u satisfying the above syntax.10

Note that (g, e,d) in O naturally constitutes a 1-bit PKE scheme. Gertner et
al. [21] showed the following result, which states that with high probability over
O← Φ, the IND-CCA1 security of any candidate shielding black-box construc-
tion from the PKE (g, e,d) (defined in O) is broken with more than a constant
advantage by some adversary making polynomially many queries.

Theorem 5 (Corollary of Theorem 2 in [21]). Let PKE = (KG,Enc,Dec)
be a shielding construction of a 1-bit PKE scheme based on another 1-bit PKE
scheme. For each O = (g, e,d,w,u) ∈ Sup(Φ), let PKEg,e,d := (KGg,e,d,
Encg,e,d,Decg,d). Then, there exists a computationally unbounded adversary A
that makes at most polynomially many queries and satisfies the following for all
sufficiently large λ ∈ N:

Pr
O=(g,e,d,w,u)←Φ

[
Advcca1PKEg,e,d,AO(λ) ≥

1

2

]
≥ 1− 4

λ
.

We now show our theorem, which states that with overwhelming probability
over the choice of O ← Φ, (g, e,d) constitutes a 1-bit P-KDM secure PKE
scheme (secure in the presence of multiple KDM-encryption queries). Since the
bit-by-bit encryption preserves P-KDM security, the existence of a 1-bit (many-
time) P-KDM secure PKE scheme implies a P-KDM secure PKE scheme that
can encrypt plaintexts of arbitrary length in the black-box sense.

9 The purpose of Fw is to make w deterministic (after chosen according to the dis-
tribution Φ). When an oracle O is chosen from Φ, Fw will work as a truly random
function. This treatment is done implicitly in [21].

10 Note that the behavior of O is completely determined by g, e, and Fw used in w.
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Theorem 6. For any computationally unbounded adversary A that makes at
most polynomially many queries, there exist negligible functions µ(·) and µ′(·)
such that for all sufficiently large λ ∈ N, we have

Pr
O=(g,e,d,w,u)←Φ

[
Advkdm(g,e,d),P,AO(λ) ≤ µ(λ)

]
≥ 1− µ′(λ).

We remark that Theorems 5 and 6 imply Theorem 4 via a standard technique
in black-box separation results (using the Borel-Cantelli lemma) (see, e.g. [25]).

Due to the space limitation, the proof of Theorem 4 is given in the full
version of this paper [29], and here we give its overview. We call the P-KDM
security experiment of the PKE scheme (g, e,d) that takes into account the
choice O = (g, e,d,w,u) ← Φ the extended KDM security experiment. Let A
be any computationally unbounded adversary that makes q = q(λ) = poly(λ)
queries. To prove the theorem, it is sufficient to show that the advantage of
AO,Okdm in the extended KDM security experiment is negligible. This is shown
by two steps. In the first step, we show that among the suboracles given access to
A, d, w, and u do not help A much. More specifically, we essentially show that
for AO,Okdm , there exists another computationally unbounded adversary Bg,e,Okdm

that make at most poly(q) queries and whose advantage in the extended KDM
experiment is negligibly close to that of A’s. Then, in the second step, we show
that the advantage of Bg,e,Okdm in the extended KDM experiment is negligible
by relying on the property that the suboracles g(·) and e(pk, ·, ·) for each pk are
random (almost) length-tripling injective functions when chosen according to Φ.

6 TDF via KDM Security

In this section, we show our proposed TDF with adaptive one-wayness, which is
an extension of our IND-CCA secure KEM presented in Section 4.

Construction. Let ℓ = ℓ(λ) be a polynomial. Our TDF uses the building blocks
KEM, SKE, and Hash with the following properties:

– KEM = (KKG,Encap,Decap) is a KEM such that (1) its session key space is
{0, 1}3λ, (2) the randomness space of Encap is {0, 1}λ, and (3) the ciphertext
space C forms an abelian group (where we use the additive notation) and
satisfies |C| ≥ 22λ.

– SKE = (K,E,D) is an SKE scheme such that (1) it has the randomness-
recovering decryption property (with the randomness-recovering decryption
algorithm RD), (2) its secret key space is {0, 1}n for some polynomial n =
n(λ), and (3) the plaintext space is {0, 1}n·λ+ℓ.
We denote the randomness space of E by RSKE.

– Hash = (HKG,H) is a keyed hash function such that the range of H is {0, 1}λ,
which we are going to assume to be target collision resistant.

Using these building blocks, the proposed TDF TDF = (Setup,Samp,Eval, Inv)
is constructed as described in Figure 4. The domain X of TDF is X = {0, 1}n ×
{0, 1}n·λ × {0, 1}ℓ ×RSKE.

For the correctness and security of TDF, the following theorems hold.
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Setup(1λ) :
∀v ∈ {0, 1} : (pkv, skv)← KKG(1λ)

A1, . . . ,An,B
r←− {0, 1}3λ

C1, . . . ,Cn
r←− C

hk← HKG(1λ)
ek← (pk0, pk1, (Ai,Ci)i∈[n],B, hk)
td← (sk0, ek)
Return (ek, td).

Samp(1λ) :
s = (s1, . . . , sn)← K(1λ)

rs11 , . . . , rsnn
r←− {0, 1}λ

k
r←− {0, 1}ℓ

Sample rSKE ∈ RSKE

in the same way as in E.
Return x← (s, (rsii )i∈[n], k, rSKE).

Eval(ek, x) :
(pk0, pk1, (Ai,Ci)i∈[n],B, hk)← ek
(s = (s1, . . . , sn), (r

si
i )i∈[n], k, rSKE)← x

ctSKE ← E(s, (rsii )i∈[n]∥k; rSKE)
∀i ∈ [n] :

(ctsii , k
si
i )← Encap(pksi ; rsii )

cti ← ctsii + si · Ci
(‡)

=

{
ct0i if si = 0

ct1i + Ci if si = 1

h← H(hk, (cti)i∈[n]∥ctSKE)
∀i ∈ [n] :

Ti ← ksii + si · (Ai + B · h) (†)

=

{
k0i if si = 0

k1i + Ai + B · h if si = 1

Return y← ((cti,Ti)i∈[n], ctSKE).

Inv(td, y) :
(sk0, ek)← td
(pk0, pk1, (Ai,Ci)i∈[n],B, hk)← ek
((cti,Ti)i∈[n], ctSKE)← y
h← H(hk, (cti)i∈[n]∥ctSKE)
∀i ∈ [n] :

si ← 1− (Decap(sk0, cti)
?
= Ti)

(⋆)

=

{
0 if Decap(sk0, cti) = Ti

1 otherwise

s← (s1, . . . , sn) ∈ {0, 1}n
(m, rSKE)← RD(s, ctSKE)
Parse m as (rsii )i∈[n] ∈ {0, 1}n·λ

and k ∈ {0, 1}ℓ.
x← (s, (rsii )i∈[n], k, rSKE)
If Eval(ek, x) = y

then return x else return ⊥.

Fig. 4. The proposed TDF TDF. (†) h ∈ {0, 1}λ is treated as an element of {0, 1}3λ by
some canonical injective encoding (say, putting the prefix 02λ), and the arithmetic is
done over GF(23λ) where we identify {0, 1}3λ with GF(23λ). (‡) The addition is done
over C. (⋆) We call this step the find step.

Theorem 7. Let ϵ = ϵ(λ) ∈ [0, 1]. If KEM is ϵ-almost-all-keys correct and SKE
has the randomness-recovering decryption property, then TDF is (ϵ + n · 2−λ)-
almost-all-keys correct.

Theorem 8. Assume that KEM satisfies the pseudorandom ciphertext property
and almost-all-keys correctness, SKE is one-time P-KDM secure, and Hash is
target collision resistant. Then, TDF is adaptively one-way.

The proofs of Theorems 7 and 8 are given in the full version [29]. Other than using
additional properties of the building blocks, the proofs for the above theorems
go similarly to those for our IND-CCA secure KEM in Section 4.

Adaptively One-Way TDFs Based on the LPN Assumptions. By instantiating
the building blocks in our construction TDF properly, we obtain the first adap-
tively one-way TDF based on the sub-exponential hardness of the constant-noise
LPN problem. We note that previously, even a TDF with ordinary one-wayness
was not known based on the constant-noise LPN assumption. Specifically, the
following LPN-based building blocks can be used.
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– For KEM, we use the KEM-analogue of the IND-CPA secure PKE scheme
based on the sub-exponential hardness of the constant-noise LPN problem
proposed by Yu and Zhang [42]. Their security analysis in fact shows that it
satisfies the pseudorandom ciphertext property. However, the scheme does
not satisfy almost-all-keys correctness as it is. Thus, we apply the trans-
formation by Dwork, Naor, and Reingold [18] that transforms any PKE
scheme whose correctness is imperfect into one with almost-all-keys correct-
ness. (This transformation preserves the pseudorandom ciphertext property
of the underlying scheme.)

– For SKE, we can use the P-KDM secure SKE scheme proposed by Apple-
baum et al. [3] based on the (polynomial) hardness of the constant-noise LPN
problem. Their scheme clearly admits the randomness-recovering decryption
property. In particular, whenever a plaintext is recovered in the decryption,
the decryptor can also compute the “noise” used in the encryption process,
which is the only encryption randomness of this scheme. In addition, their
scheme can be easily made perfectly correct.

Moreover, we can also obtain the first adaptively one-way TDF based on the
(polynomial) hardness of the low-noise LPN problem, by replacing the Yu-Zhang
scheme in the above instantiation with the existing PKE schemes based on the
low-noise LPN assumption [1,17,26] (which all satisfy the pseudorandom cipher-
text property). Previously, a TDF satisfying ordinary one-wayness based on the
low-noise LPN assumption was proposed by Kiltz, Masny, and Pietrzak [26].

Flexible Hard-core Bits k. We note that k ∈ {0, 1}ℓ can be directly used as hard-
core bits of an input x = (s = (s1, . . . , sn), (r

si
i )i∈[n], k, rSKE), even in the presence

of the inversion oracle. Its proof is a straightforward extension of the proof of
Theorem 8, and thus omitted. Since an adaptively one-way TDF with ℓ-bit hard-
core bits can be seen as an IND-CCA secure KEM with session-key space {0, 1}ℓ,
TDF can be viewed as an IND-CCA secure KEM in which the randomness used
to generate a ciphertext is fully recovered during the decapsulation.

Additional Remarks. We remark that due to the structural similarity of our
construction TDF to KEMcca, several properties satisfied by KEMcca are inherited
to TDF. Specifically, as in the case of our IND-CCA secure KEM KEMcca, if we
adopt the syntax that allows a system-wide public parameter shared by all users,
pk1, (Ai)i∈[n], (Ci)i∈[n], B, and hk in ek can be put in it, so that an evaluation

key/trapdoor pair of each user consists only of (pk0, sk0) of the underlying KEM
KEM. Moreover, we can consider another variant of TDF in which the underlying
P-KDM secure SKE scheme is replaced with a hinting PRG, in a similar manner
it is used in the Koppula-Waters construction [30].

Unlike KEMcca, however, we cannot make TDF perfectly correct even if we
replace the underlying KEM KEM with the combination of a PKE scheme and
a PRG. This is because the standard correctness of PKE does not guarantee
anything about the decryption result of an element chosen randomly from the
ciphertext space, which naturally occurs in the inversion process of TDF.
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