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Abstract. Content moderation is crucial for stopping abusive and ha-
rassing messages in online platforms. Existing moderation mechanisms,
such as message franking, require platform providers to be able to as-
sociate user identifiers to encrypted messages. These mechanisms fail
in metadata-private messaging systems, such as Signal, where users can
hide their identities from platform providers. The key technical chal-
lenge preventing moderation is achieving cryptographic accountability
while preserving deniability.
In this work, we resolve this tension with a new cryptographic prim-
itive: asymmetric message franking (AMF) schemes. We define strong
security notions for AMF schemes, including the first formal treatment
of deniability in moderation settings. We then construct, analyze, and
implement an AMF scheme that is fast enough to use for content mod-
eration of metadata-private messaging.

Keywords: message franking· designated verifier signatures· deniabil-
ity· end-to-end encryption· content moderation

1 Introduction

Billions of users communicate via private messaging on platforms like Facebook,
Twitter, and Signal. Their success means these platforms are increasingly used
for large-scale spam, harassment, and propagation of misinformation. One way
platform operators address these threats is via content moderation: the receiver
of a message can report it to a moderator. If the moderator determines (via
human judgment, machine learning algorithm, or both) that the message violated
the platform’s policies, the platform can ban its sender.

To ensure moderation is not itself abused, the platform must be able to ver-
ify both the content of the reported message and associated metadata, e.g. the
sender and receiver identity. Doing this is challenging for end-to-end (E2E) en-
crypted messaging because the platform does not see the cleartext messages.
In practice, moderating E2E encrypted messaging has been done via message
franking [36, 42]. Message franking has two main components. First, the E2E
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Fig. 1: Settings for content moderation of messaging. The solid arrow denotes sending a
message across the platform and the dashed arrow denotes reporting a message to the
moderator. In the standard setting, messages sent across the platform are associated
with sender and receiver identities and the platform is the moderator. In the metadata-
private setting, the associated sender and receiver identities of messages are hidden
from the platform, and by extension, the moderator. In the third-party setting, the
moderator is separate from the platform, and thus also cannot associate sender and
receiver identities to messages. Our AMF primitive targets the latter two settings.

encryption uses specially-constructed ciphertexts that include short plaintext
commitments. Second, the platform cryptographically binds the sender and re-
ceiver identities to the ciphertexts using a reporting tag (concretely, a MAC of
the commitment). Because this approach only uses symmetric-key cryptography,
we call it symmetric message franking (SMF).

SMF carefully navigates the three security requirements of content mod-
eration for E2E encrypted messaging. First, messages not included in reports
should remain private. Second, moderation should achieve accountability : given
a reported message and sender identity, the moderator should always be able
to verify the sender sent that message. Finally, moderation for E2E-encrypted
messages should be deniable: only the moderator should be able to verify the
report. This protects users from backlash or embarrassment if their messages
are posted publicly after a compromise. Deniability was an explicit goal of Face-
book’s SMF-based moderation system [36]. If implemented correctly, SMF meets
these goals because the commitments are hiding and binding and the identities
are bound to the reporting tag.

There are settings, however, where it is impossible to associate identities to
encrypted messages and SMF cannot be used for moderation. One such set-
ting is metadata-private messaging, depicted in the middle diagram of Figure 1.
Metadata-private messaging systems not only use E2E encryption, but also hide
the sender and/or receiver identities of messages from the platform. (In these
systems the platform knows the identities of all registered parties but does not
learn those identities during communication.) For example, Signal’s recent sealed
sender feature, which hides the sender identity, now accounts for over 80% of all
Signal traffic [5,58]. Achieving even stronger metadata privacy, such as also hid-
ing the receiver identity, is an active research area [7,30,31,44,50–52,55,56,65,74].
Similarly, one may consider decentralized or federated settings where the mod-
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erator is decoupled from the platform. (See the right-hand diagram of Figure 1;
more detail on this setting is given below.)

A naive solution for moderation in these settings is per-message digital sig-
natures. These provide accountability even if the moderator cannot see meta-
data or messages, but not deniability: anyone can verify signatures, not just
the moderator. Indeed, this and other approaches based on existing primitives
fail because of a fundamental tension between accountability and deniability. To
make moderation a reality for metadata-private messaging and other settings,
new cryptography is needed.

Asymmetric message franking. This work defines and constructs asymmetric
message franking (AMF) schemes. AMF schemes are special signatures in which
a sender signs a message so that only one of two designated parties, the receiver
or the moderator, can verify it. The signature also proves to the receiver that
the signature can be verified by the moderator. AMF schemes are deniable and
do not require the platform to associate identities with encrypted messages.
Thus, AMF schemes resolve the main technical barrier to content moderation
for metadata-private messaging.

Using AMF schemes in moderation involves three parties: the sender, re-
ceiver, and moderator (or judge). Each one has a key pair and knows the public
keys of the other two (we assume a PKI is available). The sender of a message
uses the AMF scheme’s franking algorithm Frank to generate a signature on
the message. Then the sender E2E-encrypts the message and the signature and
sends the ciphertext to the receiver. The receiver first decrypts the ciphertext
then verifies the signature using the receiver verification algorithm Verify. To
make a report, the receiver sends the message and signature to the moderator,
who verifies using the moderator verification algorithm Judge. The receiver and
moderator verification algorithms are different because the receiver and moder-
ator have independent secret keys. Next, we explain security for AMF schemes
along two axes: accountability and deniability.

AMF accountability. For accountability, we want that a malicious sender
cannot bypass moderation and a malicious receiver cannot report a message it
did not receive. To formalize this we give three security notions for AMF schemes:
sender binding, receiver binding, and unforgeability.

Sender binding requires that an attacker who can choose a sender key pair
and adaptively query Verify and Judge oracles cannot create a message and
signature pair the receiver will accept but the moderator will not. An attacker
that can do this can essentially bypass moderation entirely. Similar attacks arise
in practice: for example, Dodis et al. demonstrated how to bypass Facebook’s
SMF scheme [35]. Receiver binding is a complementary notion that requires that
no adversary can trick the moderator into accepting a message not actually sent
to its designated receiver, even if the adversary can choose the receiver’s keys.
Unforgeability requires that an attacker that only knows public keys cannot
output a forged message and signature pair that fools the receiver. In our full
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version [75, Appendix A], we prove unforgeability is implied by the combination
of receiver binding and sender binding.

AMF deniability. Deniability guarantees that convincing-looking forgeries can
be created even if some parties are compromised or malicious. Our threat model
for deniability is very strong: we allow all keys to be compromised (even the
moderator’s). Providing meaningful deniability definitions for AMF schemes in
the context of moderation is challenging as deniability can often contradict ac-
countability. Prior work in this area [36, 42] did not attempt to formalize their
deniability guarantees, despite deniability being an explicit goal. Take, for ex-
ample, a deniability definition which requires that an adversary can produce a
signature indistinguishable from a legitimate one, given just the public keys of
sender, receiver, and moderator. This contradicts unforgeability, since it suggests
that anyone can generate signatures that a receiver and moderator would accept
as valid.

We navigate this tension between deniability and accountability by equipping
AMF schemes with three forgery algorithms (Forge, RForge, and JForge) and
three associated security definitions: universal deniability, receiver compromise
deniability, and judge compromise deniability. The three forgery algorithms are
not intended to be run by legitimate users: instead, the existence of each of
the three algorithms guarantees deniability in a particular compromise scenario
formalized in its associated definition.

We limit our first deniability definition, universal deniability, to hold against
everyone except the receiver and moderator. Meeting this goal guarantees the
outputs of Forge and Frank are indistinguishable to everyone except those two
parties. But this leaves open another way to render AMF signatures undeniable: a
receiver (or the moderator) could post their secret key to the internet along with
a received message and AMF signature, allowing anyone to run Judge or Verify
and rule out a forgery. This could serve as undeniable cryptographic evidence
that the sender authored the message.

Because of this, we introduce two additional deniability notions: receiver
compromise deniability and judge compromise deniability. Meeting these no-
tions implies deniability holds even if the receiver and/or moderator are com-
promised or malicious. The former definition corresponds to the case where the
receiver’s secret key is known and the latter the case where both the receiver
and moderator’s keys are known. The forgeries generated (by RForge and JForge,
respectively) should be indistinguishable from the output of Frank, even to a dis-
tinguisher that knows the receiver or both the receiver and moderator’s secret
keys. This means that a receiver or the moderator cannot offer an undeniable
proof that a sender sent a message simply by disclosing their secrets: they could
equally well have just generated a forgery.

These three deniability definitions are not the only ones possible, and there
exists a large space of possible definitions, though many are at odds with ac-
countability. We explore this broader landscape in more detail in our full ver-
sion [75, Appendix B], and discuss how our deniability targets compare to others
in Section 2.
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Constructing AMFs. We build a practical AMF scheme that meets the above
definitions. As described above, we want to be able to sign messages so that only
the receiver and moderator can verify them. Thus, a natural starting point is
(strong) designated verifier signatures [47], in which a sender signs a message
so that only a particular recipient can verify it. We designate the moderator as
one verifier, and extend to allow a receiver (with its own key pair separate from
the moderator’s) to be a second designated verifier. However, designated verifier
signatures alone do not suffice: the receiver (without the moderator’s secret key)
must be able to verify that the moderator can verify the signature. If this is
missing, the scheme would not be sender binding.

Our eventual construction is based on a non-interactive zero-knowledge proof-
of-knowledge of a carefully crafted language that balances the needed verification
properties with the ability to forge required for deniability. The formal analysis
is non-trivial: our definitions give the adversary oracle access to Judge and Verify,
both of which need secret keys. In some of our reductions the output of these
oracles must be simulated without secret keys, necessitating both standard as-
sumptions like discrete log and the knowledge-of-exponent assumption (KEA),
a more exotic (but nevertheless well-studied) assumption [10, 32]. In [75, Ap-
pendix H], we show a variation of our scheme (with slightly larger signatures)
can be proven secure using the standard Gap Diffie-Hellman assumption [16].

We prototype our AMF construction to demonstrate its practicality. Our
AMF signatures are relatively compact, requiring less than 500 bytes. Even in
our unoptimized implementation, signing and verification (by a receiver or the
moderator) takes 7.3 milliseconds or less. We plan to make our AMF implemen-
tations open source to support development of new moderation tools.

Other applications. AMF schemes may prove useful in settings beyond metadata-
private encrypted messaging. As described above, existing moderation tools
based on SMF cannot support third-party moderation, which decouples the plat-
form and moderator (see Figure 1, right diagram). Third-party moderation is
necessary in decentralized or federated messaging systems like Matrix [4] or
Mastodon [3]. In such systems no single party operates the platform, so the
moderator must be distinct. Even in centralized systems like Twitter, third-
party moderation is advantageous if the platform cannot adequately moderate
messages, or if sub-communities want to enforce their own content policies. Al-
lowing the moderator to be distinct can also enable cross-platform moderation
of multiple messaging systems.

Similarly to the metadata-private setting, a third-party moderator does not
learn the needed sender and receiver identities associated with messages. In
metadata-private settings, this information is cryptographically hidden, whereas
in third-party settings it is simply unavailable because the moderator doesn’t
run the identity infrastructure. Because AMF schemes are public-key, they can
be used in conjunction with PKI to build third-party moderation.
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Summary. This work makes the following contributions:

• We highlight the need for content moderation for metadata-private mes-
saging, and identify a key cryptographic challenge: balancing accountability
with deniability.

• We introduce and formalize a new cryptographic primitive called asymmet-
ric message franking that simultaneously provides the needed authenticity
properties for content moderation, while ensuring cryptographic deniability.

• We show how to build an efficient AMF scheme and formally analyze its
security. A prototype implementation indicates that our AMF scheme is
practical.

2 Deniability in Messaging

We want AMFs to provide deniability in the event that keys or messages are
posted publicly after a compromise. Our setting is therefore most similar to the
deniability guarantees sought for designated verifier signatures and proofs [47],
but different than settings that allow one to deny encrypted message contents
even to an eavesdropper that sees all traffic [23]. An adversary that observes the
actual transmission of a message or ciphertext is totally convinced of its origin
in our setting. Instead, our concern is not this adversary’s conviction, but its
ability to convince others. As long as the attacker cannot use what it learns
through network manipulation or endpoint compromise to convince others, we
have achieved deniability.

The types of deniability guarantees we target have long been a goal in var-
ious contexts [25, 27], including messaging [36]. The inability to prevent major
compromises has made lack of deniability an increasingly pressing concern. In
the 2016 United States’ and 2017 French presidential elections, certain candi-
dates’ systems were compromised and sensitive data was dumped publicly online.
DKIM email signatures prevented the Clinton campaign from denying author-
ship for hacked emails posted by Wikileaks in 2016 [61]. In contrast, in 2017 the
Macron campaign was able to effectively deny the authenticity of leaked mes-
sages by including decoy messages as a countermeasure [63]. This defense was
only possible because of a lack of cryptographic evidence. One result of these
breaches is that politicians and others increasingly use E2E encrypted messag-
ing systems that provide deniability [70]. If E2E encryption provides deniability,
the cryptography used for moderation must preserve this deniability. This is a
crucial reason why AMFs must be deniable.

These examples additionally demonstrate that deniability in messaging is
practically important: it is necessary, but not always sufficient, for (what we
call) social deniability, i.e., that people are convinced by a denial. Our goal is to
ensure that whatever prior belief people have about the likelihood a message is
valid should remain unchanged by the use of cryptography, and to have a system
that works with other techniques for increasing the success of social deniability
(e.g., use of decoys). We do note that because of pervasive propaganda campaigns
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an awareness has developed among the general public that malicious parties will
try to influence popular sentiment by forging content. This would seem to make
social deniability more feasible, as people are unlikely to be convinced by an
unverified attribution in the era of “fake news”.

An important implication of all this is that, to issue a denial that will con-
vince the general public, it is not sufficient to demonstrate the (perhaps non-
constructive) existence of a forger who could have forged a message—there must
exist concrete and runnable forgery algorithms that could have been used by
influence campaigns or other adversaries. Our eventual construction has three
such implemented algorithms for different compromise scenarios; see Section 4
for more details.

3 Syntax and Security Notions

We introduce a new primitive, asymmetric message franking (AMF), that pro-
vides the cryptographic algorithms needed for secure metadata-private modera-
tion. We will present the algorithms and security definitions of an AMF scheme
in three parts. First, we present a brief preliminary on key generation. Then, we
describe the accountability algorithms and definitions. Finally, we present the
three algorithms used for deniability and definitions.

As you will see, we choose to decouple our security treatment of AMFs from
the accompanying end-to-end (E2E) encryption scheme to simplify and mod-
ularize the analysis. Indeed in the applications we envision, the accountability
and deniability of the system would be determined by the composition of AMFs
with an E2E encryption scheme, which we discuss further in Section 7.

Formally, an asymmetric message franking scheme AMF = (KeyGen, Frank,
Verify, Judge, Forge, RForge, JForge) is a tuple of seven algorithms. An AMF
scheme is associated with a public key space PK, secret key space SK, message
spaceM, and signature spaceΣ. To simplify notation of inputs in the algorithms,
we assume all pk inputs are in PK, all sk inputs are in SK, all msg inputs are
in M, and all σ inputs are in Σ.

AMF key generation. AMF key generation, (pk, sk)←$ KeyGen, is a ran-
domized key generation algorithm which outputs a public key pair (pk, sk) ∈
PK × SK. We assume the public key pk can be uniquely recovered from the
private key sk. Our schemes have this property. We also assume for simplicity
that the judge, senders, and receivers all use the same key generation algorithm.

We will assume that key pairs can be confirmed to be valid. More precisely, we
will use later a deterministic algorithm WellFormed : PK × SK → {0, 1} which
takes as input a key pair (pk, sk) ∈ PK × SK and outputs a bit b denoting
whether the key pair is a valid pair (b = 1) or not (b = 0). The purpose of
this procedure is to verify that a (possibly adversarially chosen) key pair is well-
formed relative to some relationship between pk and sk. In our schemes this will
be a single exponentiation.
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Our formalization of AMFs excludes deployment considerations such as the
public key infrastructure and identity-to-public key mappings: see Section 6 and
Section 7 for more discussion.

3.1 AMF Algorithms and Security Notions: Accountability

For an AMF = (KeyGen, Frank, Verify, Judge, Forge, RForge, JForge), the three
accountability algorithms are Frank, Verify, and Judge. These algorithms are used
for creating and verifying signatures. We explain the syntax of each algorithm
in turn, then describe the corresponding accountability security notions.

• σ←$ Frank(sks,pkr,pkj ,msg): The (randomized) message signing or frank-
ing algorithm takes as input a receiver public key pkr, a judge public key
pkj , a sender secret key sks, and a message msg . It outputs a signature σ.

• b ← Verify(pks, skr,pkj ,msg , σ): The deterministic receiver verification al-
gorithm takes as input a sender public key pks, receiver secret key skr, judge
public key pkj , message msg , and signature σ, then outputs a bit. The re-
ceiver runs this to ensure the message, signature pair (msg , σ) is well-formed
and reportable to the judge.

• b ← Judge(pks,pkr, skj ,msg , σ): The deterministic judge authentication
algorithm takes as input a sender public key pks, receiver public key pkr,
judge secret key skj , message msg , and signature σ, then outputs a bit.
This algorithm is used by the judge to check the authenticity of reported
messages, ensuring the message was really sent from the sender and was
meant for the recipient.

This formalization restricts attention to non-interactive schemes for which frank-
ing, verification, and judging requires sending just a single message. Such non-
interactive schemes have important practical benefits, but it is conceivable that
there might be some benefits of generalizing our treatment to include interactive
schemes, which we leave for future work.

Correctness. Informally, we require AMF signatures created by the frank-
ing algorithm are both verified and judged successfully. Formally, for all mes-
sages ,msg , and for all pairs of public keys, (pk{s,r,j}, sk{s,r,j}), it holds that

Pr
[
Verify(pks, skr,pkj ,msg , Frank(sks,pkr,pkj ,msg)) = 1

]
= 1

and

Pr
[
Judge(pks,pkr, skj ,msg , Frank(sks,pkr,pkj ,msg)) = 1

]
= 1

where the probabilities are taken over the random coins used in Frank.

Security notions for accountability. First and foremost an AMF scheme
should prevent a party from impersonating a sender to a receiver. This goal,
which we call unforgeability, is a lifting of standard digital signature unforgeabil-
ity to the setting of AMF schemes. As discussed above, AMFs should also (1)
prevent any sender from creating a signature that can be verified by the receiver
but not the moderator, and (2) prevent any receiver from framing a sender by
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r-BINDA
AMF:

(pks, sks)←$ KeyGen

(pkj , skj)←$ KeyGen

(pkr,msg, σ)← AO(pks, pkj)

if (pkr, pkj ,msg) ∈ Q:

return 0

return Judge(pks, pkr, skj ,msg, σ)

OFrank(pk′
r, pk

′
j ,msg):

Q ← Q ∪ {(pk′
r, pk

′
j ,msg)}

return Frank(sks, pk
′
r, pk

′
j ,msg)

OJudge(pk′
s, pk

′
r,msg, σ):

return Judge(pk′
s, pk

′
r, skj ,msg, σ)

s-BINDA
AMF:

(pkr, skr)←$ KeyGen

(pkj , skj)←$ KeyGen

(pks,msg, σ)← AO(pkr, pkj)

bv ← Verify(pks, skr, pkj ,msg, σ)

bj ← Judge(pks, pkr, skj ,msg, σ)

return bv ∧ ¬bj

OVerify(pk′
s, pk

′
j ,msg, σ):

return Verify(pk′
s, skr, pk

′
j ,msg, σ)

OJudge(pk′
s, pk

′
r,msg, σ):

return Judge(pk′
s, pk

′
r, skj ,msg, σ)

Fig. 2: Accountability games for AMF schemes: receiver binding (left) and sender bind-
ing (right).

creating a signature on a message that wasn’t sent. Following the terminology
used in symmetric message franking [42] we refer to these goals as sender binding
and receiver binding, respectively.

It turns out sender binding and receiver binding together imply unforgeabil-
ity. In this section, we proceed by formalizing the sender binding and receiver
binding accountability notions. The formalization of unforgeability along with its
reduction to receiver binding and sender binding is deferred to [75, Appendix A].

We formalize security using the code-based game approach of Bellare and
Rogaway [13]. We will use a concrete security approach in which we account
for adversarial resources explicitly in theorem statements, rather than defining
security asymptotically. Asymptotic notions can be derived from our treatment
in a straightforward way.

Receiver binding is specified formally in game r-BIND on the left-hand side
of Figure 2. The adversary plays the role of a reciever and attempts to create a
signature that from a sender pks to an adversarially chosen pkr that correctly
judges by pkj . The adversary is given a Frank oracle for some (honest) sender,
to which it can query messages signed to chosen receiver and judge public keys.
We also give the adversary access to a Judge oracle to query chosen message
and signature pairs. It tries to output a message and signature, distinct from
all Frank oracle outputs, for which Judge outputs 1. For an adversary A and
message franking scheme AMF we define the r-BIND advantage of A against
AMF as

Advr-bind
AMF (A) = Pr

[
r-BINDAAMF ⇒ 1

]
,

where the probability here (and for subsequent use of games) is over all the
random coins used in the game, including those of the adversary.

Sender binding is specified formally in game s-BIND on the right-hand side
of Figure 2. The adversary plays the role of a sender and its goal is to generate,
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for some adversarially chosen pks, an AMF signature that Verify validates but
Judge rejects with pkr and pkj . The adversary is given a pair of oracles for Verify
and Judge to which it can query message and signature pairs. For an adversary
A and message franking scheme AMF we define the s-BIND advantage of A
against AMF as

Advs-bind
AMF (A) = Pr

[
s-BINDAAMF ⇒ 1

]
.

3.2 AMF Algorithms and Security Notions: Deniability

To support deniability, we equip AMF schemes with three deniability algorithms
and associate to each a security notion. We include the forging algorithms as part
of the scheme to emphasize their importance in providing practically-meaningful
deniability guarantees. They will be efficient to execute and as easy to imple-
ment as the other algorithms. The deniability algorithms for an AMF scheme
AMF = (KeyGen, Frank, Verify, Judge, Forge, RForge, JForge) are Forge, RForge,
and JForge. We give a formal description of each along with some intuition about
the deniability setting they correspond to.

Universal deniability requires that any non-participating party (no access
to sender, receiver, or judge secret keys) can forge a signature that is indis-
tinguishable from honestly-generated signatures to other non-participating par-
ties. Intuitively, this allows the sender to claim a message originated from any
non-participating party. This is the purpose of the Forge algorithm of an AMF
scheme.

• σ←$ Forge(pks,pkr,pkj ,msg): The forge algorithm takes a sender public
key pks, receiver public key pkr, a judge public key pkj , and a message
msg , then outputs a “forged” AMF signature σ.

We formalize universal deniability in game UnivDen, the leftmost in Figure 3.
The adversary is given access to a frank oracle that outputs a signature created
from Frank or Forge depending on a challenge bit that is the adversary’s goal to
guess. In this deniability game and all subsequent deniability games, the adver-
sary is given access to the sender’s secret key sks to model sender compromise.
For an adversary A and asymmetric message franking scheme AMF we define
the UnivDen advantage of A against AMF as

Advuniv-den
AMF (A) =

∣∣∣Pr
[

UnivDenA,0AMF ⇒ 1
]
− Pr

[
UnivDenA,1AMF ⇒ 1

] ∣∣∣ .
Receiver compromise deniability requires that a party with access to the

receiver’s secret key can forge a signature that is indistinguishable from honestly-
generated signatures to other parties with access to the receiver’s secret key. This
captures deniability in the case where the receiver’s secret key is compromised,
and allows the sender to claim a message originates from a compromising party
or malicious receiver. The RForge algorithm is used for receiver compromise
deniability.

• σ←$ RForge(pks, skr,pkj ,msg): The receiver forge algorithm takes a sender
public key pks, receiver secret key skr, a judge public key pkj , and a message
msg , then outputs a “forged” AMF signature σ.
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UnivDenA,b
AMF:

(pks, sks)←$ KeyGen

(pkr, skr)←$ KeyGen

(pkj , skj)←$ KeyGen

b′ ← AOFrank
(sks, pkr, pkj)

return b′

OFrank(msg):

σ0 ← Frank(sks, pkr, pkj ,msg)

σ1 ← Forge(pks, pkr, pkj ,msg)

return σb

RecCompDenA,b
AMF:

(pks, sks)←$ KeyGen

(pkj , skj)←$ KeyGen

(pkr, skr, aux)← A1(pks, pkj)

brwf ← WellFormed(pkr, skr)

if brwf 6= 1:

return 0

b′ ← AOFrank

2 (sks, skr, pkj , aux)

return b′

OFrank(msg):

σ0 ← Frank(sks, pkr, pkj ,msg)

σ1 ← RForge(pks, skr, pkj ,msg)

return σb

JudgeCompDenA,b
AMF:

(pks, sks)←$ KeyGen

(pkr, skr, pkj , skj , aux)← A1(pks)

brwf ← WellFormed(pkr, skr)

bjwf ← WellFormed(pkj , skj)

if brwf ∧ b
j
wf 6= 1:

return 0

b′ ← AOFrank

2 (sks, skr, skj , aux)

return b′

OFrank(msg):

σ0 ← Frank(sks, pkr, pkj ,msg)

σ1 ← JForge(pks, pkr, skj ,msg)

return σb

Fig. 3: Deniability security games for AMF schemes: universal deniability (left), receiver
compromise deniability (middle), and judge compromise deniability (right).

We formalize receiver compromise deniability in two-stage game RecCompDen,
the middle game in Figure 3. The second-stage adversary A2 is given access to
a frank oracle that outputs a signature created from Frank or RForge depending
on a challenge bit. The goal is to guess the challenge bit given the sender and
receiver secret keys, sks and skr. We strengthen the definition by answering the
frank oracle queries using a public key pair for the receiver generated in the first
stage by adversary A1. For an adversary A = (A1,A2) and message franking
scheme AMF, we define the RecCompDen advantage of A against AMF as

Advr-den
AMF(A) =

∣∣∣Pr
[

RecCompDenA,0AMF ⇒ 1
]

− Pr
[

RecCompDenA,1AMF ⇒ 1
] ∣∣∣ .

Judge compromise deniability requires that a party with access to the judge’s
secret key can forge a signature that is indistinguishable from honestly-generated
signatures to other parties even with access to the judge’s secret key and re-
ceiver’s secret key. This captures deniability in the case where the judge’s secret
key has become compromised, and allows the sender to claim a message origi-
nates from a compromising party or malicious judge. Our definition maintains
deniability even in the case where the receiver’s secret key is compromised as
well. We discuss alternate, weaker deniability notions at the end of this section.
The JForge algorithm is used for judge compromise deniability.

• σ←$ JForge(pks,pkr, skj ,msg): The judge forge algorithm takes a sender
public key pks, receiver public key pkr, a judge secret key skj , and a message
msg , then outputs a “forged” AMF signature σ.

We formalize judge compromise deniability in two-stage game JudgeCompDen,
the right-most game in Figure 3. The second-stage adversary A2 is given access
to a frank oracle that outputs a signature created from Frank or JForge depending
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on a challenge bit. In contrast to receiver compromise deniability, A1 generates
the judge public key pair in addition to the receiver public key pair and A2

is given access to all secret keys. For an adversary A = (A1,A2) and message
franking scheme AMF we define the JudgeCompDen advantage of A against
AMF as

Advj-den
AMF(A) =

∣∣∣Pr
[

JudgeCompDenA,0AMF ⇒ 1
]

− Pr
[

JudgeCompDenA,1AMF ⇒ 1
] ∣∣∣ .

Random oracle model. Looking ahead, we will prove security in the random
oracle model. In this model, to each definition we add another procedure Oro.
The adversary A and algorithms Forge, Verify, Judge, Forge, JForge, RForge all
have access to it as an oracle. The oracle accepts queries on arbitrary length
bit strings m and returns a random bit string r of length hlen. It stores r in a
table T indexed by m to answer future queries consistently. In some security
proofs we will use a technique referred to as programming the random oracle
(setting certain RO outputs to values in a way advantageous to a reduction).
Importantly, however, our definitions ensure that the AMF forging algorithms
only have access to the oracle (as does the adversary), forcing them to forge
without modifying the RO mapping. This means that when we apply the ROM
heuristic, instantiating the RO with a hash function such as SHA-256, the forge
algorithms can still be executed. This is essential for social deniability.

Space of deniability definitions. Notice that our deniability definitions are
implicitly parameterized by the combination of secrets keys given to the forger
and the combination of secret keys given to the distinguisher, i.e., who is able to
fool whom. In this work, we target three specific deniability definitions within
this space that we believe have real-world significance. However, this is not
the only set of meaningful deniability definitions that one might desire from
a scheme. Consider the following two examples. First, our definitions give the
distinguisher access to the sender’s secret key which models deniability in the
face of sender compromise. An alternative definition may dispense with this goal
in favor of an accountability notion, disavowability, in which a sender has the
ability to cryptographically prove forged signatures were not created using their
sender secret key, i.e., disavow forgeries. Second, our judge compromise denia-
bility definition conflicts with strong authentication between sender and receiver
— forgeries by the moderator cannot be detected by the receiver. Instead, a
stronger unforgeability definition could be satisfied in which the judge’s secret
key alone is not sufficient to forge messages accepted by the receiver.

Ultimately, there exist many different trade-offs between deniability and ac-
countability within this definition space. We provide a more detailed exploration
of the space of possible deniability definitions along with their relationships to
various accountability notions in [75, Appendix B].
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4 Construction

In this section, we present our construction for building an asymmetric message
franking scheme. First, we give intuition for our approach by drawing connections
to the literature on designated verifier signatures [47]. Then, we describe our
particular instantiation built using signatures of knowledge [21] and detailed in
Figure 5.

4.1 Intuition: AMF from Designated Verifiers

Designating the moderator as verifier. The tension between accountability
and deniability arises from the desire for franking signatures to be forgeable
(deniability) as well as verifiable by certain special parties, e.g. the moderator
(accountability). This suggests designated verifier signatures [47] as a natural
starting point from which to build asymmetric message franking. The sender
would designate the moderator as a verifier for a signature of the message.

A designated verifier signature or, more generally, a designated verifier proof
system allows a prover to provide a proof of a statement that convinces a des-
ignated verifier but no one else. The designated verifier can efficiently forge the
proof such that the forged proof is indistinguishable from a real proof even with
access to the designated verifier’s secret key. This security property, known as
non-transferability, ensures there are two possible parties that could have created
the signature, the alleged sender or the (compromised) moderator. It matches
closely to receiver compromise deniability and judge compromise deniability for
AMFs which extends the idea of non-transferability to relationships between
three parties.

Universal deniability from strong designated verifiers. To expand the
set of possible forgers to any non-participating party, i.e. universal deniability,
we additionally make use of a strong deniability property of strong designated
verifier signatures [45, 47, 71]. This property allows anyone to forge a signature
between two parties such that the resulting forgery is indistinguishable from
real signatures to anyone without secret key access. Without care, universal
deniability poses a problem for accountability. Consider a franking signature
that consists of the sender creating a strong designated verifier signature for
the moderator. A sender can send an abusive message and sign with a universal
forgery. If the recipient of the message attempts to report to the moderator,
the moderator will not be convinced the message was sent by the sender. This
violates sender binding.

Chaining designated verifier proofs. To achieve sender binding, the receiver
must have some way of verifying whether messages it receives are reportable to
the moderator. Specifically, the receiver must be able to verify the sender’s strong
designated verifier signature for the moderator is well-formed and not a forgery.
This leads us to the final step: the sender can attach a strong designated verifier
proof for the receiver proving that the strong designated verifier signature for
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the moderator is well-formed. By using a strong designated verifier proof for this
step, the deniability goals are preserved.

The challenge in building AMFs with this approach is in instantiating schemes
such that the signing algorithm of the strong designated verifier signature falls
into a language compatible with the strong designated verifier proof system. Ex-
isting strong designated verifier signatures [45,47,71] do not appear to have this
desired structure-preserving property [6] that would lend to using efficient proof
systems. Additionally, we are not aware of any general-purpose strong desig-
nated verifier proof systems for arbitrary languages. While such a proof system
can presumably be constructed using non-interactive zero knowledge proof sys-
tems for arbitrary languages [41], such a solution would likely be prohibitively
expensive for low latency messaging. Despite these challenges, the question of
building AMFs from designated verifier primitives remains interesting and we
discuss such a generic construction in [75, Appendix G]. We next turn to building
practical AMFs.

4.2 AMF from Signatures of Knowledge

While we do not build off the abstraction of designated verifiers, our construction
is modeled off the intuition that an AMF can be composed of a strong designated
verifier proof to the receiver of the well-formedness of a strong designated sig-
nature to the moderator. Our construction is inspired by the strong designated
verifier signature scheme of Huang et al. built using signatures of knowledge [45],
which we modify to allow for proofs of well-formedness.

Our construction can be based on any suitable cyclic group. In the following
we let G be a group, let p be its order, and g be a generator for G. We use
multiplicative notation, though note that we use elliptic curve groups in our
implementation (Section 6). Secret keys are uniformly chosen from SK = Zp, and
public keys are set to be pk = gsk . We denote this key generation as PKKeyGen.
Note that it is easy to check the well-formedness of such keys.

Signatures of knowledge. First, we introduce our treatment of signatures of
knowledge. These can be thought of as a cross between non-interactive proofs
of knowledge and digital signatures. We use a standard Fiat-Shamir signature
scheme [38] in which we can produce signatures of knowledge from basic Sigma
protocols by including the message in the hash producing the challenge. Our
construction uses Schnorr proofs of knowledge of discrete logarithm [72] and
Chaum-Pedersen proofs of equality of discrete log [28], extended with conjunc-
tions and disjunctions (logical ANDs and ORs) [17].

Our notation follows closely to that of Camenisch [21]. A signature of knowl-
edge scheme SPoKR = (prove, verify) is a pair of algorithms associated with a
witness-statement relation R. A relation R ⊆ X × Y is defined relative to a set
X called the witness space and set Y called the statement space. The random-
ized proving algorithm, prove, outputs a signature proof of the statement for
a message given a witness, π←$ SPoKR.prove(msg , x). The proving algorithm
should return a dedicated symbol ⊥ if (x, y) 6∈ R though for brevity we ex-
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Alg.

Security

notion

How to prove first clause?

(pks = gt ∨ J = gu)

How to prove second clause?(
(J = (pkj)

v ∧ EJ = gv) ∨ R = gw
)

Verify? Judge?

Frank Correctness α←$ Zp; J ← (pkj)
α; t = sks β←$ Zp; R← (pkr)β ; v = α X X

Forge Univ. den. γ←$ Zp; J ← gγ ; u = γ δ←$ Zp; R← gδ; w = δ × ×
RForge R. comp. den. γ←$ Zp; J ← gγ ; u = γ β←$ Zp; R← (pkr)β ; w = β · skr X ×
JForge J. comp. den. α←$ Zp; J ← (pkj)

α; u = α · skj β←$ Zp; R← (pkr)β ; v = α X X

Fig. 4: Summary of how AMF signing and forging algorithms construct signatures. The
rightmost columns indicate with a checkmark (X) which verification algorithms accept
that signature and with a cross (×) which will reject that signature.

clude such checks from pseudocode. The deterministic verification algorithm,
verify, takes as input a message, signature proof, and statement, then returns a
bit indicating whether verification is successful, b ← SPoKR.verify(msg , π, y).
As an example, this allows us to create signature proofs of the form: R ={(

(α, β), (g,A,B)
)

: A = gα ∨B = gβ
}

, which can be proved with knowledge
of either α or β with witnesses (α,⊥) or (⊥, β) respectively. Note that the inclu-
sion of ⊥ symbols in the witness explicitly indicates which side of the disjunction
is satisfied.

We will utilize two security properties of the Sigma protocols from which
we derive our Fiat-Shamir signatures of knowledge: knowledge soundness and
honest-verifier zero knowledge. Briefly, knowledge soundness ensures that a prover
that generates a valid signature proof for a message must actually “know” a wit-
ness for the statement. A scheme being zero knowledge ensures that verification
of a proof does not reveal anything about the witness to the verifier other than if
it is valid or not. The complete descriptions for constructing signatures of knowl-
edge from Sigma protocols along with formalizations of these security properties
are deferred to [75, Appendix D].

Overview of construction. Consider the strong designated verifier signature
(between sender and moderator) derived as a signature of knowledge from the
following relation:

RSDVS =
{(

(t, u), (g, pks, J)
)

: pks = gt ∨ J = gu
}
,

in which an honest sender will construct Diffie-Hellman value J = (pkj)
α for

random choice of α←$ Zp, and send ephemeral value EJ = gα along with the

SPoKRSDVS signature proof, where pks and pkj are the public keys of the sender
and moderator, respectively. If J is indeed constructed in this manner, J =
gu = gα·skj , then knowledge of u cannot be proved by anyone who does not
know the moderator’s secret key skj . This means a moderator that receives a
valid signature and well-formed J will be convinced that the signature comes
from a sender with knowledge of t = sks.

On the other hand, anyone can create a valid signature of SPoKRSDVS by us-
ing a malformed J set as a random group element, J = gγ for γ←$ Zp, proving
knowledge of u = γ, and sending EJ = gα for independent α←$ Zp. Importantly,
only the moderator has the ability to distinguish between well-formed and mal-
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R =
{(

(t, u, v, w), (g, pks, pkr, pkj , J, R, EJ )
)

:
(
pks = gt ∨ J = gu

)
∧

(
(J = (pkj)

v ∧ EJ = gv) ∨ R = gw
)}

Frank(sks, pkr, pkj ,msg):

(α, β)←$ (Zp)2

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (sks,⊥, α,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

return (π, J,R,EJ , ER)

Forge(pks, pkr, pkj ,msg):

(α, β, γ, δ)←$ (Zp)4

J ← gγ

R← gδ

EJ ← gα

ER ← gβ

x← (⊥, γ,⊥, δ)
y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

return (π, J,R,EJ , ER)

RForge(pks, skr, pkj ,msg):

(α, β, γ)←$ (Zp)3

J ← gγ

R← (pkr)β

EJ ← gα

ER ← gβ

x = (⊥, γ,⊥, β · skr)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

return (π, J,R,EJ , ER)

JForge(pks, pkr, skj ,msg):

(α, β)←$ (Zp)2

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (⊥, α · skj , α,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

return (π, J,R,EJ , ER)

KeyGen:

return PKKeyGen

Verify(pks, skr, pkj ,msg, σ):

(π, J,R,EJ , ER)← σ

y ← (g, pks, pkr, pkj , J, R,EJ )

b1 ← R = Eskr
R

b2 ← SPoKR.verify(msg, π, y)

return b1 ∧ b2

Judge(pks, pkr, skj ,msg, σ):

(π, J,R,EJ , ER)← σ

y ← (g, pks, pkr, pkj , J, R,EJ )

b1 ← J = E
skj
J

b2 ← SPoKR.verify(msg, π, y)

return b1 ∧ b2

Fig. 5: Algorithms for our deniable AMF scheme. The relation R defining our SPoK is
depicted at the top.

formed J , by using the secret key skj to check whether (pkj , EJ , J) forms a valid

Diffie-Hellman triple (J
?
= E

skj
J ). This means that anyone can create a forged

signature that is indistinguishable from a valid sender signature to everyone but
the moderator.

Following the intuition from the previous section, to achieve accountability,
the sender must prove to the receiver that the strong designated verifier signature
for the moderator is well-formed. This corresponds to proving that J is well-
formed, i.e., (pkj , EJ , J) form a Diffie-Hellman triple. Putting it together, our
final AMF construction is the signature of knowledge derived from the following
relation:

R =
{(

(t, u, v, w), (g, pks, pkr, pkj , J, R, EJ)
)

:(
pks = gt ∨ J = gu

)
∧
(
(J = (pkj)

v ∧ EJ = gv) ∨R = gw
)}
.

An honest sender constructs J = (pkj)
α and R = (pkr)

β for (α, β)←$ (Zp)2,

and sends ephemeral values (EJ = gα, ER = gβ) along with the SPoKR signa-
ture, where pkr is the public key of the receiver. The first conjunction clause
represents the strong designated verifier signature to the moderator and the sec-
ond conjunction clause represents the strong designated proof to the receiver
that the first clause is constructed properly. Forgeries for universal deniability
are created with malformed J and R, forgeries for receiver compromise denia-
bility with malformed J , and forgeries for judge compromise deniability do not
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use any malformed elements. Lastly, the receiver’s public key is added to the
statement even though it does not appear in the proof relation, so that it is
bound by the Fiat-Shamir hash challenge. This prevents certain types of iden-
tity misbinding attacks. A complete summary of how different signatures and
forgeries are proved is given in Figure 4 and our full construction is detailed in
pseudocode in Figure 5.

5 Security Analysis

We now explore the security of our deniable AMF scheme, arguing it achieves
the accountability and deniability properties detailed in Section 3. We treat each
set of properties in turn.

5.1 Accountability

As we discussed in the last section, the accountability properties intuitively fol-
low from the underlying signature of knowledge’s soundness properties: demon-
strating forgeries that fool the recipient (unforgeability or sender binding) or the
judge (receiver binding) implies the ability to generate a proof without a wit-
ness. However, it is not clear how to modularly define a suitably strong knowledge
soundness property of the signature of knowledge underlying our construction.
Our analyses therefore take a different tack, reducing to the soundness properties
of the underlying Sigma protocol.

We discuss receiver binding, which shares the same high level strategy as
sender binding. Our strategy is to show a winning adversary A breaks the one-
wayness of the witness-statement relation R, which we can use to build a dis-
crete log adversary B extracting secret keys from the witness. The approach of
the proof uses some techniques related to the proof of existential unforgeability
under chosen message attack (EUF-CMA) for Fiat-Shamir-derived signatures
(c.f., [17]), but the need of B to simulate A’s oracle queries requires a more
nuanced analysis. In fact performing this simulation leads us to make an addi-
tional knowledge-of-exponent assumption (KEA) assumption [10] about G. We
detail the needed KEA assumption in [75, Appendix C]. The full theorem is
given below.

Theorem 1. Let AMF be the asymmetric message franking scheme using sig-
nature of knowledge SPoK defined in Figure 5, where SPoK is derived using the
Fiat-Shamir heuristic as described in [75, Appendix D.1] using hash function
H. If H is modeled as a random oracle, for any r-BIND adversary A making at
most QFrank franking oracle queries, QJudge judge oracle queries, and Qro random
oracle queries, we give adversaries B and C such that

Advr-bind
AMF (A) ≤ QFrank(QFrank + Qro + 1)

p4
+ (QJudge + 1) ·Advkea

G,g(C, EC)

+
Qro + 1

p
+
√

2(Qro + 1) ·Advdl
G,g(B)
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where p is the order of G and if A runs in time T and KEA extractor EC runs
in time tE , then B runs in time T ′ ≈ 2T + 2(QJudge + 1) · tE and C runs in time
T ′ ≈ T .

We use ≈ above to hide small constants. We give a proof sketch here. The
theorem statements and proofs for sender binding and unforgeability are similar.
We defer the full proof details for all three accountability properties to [75,
Appendix E].

Proof sketch: Our proof proceeds via a sequence of games. The first set of
game hops show how the game can be modified to answer A’s franking queries
without using the sender’s secret key sks. Similarly to proving non-interactive
zero knowledge for Fiat-Shamir-derived proofs [17, Theorem 20.3], this is done
by programming the random oracle H to be consistent with the commitments
used in the underlying Sigma protocol. This programming fails if a (randomly
chosen) commitment collides with a value previously used as input to the random
oracle. This happens with low probability as commitments are four uniformly
chosen group elements. The birthday-bound term accounts for the probability
of such a commitment collision.

The second set of game hops handles simulating the judge oracle without the
judge’s secret key. To do so we argue that one can simulate the queries using
KEA extractors and, if that fails, we can build an adversary C that violates the
KEA. In fact this step uses a hybrid argument which gradually replaces each
oracle call with an extractor-utilizing simulation of the check. This accounts for
the second term of the theorem’s advantage bound.

Finally we are in a game now in which the only use of the judge and sender
secret keys is to define the public keys. We use a rewinding lemma [17, Lemma
19.2]. If A succeeds at forging in one execution against a particular message,
we can rerun A (“rewind” it) with a different random oracle output for that
message. The rewinding lemma lower bounds the probability that A succeeds
twice in a row by the probability that it succeeds once. In turn, if one can
forge twice with different hash outputs, this allows extracting a witness from the
Fiat-Shamir proof of knowledge. The last step involves a case analysis over the
relation R to show that extracting a witness implies learning sks or skj , which
we use to build our desired discrete log adversary B. A subtlety in this final step
is that extracting a witness implies learning u = skj · α, but not skj directly.
We use a KEA extractor again to extract α, and thus complete the proof. This
accounts for the final two terms of the advantage relation.

Replacing KEA with Gap-CDH. The KEA [10] is a somewhat exotic as-
sumption, and a natural question to ask is if we can prove our scheme secure
without it. By extending our franking signature by two group elements and re-
ducing to Gap-CDH instead of DL, we can dispense with KEA. The assumption
is used in two places in our proof while building DL adversary B, (1) to answer
judge oracle queries, and (2) to learn skj from the witness. In our alternate proof,
the Gap-CDH oracle is used to answer judge oracle queries, and the extended
franking signature directly proves knowledge of α and β so KEA is not needed
to learn skj from the witness. This gives us the following theorem:
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Theorem 2. Let AMF be the asymmetric message franking scheme using signa-
ture of knowledge SPoK defined in Figure 5 over relation R′ defined in [75, Ap-
pendix H], where SPoK is derived using the Fiat-Shamir heuristic as described
in [75, Appendix D.1] using hash function H. If H is modeled as a random ora-
cle, for any r-BIND adversary A making at most QFrank franking oracle queries,
QJudge judge oracle queries, and Qro random oracle queries, we give adversary
B and C such that

Advr-bind
AMF (A) ≤ QFrank(QFrank + Qro + 1)

p4
+

Qro + 1

p

+
√

2(Qro + 1) ·Advgapcdh
G,g (B)

where p is the order of G and if A runs in time T , then B runs in time T ′ ≈ 2T .

We provide the theorem statements for the other two accountability properties,
as well as assumption definitions and proof details in [75, Appendix H].

5.2 Deniability

Intuitively, the deniability properties fall out of the non-interactive zero knowl-
edge property of the signature proofs of knowledge. Our signature proof of knowl-
edge is carefully designed so that a variety of different witnesses can satisfy the
statement relation R (as laid out in Figure 4). This allows forgers to create sig-
natures that can only be caught by checking well-formedness of the statement
using secret keys.

In more detail, the deniability proofs all follow the same outline. First notice
that there are two high level differences between the frank algorithm and the
forge algorithms: (1) the witnesses used to prove the statement are different, and
(2) how the elements of the statement are formed is different. Different witnesses
are handled by using the zero-knowledge property of the signature proof to
switch between witnesses by hopping to a simulated proof and back. In fact,
for judge compromise deniability, witness indistinguishability [37] is all that is
needed since elements of the statement are well-formed and identical in Frank and
JForge. Extra care needs to be taken for Forge and RForge, since some elements
of the statement are malformed. Well-formed means, for example, that J is
constructed as J ← (pkj)

α forming a Diffie-Hellman triple, (pkj = gskj , EJ =

gα, J = gα·skj ). While malformed means J ← gγ is constructed as a random
group element. In RForge, J is malformed, while in Forge both J and R are
malformed. This leads to an additional DDH term to bound the advantage of an
adversary in distinguishing between each well-formed and malformed statement
elements.

The theorem statement for universal deniability is given below. The first term
of the advantage comes from hopping between two witnesses through a simulator.
The second term of the advantage comes from a decisional Diffie-Hellman hop
for each of the two malformed elements of Forge.
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Theorem 3. Let AMF be the asymmetric message franking scheme defined in
Figure 5 using signature of knowledge SPoK defined in [75, Appendix D.1]. For
all simulators S for SPoK, for any UnivDen adversary A, we give adversaries
B and C such that

Advuniv-den
AMF (A) ≤ 2 ·Advnizk

SPoK,S(B) + 2 ·Advddh
G,g (C) .

where if A runs in time T and makes at most Q queries to the frank oracle, then
B and C run in time T ′ ≈ T and B makes at most Q queries to its proof oracle.

The advantage terms for receiver compromise deniability and judge com-
promise deniability follow a similar structure. The full proofs for all deniability
properties are deferred to [75, Appendix F].

5.3 Measuring Concrete Security

Performing a concrete security analysis allows us to verify the efficiency of our
reductions and inform parameter choices. The full details of our analysis are
given in [75, Appendix I]. The reductions for accountability are not tight, due
both to inheriting the quadratic loss seemingly fundamental to Schnorr-based
Sigma protocols (c.f., [11]) and use of a KEA extractor to respond to each oracle
query. The KEA poses a challenge for interpreting the concrete security analyses
since the extractor is not concretely instantiated.

Strictly interpreted, our analysis suggests that we need a group G of more
than twice the recommended size — i.e.,> 512 bit elliptic curve groups to achieve
about 128 bits of security. That said, we are not aware of any attacks against
our schemes better than solving a discrete log, which is the same situation for
standard Schnorr signatures and other uses of Fiat-Shamir. Therefore, in our im-
plementations we also evaluate using 256-bit groups. This is standard in related
settings (see [14, 20]). It remains a long-standing open question to understand
if this heuristic is dangerous, i.e., if one can show an attack against Schnorr
signatures (or similar) built from groups with conjectured 128-bit hardness that
succeeds in time closer to 264.

6 Implementation and Evaluation

To evaluate our protocol, we implemented our signature proof of knowledge con-
struction in Python 3 using the petlib [34] library which relies on OpenSSL
for elliptic curve operations. Our implementation consists of a generic inter-
face for implementing and composing Sigma protocols that may be of indepen-
dent interest. For our AMF construction, we implemented the Schnorr protocol,
Chaum-Pedersen protocol, and conjunction and disjunction protocols, as well as
a Fiat-Shamir transform to create non-interactive proofs from the generic Sigma
protocol interface.

We aim to evaluate the practicality of integrating our AMF scheme into
existing messaging platforms. First, we are interested in the timing overhead
in creating franking signatures as well as the space overhead in the signatures
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Algorithm
Measured time (ms) Group operations

P-256 P-521 Mul Add Inv

Schnorr sig. 0.7± 0.12 2.4± 0.04 1 0 0

Frank 7.3± 0.95 28.3± 0.16 11 2 2

Verify 6.6± 0.90 29.1± 2.5 11 5 0

Judge 6.6± 0.16 32.0± 1.4 11 5 0

Forge 6.7± 0.11 32.0± 3.5 12 3 3

RForge 7.2± 0.12 34.2± 1.7 12 3 3

JForge 6.7± 0.11 31.6± 4.0 11 2 2

Fig. 6: Measured timing statistics and group operation accounting for the AMF al-
gorithms from Figure 5 including a baseline comparison to a (undeniable) Schnorr
signature. The measured times show the average and standard deviation over 1000
runs using a message size of 4KB instantiated over NIST elliptic curve groups P-256
and P-521. The group operations give the count of scalar multiplications (Mul), group
additions (Add), and group inversions (Inv).

themselves. To this end, we present microbenchmarks to evaluate the overhead
costs in our scheme. Second, we discuss what the deployment of an end-to-end
moderation system incorporating asymmetric message franking would look like
and present one such proof-of-concept for direct messaging on the Twitter plat-
form. The AMF library as well as the deployment prototype are available open
source at https://github.com/julialen/asymmetric-message-franking.

Benchmarks. We present timing and size benchmarks for our implementation
of the signature of knowledge AMF construction. These experiments were con-
ducted on an AWS t3.small EC2 virtual machine running Ubuntu 18.04 on a
2.5 GHz Intel Scalable Processor using the NIST elliptic curve groups P-256 and
P-521 and the hash function SHA-256.

The table in Figure 6 shows the measured time in milliseconds to run each
of the algorithms from Figure 5. The measured times are the average over 1000
runs using a message size of 4KB. We compare to a baseline of a basic Schnorr
signature of sks, which is undeniable. These numbers are as expected—our al-
gorithms perform about ten times as many group operations as a Schnorr signa-
ture, and take roughly ten times as long. Though our scheme is slower, it is still
fast enough to be used in practical settings where network latency dominates
communication cost. We also provide the number of group operations (scalar
multiplications, group additions, and group inversions) performed in each algo-
rithm. These experiments were conducted using a fixed message size of 4KB, but
we note that the only message-size dependent operation is a single hash for the
Fiat-Shamir signature.

The size of an AMF signature is not message-dependent. Our algorithms all
output nine group elements (i.e., elliptic curve points) and six scalars in Zp.
In our implementation, AMF signatures are 489 bytes in size for elliptic curve
group P-256 and 795 bytes in size for elliptic curve group P-521. In contrast, a
Schnorr signature is one group element and one scalar and is 65 bytes in size for
P-256 and 99 bytes in size for P-521.

https://github.com/julialen/asymmetric-message-franking
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Deployment. We build a proof-of-concept third-party moderation system using
AMFs which we can test by integrating it over already existing messaging plat-
forms. Instantiating a third-party moderation system with asymmetric message
franking involves three main services: (1) a judging service that receives and ar-
bitrates abuse reports from users, (2) a publish-subscribe service to maintain an
up-to-date community membership list amid new user enrollment and abusive
user blocks, and (3) a public key infrastructure (PKI) to map platform identities
to public keys. A user registers by enrolling with the membership service and
delivering their public key to the PKI. To bind a platform identity to a key, the
PKI should check some kind of proof-of-ownership of both the account and the
secret key. This can be done using a challenge-response protocol, where the PKI
delivers a random challenge to the user, who must sign the challenge with their
private key and post the signed challenge on the platform. This will prevent
rogue-key attacks that utilize malformed keys (q.v., [68]). Our proof-of-concept
interfaces with Keybase [1] which provides the PKI service as described above.

The judging service can be performed by human moderators, automated
tools, or some combination of the two. In our proof-of-concept, judging abuse
reports is automated through the use of the Perspective conversation API [2]
which uses machine learning to assign a “toxicity” score to a message; users are
blocked based on a threshold of the score. We note that in a production deploy-
ment, use of automated moderation tools would need to be carefully tuned and
likely also paired with human decision-making. Finally, we provide a client with
a command-line interface to allow users to send, receive, and report direct mes-
sages on Twitter. The client automatically creates, appends, and parses franking
signatures, as well as filters messages that are malformed or sent from a blocked
user.

Lastly, we find that the cryptographic overhead of creating and verifying
franking signatures is dwarfed by the overhead incurred by the rest of the in-
frastructure needed for moderation, e.g. PKI; sending a message over Twitter
in our proof-of-concept takes ≈ 0.5 seconds. Much of this identity-binding in-
frastructure is needed for any moderation service — augmenting cryptographic
verification using asymmetric message franking is not a significant overhead.

7 Discussion

Here we discuss some limitations of the use of AMF schemes.

Strong authentication. Our scheme does not ensure forgeries by the moder-
ator can be detected by the receiver, and so the receiver cannot rely on AMF
signatures alone to authenticate authorship if there is risk of the moderator being
malicious. This is fundamental given our strong deniability notions (specifically,
judge compromise deniability rules it out). One might weaken our deniability
goals to achieve this, however. We explore such an alternate deniability target
in [75, Appendix B] and informally present a modification to our scheme that
achieves it.
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Alternatively, one could rely on the accompanying E2E encryption scheme
to provide strong authentication. To preserve deniability properties, the E2E
encryption should itself be deniable (otherwise a receiver could potentially con-
vince others that a message was sent by providing a transcript of E2E cipher-
texts and keys). Some E2E encryption systems appear to have the requisite
deniability properties, such as Signal based on 3DH (Triple Diffie-Hellman) key
exchange [48,59]. Others have slightly weaker deniability properties, such as Sig-
nals newer handshake X3DH which extends 3DH with signed prekeys [60]. That
said we have not provided a formal treatment of E2E encryption and future work
could build off ours to do so.

Transcript consistency. In Facebook’s current moderation solution [36], an
abuse report contains context of surrounding messages sent by both users. In
metadata-private moderation, it is difficult to ensure the moderator, sender,
and receiver all have a consistent view of an interleaved message transcript be-
cause the moderator does not know what was sent or when. We might include
sequence numbers and acknowledgment receipts to protect ordering. However,
such techniques should be introduced with care so as not to obviate the system’s
deniability properties.

Moderator accountability via thresholding. Another issue is that our de-
niability goals may make holding moderators accountable for their actions more
difficult. A fundamental property of asymmetric message franking is that the
moderator cannot prove someone authored a message. At best they can prove a
message was authored either by them or by the sender. As a result, the moder-
ator cannot prove they had a valid reason for banning someone.

One potential mitigation for this would be to split the moderator’s functional-
ity across multiple parties. To do so, the key would need to be shared and a secure
multi-party protocol used to test well-formedness of J in the franking signature,
which can be done using techniques from verifiable secret sharing [64, 66, 73].
With threshold moderation, it takes the parties holding some t out of n moder-
ator key shares to invoke Judge. This makes the moderator functionality more
robust to accusations of unfair treatment, since t of them would need to act
unfairly to falsely accuse someone. This also provides a natural defense against
moderator key compromise, since to reconstruct the moderator key, t distinct
parties would need to be breached.

Deniable channels. Finally, care must be taken when composing our AMF
scheme with other cryptographic primitives, as those primitives may compro-
mise or prevent deniability. In particular, one might worry about the deniability
of the underlying authenticated channels, like TLS, through which AMF signed
messages are sent. In general, if the sender uses one-way authentication for TLS,
a TLS transcript is (cryptographically) universally deniable. In this authenti-
cation mode, the server is authenticated and the client generates and sends a
randomly chosen ephemeral prekey to the server from which a session key is de-
rived. Any party can create a session key with the platform server and use that
session key to create a forged transcript. The IP address of the sender is learned
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by the platform server at the time of sending, but any transcript recording the IP
address is unconvincing since it is not bound to the client-chosen randomness.
Thus while there exist stronger notions of deniable channels [67, 76], it seems
TLS channels preserve universal deniability for arbitrary message platforms.

Yet, messaging platforms presumably perform their own user authentication
on top of TLS, and this may be problematic for receiver compromise deniability
in some scenarios. Due to the deniability properties of TLS described above, a
transcript of messages served by the platform would be unconvincing. However,
instead, if the receiver were to reveal their platform credentials, someone can use
those credentials to retrieve the messages directly from the platform. This inter-
action would convince someone that the messages were sent by the sender, given
they trust the platform’s underlying user authentication. One way to prevent
this breach in deniability is if the platform does not serve archived messages.
Platforms such as Signal, WhatsApp, and Facebook secret conversations do not
back-up messages, and thus, already fit this model.

8 Related Work

Message franking schemes. Symmetric message franking has been studied
in several works [29, 35, 36, 42, 46]. All of these schemes consider the symmet-
ric setting where a centralized server holds a MAC key that authenticates the
ciphertext, sender, recipient tuple. They do not transfer to settings where this
communication metadata is not available. Moreover, while deniability is the mo-
tivating goal, the actual studied primitive is compactly committing authenticated
encryption [42]. They do not formalize deniability.

Special purpose signature schemes. A variety of special purpose signature
schemes have been proposed that do not work in our setting. In undeniable
signatures [25, 27], verification requires interacting with the signer precisely to
prevent them from denying messages they wrote. This is the same limitation
as designated confirmer signatures [26], with the added problem that any com-
promise of the confirmer — who holds keys which can confirm but not issue
signatures — removes any doubt about the authenticity of a signature.

Group signatures [9, 15, 19, 22] allow members of a specified group to sign
messages indicating they are a part of the group without revealing the individ-
ual signer’s identity. Group membership is determined by a group coordinator
who has the additional capability of learning the individual signer from a sig-
nature. One can imagine a moderation protocol built from group signatures in
which all users are part of the “global” group and the moderator is the group
coordinator. Other than the efficiency issues of maintaining a global group with
dynamic joins and revocations, these schemes do not achieve judge compromise
deniability for the group coordinator’s secret key. Ring signatures [69] similarly
allow verification of group membership, but are not applicable to moderation,
since they do not provide a way for the moderator to learn individual signer
identities.
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Designated verifier signatures [47,49,53,57], in particular, strong designated
verifier signatures [45, 71] provide nearly the functionality we need, but do not
alone capture the relationship between the moderator and recipient parties. We
informally describe an AMF construction (see Section 4.1 and [75, Appendix G])
consisting of a strong designated verifier proof [24, 33] to the receiver of the
well-formedness of a strong designated verifier signature to the moderator. This
approach can also be considered as a new variant of multi-designated verifier sig-
natures [54] with a special relationship between designated verifiers, moderator
and receiver.

Anonymous blacklisting systems. An anonymous blacklisting scheme [43]
allows a user to produce a series of unlinkable tokens from a private key. To send
a message, they provide a fresh token and prove that no tokens linked to their
private key are on some blacklist. In this manner, moderators can blacklist sender
tokens without learning the sender’s identity — different from AMF where the
sender’s identity is learned by the moderator. However, the need for the sender
to be able to identify and disavow tokens on the blacklist means that there is no
deniability in the case an attacker compromises the sender (e.g., as in the DNC
email breach). Our scheme, in contrast, protects the user’s deniability even if
their key is compromised.

Other work in deniability. Deniability has also been considered in other
cryptographic contexts. Canetti et al. proposed deniable encryption [23], which
allows the denial of contents of a ciphertext by giving a different opening of it.
This doesn’t deal with authorship or authentication and hence is not applica-
ble. Borisov et al. [18] explored deniability as a feature for messaging systems.
Deployed in OTR [18] and Signal [59], deniable messaging protocols ensure that
messages can be authenticated by the receiver but not by third parties. On their
own, they do not allow for moderation because the deniability is too strong: no
one can authenticate the message, including the moderator. They can be com-
bined with an AMF scheme to get an end-to-end encrypted and moderatable
messaging scheme.

Automated moderation systems. A variety of works have explored ad-hoc
moderation [40] and automated moderation systems [62]. We do not attempt to
provide an exhaustive list here. One of the more notable projects is Google Jig-
saw’s Perspective API [62], which aims to build automated moderation tools to
combat toxicity. While these works are promising, they cannot be used effectively
if messages cannot be properly attributed to users.

9 Conclusion

In this paper, we investigated moderation for metadata-private messaging sys-
tems like Signal. Because user identities are hidden from the platform, existing
moderation tools (including symmetric message franking) cannot be used. Other
seeming solutions break deniability. Similar issues prevent third-party modera-
tion, in which the messaging platform and moderator are decoupled.
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We showed that the main technical challenge is cryptographic: how to balance
the need for accountability in abuse reporting with the desire for deniability.
We resolved this tension by introducing a new cryptographic primitive called
asymmetric message franking (AMF), and showed how to construct one efficient
enough for practice.
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22. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
CRYPTO (1997)

23. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In:
CRYPTO (1997)

24. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: EUROCRYPT (2018)

25. Chaum, D.: Zero-knowledge undeniable signatures. In: EUROCRYPT (1990)
26. Chaum, D.: Designated confirmer signatures. In: EUROCRYPT (1994)
27. Chaum, D., Antwerpen, H.V.: Undeniable signatures. In: CRYPTO (1989)
28. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO (1992)
29. Chen, L., Tang, Q.: People who live in glass houses should not throw stones:

Targeted opening message franking schemes. Cryptology ePrint Archive, Report
2018/994 (2018)

30. Corrigan-Gibbs, H., Boneh, D., Mazieres, D.: Riposte: An anonymous messaging
system handling millions of users. In: IEEE S& P (2015)

31. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: ACM CCS (2010)

32. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: CRYPTO (1991)

33. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: TCC (2006)

34. Danezis, G.: Petlib library (2018), https://github.com/gdanezis/petlib
35. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From

invisible salamanders to encryptment. In: CRYPTO (2018)
36. Facebook: Messenger Secret Conversations technical whitepa-

per (2017), https://fbnewsroomus.files.wordpress.com/2016/07/

messenger-secret-conversations-technical-whitepaper.pdf

37. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC (1990)

38. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO (1986)

39. Galindo, D.: The exact security of pairing based encryption and signature schemes.
In: Based on a talk at Workshop on Provable Security, INRIA, Paris (2004)

40. Geiger, R.S.: Bot-based collective blocklists in twitter: the counterpublic moder-
ation of harassment in a networked public space. Information, Communication &
Society (2016)

41. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM (1991)

42. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: CRYPTO (2017)

43. Henry, R., Goldberg, I.: Formalizing anonymous blacklisting systems. In: IEEE
S&P (2011)

44. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: SOSP (2015)

https://github.com/gdanezis/petlib
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf


28 N. Tyagi et al.

45. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient strong designated verifier
signature schemes without random oracle or with non-delegatability. Int. J. Inf.
Sec. (2011)

46. Huguenin-Dumittan, L., Leontiadis, I.: A message franking channel. Cryptology
ePrint Archive, Report 2018/920 (2018)

47. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: EUROCRYPT (1996)

48. Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols.
In: ASIACRYPT (2005)

49. Kudla, C., Paterson, K.G.: Non-interactive designated verifier proofs and undeni-
able signatures. In: Cryptography and Coding (2005)

50. Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom: Horizontally scaling
strong anonymity. In: SOSP (2017)

51. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle. PoPETs (2016)
52. Kwon, A., Lu, D., Devadas, S.: Xrd: Scalable messaging system with cryptographic

privacy. arXiv preprint arXiv:1901.04368 (2019)
53. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: Anonymity and

efficient construction from any bilinear map. In: SCN (2004)
54. Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signatures. In: ICICS

(2004)
55. Lazar, D., Gilad, Y., Zeldovich, N.: Karaoke: Distributed private messaging im-

mune to passive traffic analysis. In: OSDI (2018)
56. Lazar, D., Zeldovich, N.: Alpenhorn: Bootstrapping secure communication without

leaking metadata. In: OSDI (2016)
57. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: Attacks,

new security notions and a new construction. In: ICALP (2005)
58. Lund, J.: Technology preview: sealed sender for Signal (2018), https://signal.

org/blog/sealed-sender/

59. Marlinspike, M.: Simplifying OTR deniability. (2013), https://signal.org/blog/
simplifying-otr-deniability/

60. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (2016), https:

//signal.org/docs/specifications/x3dh/

61. Masnick, M.: The Clinton campaign should stop denying that
the Wikileaks emails are valid; they are and they’re real
(2016), https://www.techdirt.com/articles/20161024/22533835878/

clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.

shtml

62. Mullin, B.: The New York Times is teaming up with Alphabet’s Jig-
saw to expand its comments (2017), https://www.poynter.org/news/

new-york-times-teaming-alphabets-jigsaw-expand-its-comments

63. Nossiter, A., Sanger, D.E., Perlroth, N.: Hackers Came, but the French
Were Prepared (2017), https://www.nytimes.com/2017/05/09/world/europe/

hackers-came-but-the-french-were-prepared.html

64. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO (1991)

65. Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix
anonymity system. In: USENIX Security (2017)

66. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC (1989)

67. Raimondo, M.D., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: CCS (2006)

https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml
https://www.poynter.org/news/new-york-times-teaming-alphabets-jigsaw-expand-its-comments
https://www.poynter.org/news/new-york-times-teaming-alphabets-jigsaw-expand-its-comments
https://www.nytimes.com/2017/05/09/world/europe/hackers-came-but-the-french-were-prepared.html
https://www.nytimes.com/2017/05/09/world/europe/hackers-came-but-the-french-were-prepared.html


Asymmetric Message Franking 29

68. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In: EUROCRYPT (2007)

69. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: ASIACRYPT
(2001)

70. Roose, K.: As Elites Switch to Texting, Watchdogs Fear Loss of
Transparency (2017), https://www.nytimes.com/2017/07/06/business/

as-elites-switch-to-texting-watchdogs-fear-loss-of-transparency.html

71. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier
signature scheme. In: ICISC (2003)

72. Schnorr, C.: Efficient identification and signatures for smart cards. In: CRYPTO
(1989)

73. Stadler, M.: Publicly verifiable secret sharing. In: EUROCRYPT (1996)
74. Tyagi, N., Gilad, Y., Leung, D., Zaharia, M., Zeldovich, N.: Stadium: A distributed

metadata-private messaging system. In: SOSP (2017)
75. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-

ing: Content moderation for metadata-private end-to-end encryption. Cryptology
ePrint Archive, Report 2019/565 (2019)

76. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: CCS
(2015)

https://www.nytimes.com/2017/07/06/business/as-elites-switch-to-texting-watchdogs-fear-loss-of-transparency.html
https://www.nytimes.com/2017/07/06/business/as-elites-switch-to-texting-watchdogs-fear-loss-of-transparency.html


30 N. Tyagi et al.

A Unforgeability from Receiver and Sender Binding

We present the unforgeability security notion, UNF for AMFs and show that it
is implied by receiver binding and sender binding.

Unforgeability is specified formally in game UNF on the left-hand side of
Figure 7. The adversary has access to a franking oracle for the (honest) sender
to which it can query chosen receiver public key and message pairs. We also give
the adversary access to verify and judge oracles to query chosen sender public
key and message pairs. The adversary’s goal is to generate a signature accepted
by Verify for the target receiver key, and we disallow trivial wins (submitting
a signature for the target receiver key and a message queried to the franking
oracle). For an adversary A and message franking scheme AMF, we define the
UNF advantage of A against AMF as

Advunf
AMF(A) = Pr

[
UNFAAMF ⇒ 1

]
.

Next, we prove that unforgeability is implied by receiver binding and sender
binding. For intuition on how the proof will proceed, consider an adversary that
creates a forgery that wins the unforgeability game, i.e., the forgery output
passes receiver verification. Either this forgery passes judge verification or it
does not. If it does pass judge verification, the adversary wins receiver binding:
receivers can create forgeries from a sender that will be accepted by the judge.
If it does not pass judge verification, the adversary wins sender binding: senders
can create forgeries that are accepted by the receiver but rejected by the judge.
Our theorem statement is as follows:

Theorem 4. For any asymmetric message franking scheme AMF and any UNF
adversary A, we give adversaries B and C such that

Advunf
AMF(A) ≤ Advr-bind

AMF (B) + Advs-bind
AMF (C)

where if A runs in time T and makes at most QFrank, QVerify, and QJudge frank,
verify, and judge oracle queries respectively, then B and C run in time T ′ ≈ T ,
B makes at most QFrank frank and QVerify verify oracle queries, and C makes at
most QVerify verify and QJudge judge oracle queries.

Proof. Define r-BIND adversary B that samples a random receiver key pair and
runs A simulating A’s frank and judge oracles by forwarding queries to its own
r-BIND frank and judge oracles, and simulates A’s verify oracle by using the
sampled receiver secret key, and finally forwardsA’s output as its own. Adversary
B’s simulation of A, given in pseudocode in Figure 7, matches exactly with that
of the unforgeability game UNF.

Similarly define s-BIND adversary C that samples a random sender key pair
and runs A simulating A’s verify and judge oracles by forwarding queries to its
own s-BIND verify and judge oracles, and simulates A’s frank oracle by using the
sampled sender secret key, and finally forwards A’s output as its own. Adversary
C’s simulation of A, given in Figure 7, also matches that of the unforgeability
game UNF.
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UNFA
AMF:

(pks, sks)←$ KeyGen

(pkr, skr)←$ KeyGen

(pkj , skj)←$ KeyGen

(msg, σ)← AO(pks, pkr, pkj)

if (pkr, pkj ,msg) ∈ Q:

return 0

return Verify(pks, pkr, skr,msg, σ)

OFrank(pk′
r, pk

′
j ,msg):

Q ← Q ∪ {(pk′
r, pk

′
j ,msg)}

return Frank(sks, pk
′
r, pk

′
j ,msg)

OVerify(pk′
s, pk

′
j ,msg, σ):

return Verify(pk′
s, skr, pk

′
j ,msg, σ)

OJudge(pk′
s, pk

′
r,msg, σ):

return Judge(pk′
s, pk

′
r, skj ,msg, σ)

BO(pks, pkj):

(pkr, skr)←$ KeyGen

(msg, σ)← ASimO(pks, pkr, pkj)

return (pkr,msg, σ)

SimOFrank(pk′
r, pk

′
j ,msg):

return OFrank(pk′
r, pk

′
j ,msg)

SimOVerify(pk′
s, pk

′
j ,msg, σ):

return Verify(pk′
s, skr, pk

′
j ,msg, σ)

SimOJudge(pk′
s, pk

′
r,msg, σ):

return OJudge(pk′
s, pk

′
r,msg, σ)

CO(pkr, pkj):

(pks, sks)←$ KeyGen

(msg, σ)← ASimO(pks, pkr, pkj)

return (pks,msg, σ)

OFrank(pk′
r, pk

′
j ,msg):

return Frank(sks, pk
′
r, pk

′
j ,msg)

SimOVerify(pk′
s, pk

′
j ,msg, σ):

return OVerify(pk′
s, pk

′
j ,msg, σ)

SimOJudge(pk′
s, pk

′
r,msg, σ):

return OJudge(pk′
s, pk

′
r,msg, σ)

Fig. 7: Unforgeability game for AMF schemes (left). Adversaries used in reduction of
unforgeability to receiver binding (top right) and sender binding (bottom right).

Call the event that the message, signature pair output by A passes the re-
ceiver verification algorithm, XR, and the event that it passes the judge verifi-
cation algorithm, XJ . Adversary B wins when judge verification passes:

Pr
[

r-BINDBAMF ⇒ 1
]

= Pr [XJ ] ,

and adversary C wins when receiver verification passes, but judge verification
fails:

Pr
[

s-BINDCAMF ⇒ 1
]

= Pr [XR ∧ ¬XJ ] ,

We know from the win condition of UNF that

Pr
[

UNFAAMF ⇒ 1
]

= Pr [XR ] .

Thus, we have

Pr
[

UNFAAMF ⇒ 1
]

= Pr [XR ]

= Pr [XR ∧XJ ] + Pr [XR ∧ ¬XJ ]

≤ Pr [XJ ] + Pr [XR ∧ ¬XJ ]

= Pr
[

r-BINDBAMF ⇒ 1
]

+ Pr
[

s-BINDCAMF ⇒ 1
]
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Distinguisher’s keys

sks 0 1 0 1 0 1 0 1

skr 0 0 1 1 0 0 1 1

skj 0 0 0 0 1 1 1 1

F
o
rg

e
r’

s
k
e
y
s

 

0 0 0    t l  n  l  n t  u    u  t l u n  l u n t

0 1 0    t    t  u    u  t  u    u  t

0 0 1    t   n    n t    t   n    n t

0 1 1    t    t    t    t

l : Incompatible with unforgeability n : Incompatible with strong authentication

u : Incompatible with receiver binding t : Incompatible with disavowability

Fig. 8: Space of deniability definitions parameterized by the secret keys available to the
forger and distinguisher along with their inherent incompatibilities with accountability
definitions.

B The Space of Deniability Definitions

Our deniability definitions are implicitly parameterized by the secret keys avail-
able to the forger and the secret keys available to the distinguisher. In our
work, we choose three such parameterizations, e.g., universal deniability gives
the forger access to no secret keys and gives the distinguisher access to the
sender secret key. In addition to our deniability definitions, we also have three
accountability definitions: unforgeability, receiver binding, and sender binding.
It is not easy to see that the deniability definitions chosen are compatible with
the accountability definitions chosen. In fact, we have already pointed out that
some of our accountability definitions are directly incompatible with some possi-
ble deniability definitions, e.g., a truly universal forging algorithm that requires
no secret keys but can fool a distinguisher with all secret keys would violate
unforgeability and receiver binding. The chosen deniability definitions must be
carefully balanced with the desired accountability definitions. This section ex-
plores the space of alternate deniability definitions and provides some guidance
on how to choose a set of consistent and complete definitions.

We lay out the space of possible deniability definitions in Figure 8. It is pa-
rameterized on the y-axis by the combination of keys given to the forger and on
the x-axis by the combination of keys given to the distinguisher. We truncate
the table by only considering definitions in which the forger does not have access
to the sender’s secret key sks. Creating indistinguishable “forgeries” with access
to the sender’s secret key is trivial by simply signing honestly. We populate the
table with symbols to indicate which deniability definitions are incompatible
with various accountability definitions: Unforgeability and receiver binding are
defined as in our paper. Strong authentication is a stronger unforgeability notion
ensuring that the receiver will not accept judge forgeries. Informally, it can be
considered as an extension of the unforgeability definition in which the adversary
knows the judge secret key. Disavowability captures the ability of the sender to
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Our AMF Distinguisher’s keys

sks 0 1 0 1 0 1 0 1

skr 0 0 1 1 0 0 1 1

skj 0 0 0 0 1 1 1 1

F
o
rg

e
r’

s
k
e
y
s

 

0 0 0 U UO  l    l     u    u   l u   l u  

0 1 0 R R R RO   u    u    u    u  

0 0 1 J J J J J J J JO

0 1 1 J J J J J J J J

AMF with strong authentication

sks 0 1 0 1 0 1 0 1

skr 0 0 1 1 0 0 1 1

skj 0 0 0 0 1 1 1 1

F
o
rg

e
r’

s
k
e
y
s

 

0 0 0 U UO l  n l  n  u   u  l u n l u n

0 1 0 R R R RO  u   u   u   u  

0 0 1 J’ J’   n   n J’ J’O   n   n

0 1 1 JR JR JR JR JR JR JR JRO

UO : Universal deniability l : Incompatible with unforgeability

RO : Receiver compromise deniability u : Incompatible with receiver binding

JO : Judge compromise deniability n : Incompatible with strong authentication

J’O : Judge-only compromise deniability

JRO : Judge-receiver compromise deniability No circle: Implied by circled definition

Fig. 9: The targeted deniability and accountability definitions for the AMF scheme in
our paper (top) and for an AMF scheme with a different deniability-accountability
trade-off targeting strong authentication (bottom).

disavow certain forgeries. In a more formal treatment, one might imagine there
be separate disavowability notions for the ability to disavow different forgeries.
Sender binding by itself is not incompatible with any of the deniability defini-
tions, so it does not appear. However, we have seen how receiver binding and
sender binding together imply unforgeability which is incompatible with some
deniability definitions. Our visualization does not capture complexity created by
interaction between accountability definitions.

Choosing deniability targets. We next provide reasoning for how to choose
deniability targets. Consider the top table in Figure 9. Here, we copy over the
incompatibilities for the accountability definitions that we target in our AMF
construction, unforgeability, receiver binding, and sender binding. The three cir-
cled symbols indicate our deniability targets: universal deniability, receiver com-
promise deniability, and judge compromise deniability. The uncircled symbols
indicate which deniability definitions are implied by our deniability targets. We
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find that from only the three chosen deniability definitions, all other deniability
definitions in the space are either (1) explicitly incompatible with our account-
ability definitions, or (2) implied by one of our chosen deniability definitions.
Thus, our set of deniability and accountability definitions are complete and con-
sistent.

Supporting strong authentication. An alternate trade-off between account-
ability and deniability that our AMF construction does not target is strong
authentication. Strong authentication is incompatible with judge compromise
deniability since it requires that a judge should not be able to create a forgery
that is accepted by the receiver. To target strong authentication as an account-
ability goal, we introduce two new deniability targets to replace judge compro-
mise deniability: weak judge compromise deniability and judge-receiver compro-
mise deniability. Weak judge compromise deniability captures the idea that the
judge’s forging ability in the previous judge compromise deniability definition
was too strong. Namely, that with only the judge’s key, a judge forgery can fool
a distinguisher with all three secret keys. In weak judge compromise deniability,
a judge forgery is only able to fool a distinguisher with the sender secret key and
judge secret key; the receiver secret key has distinguishing ability. In order to
create a forgery that fools all three secret keys, we can introduce a new forging
algorithm where the forger must have both the receiver secret key and the judge
secret key, captured by judge-receiver compromise deniability. With these new
deniability definitions, we have found a complete and consistent set of deniability
and accountability definitions for strong authentication.

We can also consider how to build a scheme that meets this new set of
strong authentication definitions. Without proof, we believe that extending our
franking signature by adding a strong designated verifier signature to the receiver
would meet this set of definitions. A judge would no longer be able to forge to
a receiver, since they would not be able to create the strong designated verifier
signature. However, a forger with both receiver and judge secret keys could forge
the strong designated verifier signature with the receiver key and the remainder
of the franking signature as before with the judge key.

C Proof Preliminaries

In this section, we provide formalization for the security properties of signatures
of knowledge as well as formalization for security games that will be used in
proof reductions.

Signatures of knowledge. A signature of knowledge scheme SPoKR = (prove,
verify) is a pair of algorithms associated with a witness-statement relation R.
A relation R is a set of witness-statement pairs; formally, R ⊆ X × Y where
X is the witness space and Y is the statement space. Further, define M and Σ
as the message space and signature space respectively. The randomized proving
algorithm, prove :M×X ×Y → Σ, outputs a signature proof of the statement
for a message given a witness, π←$ SPoKR.prove(msg , x). The proving algorithm
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REALA
SPoK:

b← AOprove,Oro

return b

Oprove(msg, x, y):

return SPoK.prove(msg, x, y)

Oro(msg):

r←$ {0, 1}hlen

if H[msg] 6= ⊥ :

r ← H[msg]

return r

IDEALA
S :

b← AOprove,Oro

return b

Oprove(msg, x, y):

if (x, y) 6∈ R then return ⊥
(st, π)←$ Sprove(st,msg, y)

return π

Oro(msg):

(st, r)←$ Sro(st,msg)

return r

Fig. 10: Non-interactive zero knowledge security game for signatures of knowledge.

returns ⊥ if (x, y) 6∈ R. The deterministic verification algorithm, verify : M×
Σ ×Y → {0, 1}, takes as input a message, signature proof, and statement, then
returns a bit, b ← SPoKR.verify(msg , π, y). We will say a signature proof π on
message msg verifies with respect to statement y if SPoKR.verify(msg , π, y) = 1.
When the relation R is clear from context, we may simply write SPoK to mean
SPoKR.

Non-interactive zero knowledge. Let SPoKR = (prove, verify) be a signature
of knowledge scheme for witness-statement relationR. Suppose that SPoK makes
use of a hash function H : {0, 1}∗ → {0, 1}hlen, which is modeled as a random
oracle. Let S be a simulator for SPoK. A non-interactive zero knowledge (niZK)
adversary A is given query access to a proof oracle and a random oracle. In the
“real world”, the proof oracle responds to queries using SPoK.prove(msg , x, y)
and the random oracle responds as a random function. In the “ideal world”, the
proof oracle and random oracle are simulated by S = (Sprove,Sro), and when
simulating the proof oracle, Sprove does not receive the witness x. The advantage
of a niZK adversary A is defined as the ability to distinguish between the real
and ideal world as defined by the security games given in Figure 10.

Advnizk
SPoKR,S(A) =

∣∣Pr
[

REALASPoKR ⇒ 1
]
− Pr

[
IDEALAS ⇒ 1

]∣∣ .
Sigma protocols. Our signature of knowledge is formed using the Fiat-Shamir
heuristic applied to a Sigma protocol. Here we define knowledge soundness and
special honest verifier zero knowledge (HVZK) for a Sigma protocol, which we
will make use of in proofs down the line.

LetR be a witness-statement relation. A Sigma protocol (Definition 19.3 [17])
for R is a pair (P, V ). P is an interactive protocol algorithm called the prover,
which takes as input a witness-statement pair (x, y) ∈ R. V is an interactive
protocol algorithm called the verifier, which takes as input a statement y, and
which outputs bit b. P and V are structured so that an interaction between them
always works as follows:

– P computes a message t, called the commitment, and sends t to V ;
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– Upon receiving P ’s commitment t, V chooses a challenge c at random from
a challenge space C, and sends c to P .

– Upon receiving V ’s challenge c, P computes a response z, and sends z to
V .

– Upon receiving P ’s response z, V outputs bit b, which must be computed
strictly as a function of the statement y and the conversation (t, c, z).

A Sigma protocol (P, V ) for R provides knowledge soundness (Definition
19.4 [17]) if there exists an efficient extractor algorithm E which given two ac-
cepting conversations for statement y, (t, c, z) and (t, c′, z′) where c 6= c′, then E
outputs witness x for y ((x, y) ∈ R). Notationally, x← E((t, c, z), (t, c′, z′), y).

A Sigma protocol (P, V ) for R ⊆ X × Y provides special HVZK (Definition
19.5 [17]) if there exists an efficient probabilistic simulator algorithm S which
given statement and challenge pair (y, c) ∈ Y×C, outputs commitment-response
pair (t, z) such that (1) (t, c, z) is an accepting conversation for y, and (2) (t, c, z)
has the same distribution as a conversation between P and V . Notationally,
(t, z)←$ S(c, y).

Other security games. The discrete log (DL) security game, shown in Fig-
ure 11, tasks an adversary with calculating the discrete logarithm of a group
element of a prime order cyclic group G. The advantage of an adversary is de-
fined as

Advdl
G,g(A) = Pr

[
DLAG,g ⇒ 1

]
.

The decisional Diffie-Hellman (DDH) security game, shown in Figure 11, tasks
an adversary with distinguishing whether a triple of group elements are a random
triple or are a Diffie-Hellman triple. The advantage of an adversary is defined as

Advddh
G,g (A) =

∣∣∣Pr
[

DDHA,0G,g ⇒ 1
]
− Pr

[
DDHA,1G,g ⇒ 1

]∣∣∣ .
The knowledge of exponent assumption. The knowledge of exponent as-
sumption [32] concerns triples of the form (ga, gb, gab) (i.e. a Diffie-Hellman (DH)
triple) for a group G of order p (with p prime) and generator g. It says, roughly,
that an adversary which on input ga outputs a DH triple must “have knowledge”
of the exponent b which can be extracted from its description. Formally, for an
adversary A and extractor EA (which, crucially, is relative to A), we define the
knowledge of exponent advantage of A relative to EA as

Advkea
G,g(A, EA) = Pr

[
KEAA,EAG,g ⇒ 1

]
.

Pseudocode for the game KEA is in Figure 11. Our formalization follows Bellare
et al. [10] except with randomized Turing machines instead of families of circuits.
Our pseudocode does not depict the random tapes used by A or EA, but the
extractor is always given the random tape of the adversary.

Since the output of game KEA involves two adversaries (one of which depends
on the other) interpreting it is subtle. The KEA game basically measures the
probability EA fails to extract the exponent when A outputs a valid DH triple.
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DDHA,b
G,g :

(x, y, z)←$ Z3
p

if b = 0:

b′ ← A(gx, gy, gz, g, p)

else :

b′ ← A(gx, gy, gxy, g, p)

return b′

DLA
G,g :

x←$ Zp
x′ ← A(gx, g, p)

return x = x′

KEA
A,EA
G,g :

a←$ Zp
(Y,C)←$A(ga, g)

c←$ EA(ga, g)

return Y = Ca ∧ C 6= gc

Fig. 11: (Left) Decisional Diffie-Hellman (DDH) game. (Upper right) Discrete logarithm
(DL) game. (Lower right) Knowledge of Exponent (KEA) game.

The negation of the success condition is a disjunction of two events: either A
does not output a DH triple or EA successfully extracts from A.

D Fiat-Shamir Signature of Knowledge Security

In this section, we present the details of construction and proofs of security
properties for our underlying signature of knowledge.

D.1 Construction

Our construction uses a Fiat-Shamir signature scheme [38] derived from ba-
sic Sigma protocols, Schnorr proofs of knowledge of discrete logarithm [72] and
Chaum-Pedersen proofs of equality of discrete log [28], extended with conjunc-
tions and disjunctions (logical ands and ors) [17]. The Sigma protocol construc-
tion for Schnorr can be referenced in [17, Figure 19.1] and for Chaum-Pedersen
in [17, Figure 19.7]. The constructions for conjunctions and disjunctions of
generic Sigma protocols can be referenced in [17, Section 19.7]. A signature
scheme is derived from the composed Sigma protocol using the Fiat-Shamir
heuristic [38] which can be referenced in [17, Section 19.6.1]. In short, the Fiat-
Shamir heuristic replaces the random challenge of the verifier V with a hash
value c ← H(msg , t) where t is the Sigma protocol commitment. We denote
c← H(msg , t) where the hash function hashes into the challenge space C of the
Sigma protocol. In practice, this is achieved for a hash function that hashes to
size hlen by resampling if the output falls outside the challenge space.

D.2 Security

We prove the following theorems regarding the knowledge soundness and zero
knowledge properties of our signature of knowledge scheme.

Theorem 5. The Sigma protocol (P, V ) for witness-statement relation R, where
(P, V ) is constructed as in Appendix D.1 and R is defined in Figure 5, is special
HVZK and provides knowledge soundness.



38 N. Tyagi et al.

Proof. (P, V ) is a conjunction of disjunctions of Schnorr proofs of knowledge of
discrete log [72] and Chaum-Pedersen proofs of discrete log equality [28]. Since
the underlying Schnorr Sigma protocol and Chaum-Pedersen Sigma protocol
have special HVZK and provide knowledge soundness [17, Example 19.2, 19.3,
Theorem 19.10] and the disjunction and conjunction constructions preserve spe-
cial HVZK and knowledge soundness [17, Theorem 19.17, Theorem 19.8], (P, V )
is special HVZK and provides knowledge soundness.

Theorem 6. Let SPoK be the signature of knowledge defined in Figure 5 for the
witness-statement relation R over a prime-order cyclic group of order p derived
using the Fiat-Shamir heuristic as described in Appendix D.1 using hash function
H. If H is modeled as a random oracle, we give a simulator S, such that for any
niZK adversary A that makes at most Qprove proof queries and Qro random oracle
queries

Advnizk
SPoK,S(A) ≤ Qprove(Qprove + Qro)

p4
.

Proof. By the above Theorem 5, the Sigma protocol for R is special HVZK. We
apply Theorem 20.3 of [17] which shows non-interactive zero knowledge from
arbitrary special HVZK Sigma protocol. The construction of simulator S is given
in [17, Figure 20.2].

E Accountability Proofs

E.1 Receiver binding

Theorem 1. Let AMF be the asymmetric message franking scheme using sig-
nature of knowledge SPoK defined in Figure 5, where SPoK is derived using the
Fiat-Shamir heuristic as described in Appendix D.1 using hash function H. If
H is modeled as a random oracle, for any r-BIND adversary A making at most
QFrank franking oracle queries, QJudge judge oracle queries, and Qro random or-
acle queries, we give adversary B and C such that

Advr-bind
AMF (A) ≤ QFrank(QFrank + Qro + 1)

p4
+ (QJudge + 1) ·Advkea

G,g(C, EC)

+
Qro + 1

p
+
√

2(Qro + 1) ·Advdl
G,g(B)

where p is the order of G and if A runs in time T and KEA extractor EC runs
in time tE , then B runs in time T ′ ≈ 2T + 2(QJudge + 1) · tE and C runs in time
T ′ ≈ T .

Proof. The approach of this proof follows closely the proof of existential un-
forgeability under chosen message attack (EUF-CMA) for Fiat-Shamir derived
signatures [17, Theorem 19.15, Lemma 19.16]). The goal is to convert the adver-
sary A that forges a judge-accepting frank into an adversary B that breaks the
one-wayness of the witness-statement relation R, i.e. attacks discrete log.
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In order to do this, we have to simulate A’s oracles with only partial knowl-
edge of witnesses. Simulating the frank oracle takes the same approach as EUF-CMA
and is done by using the zero knowledge property of the signature proof. Proofs
are simulated by programming the random oracle representing H to be consis-
tent with commitments. The programming will fail if the commitment chosen in
the frank oracle has already been queried to the random oracle, but since the
commitments are randomly chosen, this is unlikely to happen. The first term in
the advantage arises from this collision probability.

Unlike in EUF-CMA for Fiat-Shamir signatures, we will also have to simulate
judge oracle queries. In these queries, the judge secret key is used to check well-
formedness of the J,EJ part of the statement, i.e., that they make up a Diffie-
Hellman triple with pkj . We use the extractor from the knowledge of exponents
assumption to perform this check, making up the second term in the advantage.

The second part of the proof argues that the only way an adversary is able to
successfully forge a frank is by reversing part of the witness-statement relation,
i.e. learning sks or skj from pks,pkj . Again, we exploit the fact that H is
modeled as a random oracle and is used by the adversary to build a forgery. We
can use the rewinding lemma [17, Lemma 19.2] and the knowledge soundness
property of the proof to extract partial witnesses sks or skj breaking discrete
log.

The proof will proceed as a series of game hops. Game pseudocode is shown in
Figure 12 where Frank, Judge procedures are unrolled and SPoKR.prove is further
unrolled into the Fiat-Shamir heuristic derived from Sigma protocol (P, V ). G0

is defined to be the same as r-BIND with H modeled as a random oracle in
which a table of random oracle input-output choices, T , is maintained. Before
proceeding with the rest of the proof, recall that from the proof sketch above,
we need the adversary A to query the random oracle with their winning forgery
in order to apply the rewinding lemma. Without loss of generality, consider an
A′ that runs A and queries the random oracle on the forgery before returning,
thus making at most Qro + 1 random oracle queries.

G1 is defined the same as G0, except in the franking oracle if the message-
commitment pair (msg , t) for randomly generated commitment t of the signature
proof of knowledge is already in T , i.e. has already been queried to the random
oracle, G1 sets a bad flag and returns false. Since the only difference in game
behavior occurs after this event, by the fundamental lemma of game playing [13],
the distinguishing power between G0 and G1 is bounded by the probability G1

sets the bad flag. For each query to the franking oracle, the union bound implies
the probability that the random oracle was previously queried at point (msg , t)
is at most (QFrank + Qro + 1)/p4 where p4 represents the size of the commitment
space of our signature of knowledge construction. Applying another union bound
over the QFrank queries to the franking oracle, we have

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]| ≤ Pr [G1 sets bad ]

≤ QFrank(QFrank + Qro + 1)

p4
.
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G2 is defined the same as G1 except signature proofs in OFrank are now simu-
lated by sampling a challenge c then running the simulator for the Sigma protocol
associated with SPoK (from special HVZK) to get a valid proof (t, c, z). This is
made to work by programming the random oracle to output c on (msg , t). Since
in G1, only fresh message-commitment pairs in OFrank are handled (a collision re-
turns false), G2 is able to successfully simulate and produces output statistically
indistinguishable from the output of G1.

|Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ]| = 0

Next, we build a DL adversary B attacking discrete log (security game in
Figure 11) by showing A inverts part of the witness-statement relation. Let us
start by reviewing how A wins G2. A winning adversary A returns a message-

frank pair msg , (π, J,R,EJ , ER) for which (1) J is well-formed (J = E
skj
J ),

(2) π verifies, and (3) msg was not queried to OFrank. Intuitively, by knowledge
soundness, the only way an adversary A produces a (2) verifying proof π under
constraints (1) and (3) is by knowing a witness to relation R. Say the message-
commitment pair (msg , ti) of the winning proof π was the ith query to the
random oracle (out of Qro + 1). Since msg was not queried to OFrank, we know
that the winning proof challenge ci ← T [(msg , ti)] was not programmed by the
simulator. Thus, we can rewind back to when A queried (msg , ti) and instead
of responding with ci, we can respond with a fresh c′ 6= ci. If A wins again on
the same ith message-commitment pair, we can use the knowledge soundness
property of the Sigma protocol for SPoK to extract a valid witness for relation
R. It is necessary that A win on the same query in the rewind as in the first
run, so as the knowledge soundness extractor can be used on two transcripts
with the same commitment. Notice a valid witness must include either t = sks
or u = skj · α as specified by the first disjunction clause of R. We’ll use this
observation to build two discrete log adversaries B′ and B′′ to extract sks and
skj respectively.

B′ will follow directly if t = sks is part of the witness. If instead u = skj · α
is part of the witness, extra steps need to be taken for B′′ to extract skj since
skj · α hides skj for random α←$ Zp. There are two issues with constructing a
DL B′′ extracting skj : (1) Without knowledge of skj , B′′ cannot simulate the
judge oracle for A, since B′′ will not be able to perform the well-formedness
check of J . (2) In order to learn skj from u = skj · α, B′′ needs to learn α. We
address both issues using the knowledge of exponent assumption (Figure 11).
Briefly, the knowledge of exponent assumption says that if algorithm C returns
Diffie-Hellman triple EJ = gα, J = gskj ·α on input pkj = gskj there exists an
extractor EC that outputs α.

First we address the issue of learning skj from u = skj · α. Define KEA
adversary C0 as a wrapper around A for the Diffie-Hellman triple pkj , EJ , J for
EJ , J output by A. Game G3 is the same as G2 except the KEA extractor EC0 is
used to extract t′. A bad flag is set if the well-formedness check of the extractor is
not correct, indicating that the extractor failed. The probability of this occurring
is bounded by the advantage of C0 against KEA. By the fundamental lemma of
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game-playing [13],

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| ≤ Pr [G3 sets bad ]

≤ Advkea
G,g(C0, EC0) .

Next, we address the well-formedness checks performed by the judge oracle. We
address this with a series of hybrid games Gi4 for i ∈ [1, q] for q = QJudge where
the first i queries to the judge oracle are checked using KEA extractors and the
remaining are checked in the normal way with skj . Consider KEA adversary
Ci which runs A up until A’s ith query to OJudge, then returns the queried
EJ , J . The KEA adversary Ci answers A’s previous judge oracle queries using
the extractors ECk for k < i from previous hybrids. Similar to before, a bad flag
is set if the well-formedness check of the extractor in the ith query is not correct;
the probability of this occurring is bounded by the advantage of Ci against KEA.
By the fundamental lemma of game-playing [13] if we denote G3 as G0

4,∣∣Pr
[
Gi−1

4 ⇒ 1
]
− Pr

[
Gi4 ⇒ 1

]∣∣ ≤ Pr
[
Gi4 sets bad

]
≤ Advkea

G,g(Ci, ECi) .

When composed over the q hybrids and including C0 from the previous hop, we
have

|Pr [G2 ⇒ 1 ]− Pr [Gq4 ⇒ 1 ]| ≤
q∑
i=0

Advkea
G,g(Ci, ECi) .

Next, we calculate the probability of success of extracting a valid witness
through rewinding, which will be used by both B′ and B′′. Denote the proba-
bility A wins Gq4 with ε. Further define the probability A wins by outputting a

winning proof corresponding to random oracle query i as εi. Then ε =
∑Qro+1
j=1 εj .

Similarly, define ε′ =
∑Qro+1
j=1 ε′j as the probability rewinding succeeds to extract

a valid witness, i.e., the adversary outputs a winning signature for the same
query on both the first run and rewind. Then, ε′j is defined as the probabil-
ity rewinding succeeds on query j, meaning that A wins on query j and then
wins again on query i after rewinding. By a direct application of the rewinding
lemma [17, Lemma 19.2],

ε′j ≥ ε2j − εj/p

where p represents the size of the challenge space. Then, we have

ε′ =

Qro+1∑
j=1

ε′j ≥
Qro+1∑
j=1

ε2j −
Qro+1∑
j=1

εj
p
≥ ε2

Qro + 1
− ε

p

Rearranging gives that

ε ≤ Qro + 1

p
+
√

(Qro + 1)ε′
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by the following steps, where we assume ε ≥ (Qro + 1)/p, as otherwise the above
trivially holds,(

ε− Qro + 1

p

)2

= ε2 − 2ε(Qro + 1)

p
+

(Qro + 1)2

p2

≤ ε2 − 2ε(Qro + 1)

p
+
ε(Qro + 1)

p
(ε ≥ Qro+1

p )

= ε2 − ε(Qro + 1)

p
≤ ε′(Qro + 1)

Define B′ to replace pks with DL challenge and return t = sks if output from
successful rewind. Define B′′ to replace pkj with DL challenge and return skj if
u = α · skj is output from successful rewind by calculating skj = u/α′ for α′

extracted using KEA extractor EC . This gives us,

ε′ ≤ Advdl
G,g(B′) + Advdl

G,g(B′′) .
Since it is unknown which witness for the disjunction A will win with, define B
which runs B′ and B′′ each with probability 1/2.

Advdl
G,g(B) =

Advdl
G,g(B′) + Advdl

G,g(B′′)
2

.

We finish the proof with a technique to combine q + 1 adversaries Ci into
a single adversary C for KEAG,g. Define C as running each adversary Ci with
probability 1/(q + 1), and define EC as running ECi when C runs Ci.

q∑
i=0

Advkea
G,g(Ci, ECi) =

q∑
i=0

Pr
[

KEAC,ECG,g ⇒ 1
∣∣∣ C runs C′ ]

= (q + 1) · Pr
[
KEAC,ECG,g ⇒ 1

]
= (q + 1) ·Advkea

G,g(C, EC)

E.2 Sender binding

Theorem 7. Let AMF be the asymmetric message franking scheme using sig-
nature of knowledge SPoK defined in Figure 5, where SPoK is derived using the
Fiat-Shamir heuristic as described in Appendix D.1 using hash function H. If
H is modeled as a random oracle, for any s-BIND adversary A making at most
QVerify verify oracle queries and Qro random oracle queries, we give adversary B
and C such that

Advs-bind
AMF (A) ≤ (QVerify + 1) ·Advkea

G,g(C, EC) +
Qro + 1

p

+
√

(Qro + 1) ·Advdl
G,g(B)

where p is the order of G and if A runs in time T and KEA extractor EC runs
in time tE , then B runs in time T ′ ≈ 2T + 2(QVerify + 1) · tE and C runs in time
T ′ ≈ T .
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G0:

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr,msg, σ)← AO(pks, pkj)

(π, J,R,EJ , ER)← σ

y ← (g, pks, pkr, pkj , J, R,EJ )

b1 ← J = E
skj
J

b2 ← SPoKR.verify(msg, π, y)

bj ← (b1 ∧ b2)

bQ ← (pkr, pkj ,msg) 6∈ Q

return bj ∧ bQ

OFrank(pk′
r, pk

′
j ,msg):

Q ← Q ∪ {(pk′
r, pk

′
j ,msg)}

(α, β)←$ (Zp)2

J ← (pk′
j)
α

R← (pk′
r)β

EJ ← gα

ER ← gβ

x← (sks,⊥, α,⊥)

y ← (g, pks, pk
′
r, pk

′
j , J, R,EJ )

t, aux ← P (x, y)

c← Oro(msg, t)

z ← P (t, c, x, y, aux)

π ← (t, z)

return (π, J,R,EJ , ER)

OJudge(pk′
s, pk

′
r,msg, σ):

(π, J,R,EJ , ER)← σ

y ← (g, pk′
s, pk

′
r, pkj , J, R,EJ )

b1 ← J = E
skj
J

b2 ← SPoKR.verify(msg, π, y)

return b1 ∧ b2

Oro(m):

r←$ {0, 1}hlen

if T [m] 6= ⊥ :

r ← T [m]

return r

G1:

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr,msg, σ)← AO(pks, pkj)

(π, J,R,EJ , ER)← σ

y ← (g, pks, pkr, pkj , J, R,EJ )

b1 ← J = E
skj
J

b2 ← SPoKR.verify(msg, π, y)

bj ← (b1 ∧ b2)

bQ ← (pkr, pkj ,msg) 6∈ Q

return bj ∧ bQ

OFrank(pk′
r, pk

′
j ,msg):

Q ← Q ∪ {(pk′
r, pk

′
j ,msg)}

(wE, β)←$ (Zp)2

J ← (pk′
j)
α

R← (pk′
r)β

EJ ← gα

ER ← gβ

x← (sks,⊥, α,⊥)

y ← (g, pks, pk
′
r, pk

′
j , J, R,EJ )

t, aux ← P (x, y)

if T [msg, t] 6= ⊥ :

flag← bad; return false

c← Oro(msg, t)

z ← P (t, c, x, y, aux)

π ← (t, z)

return (π, J,R,EJ , ER)

OJudge(pk′
s, pk

′
r,msg, σ):

(π, J,R,EJ , ER)← σ

y ← (g, pk′
s, pk

′
r, pkj , J, R,EJ )

b1 ← J = E
skj
J

b2 ← SPoKR.verify(msg, π, y)

return b1 ∧ b2

Oro(m):

r←$ {0, 1}hlen

if T [m] 6= ⊥ :

r ← T [m]

return r

G2:

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr,msg, σ)← AO(pks, pkj)

(π, J,R,EJ , ER)← σ

y ← (g, pks, pkr, pkj , J, R,EJ )

b1 ← J = E
skj
J

b2 ← SPoKR.verify(msg, π, y)

bj ← (b1 ∧ b2)

bQ ← (pkr, pkj ,msg) 6∈ Q

return bj ∧ bQ

OFrank(pk′
r, pk

′
j ,msg):

Q ← Q ∪ {(pk′
r, pk

′
j ,msg)}

(α, β)←$ (Zp)2

J ← (pk′
j)
α

R← (pk′
r)β

EJ ← gα

ER ← gβ

y ← (g, pks, pk
′
r, pk

′
j , J, R,EJ )

c←$ Zp
(t, z)← S(P,V )(c, y)

if T [msg, t] 6= ⊥ :

return false

T [msg, t]← c

π ← (t, z)

return (π, J,R,EJ , ER)

OJudge(pk′
s, pk

′
r,msg, σ):

(π, J,R,EJ , ER)← σ

y ← (g, pk′
s, pk

′
r, pkj , J, R,EJ )

b1 ← J = E
skj
J

b2 ← SPoKR.verify(msg, π, y)

return b1 ∧ b2

Oro(m):

r←$ {0, 1}hlen

if T [m] 6= ⊥ :

r ← T [m]

return r

G3:

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr,msg, σ)← AO(pks, pkj)

(π, J,R,EJ , ER)← σ

y ← (g, pks, pkr, pkj , J, R,EJ )

b1 ← J = E
skj
J

α′ ← EC0
(pkj , g)

b′1 ← EJ = gα
′
∧ J = (pkj)

α′

if b1 6= b′1 :

flag← bad; b1 ← b′1
b2 ← SPoKR.verify(msg, π, y)

bj ← (b1 ∧ b2)

bQ ← (pkr, pkj ,msg) 6∈ Q

return bj ∧ bQ

OFrank(pk′
r, pk

′
j ,msg):

Q ← Q ∪ {(pk′
r, pk

′
j ,msg)}

(α, β)←$ (Zp)2

J ← (pk′
j)
α

R← (pk′
r)β

EJ ← gα

ER ← gβ

y ← (g, pks, pk
′
r, pk

′
j , J, R,EJ )

c←$ Zp
(t, z)← S(P,V )(c, y)

if T [msg, t] 6= ⊥ :

return false

T [msg, t]← c

π ← (t, z)

return (π, J,R,EJ , ER)

OJudge(pk′
s, pk

′
r,msg, σ):

(π, J,R,EJ , ER)← σ

y ← (g, pk′
s, pk

′
r, pkj , J, R,EJ )

b1 ← J = E
skj
J

b2 ← SPoKR.verify(msg, π, y)

return b1 ∧ b2

Oro(m):

r←$ {0, 1}hlen

if T [m] 6= ⊥ :

r ← T [m]

return r

Gi4:

k ← 1

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr,msg, σ)← AO(pks, pkj)

(π, J,R,EJ , ER)← σ

y ← (g, pks, pkr, pkj , J, R,EJ )

α′ ← EC0
(pkj , g)

b1 ← EJ = gα
′
∧ J = (pkj)

α′

b2 ← SPoKR.verify(msg, π, y)

bj ← (b1 ∧ b2)

bQ ← (pkr, pkj ,msg) 6∈ Q

return bj ∧ bQ

OFrank(pk′
r, pk

′
j ,msg):

Q ← Q ∪ {(pk′
r, pk

′
j ,msg)}

(α, β)←$ (Zp)2

J ← (pk′
j)
α

R← (pk′
r)β

EJ ← gα

ER ← gβ

y ← (g, pks, pk
′
r, pk

′
j , J, R,EJ )

c←$ Zp
(t, z)← S(P,V )(c, y)

if T [msg, t] 6= ⊥ :

return false

T [msg, t]← c

π ← (t, z)

return (π, J,R,EJ , ER)

OJudge(pk′
s, pk

′
r,msg, σ):

(π, J,R,EJ , ER)← σ

y ← (g, pk′
s, pk

′
r, pkj , J, R,EJ )

b1 ← J = E
skj
J

if k ≤ i :

α′ ← ECk (pkj , g)

b′1 ← EJ = gα
′
∧ J = (pkj)

α′

if (b1 6= b′1) ∧ (k = i) :

flag← bad; b1 ← b′1
b2 ← SPoKR.verify(msg, π, y)

k ← k + 1

return b1 ∧ b2

Oro(m):

r←$ {0, 1}hlen

if T [m] 6= ⊥ :

r ← T [m]

return r

Fig. 12: Games for the proof of r-BIND, Theorem 1.
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Proof sketch: The first set of game hops handles simulating the verify oracle for
without knowing the verifier’s secret key. Like before, we do so by simulating the
queries using KEA extractors, gradually replacing each oracle call in a hybrid
argument. This accounts for a QVerify multiple on the first term of the theorem’s
advantage bound.

Now in a game that only generates the public key of the receiver, we use a
rewinding lemma [17, Lemma 19.2] to extract a witness from the winning proof
of knowledge. We argue that extracting a witness implies recovering skr from
pkr, which we can use to construct a DL adversary. Consider the relation R.
Consider the second disjunction in cases:

C 1: v = α: This implies that J is well-formed (J = gα·skj ). However, since a win-
ning query fails Judge this means the J must be malformed (the signature
proof verifies since Verify succeeds). This rules out case 1 as a possibility.

C 2: w = β · skr: Since the signature output by the adversary passes Verify, we
know that R is well-formed (R = gβ·skr ). To recover skr from w, we use
a knowledge of exponents extractor to extract β. This leads to the added
multiple on the KEA advantage over just simulating the adversary’s verify
oracle.

The discrete log adversary along with the rewinding lemma get the last two
terms of the advantage.

E.3 Unforgeability

Corollary 1. Let AMF be the asymmetric message franking scheme using sig-
nature of knowledge SPoK defined in Figure 5, where SPoK is derived using the
Fiat-Shamir heuristic as described in Appendix D.1 using hash function H. If H
is modeled as a random oracle, for any UNF adversary A making at most QFrank

franking oracle queries, QVerify verify oracle queries, QJudge judge oracle queries,
and Qro random oracle queries, we give adversary B and C such that

Advunf
AMF(A) ≤ QFrank(QFrank + Qro + 1)

p4
+ 2(QVerify + QJudge + 1) ·Advkea

G,g(C, EC)

+
2(Qro + 1)

p
+
√

4(Qro + 1) ·Advdl
G,g(B)

where p is the order of G and if A runs in time T and KEA extractor EC runs
in time tE , then B runs in time T ′ ≈ 2T + 2(QVerify + QJudge + 2) · tE and C runs
in time T ′ ≈ T .

F Deniability Proofs

F.1 Universal Deniability

Theorem 3. Let AMF be the asymmetric message franking scheme defined in
Figure 5 using signature of knowledge SPoK defined in Appendix D.1. For all
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simulators S for SPoK, for any UnivDen adversary A, we give adversaries B
and C such that

Advuniv-den
AMF (A) ≤ 2 ·Advnizk

SPoK,S(B) + 2 ·Advddh
G,g (C) .

where if A runs in time T and makes at most Q queries to the frank oracle, then
B and C run in time T ′ ≈ T and B makes at most Q queries to its proof oracle.

Proof. We bound the advantage of A in the UnivDen game by bounding the
advantage of each of a series of game hops, depicted in Figure 13. We define G0

equal to UnivDen0
AMF and G4 equal to UnivDen1

AMF. The pseudocode in Fig-
ure 13 for G0 and G4 unrolls the Frank and Forge algorithm in OFrank and denotes
the random oracle explicitly in the superscript of the adversary. The difference
between G0 and G4 (Frank and Forge) is in the construction of J,R. In G0, J
and R are well-formed, while in G4 both are malformed. Well-formed means,
for example, that J is constructed as J ← (pkj)

α forming a Diffie-Hellman

triple, (pkj = gskj , EJ = gα, J = gα·skj ). While malformed means J ← gγ is
constructed as a random group element. At a high level, the proof proceeds by
hopping between the well-formed SPoK statement to the malformed SPoK state-
ment. However, to create valid signatures throughout the hops with unknown
witnesses, we first invoke the non-interactive zero knowledge property of the
signature of knowledge to simulate the signature without witness knowledge.

G1 is the same as G0 except the signature proof of knowledge in the franking
oracle is simulated and the random oracle is simulated. We use non-interactive
zero knowledge of the signature proof of knowledge to bound this hop. In detail,
consider the adversary B′ for niZK game in Figure 10 which simulates G0 but
generates the signature through the proof oracle Oprove. When in the real world,
B′ simulates exactly G0, and in the ideal world, B′ simulates exactly G1.

Advnizk
SPoK,S(B′) =

∣∣∣Pr
[

REALB
′

SPoK ⇒ 1
]
− Pr

[
IDEALB

′

S ⇒ 1
]∣∣∣

= |Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|

Games G2 and G3 alter the construction of exponentiations J and R from
G1. Game G2 replaces the well-formed J ← (pkj)

α of Frank from G1 with
the malformed J ← gγ of Forge for random choice of γ←$ Zp. We apply the
decisional Diffie-Hellman (DDH) assumption to bound the advantage of this
game hop. Construct adversary C′ for the DDH game (Figure 11) that takes
(gx, gy, gz) and simulates G1/G2 by setting EJ ← gx;pkj ← gy; J ← gz. When

the third element gz is distributed as in DDHC
′,0

G,g (in which z is independent of x
and y), adversary C′ simulates G2 exactly, i.e. gz acts as a malformed J . When

the third element gz is distributed as in DDHC
′,1

G,g (in which z = xy), adversary
C′ simulates G1 exactly, i.e. gz acts a well-formed J .

Advddh
G,g (C′) =

∣∣∣Pr
[

DDHC
′,0

G,g ⇒ 1
]
− Pr

[
DDHC

′,1
G,g ⇒ 1

]∣∣∣
= |Pr [G2 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|



46 N. Tyagi et al.

The game hop from G2 to G3 follows similarly. Game G3 replaces the well-
formed R ← (pkr)

β of Frank with the malformed R ← gδ of Forge for random
choice of δ←$ Zp. Construct DDH adversary C′′ that takes (gx, gy, gz) and sets
ER ← gx;pkr ← gy;R← gz.

Advddh
G,g (C′′) =

∣∣∣Pr
[

DDHC
′′,0

G,g ⇒ 1
]
− Pr

[
DDHC

′′,1
G,g ⇒ 1

]∣∣∣
= |Pr [G3 ⇒ 1 ]− Pr [G2 ⇒ 1 ]|

In order to get to a runnable Forge that does not program the random or-
acle, the final game G4 replaces the simulated proof with the signature proof
of knowledge used in Forge. Again, we apply non-interactive zero knowledge of
the signature proof of knowledge to bound this hop. Construct niZK adversary
B′′ for niZK game which simulates G4 but generates the signature through the
proof oracle Oprove. When in the real world, B′′ simulates exactly G4, and in the
ideal world, B′′ simulates exactly G3.

Advnizk
SPoK,S(B′′) =

∣∣∣Pr
[

REALB
′′

SPoK ⇒ 1
]
− Pr

[
IDEALB

′′

S ⇒ 1
]∣∣∣

= |Pr [G4 ⇒ 1 ]− Pr [G3 ⇒ 1 ]|

We finish the proof with a common technique to combine adversaries C′ and
C′′ into a single adversary C for DDHb

G,g and B′,B′′ into B. Define C as flipping
a random bit b, if b = 0, C runs C′, otherwise C runs C′′. The advantage of C is
then the average of advantages of C′ and C′′,

2 ·Advddh
G,g (C) = Advddh

G,g (C′) + Advddh
G,g (C′′) .

Define B in the same manner,

2 ·Advnizk
SPoK,S(B) = Advnizk

SPoK,S(B′) + Advnizk
SPoK,S(B′′) .

F.2 Receiver Compromise Deniability

Theorem 9. Let AMF be the asymmetric message franking scheme defined in
Figure 5 using signature of knowledge SPoK defined in Appendix D.1. in Figure 5.
For all simulators S for SPoK, for any RecCompDen adversary A = (A1,A2),
we give adversaries B and C such that

Advr-den
AMF(A) ≤ 2 ·Advnizk

SPoK,S(B) + Advddh
G,g (C) .

where if A runs in time T and makes at most Q queries to the frank oracle, then
B and C run in time T ′ ≈ T and B makes at most Q queries to its proof oracle.

Proof. This proof follows the same outline as for universal deniability. The dif-
ference is that in universal deniability, Forge includes two malformed exponenti-
ations (J and R), while in receiver compromise deniability, RForge includes only
one malformed exponentiation (J). This leads to dropping the multiple of 2 on
the DDH adversary C since only one DDH hop is needed. We define G0 equal
to RecCompDen0

AMF and G3 equal to RecCompDen1
AMF. Pseudocode is given in
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G0:

sks←$ Zp; pks ← gsks

skr ←$ Zp; pkr ← gskr

skj ←$ Zp; pkj ← gskj

b′ ← AOFrank,Oro (sks, pkr, pkj)

return b′

OFrank(msg):

(α, β)←$ Z2
p

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (sks,⊥, α,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

σ ← (π, J,R,EJ , ER)

return σ

G1:

sks←$ Zp; pks ← gsks

skr ←$ Zp; pkr ← gskr

skj ←$ Zp; pkj ← gskj

b′ ← AOFrank,Sro (sks, pkr, pkj)

return b′

OFrank(msg):

(α, β)←$ Z2
p

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (⊥,⊥,⊥,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ Sprove(msg, y)

σ ← (π, J,R,EJ , ER)

return σ

G2 G3 :

sks←$ Zp; pks ← gsks

skr ←$ Zp; pkr ← gskr

skj ←$ Zp; pkj ← gskj

b′ ← AOFrank,Sro (sks, pkr, pkj)

return b′

OFrank(msg):

(α, β)←$ Z2
p

γ←$ Zp; J ← gγ

R← (pkr)β δ←$ Zp; R← gδ

EJ ← gα

ER ← gβ

x← (⊥,⊥,⊥,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ Sprove(msg, y)

σ ← (π, J,R,EJ , ER)

return σ

G4:

sks←$ Zp; pks ← gsks

skr ←$ Zp; pkr ← gskr

skj ←$ Zp; pkj ← gskj

b′ ← AOFrank,Oro (sks, pkr, pkj)

return b′

OFrank(msg):

(α, β)←$ Z2
p

γ←$ Zp; J ← gγ

δ←$ Zp; R← gδ

EJ ← gα

ER ← gβ

x← (⊥, γ,⊥, δ)
y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

σ ← (π, J,R,EJ , ER)

return σ

Fig. 13: Games for the proof of universal deniability, Theorem 3.

Figure 14, in which G0 and G3 unrolls the Frank and RForge algorithm in OFrank

and denotes the random oracle explicitly.
G1 is the same as G0 except the signature proof of knowledge in the frank-

ing oracle is simulated and the random oracle is simulated. We apply the non-
interactive zero knowledge property of the signature proof of knowledge to bound
this hop.

Advnizk
SPoK,S(B′) =

∣∣∣Pr
[

REALB
′

SPoK ⇒ 1
]
− Pr

[
IDEALB

′

S ⇒ 1
]∣∣∣

= |Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|

Game G2 replaces the well-formed J ← (pkj)
α of Frank with the malformed

J ← gγ of RForge for random choice of (α, γ)←$ Z2
p. Construct DDH adversary

C that takes (gx, gy, gz) and sets EJ ← gx;pkj ← gy; J ← gz.

Advddh
G,g (C) =

∣∣∣Pr
[

DDHC,0G,g ⇒ 1
]
− Pr

[
DDHC,1G,g ⇒ 1

]∣∣∣
= |Pr [G2 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|

The final game G3 replaces the simulated proof with the signature proof of
knowledge used in RForge. Again, we apply the zero knowledge property of the
signature proof of knowledge to bound this hop.

Advnizk
SPoK,S(B′′) =

∣∣∣Pr
[

REALB
′′

SPoK ⇒ 1
]
− Pr

[
IDEALB

′′

S ⇒ 1
]∣∣∣

= |Pr [G3 ⇒ 1 ]− Pr [G2 ⇒ 1 ]|

Define B as flipping a random bit b, if b = 0, B runs B′, otherwise B runs B′′,
which gives

2 ·Advnizk
SPoK,S(B) = Advnizk

SPoK,S(B′) + Advnizk
SPoK,S(B′′) .
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G0:

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr, skr, aux)← AOro
1 (pks, pkj)

brwf ← WellFormed(pkr, skr)

if brwf 6= 1:

return 0

b′ ← AOFrank,Oro
2 (sks, skr, pkj , aux)

return b′

OFrank(msg):

(α, β)←$ Z2
p

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (sks,⊥, α,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

σ ← (π, J,R,EJ , ER)

return σ

G1:

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr, skr, aux)← ASro
1 (pks, pkj)

brwf ← WellFormed(pkr, skr)

if brwf 6= 1:

return 0

b′ ← AOFrank,Sro
2 (sks, skr, pkj , aux)

return b′

OFrank(msg):

(α, β)←$ Z2
p

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (⊥,⊥,⊥,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ Sprove(msg, y)

σ ← (π, J,R,EJ , ER)

return σ

G2:

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr, skr, aux)← ASro
1 (pks, pkj)

brwf ← WellFormed(pkr, skr)

if brwf 6= 1:

return 0

b′ ← AOFrank,Sro
2 (sks, skr, pkj , aux)

return b′

OFrank(msg):

(α, β)←$ Z2
p

γ←$ Zp; J ← gγ

R← (pkr)β

EJ ← gα

ER ← gβ

x← (⊥,⊥,⊥,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ Sprove(msg, y)

σ ← (π, J,R,EJ , ER)

return σ

G3:

sks←$ Zp; pks ← gsks

skj ←$ Zp; pkj ← gskj

(pkr, skr, aux)← AOro
1 (pks, pkj)

brwf ← WellFormed(pkr, skr)

if brwf 6= 1:

return 0

b′ ← AOFrank,Oro
2 (sks, skr, pkj , aux)

return b′

OFrank(msg):

(α, β)←$ Z2
p

γ←$ Zp; J ← gγ

R← (pkr)β

EJ ← gα

ER ← gβ

x = (⊥, γ,⊥, β · skr)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

σ ← (π, J,R,EJ , ER)

return σ

Fig. 14: Games for the proof of receiver compromise deniability, Theorem 9.

F.3 Judge Compromise Deniability

Theorem 10. Let AMF be the asymmetric message franking scheme defined in
Figure 5 using signature of knowledge SPoK defined in Appendix D.1. in Figure 5.
For all simulators S for SPoK, for any JudgeCompDen adversary A, we give
adversary B such that

Advj-den
AMF(A) ≤ 2 ·Advnizk

SPoK,S(B) .

where if A runs in time T and makes at most Q queries to the frank oracle, then
B runs in time T ′ ≈ T and makes at most Q queries to its proof oracle.

Proof. This proof follows the same outline as for the other two deniability proofs.
The difference is that both universal deniability and receiver compromise deni-
ability (Forge and RForge) use malformed exponentiations of J and R. Since in
JForge, J and R are well-formed, the proof does not require any DDH hops. The
two hops are to the signature proof simulator and back, since the witnesses used
in Frank and Judge are different. We define G0 equal to JudgeCompDen0

AMF and
G2 equal to JudgeCompDen1

AMF. The pseudocode in Figure 15 for G0 and G2

unrolls the Frank and JForge algorithm in OFrank and explicitly denotes the ran-
dom oracle. G1 is the same as G0 and G2 except the signature proof of knowledge
in the frank oracle is simulated and the random oracle is simulated. We apply
the zero knowledge property of the signature proof of knowledge to bound each
hop.

G AMFs from Designated Verifier Primitives

In this section, we take the approach of building an AMF scheme from designated
verifier primitives [47]. We provide a candidate construction, but do not prove the
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G0:

sks←$ Zp; pks ← gsks

(pkr, skr, pkj , skj , aux)← AOro
1 (pks)

brwf ← WellFormed(pkr, skr)

bjwf ← WellFormed(pkj , skj)

if brwf ∧ b
j
wf 6= 1:

return 0

b′ ← AOFrank,Oro
2 (sks, skr, skj , aux)

return b′

OFrank(msg):

(α, β)←$ Z2
p

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (sks,⊥, α,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

σ ← (π, J,R,EJ , ER)

return σ

G1:

sks←$ Zp; pks ← gsks

(pkr, skr, pkj , skj , aux)← ASro
1 (pks)

brwf ← WellFormed(pkr, skr)

bjwf ← WellFormed(pkj , skj)

if brwf ∧ b
j
wf 6= 1:

return 0

b′ ← AOFrank,Sro
2 (sks, skr, skj , aux)

return b′

OFrank(msg):

(α, β)←$ Z2
p

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (sks,⊥, α,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ Sprove(msg, y)

σ ← (π, J,R,EJ , ER)

return σ

G2:

sks←$ Zp; pks ← gsks

(pkr, skr, pkj , skj , aux)← AOro
1 (pks)

brwf ← WellFormed(pkr, skr)

bjwf ← WellFormed(pkj , skj)

if brwf ∧ b
j
wf 6= 1:

return 0

b′ ← AOFrank,Oro
2 (sks, skr, skj , aux)

return b′

OFrank(msg):

(α, β)←$ Z2
p

J ← (pkj)
α

R← (pkr)β

EJ ← gα

ER ← gβ

x← (⊥, α · skj , α,⊥)

y ← (g, pks, pkr, pkj , J, R,EJ )

π←$ SPoKR.prove(msg, x, y)

σ ← (π, J,R,EJ , ER)

return σ

Fig. 15: Games for the proof of judge compromise deniability, Theorem 10.

scheme secure with respect to our accountability and deniability notions. Lastly,
we discuss some of the definitional challenges that arise from this approach.

We start by introducing the syntax and security notions of designated ver-
ifiers. A designated verifier signature scheme DVS is a tuple of algorithms,
(KeyGen,Sign,Verify,Forge), associated with a public key space PK × SK, a
message space M, and a signature space Σ. The randomized key generation al-
gorithm samples a key pair, (pk, sk)←$ DVS.KeyGen. Messages are signed using
the randomized sign algorithm that uses the signer’s secret key and the desig-
nated verifier’s public key to produce a signature, σ←$ DVS.Sign(sks,pkr,msg).
Signatures are verified by the designated verifier using the deterministic verify
algorithm which takes the signer’s public key and the verifier’s secret key, b ←
DVS.Verify(pks, skr,msg , σ). Lastly, it is also possible for a designated verifier to
forge such a signature using the randomized forge algorithm, σ←$ DVS.Forge(pks,
skr,msg). Correctness dictates

DVS.Verify(pks, skr,msg , DVS.Sign(sks,pkr,msg)) = 1 .

The two main security properties of DVS schemes are unforgeability and non-
transferability, which mirror the accountability and deniability security goals of
AMF schemes respectively. Unforgeability ensures a party cannot forge signa-
tures from a signer to a designated verifier without knowledge of either secret
keys. Non-transferability ensures that a designated verifier cannot transfer con-
viction of a valid signature to another party by requiring that a signature created
from DVS.Sign is indistinguishable from a forgery from DVS.Forge even with ac-
cess to the designated verifier’s secret key.

A strong designated verifier signature scheme SDVS extends a DVS scheme by
adding a stronger forge algorithm, SForge, which can be used to forge signatures
between two parties without knowledge of the parties’ secret keys, σ←$ SDVS.
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SForge(pks,pkr,msg). The strong deniability security property of SDVS en-
sures that a signature from SDVS.Sign is indistinguishable from a forgery from
SDVS.SForge to all parties without knowledge of the designated verifier’s secret
key.

Analogous to our definition of DVS, a non-interactive designated verifier proof
system niDV is a tuple of algorithms, (KeyGen,Prove,Verify,Forge), associated
with a public key space PK×SK and a witness-statement relation R. A relation
R is a set of witness-statement pairs; formally, R ⊆ X × Y where X is the
witness space and Y is the statement space. A prover can designate the proof of
a witness x for statement y to a verifier using the randomized prove algorithm,
π←$ niDV.ProveR(pkr, x, y). The designated verifier can both verify the proof
(b ← niDV.VerifyR(skr, y, π)) and forge the proof (π←$ niDV.ForgeR(skr, y))
with their secret key. The correctness and non-transferability properties from
DVS are defined analogously for niDV. In addition, niDV schemes utilize two more
security properties: knowledge soundness and zero knowledge. Briefly, knowledge
soundness ensures that a prover that generates a valid proof for a message must
actually “know” a witness for the statement. A scheme being zero knowledge
ensures that verification of a proof does not reveal anything about the witness
to the designated verifier other than if it is valid or not. Finally, a niDV scheme
can be extended to a strong designated verifier proof system niSDV by including
a strong forge algorithm SForge and satisfying the strong deniability security
property as before.

Following the intuition from Section 4.1, we build our scheme as a strong des-
ignated verifier proof to the receiver of the well-formedness of a strong designated
verifier signature to the moderator. The pseudocode for the AMF algorithms of
this candidate construction is provided in Figure 16.

Proving AMF security definitions with respect to the security definitions of
the underlying designated verifier primitives is not a straightforward task. Uni-
versal deniability and receiver compromise deniability are relatively straightfor-
ward, in which a proof might use two game hops: the first switching the desig-
nated verifier proof from prove to forge, and the second switching the designated
verifier signature from sign to forge. However, judge compromise deniability and
the accountability definitions are more challenging. In judge compromise deni-
ability, it is not clear how the judge forging algorithm should create a proof to
the receiver of well-formedness of the forged signature. It may be that we re-
quire a stronger non-transferability notion for the signature called perfect non-
transferability in which a signature and a designated verifier’s forgery are infor-
mation theoretically indistinguishable. Alternatively, we can target the strong
authentication deniability goals outlined in Appendix B, in which the judge forge
algorithm is not accepted by receiver verification. Finally, the accountability def-
initions pose a challenge due to the mismatch between the verification oracles
used in the AMF definitions and the lack of verification oracles in designated
verifier signature unforgeability games. Bellare et al. [8] show the power of the
verification oracle in the related setting of message authentication. Using their
result for strong unforgeability, we can transform the designated verifier unforge-
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R =
{

(sks, (pks, pkj ,msg, σ)) : SDVS.Sign(sks, pkj ,msg) = σ
}

R′ =
{

(skj , (pks, pkj ,msg, σ)) : SDVS.Forge(skj , pkj ,msg) = σ
}

KeyGen:

pkDVS, skDVS ←$ SDVS.KeyGen

pkniDV, skniDV ←$ niSDV.KeyGen

return (pkDVS, pkniDV), (skDVS, skniDV)

Frank(pks, sks, pkr, pkj ,msg):

(skDVS
s , skniDV

s ), (pkDVS
r , pkniDV

r ), (pkDVS
j , pkniDV

j )← sks, pkr, pkj
σj ←$ SDVS.Sign(skDVS

s , pkDVS
j ,msg)

πr ←$ niSDV.ProveR(pkniDV
r , skDVS

s , (pkDVS
s , pkDVS

j ,msg, σj))

return (σj , πr)

Verify(pks, skr, pkj ,msg, σ):

(pkDVS
s , pkniDV

s ), (skDVS
r , skniDV

r ), (pkDVS
j , pkniDV

j )← pks, skr, pkj
(σj , πr)← σ

return niSDV.VerifyR(skniDV
r , (pkDVS

s , pkDVS
j ,msg, σ), πr)

Judge(pks, pkr, skj ,msg, σ):

(pkDVS
s , pkniDV

s ), (pkDVS
r , pkniDV

r ), (skDVS
j , skniDV

j )← pks, pkr, skj
(σj , πr)← σ

return SDVS.Verify(pkDVS
s , skDVS

j ,msg, σj)

Forge(pks, pkr, pkj ,msg):

(pkDVS
s , pkniDV

s ), (pkDVS
r , pkniDV

r ), (pkDVS
j , pkniDV

j )← pks, pkr, pkj
σj ←$ SDVS.SForge(pkDVS

s , pkDVS
j ,msg)

πr ←$ niSDV.SForgeR(pkniDV
r , (pkDVS

s , pkDVS
j ,msg, σj))

return (σj , πr)

RForge(pks, skr, pkj ,msg):

(pkDVS
s , pkniDV

s ), (skDVS
r , skniDV

r ), (pkDVS
j , pkniDV

j )← pks, skr, pkj
σj ←$ SDVS.SForge(pkDVS

s , pkDVS
j ,msg)

πr ←$ niSDV.ForgeR(skniDV
r , (pkDVS

s , pkDVS
j ,msg, σj))

return (σj , πr)

JForge(pks, pkr, pkj , skj ,msg):

(pkDVS
s , pkniDV

s ), (pkDVS
r , pkniDV

r ), (skDVS
j , skniDV

j )← pks, pkr, skj
σj ←$ SDVS.Forge(pkDVS

s , skDVS
j ,msg)

πr ←$ niSDV.ProveR′ (pkniDV
r , skDVS

j , (pkDVS
s , pkDVS

j ,msg, σj))

return (σj , πr)

Fig. 16: AMF construction from SDVS and niSDV primitives.
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Gap-DLA
G,g:

x←$ Zp
x′ ← AO(gx)

return x = x′

O(ga, gb, Z):

return gab = Z

Gap-CDHA
G,g :

(x, y)←$ (Zp)2

Z ← AO(gx, gy)

return Z = gxy

O(ga, gb, Z):

return gab = Z

Fig. 17: Security games for Gap-CDH and Gap-DL.

ability games to ones with verification oracles for the fixed pks, pkr of the game,
but that still does not match our oracles which allow verification queries for
arbitrary pks, pkr.

H Replacing KEA with Gap-CDH

In this section, we show how to alter our scheme to dispense with relying on the
KEA. We show that extending the size of the franking signature with two extra
clauses allows us to reduce to the Gap-CDH assumption. Our proof strategy is
to first reduce to a related assumption, we call Gap-DL, which in turn reduces to
Gap-CDH. The Gap-CDH security game and our proposed Gap-DL assumption
are given in Figure 17. In these gap games, the adversary must solve either a
CDH or a DL instance given access to an oracle for arbitrary DDH queries. It is
easy to see that Gap-CDH⇒ Gap-DL in the same way that CDH⇒DL.

Recall that the KEA extractor is used in two places in the accountability
proofs. (1) To simulate the judge and verify oracle queries without knowledge of
skr or skj , and (2) To learn skj and skr from the extracted witness, u = skj · α
and w = skr · β. We will use the oracle of the Gap-DL game to address (1).
To address (2), we will extend the statement of the signature of knowledge to
include knowledge of α and β. Consider the extended relation,

R′ =
{(

(t, u, v, w, x), (g, pks, pkr, pkj , J, R, EJ)
)

:(
pks = gt ∨ J = gu

)
∧
(
J = (pkj)

v ∨R = gw
)
∧ EJ = gv ∧ ER = gx

}
.

We then give the following theorem for receiver binding.

Theorem 2. Let AMF be the message franking scheme using signature of knowl-
edge SPoK defined in Figure 5 over relation R′ defined in Appendix H, where
SPoK is derived using the Fiat-Shamir heuristic as described in Appendix D.1
using hash function H. If H is modeled as a random oracle, for any r-BIND
adversary A making at most QFrank franking oracle queries, QJudge judge oracle
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queries, and Qro random oracle queries, we give adversary B and C such that

Advr-bind
AMF (A) ≤ QFrank(QFrank + Qro + 1)

p4
+

Qro + 1

p

+
√

2(Qro + 1) ·Advgapcdh
G,g (B)

where p is the order of group G and if A runs in time T , then B runs in time
T ′ ≈ 2T .

Proof sketch: The proof follows the same as Theorem 1 until G3. G3 and G4,
which introduce KEA extractors, are no longer necessary. Instead, we define a
Gap-DL adversary D that simulates G2 by forwarding oracle queries to its own
oracle and extracts a witness from the winning signature via rewinding. The
rewinding argument follows exactly as in Theorem 1 where the DL adversary
rewinds on G4. As in Theorem 1, adversary D is actually a composition of two
Gap-DL adversaries, one of which breaks the discrete log of pks and the other of
pkj . The adversary that break pkj uses the extended signature proof statement
to learn skj from α. Finally, we define Gap-CDH B as a simple wrapper around
D that takes D’s output x and returns (gy)x.

We provide Gap-CDH statements for the remaining two accountability prop-
erties below without additional proof.

Theorem 11. Let AMF be the message franking scheme using signature of
knowledge SPoK defined in Figure 5 over relation R′ defined in Appendix H,
where SPoK is derived using the Fiat-Shamir heuristic as described in Appendix D.1
using hash function H. If H is modeled as a random oracle, for any s-BIND ad-
versary A making at most QVerify verify oracle queries and Qro random oracle
queries, we give adversary B and C such that

Advs-bind
AMF (A) ≤ Qro + 1

p
+
√

(Qro + 1) ·Advgapcdh
G,g (B)

where p is the order of group G if A runs in time T , then B runs in time T ′ ≈ 2T .

Corollary 2. Let AMF be the message franking scheme using signature of knowl-
edge SPoK defined in Figure 5 over relation R′ defined in Appendix H, where
SPoK is derived using the Fiat-Shamir heuristic as described in Appendix D.1
using hash function H. If H is modeled as a random oracle, for any UNF ad-
versary A making at most QFrank franking oracle queries, QVerify verify oracle
queries, QJudge judge oracle queries, and Qro random oracle queries, we give
adversary B and C such that

Advunf
AMF(A) ≤ QFrank(QFrank + Qro + 1)

p4
+

2(Qro + 1)

p

+
√

4(Qro + 1) ·Advgapcdh
G,g (B)

where p is the order of group G if A runs in time T , then B runs in time T ′ ≈ 2T .
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WF(A) Advunf
AMF(A) Qro p WF(B) WF(P)

2128 2−40 2128 2665 2339 2341

2128 2−40 257 2521 2268 2268

2128 2−40 252 2512 2263 2264

2128 2−20 272 2512 2263 2264

Fig. 18: A sampling of security parameters for various choices of random oracle query
budget Qro, adversary advantage, and group size p. WFA is set so security parameter
κ = 128. Compare work factor of DL adversary B to work factor of Pollard’s rho
algorithm.

I Measuring Concrete Security

Measuring concrete security allows us to verify the efficiency of our reductions.
Here we specifically focus on the security of Corollary 1, unforgeability, because it
presents the least efficient reduction. We utilize work factors to measure concrete
security, as in BR09 [12]. We define the work factor of any adversary A running
in time T(A) and gaining advantage ε as WF(A) = T(A)/ε. The work factor of
an adversary against a particular security notion constructed by a proof should
be less than that of the best known attack for the same security notion. If this
is so, then it implies that the adversary constructed by the reduction must have
a greater efficiency than that of the best known attack, a contradiction.

The reduction for Corollary 1 constructs both Advdl
G,g(B) and Advkea

G,g(C, EC).
However, since KEA is a stronger assumption than that of DL, we approximate
the best attack against DL as the same as that for KEA and therefore accordingly
approximate Advkea

G,g(C, EC) with Advdl
G,g(B) [10]. We then want to compare

WF(B) to the work factor of the best known attack against DL. We use Pollard’s
rho algorithm for the best attack, whose work factor is

WF(P) ≈ 0.88

√
p log2 p

103

where p is the size of the group [39]. We expect that WF(B) ≤WF(P).
We first find T(B) by the runtime provided in the theorem statement. A

challenge in performing concrete analysis using KEA is that the extractor is
not instantiated concretely. We approximate the running time of extractor EC
by observing it intuitively functions by observing the code of C to successfully
extract the desired exponent, tE ≈ T(C) ≈ T(A). Setting the query budgets for
QFrank, QVerify, and QJudge to be 240 gives us T(B) ≈ 242 ·T(A).

Next we compute Advdl
G,g(B) instantiated over a prime order cyclic group

G for varying sizes of p. We define the security parameter of our scheme as
κ ≥ log WF(A). For κ = 128, we set WF(A) = 2128. Figure 18 presents a
variety of security parameters for which WF(B) ≤ WF(P) varying random
oracle query budget Qro, split of WF(A) between time and advantage, and
group size p.
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