Security in the Presence of Key Reuse:
Context-Separable Interfaces and their
Applications

Christopher Patton and Thomas Shrimpton

Florida Institute for Cybersecurity Research
Computer and Information Science and Engineering
University of Florida

{cjpatton,teshrim}@ufl.edu

Abstract. Key separation is often difficult to enforce in practice. While
key reuse can be catastrophic for security, we know of a number of cryp-
tographic schemes for which it is provably safe. But existing formal mod-
els, such as the notions of joint security (Haber-Pinkas, CCS ’01) and
agility (Acar et al., EUROCRYPT ’10), do not address the full range of
key-reuse attacks—in particular, those that break the abstraction of the
scheme, or exploit protocol interactions at a higher level of abstraction.
This work attends to these vectors by focusing on two key elements:
the game that codifies the scheme under attack, as well as its intended
adversarial model; and the underlying interface that exposes secret key
operations for use by the game. Our main security experiment considers
the implications of using an interface (in practice, the API of a software
library or a hardware platform such as TPM) to realize the scheme spec-
ified by the game when the interface is shared with other unspecified,
insecure, or even malicious applications. After building up a definitional
framework, we apply it to the analysis of two real-world schemes: the Ed-
DSA signature algorithm and the Noise protocol framework. Both pro-
vide some degree of context separability, a design pattern for interfaces
and their applications that aids in the deployment of secure protocols.

Keywords: Key reuse, APIs, Diffie-Hellman, EADSA, Noise

1 Introduction

The principle of key separation, or ensuring that distinct cryptographic func-
tionalities use distinct keys, is a widely accepted tenet of applied cryptography.
It appears to be difficult to follow, however, as there are many instances of key
reuse in deployed cryptosystems, some having significant impact on the security
of applications. There are a number of practical matters that lead to key resuse.
First, operational requirements of the system often demand some degree of it.
For example, it is common to use a signing key deployed for TLS [32] in other
protocols, as this is permitted by certificate authorities and avoids the cost of
certifying a distinct key for each protocol. But doing so has side effects that

2 C. Patton and T. Shrimpton

must be addressed in the design of these protocols, as well as the interface that
exposes the key to applications [9]. Second, it is often not clear what constitutes
a “distinct functionality”. Intel’s Trusted Platform Module (TPM) standard [36)
supports a variety of protocols for remote attestation that use an Intel-certified
key stored on chip. The TPM exposes a core set of operations involving this key
via its application-programming interface (API), which applications make calls
to in order to implement attestation schemes. But the requirement to support
so many protocols has lead to a flexibile API with subtle vulnerabilities [2,12].

Prior work sheds light on when key reuse is safe among specific primitives.
Haber and Pinkas [16] introduce the notion of joint security, which captures the
security of a target cryptosystem (say, a digital signature scheme) in the presence
of an oracle that exposes a related secret-key operation (say, the decryption
operation of a public-key encryption scheme). Many widely used primitives are
jointly secure, including RSA-PSS/OAEP [16] and Schnorr signatures/hybrid
encryption [13]. Acar et al. [1] address the related problem of agility, where
the goal is to identify multiple instantiations of a particular primitive (e.g.,
sets of AEAD schemes, PRFs, or signature schemes) that can securely use the
same key material. But the range of potential key-reuse attacks goes well beyond
what these works cover; attack vectors sometimes break the intended abstraction
boundary of the scheme by exposing lower level operations [11,2], or involve
unforeseen protocol interactions at a higher level of abstraction [18,9]. We believe
that a comprehensive treatment of key reuse can and should account for these
attack vectors as well.

To this end, we propose to surface the API as a first class security object.
For our purposes, the API (or just “interface”) is the component of a system
that exposes to applications a fixed set of operations involving one or more se-
cret keys. APIs are often the root-of-trust of applications: TPM, Intel’s Software
Guard Extensions (SGX), hardware security modules (HSMs), and even chip-
and-pin credit cards all provide cryptographic APIs that aim to be trustworthy-
by-design. But pressure to meet operational requirements, while exporting in-
terfaces that are suitable for a variety of applications, often leads to vulnerabil-
ities [10,13,21,2]. An analogous situation arises in the development of software
that uses a cryptographic library; software engineers tend to trust that any use
case permitted by an API is secure, without fully grasping its side-effects [27].
This phenomenon tends to lead to vulnerable code [3,28].

In light of these issues, this work seeks to develop security-oriented design
principles for interfaces and their applications. We devise a definitional frame-
work for reasoning about the security of an application when the interface it
consumes is used in other, perhaps unintended or even insecure ways. We model
these “other applications” very conservatively, as follows: to assist it in its at-
tack against the target application, we assume the adversary has direct access
to the underlying interface, allowing it to mount exposed interface attacks on a
target application. We apply this framework to the design and analysis of two
real-world cryptosystems: the EADSA signature algorithm [17] and the Noise
protocol framework [30]. In doing so, we elicit a property of interfaces and their

Security in the Presence of Key Reuse 3

applications we call context separability, which we will show to be an invaluable
tool for secure protocol design.

The full version [29]. This is an extended abstract; the full version of this
paper includes all deferred proofs, as well as additional results, remarks, and
discussion.

The framework. We begin by motivating our definitional viewpoint, which
draws abstraction boundaries a bit differently than usual. Game-based notions
of security [6] typically specify (in pseudocode) a game G that makes calls
to a cryptographic scheme IT (a primitive or protocol, also specified in pseu-
docode). The game captures an attack model—that is, the capabilities and goal
of the adversary—and establishes boundaries on the permitted uses of IT. Model-
specific adversarial capabilities are captured as oracle procedures specified by G,
which the adversary may query during its attack. Its goal is formalized by an
explicit winning condition that depends on its queries and the random choices of
the game. The security of the scheme, when used as specified by G, is measured
by executing an adversary with G.

Suppose that II is specified in terms of calls to an underlying interface Z,
which defines the set of operations that can be performed on the secret key. Our
goal is to measure the security of IT in the sense of G when the adversary playing
the game is also provided direct access to Z, i.e., when the adversary is able to
mount exposed interface attacks on the security of IT that G codifies.

We formalize our syntax for interfaces and games in Section 3. Rather than
refer explicitly to I, we allow the game G to realize II as pseudocode that makes
calls to Z. Interfaces may expose conventional primitive operations like signing
or decryption, or they may expose lower level operations that are composed into
higher level ones by the game. (This is precisely what TPM does; more on this
in Section 5.1.) Our syntax for interfaces admits operations on symmetric and
asymmetric keys. In the latter case, all secret-key operations are handled by the
interface, and all public-key operations are specified by the game.

Security under exposed interface attack. The objects of our study are an
interface and a target application; we formalize the latter as a game that defines
the scheme, how it is used, and what is its goal. With some details suppressed,
Figure 1 visualizes the execution flow of our main security experiment SEC/I,
which acts as an analysis harness for an interface Z, game G, and adversary A.
The experiment first generates the public and secret keys (pk, sk) as specified
by Z, then runs A on input of pk and with access to oracles Init, Call, and Final
used to “play” the game G. The game is comprised of three algorithms: the first,
G .Init, takes pk as input and outputs the game’s initial state; the second, G.Call,
specifies the capabilities of A in the game and advances the state in response to
its queries; and the last, G.Final, computes the game’s winning condition and
outputs a bit win. Both G.Call and G.Final are given access to Z for performing
secret key operations, and the adversary is given direct access to Z via a fourth
oracle Op. As usual [6], the adversary must call Init first and Final last; the
outcome of the experiment is the value of win.

4 C. Patton and T. Shrimpton

sk sk
Jyg— > > - >
G.Init G.Call » G.Final |
A A v A v
Init(e) ¥ Call A Final
r~ _ Op (ctz #)
k| A . A . A

Fig. 1. Illustration of the SEC/I experiment, which has three “phases”: first, the adver-
sary A chooses the game context o and initializes the game G; second, A plays G and
interacts with Z; and third, A finalizes G and the experiment outputs the outcome win.

The central goal of our work is to measure the security “gap” between this
and the “usual setting” in which the underlying interface is only used for the
target application. This setting is formalized by the SEC experiment, which is
defined just like SEC/I, except the adversary is denied access to Op. We will
formalize both experiments in Section 4.

Context separability. Security in our setting often requires a property we call
context separability. Loosely, a context-separable interface is one whose opera-
tions can be bound to the context in which they are used. When context separa-
tion is enforced, this binding prevents context-separable games from interacting
in unintended ways. Let us consider an illustrative example. TLS is designed
to prevent signatures produced in the context of the protocol from being used
in other applications, and vice versa. To accomplish this, whenever a message
is to be signed, it is signed together with a short contert string that uniquely
identifies the protocol version and the signer (i.e., the client or server, see [32,
Section 4.4.3]). This makes it unlikely that another protocol would inadvertently
produce a signature that could be used in TLS, but nothing about the proto-
col or the signature scheme ensures this; depending on how signing operations
are exposed and whether key separation is enforced, this could lead to practical
cross-protocol attacks [9].

As reflected in both our syntax and security notions, our framework sheds
formal light on the affect of these design challenges on security. In addition
to the secret key and operand, an interface is formalized to take as input a
context string ctz, which is meant to uniquely identify the application making
the API call; correspondingly, a game is initialized with context that is meant
to uniquely identify it. In the SEC/I experiment, the game G is initialized with
an adversarially chosen game context string o, which the adversary may not use
for its interface queries. (See Figure 1.) This is akin to enforcing non-repeating
nonces in the security experiment for symmetric encryption; in practice, it is an
operational requirement that the environment must enforce.

Security in the Presence of Key Reuse 5

On the role of context separation. The high-level goal of our work is to provide
a framework for reasoning about the security of interfaces that expose secrets
to applications. We uncover context separability as a useful design pattern for
achieving security in the presence of key reuse. In fact, this operational require-
ment can be seen as a generalization of key separation; an interface could enforce
key separation by generating a unique key for each unique application (identi-
fied by a context string) it intends to support. But when doing so is infeasible,
interfaces and their applications can be designed so that reuse is secure as long
as context separation is enforced.

We stress that context separation is not essential to security in the presence
of key reuse. We could have formalized other operational requirements; it may
suffice to ensure that no single operation is used in multiple applications, or
that distinct applications provide distinct inputs, etc. However, our choice to
enforce context separation in the SEC/I experiment was not arbitrary. First
and foremost, it reflects a design pattern often explicit (but sometimes implicit)
in real standards, two of which we analyze in this paper (EdDSA and Noise).
Second, it is our hope that clarifying this simple requirement will reduce some
of the complexity inherent to protocol design.

A composition theorem. To measure the “gap” between SEC and SEC/I—
that is, to measure the security impact of exposing the underlying interface—
in Section 4.2 we formulate and prove sufficiency of a condition under which
security in the former sense implies security in the latter. The GAP1 experiment
is associated to an interface Z, a game G, a simulator S, and a distinguisher D.
The experiment allows D to play the game via Init, Call, and Final as above;
likewise, the adversary can query the interface via Op. In the “real” world, Op
exposes Z, but in the “simulated” world, the distinguisher’s queries are evaluated
by S, which is given the public key but no access to Z. The adversary’s goal is to
distinguish between these two worlds. We show that for any Z and G, if 7 is both
SEC and GAP1 secure for G, then 7 is also SEC/I secure for G (Theorem 1(i)).
Thus, proving GAP1 security of Z for G will be our primary goal, as it succinctly
characterizes conditions under which it is safe to compose applications that share
the same interface.

We also consider the security impact of changing an interface, by, for example,
exposing additional operations on the key. The GAP2 experiment is similar to
GAP1, except it involves a pair of interfaces (Z1,Z°). In the “real” world, both
the game and distinguisher are given oracle access to Z'; in the “simulated”
world, the game is given an oracle for Z° and the distinguisher’s Op queries are
answered by the simulator, which is also given an oracle for Z°. We prove that
if (Z1,7°) is GAP2 secure for G and ZI° is SEC/I secure for G, then so is Z*
(Theorem 1(ii)). We also formulate a necessary condition, wGAP2, that allows
us to characterize key operations that are not generally safe to expose in an
interface.

Application to discrete log interfaces. We apply our framework to various
discrete log (DL) interfaces, whose key pairs are (p = ¢°,s) where g is the
generator of a finite, cyclic group. They are so named because the security of

6 C. Patton and T. Shrimpton

their applications is predicated on the hardness of computing discrete logarithms
(in particular, s = log, p) in the given group. They are particularly interesting
in our setting because they admit a wide variety of primitives and protocols.

Diffie-Hellman and EdDSA. A well-known design challenge for DL interfaces
is avoiding accidental exposure of a static Diffie-Hellman (DH) oracle [2,12]:
given p and an oracle that on input of ¢ returns ¢°, there is an algorithm [11] for
computing s that is much faster than generic DL [31]. As a first exercise of our
framework, we rule out the security of (inadvertently) exposing static DH in any
DL interface by proving wGAP2 insecurity of their composition (Section 5.1).
We then consider the security of the EdDSA signature scheme [8] in our setting
(Section 5.2). The standardized version of this algorithm [17] admits variants
that are context separable, allowing us to prove in the random oracle model
(ROM) [5] that the signing operation is GAP1 secure for any game in which
all signing and verification operations use the game context. We also show (in
the ROM) that exposing the signing operation of any EADSA variant in a DL
interface that meets certain requirements is GAP2 secure in general.

Noise. Having addressed the security of these relatively simple operations,
in Section 6 we turn to analyzing Noise [30], a framework for designing two-
party secure-channel protocols. Participants in these protocols negotiate and
execute handshake patterns, which define the sequence of messages sent between
them and thereby the security of the communication channel they establish. We
specify as an interface the set of processing rules that determine how each party
consumes and produces messages, and how their state is updated as a side-effect.
This allows handshake patterns to be executed by making calls to this interface.

Our results for Noise are largely positive. With a simple tweak of the pro-
cessing rules, we are able to prove GAP1 security of our interface while making
only minimal (and natural) assumptions about the target application. This im-
plies, in particular, that all handshake patterns that can be executed by our
interface are jointly secure (up to context separation). We cannot support all
patterns, however, because some give rise to GAP1 distinguishing attacks in any
interface that could be used to implement them. As a result of these limitations,
our analysis leaves the security of key-reuse in Noise as it is an open question.
Nevertheless, our work shows that Noise’s approach to protocol design makes it
possible to reason about protocol interactions in a very general way.

Finally, in the full version of this paper [29], we will directly address the
composition of the security of using a key deployed for EADSA in Noise (and
vice versa).

Limitations of the framework. Our syntax for games is such that a wide
variety of security goals can be expressed with them. However, the execution
semantics of games in the SEC/I experiment excludes some important settings,
including the multi-user setting [7] and those captured by multi-stage adver-
saries [33]. In the full version of this paper [29] we will briefly discuss how to
formalize these settings as extensions to the SEC/I experiment. In addition, our
interfaces are all stateless, which we found necessary for composition in general.
(This is in line with prior works that address related problems [33].)

Security in the Presence of Key Reuse 7

Related work. Here we highlight the works that inspired or are technically
related to our framework and leave a broader overview of this area to the full
version [29]. Our framework generalizes the setting of Shrimpton, Stam, and
Warinschi [35], who study HSMs implementing the PKCS#11 standard for cryp-
tographic APIs [15]. Their formulation of a “primitive” is closely related to our
formulation of interfaces, and their framework allows for expressing arbitrary
security goals for primitives, as ours does for interfaces.

Our security goals are reminiscent of joint security, and many of the proof
techniques we use are borrowed from that area [16,13]. However, our notions
are ultimately incompatible with theirs. To adapt our framework to the consid-
eration of joint security, one would partition the set of operations exposed by
the interface into those available to the target system (i.e., the game) and those
available to the adversary.

The GAP2 notion can be viewed as a restricted form of indifferentiability [24].
In particular, the GAP2 experiment for (Z!,Z°), G, adversary A, and simula-
tor S is equivalent to the indifferentiability of (Z!,Z%) with respect to the specific
distinguisher D that is the composition of G and A prescribed by the GAP2
experiment. To be clear, this does not allow us to directly use the indifferen-
tiability composition theorem. Our own result is about composing game G with
interfaces 7' and, separately, Z°; and although our composition theorem looks
quite similar to [33, Theorem 1], the things being composed are not the same.

2 Pseudocode and Conventions

This section enumerates our conventions for pseudocode, algorithms, adversaries,
and experiments. The reader may wish to skip this section and refer to it later
as needed.

Pseudocode. Our pseudocode is based on Rogaway and Stegers [34]. Variables
are statically typed. Available types are set (a set), tup (a tuple), bool (an
element of {0,1}), int (an element of Z), and str (an element of {0,1}*). In
general, if X € X, then we say that X has type elem y. Variables are declared
with the keyword dec, e.g., dec int x; str A. Variables need not be explicitly
declared, in which case their type must be inferable from their initialization (i.e.,
the first use of the variable in an assignment statement). There are two compound
types. The first is associative arrays, denoted by “[]”, which map tuples (that
is, a finite sequence of quantities of any type) to values of a specific type. For
example, dec str 7[] declares an associative array m whose values are strings.
We let 7[k] and 7, denote the value in 7 associated with k. The second is struct,
which is used to recursively define new types; see Figure 7 for an example. We
will also refer to the type of a procedure (i.e., an algorithm) by its interface. For
instance, the type A(str X,Y) — (int ¢, str A) indicates that A takes as input
a pair of strings (X,Y) and outputs an integer i and a string A.

Nil and bottom. Uninitialized variables implicitly have the value ¢, read “nil”.
If a variable of one type is set to a value of another type, then the variable takes
the value ¢. The symbol ¢ is interpreted as @) in an expression involving sets, as

8 C. Patton and T. Shrimpton

the 0-length tuple in an expression involving tuples, as 0 (i.e., false) in a boolean
expression, as 0 in an expression involving integers, and as € in an expression
involving strings. A non-bool variable X is interpreted as “(X # ¢)” (i.e., “X
is defined”) in a boolean expression. If X is an associative array, then X «+ ¢
“resets” the array so that X = ¢ for all k. Likewise, if X is a struct, then
X < ¢ sets each field of X to ¢. The symbol L, read “bottom”, can be assigned
to any variable regardless of type. Unlike ¢, its interpretation in an expression
is always undefined, except that X = 1 and | = X should evaluate to true just
in case the previous assignment to X was L. (We remark that L has the usual
semantics in cryptographic pseudocode.)

Represented groups. We say that a group G is represented if ¢ € G. We
define an additional type, elemg, parameterized by a represented group G.
We emphasize that, unlike set, tup, bool, int, or str, using the symbol ¢ in
an expression involving values of this type is not well-defined, since ¢ has no
interpretation as an element of G.

Refined types. Variable declarations may be written as set-membership asser-
tions. For example, dec int s; elemg P may be written like dec s € Z; P € G.
Where appropriate, these types may also be refined, e.g. dec s € N.

String and tuple operations. Let | X | denote the length of a string (or tuple) X.
We denote the i-th element of X by X; or X[i]. We define X ||Y to be the
concatenation of X with string (or tuple) Y. Let X[i:j] denote the sub-string (or
sub-tuple) X || --- [| X; of X. If ¢ € [1..5] or j & [i..|X]], then define X[i:j] = o.
Let X[i:] = X[i:|X|] and X[:j] = X[1:4].

Encoding of types. A value of any type can be encoded as a string. We will not
define this encoding explicitly, but assume it possesses the following properties.

Let 21.....x, denote the encoding of a tuple (z1, ..., %) as a string. Decoding
is written as xi....,2, < X and works like this (slightly deviating from [34,

Section 2]): if there exist yi, ...y, such that X = y1.....y,, m = n, and each
y; has the same type as x;, then set x; < y; for each 1 < i < m. Otherwise, set
x; < o for each 1 < i < m. Let z,, denote the encoding of an integer x > 0 as an
n-bit string. We write z,, < X to denote decoding X as an mn-bit, non-negative
integer and assigning it to x. Finally, we say that a group G is v-encoded if it is
represented and for all X € G it holds that | X| = v.

Passing variables by reference. It is customary in cryptographic pseudocode
to pass all variables by value; we also permit variables to be passed by reference.
(This idea is due to Rogaway and Stegers [34], but our semantics deviates from
theirs.) Specifically, variables passed to procedures may be embellished with
the symbol “%”. If the variable appears on the left hand side of an assignment
statement, then this immediately changes the value of the variable; when used in
an expression, the variable is treated as its value. A procedure’s interface makes
explicit each input that is passed by reference. For example, in a procedure
A(zint x,int y) — int z, variable y is passed by value, while z is passed by
reference. For example, after executing z,y < 0; z — A(zz,y), the value of x
may be non-0, but y is necessarily equal to 0.

Security in the Presence of Key Reuse 9

Algorithms, experiments, and adversaries. Algorithms are randomized un-
less stated otherwise. An algorithm is ¢-time if for every choice of random coins,
the algorithm halts in at most ¢ time steps.! When an algorithm A is determin-
istic we write y < A(z) to denote executing A on input of z and assigning its
output to y; if A is randomized, then we write y «— A(z). Let [A(z)] denote the
set of possible outputs of A when run on input z. Algorithms may have access
to one or more oracles, written as superscripts, e.g., y 4— A% (z). When this
notation becomes cumbersome we may write y «— (A: O,...)(z) instead. When
we specify a procedure, if the procedure halts without an explicit ret-statement
(i.e., a “return” statement), then it returns L.

We regard security experiments as algorithms whose output is always a bit.
If “XXX” is an experiment associated with an adversary A, we write Exp**(A)
to denote the event that the experiment is run with A and the output is 1, i.e.,
Pr [Exp**(A)] denotes the probability that XXX run with A outputs 1, where
the probability is over the coins of XXX and 4. An adversary is an algorithm
associated to a security experiment in which it is executed exactly once. (Thus,
in this paper we restrict ourselves to the single-stage adversary setting [33].) Our
convention will be that an adversary is t-time if its experiment is ¢-time. That
is, an XXX-adversary A is t-time if Exp**(A) is t-time.

Miscellaneous. Logarithms are base-2 unless the base is given explicitly. If X
is a set, then we write x 4— X to denote sampling x randomly from X accord-
ing to some distribution associated to X’; if X is finite and the distribution is
unspecified, then it is uniform.

3 Interfaces and Games

In this section we define the syntax for interfaces and games, the fundamental
components of our framework. A game captures an attack model (the capabilities
and goals of an adversary) as well as an intended use of cryptographic operations
that are provided (via black-box calls) by an interface. Typically, this use will be
to realize some cryptographic scheme (i.e., primitive or protocol) that is under
attack.

Definition 1 (Interfaces). An interface is a pair of algorithms Z = (Gen, Op)
defined as follows:

— Gen() > str pk, sk. The key generator outputs pair of key strings.

— Op(str sk, ctz, op,in) — str out. The key operator exposes operations in-
volving the key sk. It takes as input the context ctx, the operation identi-
fier op, and the operand in, and it outputs the result out.

For compactness, we may denote Z.Op(sk, ctx, op,in) by Z(ctz, op, in) in the

remainder. ¢

! What constitutes a “time step” depends on the model of computation, which we
leave implicit.

10 C. Patton and T. Shrimpton

In our security experiments, the “public key” pk will be made available to all
parties, but the “secret key” sk will be kept private by the interface. We note
that pk = ¢ is allowed, so that symmetric-key operations are within scope.

Definition 2 (Games). A game is a triple of algorithms G = (Init, Call, Final)
defined as follows:

— Init(str pk, @) — str st, out. This is the game initiator. It takes as input the
public key pk and game context o and outputs the initial state st and a
string out.

— Call®(ustr st,str in) — str out. The caller is used to advance the state of an
already initialized game. It abstracts all oracle queries except initialization
and finalization. The first input is a reference to the game state, which may
be updated as a side-effect of invoking the caller; the interpretation of the
second input is up to the game. The caller expects access to an oracle O,
which we will call the interface oracle. It takes as input three strings and
returns one.

— Final®(str st, in) — bool r. The finalizer is used to decide if a game is in a
winning state. Its inputs are the game state st and a string in, which is used
to compute the winning condition. Oracle O is as defined for the caller.

For compactness, we occasionally denote G.Call® (ust,in) by G (in). We say
that G is c-bound if the caller and finalizer each make at most ¢ calls to O
during any one execution of the algorithm. ¢

4 Security Under Exposed Interface Attack

The goal of this work is to understand the security of cryptographic schemes
when they are realized by an interface that may also be exposed to other, possibly
insecure or (or even malicious) applications. The following experiment (SEC/T)
captures this formally, allowing us prove or disprove security of a scheme (both
codified by a game G) when a given interface Z is callable by both the game G
and the adversary A. An adversary in this experiment is said to be mounting
an ezposed interface attack on G. We define another experiment (SEC) that
captures the usual setting in which the adversary does not have this access.

Definition 3 (SEC/I and SEC security). Figure 2 defines two security ex-
periments: SEC/I includes the boxed statement (but not the shaded one), and
SEC includes the shaded statement (but not the boxed one). Both experiments
begin by running the key generator Z.Gen and executing the adversary A on
input of the public key and with access to four oracle procedures:

— Init initializes G by calling the initiator G.Init on the public key and the
game context chosen by A and returns the output out of the initiator.

— Call advances the game by invoking the caller G.Call on input in provided
by A and with oracle access to the interface Z.Op(sk,,-,-). It returns the
output out of the caller.

Security in the Presence of Key Reuse 11

sec/i sec Final(in)
Exp7¢ (A) |/ ExpEg(A)
ﬁ . bI, L wi win 4— G.FinalZ-OPCk) (st ip)
ec str sk, st, a; bool win ret win
(pk, sk) «— Z.Gen()
\(A: Init,Final,Call,Op}(pk)‘ Call(in) o
(A: Init, Final, Call)(pk) ret G.CallZ-OP(k:) (45t in)
ret win Op(ctz, op,in)
Tnit (ctz) if ctz = a then ret L

t T.0p(sk, ctz, op, i
(st, out) «— G.Init(pk, ctz) re p(sk, cte, op, in)

a + ctx; ret out

Fig. 2. The SEC/I and SEC experiments for interface Z, game G, and adversary A.

— Op exposes Z.0p(sk, -, -, -) to A directly with the restriction that each query
use a context string ctx that is different from the game context used to
initialize the game.

— Final finalizes G by running the finalizer G.Final on input in provided by A
and setting win to the output and returning the value of win to A.

The outcome of the experiment is the value of win when A halts. A valid SEC/I
adversary makes a single query to Init, this being its first; it may then make
any number of queries to Call and Op.? It completes its execution by making a
single query to Final. We define the advantage of a (valid) SEC/I-adversary A
in attacking Z with respect to G as

Adv?cg/i(A) =Pr [Exp?cg/i(A)] .

We call a SEC/I adversary (t, qi, g7)-resource if it is t-time and makes at most gg
and ¢y queries to Call and Op respectively. We define the maximum advan-
tage of any r-resource SEC/I-adversary as Advszficg/l(r). SEC security of Z with
respect to G is defined in kind, except that Op is not given to A. We de-
note the advantage of SEC-adverseary A in attacking Z with respect to G by
AdvTG(A) =Pr [Expsf‘fg (A)], and we define AdvT5(r) as above. Informally,
we say that Z is SEC/I (resp. SEC) secure for G if every efficient SEC/I (resp.
SEC) adversary has small advantage.

Finally, if each of G.Call’s and G.Final’s interface queries is a triple («, op, in)
such that « is the context with which the game was initialized, then we say G is
regular for SEC/I (resp. SEC). ¢

Regular games and context separation. We remark that a game being regular
is a property of the execution semantics of the game in the experiment, and

2 Disallowing Op queries prior to Init is necessary for enforcing context separation.
This restriction could be lifted by, say, allowing pre-Init access to Op, but demand-
ing that none of these queries uses the (adversarially chosen) game context a.

12 C. Patton and T. Shrimpton

Exp¥(S, D) Expi32, (S,D)
dec str sk, st,o,a; b« {0,1} dec str sk, st, o, a; b« {0,1}
(pk, sk) «— Z.Gen(); o «— S.Init(pk) (pk, sk) «— Z°.Gen(); o 4— S.Init(pk)
d «— (D: Init, Final, Call, Op)(pk) d «— (D: Init, Final, Call, Op)(pk)
ret (d =b) ret (d =0b)
Init(ctz) Init(ctz)
(st, out) «— G.Init(pk, ctz) (st, out) «— G.Init(pk, ctz)
o+ ctx; ret out « 4 ctx; ret out
Final(in) Final(in)
ret G.Final™* (st, in) ret G.FinalZe (st,in)
Call(in) Call(in)
ret G.Call%s (ust, in) ret Q.Callsz(st,in)
Op(ctz, op, in) Op(ctz, op,in)
if ctz = o then ret L if ctr = o then ret L
if b =1 then ret Z(ciz, op,in) if b =1 then ret Z. (ctz, op, in)
ret S.Op* (&0, ctz, op, in) ret S.Ongk(o, ctz, op, in)

Fig.3. Top-left: The GAP1 experiment for interface Z, game G, simulator S, and
adversary D. Top-right: The GAP2 experiment for interfaces Z' and Z°, G, S, and D.

not a syntactic property of the game itself. This is because an experiment might
execute the game differently; for example, instead of invoking the initiator before
the caller, the experiment could invoke the caller with state st = ¢ each time.
This may sound silly, but we have not given a syntactic condition on games that
excludes this execution semantics. Because all experiments will run the game in
the same way, we silently extend this definition of regularity to all experiments
in the remainder of the paper. In our analyses in Sections 5 and 6, we will prove
SEC/I security with respect to regular games. This condition is sufficient for
ensuring context sepparability between operations performed by the adversary
via direct access to the interface and those performed by the game.
Indistinguishability variants. We note that our definitions of SEC/I and SEC
advantage are not appropriate for every game. For example, G might be a bit-
guessing game (e.g., IND-CCA) in which the initiator flips a coin and the finalizer
interprets its input as the adversary’s guess. In order to normalize the adver-
sary’s advantage in such games, we define the IND-SEC/I advantage of SEC/I-

adversary A as Advizn’dg_sec/ (A) = 2Ade£Cg/i(A) — 1. (Similarly for IND-SEC.)

4.1 Simulatability of an Interface

Intuitively, the “gap” between the SEC/I and SEC security of an interface Z
with respect to game G is driven by any extra leverage the attacker gains by

Security in the Presence of Key Reuse 13

interacting with Z directly. In this section, we formalize an experiment that
aims to measure the size of this gap for a given Z and G. We also define a
related experiment that measures the relative security “gap” between a pair of
interfaces (Z1,Zp) with respect to a given game. This is particularly useful when
the operations permitted by Z; are a superset of those permitted by Zy. For
example, in Section 5, we will use this notion to analyze the change in security
when operations are added to an existing interface. Both of these experiments
will make use of simulators, so let us first define these.

Definition 4 (Simulators). A simulator S is a tuple of algorithms (Init, Op)
defined as follows:

— Init(str pk) — str o. The initiator takes as input a public key and outputs
the simulator’s initial state o.

— Opo(str o, str ctz, op,in) — str out. The operator takes as input a ref-
erence to the simulator state (which it may update as a side-effect) and a
triple of strings (ctz, op, in) and outputs a string out. Oracle O is an interface
oracle defined just as for games.

In the remainder, we may denote S.Op® (¢a, ctr, op,in) by S&(ctz, op, in). We
say that S is (¢, gr)-resource if each algorithm is ¢-time and the caller makes at
most ¢y queries to its oracle. ¢

Definition 5 (GAP1/2 security). Figure 3 defines two experiments: GAP1
and GAP2. Each involves a simulator S, an adversary D, and a game G; GAP1
involves a single interface Z, while GAP2 involves a pair interfaces (Z,Zp).
Both begin by choosing a challenge bit b at random, executing the key generator
(Z.Gen in GAP1 and Z°.Gen in GAP2), and initializing the simulator via S.Init
on input of the public key. The adversary is then executed on input of the public
key and with four oracles:

— Init, Final, and Call execute the game just like in the SEC/I experiment;
interface queries are answered by Z.0Op in GAP1 and Z?.Op in GAP2.

— Op processes (ctz, op, in) as follows. If ¢tz is equal to the game context, then
it returns L (just as in SEC/I). If b = 1, then it returns Z.Op(sk, ctz, op, in)
in GAP1 and Z1.0p(sk, ctz, op, in) in GAP2; if b = 0, theni the oracle re-
turns S.Op* (o, ctz, op, in) in GAP1 and S.OpISk(o, ctz, op,in) in GAP2.
(The “L” oracle given to S denotes the interface oracle that just returns L
on any query.)

The outcome of the experiment is the bit d output by D when it halts. A valid
GAP1 (resp. GAP2) adversary makes a single query to Init, this being its first
query; it may then make any number of queries to Call and Op. It completes
its execution by making a single query to Final. We define the advantage of a
(valid) GAPl-adversary D in attacking Z with respect to G as

Advg?gl(s,p) =2Pr [Expg?gl(s,p)] —1.

We call an GAP1 adversary (¢,qq,qr)-resource if it is ¢-time and makes at
most gz and g7 queries to Call and Op respectively. We define the maximum ad-
vantage of any r-resource GAP1 adversary (for a given Z, G, S) as Adv%i”g’1 (S, 7).

14 C. Patton and T. Shrimpton

Define Adv%?l?;o,g(& D) and Adv%?{);o,g(& r) in kind. Informally, we say that Z
(resp. (Z',7°)) is GAP1 (resp. GAP2) secure for G if for every efficient GAP1
(resp. GAP2) adversary D there exists an efficient S such that D has small
advantage.

Finally, we say that a simulator is regular for GAP1 (resp. GAP2) if each
time it is called with input context ctx, each of its interface queries have the

form (ctz, op, in) for some op,in € {0,1}*. ¢

4.2 The Composition Theorem

An interface Z being GAP1 secure for G means that whatever information an
SEC/I adversary learns in its attack against G it can (efficiently) compute on its
own without interacting with the Op oracle. Thus, if Z is both SEC and GAP1
secure for G, then it should be that Z is also SEC/I secure for G. Relatedly,
for any pair of interfaces (Z1,Z°) and game G, if (Z1,Z°) is GAP2 secure for G
and Z° is SEC/I secure for G, then Z! is SEC/I-secure for G, too. Theorem 1
makes these claims precise. To support upcoming results in Sections 5 and 6, we
state and prove our composition theorem in the ROM. So, let us first formalize
the ROM in our setting.

The ROM. When modeling a function H : X —) as a random oracle (RO) in
an experiment, we declare an associative array elemy 7[] and a set Q (initially
empty) and define three oracles: P, Q, and R. The last of these is the usual
RO: on input of X € X, oracle R checks to see if mx is defined (i.e., mx # ©);
if not, then it samples mx from) according to the distribution induced on)Y
by H. (Usually Y will be finite and the distribution will be uniform.) Finally,
it returns myx. We call an algorithm gr-ro-bound if it makes at most gz queries
to R during any execution; a game, interface, or simulator is gg-ro-bound if
each of its constituent algorithms is qr-ro-bound. Experiments are lifted to the
ROM by providing each named algorithm oracle access to R. In addition, each
query X to R made by the adversary is added to the set Q.

Just as we measure an adversary’s runtime using the experiment in which it is
executed, our convention will be that an adversary’s RO-query budget accounts
for all queries to R made by it or any other algorithm (including the simulator)
during the course of the experiment. That is, XXX-adversary A is gg-ro-bound
if Exp**(A) is gg-ro-bound. We say an algorithm is (7 || ¢r)-resource if it is
r-resource and gp-ro-bound. (Note that 7| gr is a tuple, since r is a tuple
and ¢g is a singleton.) Let ¢ : {0,1}* x X — {0,1} be a function. We say
that a game G is ¥-ro-reqular (for the associated experiment) if each of its RO
queries X € X satisfies ¥ (o, X), where « is the game context used to initialize it
in the experiment. Similarly, we say that an interface Z is ¢-ro-regular if each of
Z.0p’s RO queries X € X satisfies ¢(ctz, X), where ctz is the provided context
string.

The other two oracles (P and Q) are used to specify additional powers
made available to simulators in security proofs. Oracle P takes as input a pair
(X,Y) € X x Y and sets 7[X] < Y, allowing the simulator to “program” the

Security in the Presence of Key Reuse 15

RO. Oracle Q simply returns the set Q of RO queries made by the adversary so
far, allowing the simulator to “observe” the adversary’s RO queries as it makes
them. We emphasize that P and Q formalize powers of the simulator that are
usually left implicit, but are essential to certain proof techniques [16,13]. We
introduce oracle-relative simulators as a means of formalizing the requirements
of the simulator for composition.

Definition 6 (Oracle-relative simulators). Let O be an oracle in an experi-
ment. An O-relative simulator S is one for which both the initiator and operator
expect oracle access to O; we say that S is c-O-bound if each algorithm makes
at most ¢ such queries on any execution. Let A and) be sets and let pq, puo >0
be real numbers. In the ROM we say that a P-relative simulator is (u1, pg)-min-
entropy if for all (X',Y’) € X x Y and each query (X,Y) to P, it holds that
Pr[X:X’] <27 andPr[Y:Y’]SQ‘”Q. ¢

Theorem 1. Let Z' and I° be interfaces, let G be a game, and let H : {0,1}* —
{0,1}" be a function modeled as a random oracle. Let qa, qr,qr,t,cr,Cr, cp,s >
0 be integers such that s = O(t/(qr+1)), and let p11, po > 0 be real numbers such
that ps < h. Let v = (t,9¢,41,qr). Then, for every regular, P- and Q-relative
simulator S that is (s, ¢y, cr)-resource, cp-P-bound, and (u1, p2)-min-entropy,
it holds that

(i) AdvyTh(r) < e+ AdvEE (O(t),qe. dr) + AdVEDL(S, 7) and

(i) AdvyT(r) < e+ AdviL(O(t). ae. crar. dr) + AdvED2, 5(S,7),

where € = (cpqr)(qr/2" ' + 2" 12 — 1), ¢p = qr + (cr + cp)(qr + 1), and
7= (O(t>7qG7QI7qAR)

We must defer the proof to the full version [29]. Except for accounting for the
simulator’s powers in the ROM, the proof is closely related to [33, Theorem 1].
A few observations about this result are in order. First, we note that the € term
in the bound is only non-zero for simulators that program the RO. Second, it is
sufficient for the domain points programmed by the simulator to be high min-
entropy, but the bound is vacuous unless the corresponding range points are
essentially uniform (because of the 2"7#2 term in the expression for €). When
the programmed domain points are high min-entropy, neither the game nor the
GAP2 distinguisher is likely to call the RO on the domain points programmed
by the simulator. This fact, and the uniformity of programmed range points,
allows us to compose the GAP1/2 distinguisher and the simulator S into a new
SEC/I adversary, despite the fact that S may program the RO, but the SEC/I
adversary may not. Likewise, the simulator “observing” the distinguisher’s RO
queries is not an issue for this composition.

A necessary condition for Theorem 1(ii). Condition (ii) of the composition
theorem characterizes a sufficient property of (Z',Z°) and G such that it is safe to
replace Z° with Z! (GAP2). This tells us, in particular, what sorts of operations
are safe to expose in an API without breaking applications. We would also like
a characterization of what sorts of operations are not safe, i.e., a necessary

16 C. Patton and T. Shrimpton

condition for Theorem 1(ii). We find that if wGAP2 security (defined below)
does not hold for (Z!,Z°), then there are games G for which Z' is not SEC/I
secure, even if Z° is SEC/I secure for G (Theorem 2). We will use this result to
rule out certain API-design choices in the remainder of the paper.

Definition 7 (wGAP2 security). The wGAP2 experiment is defined much
like GAP2, except it does not involve a game. (Pseudocode for this definition is
provided in the full version [29].) A wGAP2 adversary takes as input a string
and outputs a bit and expects access to an interface oracle. Let Z' and Z°
be interfaces, S be a simulator, and D be a wGAP2 adversary. The wGAP2
experiment for (Z',Z%), S, and D, denoted Expvzvlg}g? (8, D), is defined just like
the GAP2 experiment in Figure 3, except that D is only executed with access
to oracle Op, and since there is no game context, we remove line 3:20. Define
the advantage of D in distinguishing Z* from Z" with respect to simulator S as
Advvzvlg;%z(& D) =2Pr [Exp%??f (S, D)] —1. Informally, we say that (Z*,Z°) is
wGAP2 secure if for every efficient adversary D, there is an efficient simulator S
such that D’s advantage is small. We say D is (¢, gr)-resource if it is t-time and
makes at most gy queries to Op. ¢

Theorem 2 (WGAP2 is necessary for Theorem 1(ii)). Let T' and Z° be
interfaces, let B be an SEC/I adversary, and let D be a wGAP2 adversary. There
exist a game G, SEC/I-adversary A, and simulator S such that

AdvER (S, D) + Adviy 5 (B) < AdviTi(A).
Moreover, if D is (s, r)-resource, B is (t,qa,qr)-resource, and t = O(s), then A
is (O(t), qa, qr + r)-resource and S is (t,1)-resource.

Note that this result is easily lifted to the ROM. The proof (provided in the full
version [29]) is in the same spirit as that of [24, Theorem 1], but there are some
subtleties. The crux of the argument, which was adapted from Maurer, Renner,
and Holenstein [24], is that the game G is defined using the adversary D so
that the winning condition depends on D doing something “bad” (in particular,
outputting 1). This allows us to relate B’s advantage to D’s. (We remark on the
necessity of GAP1 itself for composition in the full version [29].)

5 Discrete Log Interfaces

In this section we bring our framework to bear on a few common operations for
discrete log (DL) interfaces. We first recall some standard definitions from the
cryptographic literature and formally define DL interfaces and signing interfaces.

Preliminaries. Refer to the CDH and GDH experiments in Figure 4. Define
the advantage of an adversary A in solving an instance of the computational DH
(CDH) problem for G as Advi(A) = PrlExp&®(A)] and let Adv " (t) denote
the maximum advantage of any ¢-time CDH-adversary. Define the advantage of
an adversary A in solving an instance of the gap DH (GDH) problem [26] for G

Security in the Presence of Key Reuse 17

idh

Expg¢ 7(A) Exp&®(A) / Expédh(A) DDH(A, B, C)
dec X, Z cG;y€Zn v« T a <+ log, A
(X, sk) « Z.Gen() Y " b+ log, B
Y 4 Zn Z & AlG,yG) c +log, C
Z «— AIsk (X, yG) ‘ 7 «— ADDH (%G, yG) ‘ ret (c = ab)
ret (2 =yX) ret (Z = zyQ)

Fig.4. Let G = (G) be a represented, additive group of order n and let Z be a DL
interface for G. Left: IDH problem for (G,Z). Right: CDH and GDH problems for G.

as Advédh(A) = Pr[Expédh(A)]. Depending on the group G and the model of
computation, it may not be possible to evaluate A’s DDH queries efficiently;
for the purpose of accounting for A’s resources, we will regard the discrete log
computations on lines 4:7-8 as constant time operations. Let Advédh(t, q) denote
the maximum advantage of any ¢-time GDH-adversary that makes at most ¢
queries to its DDH oracle. Informally, we say CDH (resp. CDH) is hard for G
if the CDH (resp. GDH) advantage of any efficient adversary is small.

Define the CR advantage of an adversary C() — elemyyxy in finding col-
lisions for function H : X — Y as Adv§{(C) = Pr[X #Y AH(X) = H(Y) :
(X,Y) « C()]

Definition 8 (DL and signing interfaces). Let G = (G) be a represented,
additive group of order n. A DL interface for G is an interface Z with an associ-
ated scalar computer, a deterministic algorithm Scal(str sk) — int s such that
for every (pk, sk) € [Z.Gen()] it holds that pk = sG, where s = Z.Scal(sk). We
say that Z is simple if Z.Scal(sk) = s just in case sk = s.

A signing interface is an interface DS with an associated deterministic al-
gorithm DS . Verify (str pk, ctx, M,T) — boolw, called the wverifier, for which
T € [DS(sk, ctz,sig, M)] iff DS Verify(pk, ctx, M,T) = 1 for all ctz, M,T €
{0,1}* and (pk, sk) € [DS.Gen()]. (This is analogous to the correctness condi-
tion for standard signature schemes.) We may denote DS.Op(sk, ctx,sig, M) by
DS .Sign(sk, ctx, M) and refer to DS.Sign as the signer. We say that a game is
DS-regular (for the associated experiment) if each time it invokes DS.Verify, it
does so on input of (pk,«, M, T), where « is the game context used to initialize
it and pk, M, T € {0,1}". ¢

5.1 Diffie-Hellman

Let G = (G) be an additive, represented group of order n. Let Z be a DL
interface for G and define Z, gy, as the pair of algorithms (Z.Gen, Op), where Op
is defined as follows. On input of (sk, ctz, op, in), if op = dh and @ € G, where @
is the element of G U {¢} encoded by in, then return s@Q, where s = Z.Scal(sk);
otherwise return Z(sk, ctx, op, in). We refer to dh as the DH operator. (Note that

18 C. Patton and T. Shrimpton

point validation [22] for this operation is implicitly enforced by our conventions
for represented groups; see Section 2.)

It is well known that exposing such a “static DH oracle” is not generally
secure [11], but its practical impact on security can be subtle, and its presence
in an interface is often hard to recognize [2,12]. In order to rule out the security of
exposing the DH operation (inadvertently or not), we formalize a property of Z
that, if it holds, implies that (Zyqn,Z) is wGAP2 insecure; by Theorem 2, this
implies that Z, 41, is not SEC/I secure in general. We then build on this result by
considering whether it is safe to expose some function of the output (e.g., a hash
or key-derivation function); when we model the function as a random oracle, we
find that this is not wGAP2 secure.

Insecurity of exposing DH easily follows from the hardness of a variant of the
CDH problem for G associated with Z. The interface-relative DH (IDH) problem
for (G,Z) is as follows.

Definition 9 (The IDH problem). Refer to the IDH experiment for G and Z
in Figure 4. The experiment first runs Z.Gen to get the public key X and secret
key sk. It then chooses a random y € Z,, and runs the adversary A on input
of (X,yG) and with oracle access to Zy; the adversary wins if it outputs yX.
Define the advantage of IDH-adversary A as Adv}g’}i(A) = Pr[Exng(A)].
An IDH adversary is (t, g)-resource if it is ¢-time and makes at most g queries
to its interface oracle; as usual, we denote the maximum advantage of any -

resource IDH adversary by Adv}?}}(r). Informally, we say the IDH problem is
hard for (G, Z) if Advi{}(A) is small for every efficient A. ¢

We will use this problem as a sort of litmus test to rule out insecure API
designs. In Section 5.2 we show (via Theorem 1(i)) that CDH and IDH are
equivalent relative to EADSA, and in in Section 6 we show that GDH and IDH are
equivalent relative to Noise. To prove that hardness of the IDH problem for (G, Z)
implies the wGAP2 insecurity of (Z;qn,Z), we exhibit a wGAP2 adversary D
such that in order for any simulator & to thwart D, it must solve an instance of
IDH for (G,Z).

Theorem 3. Suppose that n is prime and let t,q; > 0 be integers. There is
a (O(t),1)-resource wGAP2-adversary D such that for all (t,qr)-resource S,
there is a (O(t),qr)-resource IDH-adversary A such that Advvzvf:f?l(S,D) =

1— Advid(A).

Proof. Define adversary D ©P(P) as follows. First run r «— Z*, then ask Z «—
Op(e,dh,rQ). If r=1Z = P, then return 1; otherwise return 0. Let dj; denote
the probability that D outputs 1 conditioned on the event that its challenge
bit is b. First, if b = 1, then the response to D’s query will be Z = srG,
where P = sG. Since n is prime, r has a unique inverse 1/r (mod n), and
so r7'Z = r7lsrG = sG = P. It follows that d;; = 1. Now consider the
probability that r—'Z = P given that b = 0 and define adversary A® (P, Q) as
follows. It first executes o «— S.Init(P), then Z «— S®(x0,e,dh, Q). Finally, it
returns Z. Then the probability that A wins is precisely the probability that,

Security in the Presence of Key Reuse 19

in D’s game, simulator S outputs Z such that r'Z = P <= rP = Z, and so
d01 =Pr [EXpE}%(A)] . g

Functional DH. Many applications do not make direct use of static DH, but
some function of its output. In particular, it is common to apply a hash or key-
derivation function to the shared secret, perhaps binding it to some context, e.g.,
the transcript hash in TLS or, as we will see, the CipherState in Noise. Therefore,
it is worth considering whether exposing this intermediate functionality is secure.

Let F : G x {0,1}* — {0,1}" be a function. Define the interface Zsn as
the pair of algorithms (Z.Gen, Op), where Op is defined as follows. On input
of (sk, ctx,op,in), if op = fdh and @Q € G, where @ is the element of G U {¢}
encoded by in, then return F(sQ, ctz); otherwise return Z.Op(sk, ctz, op, in).
We call op = fdh the functional DH operator.

Exposing functional DH is also wGAP2 insecure. The proof is more involved,
but follows similar lines as Theorem 3. We cannot directly exploit the algebraic
structure of the DH operator as we did above, since rather than getting s@ in
response to its query, adversary D gets F(sQ, ctz). Instead, we model F as a
random oracle and hope that the simulator manages to query the oracle with
the correct point. We prove the following in the full version [29]:

Theorem 4. Suppose thatn is prime and lett,qr,qr > 0 be integers. When F is
modeled as a random oracle, there is a (O(t), 1, 1)-resource wGAP2-adversary D
such that for all (t,qr,q)-resource, P- and Q-relative, and p-P-bound S, there
is a (O(t+ q), qr)-resource IDH-adversary A such that

Advgfgfz(s,p) +e>1—Advifi(A),
where T is 0-ro-bound, € = G/n + ¢%/2" 1, and G = 2(q + p).

Discussion. The existence of a static DH oracle in an interface can be difficult
to recognize, and its impact on security is often quite subtle. Acar, Ngyuen, and
Zavarucha [2] discovered that an early version of the TPM standard exposed
such an oracle via flexible API calls designed to support a wide variety of pro-
tocols. Indeed, a rigorous analysis of the standard in our attack model would
have unearthed this subtlety. It would be worthwhile to study the proposal of
Camenish et al. [12], which aims to remove the TPM oracle while still supporting
a large variety of useful applications. More generally, we suggest that the ap-
proach developed in this paper could be used to vet API standards before they
are implemented to help uncover such flaws. Though the problem with TPM
was obvious in hindsight, it is possible that more flaws lurk in this and other
APT designs.

5.2 EdDSA

Unlike signature schemes like RSA-PSS or ECDSA, the standardized version of
EdDSA (RFC 8032 [17]) admits variants that are context separable, allowing us

20 C. Patton and T. Shrimpton

Gen() Scal(K)
K 4 {0,1}%; s < Scal(K) ret cl(H(K)[:b])
ret (sG, K) Sign(K, ctz, M)
Verify (pk, ctz, M, T) dec r,t € N
dec PReG; z,t €N s < Scal(K); X < H(K)[b+ 1]
P« pk; Rz T gy = H(vr(ctr) | X || ph(M))
if =RV —z then ret 0 to, < H(vr(ctz)||rG || sG || ph(M))
top, H(vr(ctz)||R|| P || ph(M)) x < r+ st (mod n)
ret (mQCG =2°R+ tZCP) ret rG,x

Fig.5. Signing/DL interface ED for EADSA. Let b,c € N and let G = (G) be a
represented, additive group of order n. Let H : {0,1}* — {0,1}?*, ¢l : {0,1}* —
Zn \ {0}, and vr,ph : {0,1}* — {0,1}" be functions.

to prove it GAP1 secure (in the ROM) for any game in which all signing and
verifying operations are regular (Def. 8). We also show that any variant can be
securely composed with any simple DL interface. After presenting our results,
we will make the case for designing and deploying context-separable signatures
in practice.

The standard specifies two concrete instantiations of EADSA: Ed22519 and
Ed448, whose names indicate the underlying group. The signing interface £D
defined in Figure 5 specifies generic EADSA; a concrete scheme is instantiated
by selecting the group G, integers b and ¢, and functions H, cl, vr, and ph.
The group is determined by a prime number p > 2, parameters for a (twisted)
Edwards curve E (see [8, Section 2]), and a generator G of a prime order subgroup
of E(F,), where E(F,) denotes the group of points (x,y) € F, x F,, that lic on
the curve E, and F,, denotes the finite field of order p. Define b so that 2°~1 > p
and define ¢ so that #E(F,) = n2° (i.e., 2° is the cofactor of G). This choice of b
makes it possible to encode signatures with 2b bits, and this choice of ¢ is intended
to mitigate small subgroup attacks [22]. The “clamping” function ¢! is similarly
tailored to the underlying group: for Ed25519 and its variants, this function
clears the first 3 bits, sets the second to last bit, and clears the last bit. (This
ensures that s = 22°4 48z for a uniform random = € Zg2s1.) Finally, the algorithm
variant is determined by the functions vr and ph. For example, the most common
Ed25519 variant is obtained by setting vr(X) = ¢ and ph(X) = X for all X,
but the standard also specifies variants that permit context (Ed25519ctx) and
pre-hashing of the message (Ed25519ph). To provide context separability, the
function vr must be collision resistant.

We begin our analysis by proving that the context-separable variants of Ed-
DSA are GAP1 secure in the ROM for games in which the signing and verifying
operations are regular (Theorem 5). The upcoming Corollary 1, which follows
from Theorem 1(1) and Theorem 5, combined with the straightforward result
that IDH implies CDH, gives a qualitative equivalence between CDH and IDH

Security in the Presence of Key Reuse 21

in terms of the security of (any variant of) EADSA. We will then show that
exposing any variant of EADSA in any simple DL interface is GAP2 secure in
general (Theorem 6). Fix EADSA parameters (G, H, cl, vr, ph, b, c¢) and let ED be
the signing interface instantiated with these parameters as specified in Figure 5.
Let n = |G].

Theorem 5. Let G be an (ED-)regular game and suppose that n < 2°=1. When H
is modeled as a random oracle, there exists a reqular, P -relative simulator S such
that for all t,qq,q1,qr,c > 0 there exists a O(t + qrqr)-time CR-adversary C
such that Adv%%‘flg(S,r) < 2¢qrAdve(C) + 6grqr/n, where G is c-bound, S
is (logn/2,2b)-min-entropy, (O(t/(qr + 1)),1,0)-resource, and 1-P-bound, and
r = (t,q9¢,4q1,qR)-

We only give the high level idea of the a argument here; refer to the full version
for the proof [29]. The simulator programs the random oracle with valid EdADSA
signatures in the usual way (cf. [13, Section 4.4]). We must ensure, however,
that signatures programmed by the simulator cannot be used by the adversary
in an attack against the game G. To do so, we use the collision resistance of vr
to bound the probability that any interface query made via Call coincides with
an interface query made via Op. For this argument to work, we must require
that G is (€D-)regular.

If the game in Theorem 5 makes no interface queries (i.e., is 0-bound), then
CR security of vr is not required. This allows us to prove equivalence of IDH
and CDH regardless of how vr is realized. The following corollary follows almost
immediately from Theorems 1(i) and 5.

Corollary 1. Letr = |Rng cl| and suppose that r|2° andn < 2°=1. Then for all
t,qr,qr > 0 it holds that Adv("[ii}ép(t, ar,qr) < n/rAdv&*(O(t+4q)) + Tqrqr/n,
where H s modeled as a random oracle and § = qr + qr + 1.

The IDH experiment is equivalent to the SEC/I experiment with €D and a
game G°IM that specifies the CDH problem with one of the inputs being the
public key provided to the game as input. We reduce the SEC security of Ged®
to SEC/I via Theorem 1(i) with help of the simulator exhibited in Theorem 5.
Note that G is 0-ro-bound, and so CR security of vr does not arise in the
bound. The result is obtained by observing that the SEC experiment for £D and
Gedh is essentially the CDH experiment for G modulo the distribution on the
first input induced by £D.Gen, which accounts for the n/r term. We refer the
reader to the full version for the complete proof [29].

Finally, we show that EADSA can be composed with any simple DL inter-
face Z without affecting the security of Z’s intended application. Let Z be a
simple DL interface for G. We define a new interface EDy7r = (ED.Gen, Op),
where on input of (sk, ctz, op, in), algorithm Op returns ED.Sign(sk, ctz, in) if
op = sig and returns Z.0p(s, ctz, op, in) otherwise, where s = £ED.Scal(sk).

Theorem 6. Let G be a game and suppose that n < 2°~Y. When H is modeled
as a random oracle, there exists a reqular, P-relative simulator S such that
for all t,qg,qr,qr > 0 it holds that Adv%%prLg(S,r) < 7qrqr/n, where S

22 C. Patton and T. Shrimpton

is (logn/2,2b)-min-entropy, (O(t/(qr +1)),1,0)-resource, and 1-P-bound, and
r = (t,96, 41, qR)-

The restriction to simple interfaces is so that we can achieve context separation
in the proof without using collision resistance of vr. The argument leverages the
fact that Z does not make use of the string X computed by the signer. Otherwise
the proof is closely related to Theorem 5; we defer the details to the full version
of this paper [29].

Discussion. The restrictions imposed on the game in Theorem 5 and the inter-
face in Theorem 6 are very mild, but are required for context separability. If the
game encodes the UF-CMA security of £D, then this ensures that a signature
generated via the interface cannot be used as a forgery in the game. But this
“attack” is rather uninteresting and is only an artifact of our model. On the
other hand, the game might specify the use of a signature scheme in a complex
protocol like TLS in which digital signatures have a variety of uses, including
client and server authentication and delegation of credentials for terminating
TLS on a party’s behalf [4]. In each of these cases the protocol binds the signa-
ture to a unique context string identifying its use (e.g., [32, Section 4.4.3]). Our
abstraction boundary makes the requirements for such applications explicit. Be-
cause Ed25519ctx and Ed448ctx are context separable, Theorem 5 makes clear
the conditions under which these algorithms are secure for their intended appli-
cation, no matter how else they are used: the implementer must ensure that (1)
the interface enforces context separation, and (2) signing/verification operations
in the application always use the context that identify the application. We be-
lieve that exploiting this property of context-separable signatures would reduce
the inherent complexity of designing and deploying protocols. (Indeed, it is also
not difficult to design signature schemes to have this property.)

6 Noise

In this section we consider the GAP1 security of Noise [30], a framework for
designing DL-based, two-party protocols. Noise provides a set of rules for pro-
cessing handshake patterns, which define the sequence of interactions between
an nitiator and responder in a protocol. The processing rules involve three
primitives: Diffie-Hellman (DH), an AEAD scheme, and a hash function. Each
message sent or received by a host updates the host’s state, which consists of
the host’s ephemeral (i.e., short-lived) and static (long-lived) secret keys, the
peer’s ephemeral and static public keys, shared state used to derive the symmet-
ric key and associated data, the current symmetric key, and the current nonce.
The symmetric key, nonce, and associated data are used to encrypt payloads
accompanying each message, providing implicit authentication of a peer via con-
firmation of knowledge of their static secret.

Noise admits a wide variety of protocols. The processing rules are designed
to make it easy to verify properites of handshake patterns, and considerable
effort has gone into their formal analysis [14,19,23]. But the study of handshake

Security in the Presence of Key Reuse 23

patterns in isolation does not fully address the complexity of using Noise to build
and deploy protocols. In practice, it is often necessary for the communicants to
negotiate the details of the handshake, including the pattern, primitives, and
cryptographic artifacts such as static keys and their certificates. All of this is
out of scope of the core Noise specification, which aims to be as rigid as possible.
As a result, there is an apparent gap between our understanding of the security
that Noise provides and how it might be used in practice. One question that
arises, which we will address here, is whether it is safe to reuse a single static
key in many patterns.

We cast the Noise framework as an interface that exposes a host’s static
key for use in Noise protocols. The interface specifies how the host consumes
(resp. produces) messages sent by (resp. to send to) the peer, and how its hand-
shake state is updated as a side-effect. In other words, it implements the pro-
cessing rules such that Noise patterns can be executed by making calls to the
interface. Our goal is to prove GAP1 security with respect to the largest possible
set of games, which would provide two benefits in practice. First and foremeost,
it would imply joint security (up to context separation) of all patterns the inter-
face implements; second it would provide a degree of robustness to cross protocol
attacks by ensuring that, as long as context separation is enforced, vulnerabilities
in one application cannot creep into another.

Our analysis sheds light on two limitations of Noise with respect to our secu-
rity notions. The first is that some handshake patterns, if implemented by our
interface, would allow for GAP1 attacks. We provide a formal characterization
of the actions that give rise to these attacks, and we prove GAP1 security of
our interface when they are excluded. The second issue is more subtle. To prove
GAP1 security with respect to games in which the adversary may compromise
the handshake state—for example, when modeling forward secrecy—it is neces-
sary to tweak the Noise spec slightly. The processing rules explicitly bind the
protocol context (i.e., a string that uniquely defines the handshake pattern and
parameters) to the initial state of the protocol. While this provides a certain de-
gree of context separability, the lack of binding to each state update precludes a
proof of security relative to such games. We propose a simple and efficient mod-
ification of the processing rules that ensures context separability under these
conditions, allowing us to prove security under minimal (and natural) assump-
tions about the game.

Of course, a consequence of these restrictions is that our analysis leaves open
the security of key reuse in Noise as it is. In the full version of this paper [29], we
will discuss what our results mean for Noise in practice and suggest directions
for future work.

Preliminaries. Our analysis will use the standard notion of ciphertext in-
tegrity of AEAD schemes. A scheme for authenticated encryption with associated
data (AEAD) is a pair of deterministic algorithms AE = (Enc, Dec). The first,
Enc(str K, N, A, M) — str C, maps a key K, nonce N, associated data A,
and plaintext M to a ciphertext C. The second, Dec(str K, N, A, C) — str M,
maps K, N, A, and C to M. We respectively define the key, nonce, associated-

24 C. Patton and T. Shrimpton

NN: NK: NX: IKpsk2:

— e, — s — e “— s

— e, ee — e, ee s, es
— e, es — e, es, s, SS
— e, ee <+ e, ee, se, psk

Fig. 6. Examples of Noise handshake patterns.

data (AD), and message space as the sets K,N, A, M C {0,1}* for which
Enc(K,N,A,M) # L if and only if (K,N,A,M) € K x N x A x M; cor-
rectness requires that Dec(K, K, N, A,Enc(K, N, A, M)) = M for every such
(K,N,A, M). (This condition implies that A is both correct and tidy in the
sense of Namprempre, Rogaway, and Shrimpton [25].) We say that A€ has key-
length k if K = {0, 1}* and nonce-length n if A" = {0, 1}". We will use the stan-
dard notion of ciphertext integrity (INT-CTXT) for AEAD schemes in the pres-
ence of nonce-respecting adversaries; refer to the full version [29] for its precise
definition. Define the advantage of an adversary A4 in breaking the ciphertext in-
tegrity of AE as AdviiEc™t(A) = Pr[Expi™*(A) |. Let Adv5°™ (¢, ¢, qp)
denote the maximum advantage of any t¢-time adversary making at most gg
(resp. ¢p) queries to Enc (resp. Dec).

6.1 Handshake and Message Patterns

By way of eliciting the formal tools we will need in our analysis, we begin this
section with a brief overview of how handshake patterns are specified. Figure 6
recalls four patterns from the standard [30]. The first, referred to as the “NN”
pattern, encodes an unauthenticated DH key exchange as a sequence of hand-
shake messages, which in turn encode sequences of tokens. In the first message
(— e) the initiator generates an ephemeral DH key pair and sends the public
key to the responder. In the next handshake message (+ e,ee), the responder
generates an ephemeral key pair (e), computes the DH shared secret and derives
a symmetric key (ee), then sends the ephemeral public key in its response. Every
message includes a possibly AEAD-encrypted payload. Encryption is opportunis-
tic. Once a shared secret is established, everything that can be encrypted will
be encrypted; if the caller does not provide a payload, then the payload is the
empty string.

The NK pattern is a variant of NN that provides authentication of the respon-
der. The main difference is an additional message preceding the ellipses (+ s)
indicating that the responder’s static public key is known to the initiator before
the protocol begins. In its first action, the initiator computes the shared secret
between this and its ephemeral secret (es) and uses it to encrypt the message
payload. This has two effects: first, the initiator proves knowledge of the shared
secret to the responder; and second, the responder authenticates itself by proving
knowledge of the shared secret to the initiator. These properties are due to the
sequence of actions induced by the pattern; if decryption fails, then this indicates

Security in the Presence of Key Reuse 25

that the sender does not know the correct shared secret. This works because each
key derivation depends on all shared secrets computed in the protocol so far.

The NX pattern is similar except that the public key is transmitted to the
initiator during the handshake, rather than out-of-band. For our purposes, the
significant difference between NK and NX is that, in the former pattern, the
initiator confirms knowledge of the shared secret before the responder consumes
the message and produces its response. On the other hand, in the NX pattern
the initiator can send an arbitrary element of the DH group as its ephemeral key
and observe a valid response without demonstrating knowledge of its discrete
logarithm. This leads to information leakage beyond what is learned by honest
initiators (that is, for computationally bounded attackers). It is akin to providing
the adversary with a functional DH oracle, which enables an attack against
the GAP1 security of the interface; as we did in Theorem 4, one can exhibit
a distinguisher that gets high advantage if the IDH problem is hard for the
underlying group. (More on this attack in the full version [29].) To reason about
this attack in our analysis, we require an abstraction for handshake patterns and
the actions they induce.

Definition 10 (Patterns, actions, and tokenizers). A handshake pattern
is a sequence of message patterns that specify the sequence of tokens processed
when producing or consuming a message. A message pattern is a string that can
be parsed by a tokenizer, which determines the set of valid actions. A tokenizer is
a deterministic algorithm 7 (bool f, r, str pat) — tup ¢, str err. String pat is the
message pattern, f indicates whether or not the host is producing a message,
and r indicates whether the host is the initiator. The outputs are a tuple ¢
comprised of the sequence of tokens to be processed and a string err indicating
whether an error occurred. A valid action for T is a triple (f, r, pat) for which
err = o, where (t, err) = T;(r, pat). We say that 7 has action count ¢ if |t] < ¢
for every valid action (f, r, pat).

A token action is a triple (f,r,t) € {0,1} x {0,1} x {0,1}*. We say that
a tokenizer T includes a set of token actions X if for each (f,r,t) € X the
following is true: there exists a valid pattern pat for T such that ¢t = ¢; for some
1 <4 < |t| and (¢, err) = Ty(r,t). If this condition holds for no such token
action, then 7 excludes X. ¢

6.2 The Interface

The interface is specified as the composition of a tokenizer and the DH, AEAD,
and hash primitives. Let G = (G) be a v-encoded, additive group of order n, and
fix integers k,n’, h,b,u > 0 such that v € {u+8, h+u+8}. Let AE be an AEAD
scheme with key-length k and nonce-length n’. Let cl : {0,1}* — Z,, \ {0}, vr :
{0,1}* — {0,1}*, and H : {0,1}* — {0,1}" be functions. Function H is a hash
function that will serve multiple purposes, one of which is to derive symmetric
keys using HKDF [20]. We will ignore the details of HKDF in this section and
simply denote key derivation by a function F : ({0,1}*)® — ({0, 1}")3 that maps
an “information” string id, a “salt” X, and input key material Y to a triple of

26 C. Patton and T. Shrimpton

Gen() Op(sk, ctz, op, in)
K« {0,1}® dec st hs; msg req; bool f, r; str u, pat, err
s+ cl(K) s < Scal(sk); o, f. r, pat < op; hs,in < in
ret (sG, s) if o # noise V hs.id # vr(ctz) V |hs.L| # hV
|hs.psk| € {u+8,h+ u+ 8} then ret L
if f then //outbound payload
dec struct { (resp, err) «— Write(%hs, s, r, pat, in)
str P, E,S } msg if —err then ret hs, resp.¢
dec struct { str id, psk; else req < in //inbound message
int seq; str K, N; (out, err) «— Read(&hs, s, T, pat, req)
str L, A; if —err then ret hs, out,o
Q,ReG;e€Zy }st if err ret ¢,0, err

Fig. 7. Simple DL interface N for Noise. Let G = (G) be a v-encoded, additive group
of order n and let h,b,u > 0 be integers such that v & {u + 8, h + u + 8}. Let ¢l :
{0,1}* = Z,\ {0} and vr : {0,1}* — {0, 1}* be functions. Procedures Write and Read
are defined in the full version [29].

h-bit strings F(id, X,Y). We will model F as a random oracle in our analysis;
in the full version [29] we address the implications of this modeling choice.

Figure 7 specifies our Noise interface A at a high level and defines structures
st and msg for the handshake state and messages respectively. The key generator
N.Gen chooses a random, b-bit string K, sets s « cl(K), and returns (sG, s).
(Thus, A is simple in the sense of Def. 8.) Function ¢l serves the same purpose
as ¢l in our specification of EADSA; it maps a bit string of a particular length
to a suitable scalar s for use with the given group. The key operator N.Op is
defined in terms of two procedures:

— Read (st hs,int s, bool r, str pat, msg req) — str out, err. Called when con-
suming an inbound message. It takes as input the static key s and processes
the action (0, r, pat) on the message req and current handshake state hs. It
outputs a payload out.

— Write(zst hs, int s, bool r, str pat, in) — msg resp, str err. Called when pro-
ducing an outbound message. It takes as input the static key s and processes
the action (1, r, pat) on the payload in and current handshake state hs. It
outputs a message resp.

Read and Write are defined in terms of T, AE, F, and ‘H. The operand encodes
the current handshake state hs and the input ¢n, and the operator op encodes an
action (f, r, pat). If f =1, then the host interprets in as a payload to send to its
peer in its next handshake message; it calls Write and returns the updated state
and outbound message. If f = 0, then the host interprets in as a message sent
by the peer; it calls Read and returns the updated state and inbound payload.

Context-to-action binding. The context ctzr is bound to the handshake state
via a field hs.id, which should be equal to vr(ctz) (7:12). Each call to F made

Security in the Presence of Key Reuse 27

by either Read or Write uses hs.id as the label. In this way, interface N binds
the string hs.id = vr(ctz) to each key derivation, thereby binding the context to
the action being performed. We call this context-to-action binding. This differs
from Noise as it is, which uses an empty string as the information string for
key derivation via HKDF (see [30, Section 4.3]). (Formally, the processing rules
as they are specified are recovered by defining vr(ctz) = e for all ctz.) Noise
binds the context to initialization of the handshake state (see [30, Section 5.3]),
but action binding is required in our attack model in order to provide context
separation when the game leaks its internal handshake state to the adversary.
We will discuss the issue that arises in the next section.

In order to save space, we defer detailed explanation of the Noise parameters,
as well as the complete specifications of Read and Write, to the full version of
this paper [29]. These details are essential to understanding the proof of our
main result (Theorem 7), but since the low-level details are cumbersome, we will
focus the remainder on stating and interpreting our results.

6.3 Security

Interface N is GAP1 secure for any game G subject to the following restrictions.
First, the tokenizer must exclude any write action involving DH on the static
secret. (It may, however, read messages that depend on the static secret.) And
second, each time G invokes F on an input (id,u, v) it must hold that id = vr(«),
where « is the game context.

Fix Noise parameters (G, AE, T, H,F,cl,vr,k,n’,h,b,u) and let N be the
DL interface instantiated with these parameters as specified in Figure 7. Let
n = |G| and let X = {(1,0,es), (1,0,ss), (1,1,se), (1,1,ss)}. Define ¢ : {0, 1}* x
({0,1}*)3 — {0,1} as the map (ctz, (id,u,v)) — (vr(ctz) = id).

Theorem 7. Suppose that n is prime. Let G be a reqular game and suppose
that T is X -excluding and has action count {. Let DDH be as defined in Figure 4.
When F is modeled as a random oracle, there exists a reqular, DDH- and Q-
relative simulator S such that for all t,qq,qr,qr,c > 0 there exists a t-time
CR-adversary C such that

AV (S,7) < 2eqrAdv L (C) + 26qrAdvRE (1,0,qr),

where G is c-ro-bound and -ro-reqular; AE, T, H, cl, and vr are 0-ro-bound;
simulator S is (O(t/(qr+1)), g1, £)-resource, Lgrqr-DDH -bound, and 2-Q-bound;

r= (taQG»QI,QR)! and £ = O(t + CIR(]I)-

We will sketch the main ideas of the proof; refer to the full version for the
details [29]. To simulate static DH computations on an input Y (either the
peer’s static or ephemeral key), the simulator S computes the set V of points
incident to the adversary’s RO queries. For each Z € V it uses its DDH oracle to
check if (logy P)(log Y) = logs Z, where P is the host’s static key. If so, then
it uses Z to simulate the output of the interface. This is only possible in general
for read actions, since these require the adversary to compute a ciphertext under

28 C. Patton and T. Shrimpton

the correct symmetric key, which can be obtained by querying the RO first. In
fact, what we show is that, short of breaking the CR security of vr or INT-CTXT
security of AE, the only way to get a valid response from Op is to compute the
inbound message as specified by the processing rules.

The need for context-to-action binding and the restriction of the game’s RO
queries arise in order to ensure there is no “subliminal channel” between the
game and the adversary conveying information about the RO to the adversary
beyond what it learns by making RO queries on its own. If the game provides
the outputs of its RO queries to the adversary (e.g., by compromising the hand-
shake state), then without action binding, these can be used by the adversary
to compute ciphertexts without interacting with the RO. Hence, there is no way
for the simulator to correctly respond given only knowledge of the adversary’s
RO queries. (Allowing the simulator to observe more RO queries than this—in
particular, the game’s—would make composition impossible.)

Finally, as we did in Section 5.2, we apply the GAP1 security of A" and the
composition theorem to the IDH problem for A/. We cannot reduce the CDH
problem to it as we did in Corollary 1, since the simulator requires a DDH oracle.
Of course, this is precisely what the GDH experiment provides. The following is
obtained by applying Theorems 1 and 7. (We will not prove it, but the details
are closely related to Corollary 1.)

Corollary 2. Suppose that n is prime and that T is X -excluding and has maz-
imum action count {. Let r = |Rngcl| and suppose that r|2°. Then for all
t,qr,qr > 0 it holds that

AV (t.q1,qr) < n/rAdvE(O(t + §), Larar) + 2Lqr AdvEE™ (1,0, q1),

where F is modeled as a random oracle; AE, T, H, cl, and vr are 0-ro-bound;
G=qr+4(qgr +1); and t = O(t + qrqy)-

Remark 1. The use of the DDH oracle by the simulator in Theorem 7 is standard;
it is used, for instance, to prove joint security of encryption and signing in the
ROM [13]. In fact, the Noise spec calls for a group for which the GDH problem
is hard; see [30, Section 4.1].

Acknowledgements

This work was made possible by NSF grant CNS-1816375. We thank the anony-
mous reviewers for their useful comments. We thank Trevor Perrin for his valu-
able feedback on our analysis of Noise.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Advances in Cryptology - EUROCRYPT 2010. pp. 403—
422. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

2. Acar, T., Nguyen, L., Zaverucha, G.: A TPM Diffie-Hellman oracle. Cryptology
ePrint Archive, Report 2013/667 (2013), https://eprint.iacr.org/2013/667

https://eprint.iacr.org/2013/667

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Security in the Presence of Key Reuse 29

. Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M.L., Stransky,

C.: Comparing the usability of cryptographic APIs. In: 2017 IEEE Symposium on
Security and Privacy (SP). pp. 154-171 (May 2017)

. Barnes, R., Iyengar, S., Sullivan, N., Rescorla, E.: Delegated credentials for TLS.

Internet-Draft draft-ietf-tls-subcerts-03, IETF Secretariat (February 2019), http:
//www.ietf.org/internet-drafts/draft-ietf-tls-subcerts-03.txt

. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing

efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. pp. 62-73. CCS ’93, ACM, New York, NY, USA (1993)

. Bellare, M., Rogaway, P.: The security of triple encryption and a frameworkforcode-

basedgame-playingproofs. In: Advances in Cryptology - EUROCRYPT 2006. pp.
409-426. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:

AES-GCM in TLS 1.3. In: Advances in Cryptology — CRYPTO 2016. pp. 247-276.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-

security signatures. Journal of Cryptographic Engineering 2(2), 77-89 (Sep 2012)

. Bhargavan, K., Boureanu, I., Fouque, P., Onete, C., Richard, B.: Content de-

livery over TLS: a cryptographic analysis of Keyless SSL. In: 2017 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS P). pp. 1-16 (April 2017).
https://doi.org/10.1109/EuroSP.2017.52

Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the
rsa encryption standard PKCS #1. In: Proceedings of the 18th Annual Interna-
tional Cryptology Conference on Advances in Cryptology. pp. 1-12. CRYPTO ’98,
Springer-Verlag, London, UK, UK (1998)

Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. Cryptology
ePrint Archive, Report 2004/306 (2004), https://eprint.iacr.org/2004/306
Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One
TPM to bind them all: Fixing TPM 2.0 for provably secure anonymous attestation.
In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 901-920 (May 2017)
Degabriele, J.P., Lehmann, A., Paterson, K.G., Smart, N.P., Strefler, M.: On the
joint security of encryption and signature in EMV. In: Topics in Cryptology —
CT-RSA 2012. pp. 116-135. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
Dowling, B., Paterson, K.G.: A cryptographic analysis of the wireguard protocol.
In: Applied Cryptography and Network Security. pp. 3-21. Springer International
Publishing, Cham (2018)

Gleeson, S., Zimman, C.: PKCS #11 cryptographic token interface base specifica-
tion version 2.40. Online white paper (July 2015), http://docs.oasis-open.org/
pkcs1l/pkesll-base/v2.40/pkcsll-base-v2.40.html

Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: Proceed-
ings of the 8th ACM Conference on Computer and Communications Security. pp.
215-224. CCS 01, ACM, New York, NY, USA (2001)

Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA).
RFC 8032, RFC Editor (January 2017)

Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen proto-
col attack. In: Security Protocols. pp. 91-104. Springer Berlin Heidelberg, Berlin,
Heidelberg (1998)

Kobeissi, N., Bhargavan, K.: Noise Explorer: Fully automated modeling and verifi-
cation for arbitrary Noise protocols. Cryptology ePrint Archive, Report 2018/766
(2018), https://eprint.iacr.org/2018/766

http://www.ietf.org/internet-drafts/draft-ietf-tls-subcerts-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-subcerts-03.txt
https://doi.org/10.1109/EuroSP.2017.52
https://eprint.iacr.org/2004/306
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
https://eprint.iacr.org/2018/766

30

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

C. Patton and T. Shrimpton

Krawczyk, H., Eronen, P.: HMAC-based extract-and-expand key derivation func-
tion (HKDF). RFC 5869, RFC Editor (May 2010), http://www.rfc-editor.org/
rfc/rfcb869.txt

Kiinnemann, R.; Steel, G.: YubiSecure? Formal security analysis results for the
Yubikey and YubiHSM. In: Security and Trust Management. pp. 257-272. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Advances in Cryptology — CRYPTO ’97. pp. 249-263.
Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

Lipp, B., Blanchet, B., Bhargavan, K.: A Mechanised Cryptographic Proof of the
WireGuard Virtual Private Network Protocol. Research Report RR-9269, Inria
Paris (Apr 2019), https://hal.inria.fr/hal-02100345

Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Theory of
Cryptography. pp. 21-39. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)
Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Advances in Cryptology — EUROCRYPT 2014. pp. 257-274. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for
the security of cryptographic schemes. In: Public Key Cryptography. pp. 104-118.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

Oliveira, D., Rosenthal, M., Morin, N., Yeh, K.C., Cappos, J., Zhuang, Y.: It’s
the psychology stupid: How heuristics explain software vulnerabilities and how
priming can illuminate developer’s blind spots. In: Proceedings of the 30th Annual
Computer Security Applications Conference. pp. 296-305. ACSAC 14, ACM, New
York, NY, USA (2014)

Oliveira, D.S., Lin, T., Rahman, M.S., Akefirad, R., Ellis, D., Perez, E., Bobhate,
R., DeLong, L.A., Cappos, J., Brun, Y.: API blindspots: Why experienced de-
velopers write vulnerable code. In: Fourteenth Symposium on Usable Privacy and
Security (SOUPS 2018). pp. 315-328. USENIX Association, Baltimore, MD (2018)
Patton, C., Shrimtpon, T.: Security in the presence of key reuse: Context-separable
interfaces and their applications. Cryptology ePrint Archive, Report 2019/519
(2019), https://eprint.iacr.org/2019/519

Perrin, T.: The Noise protocol framework. Online white paper (July 2018), https:
//noiseprotocol.org/noise.html

Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4),
437-447 (2000)

Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
RFC Editor (August 2018)

Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: Advances in Cryptology — EUROCRYPT
2011. pp. 487-506. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)
Rogaway, P., Stegers, T.: Authentication without elision: Partially specified proto-
cols, associated data, and cryptographic models described by code. In: 2009 22nd
IEEE Computer Security Foundations Symposium. pp. 26-39 (July 2009)
Shrimpton, T., Stam, M., Warinschi, B.: A modular treatment of cryptographic
APIs: The symmetric-key case. In: Advances in Cryptology — CRYPTO 2016. pp.
277-307. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

Trusted Computing Group: TPM 2.0 library specification (September 2016),
https://trustedcomputinggroup.org/resource/tpm-library-specification/

http://www.rfc-editor.org/rfc/rfc5869.txt
http://www.rfc-editor.org/rfc/rfc5869.txt
https://hal.inria.fr/hal-02100345
https://eprint.iacr.org/2019/519
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://trustedcomputinggroup.org/resource/tpm-library-specification/

	Security in the Presence of Key Reuse: Context-Separable Interfaces and their Applications

