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Abstract. This work studies differential privacy in the context of the
recently proposed shuffle model. Unlike in the local model, where the
server collecting privatized data from users can track back an input to
a specific user, in the shuffle model users submit their privatized inputs
to a server anonymously. This setup yields a trust model which sits in
between the classical curator and local models for differential privacy.
The shuffle model is the core idea in the Encode, Shuffle, Analyze (ESA)
model introduced by Bittau et al. (SOPS 2017). Recent work by Cheu et
al. (EUROCRYPT 2019) analyzes the differential privacy properties of
the shuffle model and shows that in some cases shuffled protocols provide
strictly better accuracy than local protocols. Additionally, Erlingsson et
al. (SODA 2019) provide a privacy amplification bound quantifying the
level of curator differential privacy achieved by the shuffle model in terms
of the local differential privacy of the randomizer used by each user.

In this context, we make three contributions. First, we provide an opti-
mal single message protocol for summation of real numbers in the shuffle
model. Our protocol is very simple and has better accuracy and commu-
nication than the protocols for this same problem proposed by Cheu et
al. Optimality of this protocol follows from our second contribution, a
new lower bound for the accuracy of private protocols for summation of
real numbers in the shuffle model. The third contribution is a new ampli-
fication bound for analyzing the privacy of protocols in the shuffle model
in terms of the privacy provided by the corresponding local randomizer.
Our amplification bound generalizes the results by Erlingsson et al. to a
wider range of parameters, and provides a whole family of methods to
analyze privacy amplification in the shuffle model.
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1 Introduction

Most of the research in differential privacy focuses on one of two extreme mod-
els of distribution. In the curator model, a trusted data collector assembles
users’ sensitive personal information and analyses it while injecting random noise
strategically designed to provide both differential privacy and data utility. In the
local model, each user i with input xi applies a local randomizerR on her data to
obtain a message yi, which is then submitted to an untrusted analyzer. Crucially,
the randomizer R guarantees differential privacy independently of the analyzer
and the other users, even if they collude. Separation results between the local
and curator models are well-known since the early research in differential pri-
vacy: certain learning tasks that can be performed in the curator model cannot
be performed in the local model [23] and, furthermore, for those tasks that can
be performed in the local model there are provable large gaps in accuracy when
compared with the curator model. An important example is the summation of
binary or (bounded) real-valued inputs among n users, which can be performed
with O(1) noise in the curator model [14] whereas in the local model the noise
level is Ω(

√
n) [7,11]. Nevertheless, the local model has been the model of choice

for recent implementations of differentially private protocols by Google [16], Ap-
ple [25], and Microsoft [13]. Not surprisingly, these implementations require a
huge user base to overcome the high error level.

The high level of noise required in the local model has motivated a recent
search for alternative models. For example, the Encode, Shuffle, Analyze (ESA)
model introduces a trusted shuffler that receives user messages and permutes
them before they are handled to an untrusted analyzer [9]. A recent work by
Cheu et al. [12] provides a formal analytical model for studying the shuffle model
and protocols for summation of binary and real-valued inputs, essentially recov-
ering the accuracy of the trusted curator model. The protocol for real-valued
inputs requires users to send multiple messages, with a total of O(

√
n) single bit

messages sent by each user. Also of relevance is the work of Ishai et al. [18] show-
ing how to combine secret sharing with secure shuffling to implement distributed
summation, as it allows to simulate the Laplace mechanism of the curator model.
Instead we focus on the single-message shuffle model.

Another recent work by Erlingsson et al. [15] shows that the shuffling prim-
itive provides privacy amplification, as introducing random shuffling in local
model protocols reduces ε to ε/

√
n.

A word of caution is in place with respect to the shuffle model, as it differs
significantly from the local model in terms of the assumed trust. In particular, the
privacy guarantee provided by protocols in the shuffle model degrades with the
fraction of users who deviate from the protocol. This is because, besides relying
on a trusted shuffling step, the shuffle model requires users to provide messages
carefully crafted to protect each other’s privacy. This is in contrast with the
curator model, where this responsibility is entirely held by the trusted curator.
Nevertheless, we believe that this model is of interest both for theoretical and
practical reasons. On the one hand it allows to explore the space in between the
local and curator model, and on the other hand it leads to mechanisms that are
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easy to explain, verify, and implement; with limited accuracy loss with respect
to the curator model.

In this work we do not assume any particular implementation of the shuffling
step. Naturally, alternative implementations will lead to different computational
trade-offs and trust assumptions. The shuffle model allows to disentangle these
aspects from the precise computation at hand, as the result of shuffling the
randomized inputs submitted by each user is required to be differentially private,
and therefore any subsequent analysis performed by the analyzer will be private
due to the postprocessing property of differential privacy.

1.1 Overview of Our Results

In this work we focus on single-message shuffle model protocols. In such proto-
cols (i) each user i applies a local randomizer R on her input xi to obtain a single
message yi; (ii) the messages (y1, . . . , yn) are shuffled to obtain (yσ(1), . . . , yσ(n))
where σ is a randomly selected permutation; and (iii) an analyzer post-processes
(yσ(1), . . . , yσ(n)) to produce an outcome. It is required that the mechanism re-
sulting from the combination of the local randomizer R and the random shuffle
should provide differential privacy.

A protocol for private summation. Our first contribution is a single-message
shuffle model protocol for private summation of (real) numbers xi ∈ [0, 1]. The
resulting estimator is unbiased and has standard deviation Oε,δ(n

1/6).
To reduce the domain size, our protocol uses a fixed-point representation,

where users apply randomized rounding to snap their input xi to a multiple x̄i
of 1/k (where k = Oε,δ(n

1/3)). We then apply on x̄i a local randomizer RPH for
computing private histograms over a finite domain of size k+ 1. The randomizer
RPH is simply a randomized response mechanism: with (small) probability γ
it ignores x̄i and outputs a uniformly random domain element, otherwise it
reports its input x̄i truthfully. There are hence about γn instances of RPH
whose report is independent to their input, and whose role is to create what we
call a privacy blanket, which masks the outputs which are reported truthfully.
Combining RPH with a random shuffle, we get the equivalent of a histogram
of the sent messages, which, in turn, is the pointwise sum of the histogram of
approximately (1− γ)n values x̄i sent truthfully and the privacy blanket, which
is a histogram of approximately γn random values.

To see the benefit of creating a privacy blanket, consider the recent shuffle
model summation protocol by Cheu et al. [12]. This protocol also applies ran-
domized rounding. However, for privacy reasons, the rounded value needs to be
represented in unary across multiple 1-bit messages, which are then fed into a
summation protocol for binary values. The resulting error of this protocol is O(1)
(as is achieved in the curator model). However, the use of unary representation
requires each user to send Oε(

√
n) 1-bit messages (whereas in our protocol every

user sends a single O(log n)-bit message). We note that Cheu et al. also present
a single message protocol for real summation with O(

√
n) error.
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A lower bound for private summation. We also provide a matching lower
bound showing that any single-message shuffled protocol for summation must
exhibit mean squared error of order Ω(n1/3). In our lower bound argument
we consider i.i.d. input distributions, for which we show that without loss of
generality the local randomizer’s image is the interval [0, 1], and the analyzer is
a simple summation of messages. With this view, we can contrast the privacy and
accuracy of the protocol. On the one hand, the randomizer may need to output
y ∈ [0, 1] on input x ∈ [0, 1] such that |x − y| is small, to promote accuracy.
However, this interferes with privacy as it may enable distinguishing between
the input x and a potential input x′ for which |x′ − y| is large.

Together with our upper bound, this result shows that the single-message
shuffle model sits strictly between the curator and the local models of differen-
tial privacy. This had been shown by Cheu et al. [12] in a less direct way by
showing that (i) the private selection problem can be solved more accurately
in the curator model than the shuffle model, and (ii) the private summation
problem can be solved more accurately in the shuffle model than in the local
model. For (i) they rely on a generic translation from the shuffle to the local
model and known lower bounds for private selection in the local model, while
our lower bound operates directly in the shuffle model. For (ii) they propose a
single-message protocol that is less accurate than ours.

Privacy amplification by shuffling. Lastly, we prove a new privacy am-
plification result for shuffled mechanisms. We show that shuffling n copies of
an ε0-LDP local randomizer with ε0 = O(log(n/ log(1/δ))) yields an (ε, δ)-DP
mechanism with ε = O((ε0 ∧ 1)eε0

√
log(1/δ)/n), where a ∧ b = min{a, b}. The

proof formalizes the notion of a privacy blanket that we use informally in the pri-
vacy analysis of our summation protocol. In particular, we show that the output
distribution of local randomizers (for any local differentially private protocol)
can be decomposed as a convex combination of an input-independent blanket
distribution and an input-dependent distribution.

Privacy amplification plays a major role in the design of differentially pri-
vate mechanisms. These include amplification by subsampling [23] and by itera-
tion [17], and the recent seminal work on amplification via shuffling by Erlingsson
et al. [15]. In particular, Erlingsson et al. considered a setting more general than
ours which allows for interactive protocols in the shuffle model by first generat-
ing a random permutation of the users’ inputs and then sequentially applying
a (possibly different) local randomizer to each element in the permuted vector.
Moreover, each local randomizer is chosen depending on the output of previous
local randomizers. To distinguish this setting from ours, we shall call the setting
of Erlingsson et al. shuffle-then-randomize and ours randomize-then-shuffle. We
also note that both settings are equivalent when there is a single local randomizer
that will be applied to all the inputs. Throughout this paper, unless we explic-
itly say otherwise, the term shuffle model refers to the randomize-then-shuffle
setting.
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Fig. 1. The local (left) and shuffle (right) models of Differential Privacy. Dotted lines
indicate differentially private values with respect to the dataset ~x = (x1, . . . , xn), where
user i holds xi.

In the shuffle-then-randomize setting, Erlingsson et al. provide an amplifi-
cation bound with ε = O(ε0

√
log(1/δ)/n) for ε0 = O(1). Our result in the

randomize-then-shuffle setting recovers this bound for the case of one random-
izer, and extends it to ε0 which is logarithmic in n. For example, using the new
bound, it is possible to shuffle a local randomizer with ε0 = O(log(ε2n/ log(1/δ)))
to obtain a (ε, δ)-DP mechanism with ε = Θ(1) . Cheu et al. [12] also proved that
a level of LDP ε0 = O(log(ε2n/ log(1/δ))) suffices to achieve (ε, δ)-DP mecha-
nisms through shuffling, though only for binary randomized response in the
randomize-then-shuffle setting. Our amplification bound captures the regimes
from both [15] and [12], thus providing a unified analysis of privacy amplifica-
tion by shuffling for arbitrary local randomizers in the randomize-then-shuffle
setting. Our proofs are also conceptually simpler than those in [12, 15] since we
do not rely on privacy amplification by subsampling to obtain our results.

2 Preliminaries

Our notation is standard. We denote domains as X, Y, Z and randomized mech-
anism as M, P, R, S. For denoting sets and multisets we will use uppercase
letters A, B, etc., and denote their elements as a, b, etc., while we will denote
tuples as ~x, ~y, etc. Random variables, tuples and sets are denoted by X, ~X and
X respectively. We also use greek letters µ, ν, ω for distributions. Finally, we
write [k] = {1, . . . , k}, a∧ b = min{a, b}, [u]+ = max{u, 0} and N for the natural
numbers.

2.1 The Curator and Local Models of Differential Privacy

Differential privacy is a formal approach to privacy-preserving data disclosure
that prevents attemps to learn private information about specific to individuals
in a data release [14]. The definition of differential privacy requires that the
contribution xi of an individual to a dataset ~x = (x1, . . . , xn) has not much
effect on what the adversary sees. This is formalized by considering a dataset
~x′ that differs from ~x only in one element, denoted ~x ' ~x′, and requiring that
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the views of a potential adversary when running a mechanism on inputs ~x and
~x′ are “indistinguishable”. Let ε ≥ 0 and δ ∈ [0, 1]. We say that a randomized
mechanism M : Xn → Y is (ε, δ)-DP if

∀~x ' ~x′,∀E ⊆ Y : P[M(~x) ∈ E] ≤ eεP[M(~x′) ∈ E] + δ .

As mentioned above, different models of differential privacy arise depending
on whether one can assume the availability of a trusted party (a curator) that has
access to the information from all users in a centralized location. This setup is the
one considered in the definition above. The other extreme scenario is when each
user privatizes their data locally and submits the private values to a (potentially
untrusted) server for aggregation. This is the domain of local differential privacy4

(see Figure 1, left), where a user owns a data record x ∈ X and uses a local
randomizer R : X→ Y to submit the privatized value R(x). In this case we say
that the local randomizer is (ε, δ)-LDP if

∀x, x′,∀E ⊆ Y : P[R(x) ∈ E] ≤ eεP[R(x′) ∈ E] + δ .

The key difference is that in this case we must protect each user’s data, and
therefore the definition considers changing a user’s value x to another arbitrary
value x′.

Moving from curator DP to local DP can be seen as effectively redefining the
view that an adversary has on the data during the execution of a mechanism. In
particular, ifR is an (ε, δ)-LDP local randomizer, then the mechanismM : Xn →
Yn given by M(x1, . . . , xn) = (R(x1), . . . ,R(xn)) is (ε, δ)-DP in the curator
sense. The single-message shuffle model sits in between these two settings.

2.2 The Single-Message Shuffle Model

The single-message shuffle model of differential privacy considers a data collector
that receives one message yi from each of the n users as in the local model of
differential privacy. The crucial difference with the local model is that the shuffle
model assumes that a mechanism is in place to provide anonymity to each of the
messages, i.e. the data collector is unable to associate messages to users. This is
equivalent to assuming that, in the view of the adversary, these messages have
been shuffled by a random permutation unknown to the adversary (see Figure 1,
right).

Following the notation in [12], we define a single-message protocol P in the
shuffle model to be a pair of algorithms P = (R,A), where R : X → Y, and
A : Yn → Z. We callR the local randomizer, Y the message space of the protocol,
A the analyzer of P, and Z the output space. The overall protocol implements a
mechanism P : Xn → Z as follows. Each user i holds a data record xi, to which
she applies the local randomizer to obtain a message yi = R(xi). The messages
yi are then shuffled and submitted to the analyzer. We write S(y1, . . . , yn) to
denote the random shuffling step, where S : Yn → Yn is a shuffler that applies

4 Of which, in this paper, we only consider the non-interactive version for simplicity.



The Privacy Blanket of the Shuffle Model 7

a random permutation to its inputs. In summary, the output of P(x1, . . . , xn) is
given by A ◦ S ◦ Rn(~x) = A(S(R(x1), . . . ,R(xn))).

From a privacy point of view, our threat model assumes that the analyzer
A is applied to the shuffled messages by an untrusted data collector. Therefore,
when analyzing the privacy of a protocol in the shuffle model we are interested
in the indistinguishability between the shuffles S ◦ Rn(~x) and S ◦ Rn(~x′) for
datasets ~x ' ~x′. In this sense, the analyzer’s role is to provide utility for the
output of the protocol P, whose privacy guarantees follow from those of the
shuffled mechanism M = S ◦ Rn : Xn → Yn by the post-processing property of
differential privacy. That is, the protocol P is (ε, δ)-DP whenever the shuffled
mechanism M is (ε, δ)-DP.

When analyzing the privacy of a shuffled mechanism we assume the shuffler
S is a perfectly secure primitive. This implies that a data collector observing
the shuffled messages S(y1, . . . , yn) obtains no information about which user
generated each of the messages. An equivalent way to state this fact, which
will sometimes be useful in our analysis of shuffled mechanisms, is to say that
the output of the shuffler is a multiset instead of a tuple. Formally, this means
that we can also think of the shuffler as a deterministic map S : Yn → NY

n

which takes a tuple ~y = (y1, . . . , yn) with n elements from Y and returns the
multiset Y = {y1, . . . , yn} of its coordinates, where NY

n denotes the collection of
all multisets over Y with cardinality n. Sometimes we will refer to such multisets
Y ∈ NY

n as histograms to emphasize the fact that they can be regarded functions
Y : Y→ N counting the number of occurrences of each element of Y in Y .

2.3 Mean Square Error

When analyzing the utility of shuffled protocols for real summation we will use
the mean square error (MSE) as accuracy measure. The mean squared error of
a randomized protocol P(~x) for approximating a deterministic quantity f(~x) is
given by MSE(P, ~x) = E[(P(~x)−f(~x))2], where the expectation is taken over the
randomness of P. Note that when the protocol is unbiased the MSE is equivalent
to the variance, since in this case we have E[P(~x)] = f(~x) and therefore

MSE(P, ~x) = E[(P(~x)− E[P(~x)])2] = V[P(~x)] .

In addition to the MSE for a fixed input, we also consider the worst-case
MSE over all possible inputs MSE(P), and the expected MSE on a distribution

over inputs MSE(P, ~X). These quantities are defined as follows:

MSE(P) = sup
~x

MSE(P, ~x) ,

MSE(P, ~X) = E~x∼~X[MSE(P, ~x)] .

3 The Privacy of Shuffled Randomized Response

In this section we show a protocol for n parties to compute a private histogram
over the domain [k] in the single-message shuffle model. The local randomizer of
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Algorithm 1: Private Histogram: Local Randomizer RPHγ,k,n
Public Parameters: γ ∈ [0, 1], domain size k, and number of parties n
Input: x ∈ [k]
Output: y ∈ [k]

Sample b← Ber(γ)
if b = 0 then

Let y ← x
else

Sample y ← Unif([k])

return y

our protocol is shown in Algorithm 1, and the analyzer simply builds a histogram
of the received messages. The randomizer is parameterized by a probability γ,
and consists of a k-ary randomized response mechanism that returns the true
value x with probability 1 − γ, and a uniformly random value with probability
γ. This randomizer has been studied and used (in the local model) in several
previous works [8, 21, 22]. We discuss how to set γ to satisfy differential privacy
next.

3.1 The Blanket Intuition

In each execution of Algorithm 1 a subset B of approximately γn parties will
submit a random value, while the remaining parties will submit their true value.
The values sent by parties in B form a histogram Y1 of uniformly random values
and the values sent by the parties not in B correspond to the true histogram Y2 of
their data. An important observation is that in the shuffle model the information
obtained by the server is equivalent to the histogram Y1∪Y2. This observation is a
simple generalization of the observation made by Cheu et al. [12] that shuffling of
binary data corresponds to secure addition. When k > 2, shuffling of categorical
data corresponds to a secure histogram computation, and in particular secure
addition of histograms. In summary, the information collected by the server
in an execution corresponds to a histogram Y with approximately γn random
entries and (1 − γ)n truthful entries, which as mentioned above we decompose
as Y = Y1 ∪ Y2.

To achieve differential privacy we need to set the value γ of Algorithm 1
so that Y changes by an appropriately bounded amount when computed on
neighboring datasets where only a certain party’s data (say party n) changes.
Our privacy argument does not rely on the anonymity of the set B and thus
we can assume, for the privacy analysis, that the server knows B. We further
assume in the analysis that the server knows the inputs from all parties except
the nth one, which gives her the ability to remove from Y the values submitted
by any party who responded truthfully among the first n− 1.

Now consider two datasets of size n that differ on the input from the nth
party. In an execution where party n is in B we trivially get privacy since the
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value submitted by this party is independent of its input. Otherwise, party n
will be submitting their true value xn, in which case the server can determine Y2
up to the value xn using that she knows (x1, . . . , xn−1). Hence, a server trying to
break the privacy of party n observes Y1∪{xn}, the union of a random histogram
with the input of this party. Intuitively, the privacy of the protocol boils down
to setting γ so that Y1, which we call the random blanket of the local randomizer
RPHγ,k,n, appropriately “hides” xn.

As we will see in Section 5, the intuitive notion of the blanket of a local
randomizer can be formally defined for arbitrary local randomizers using a gen-
eralization of the notion of total variation distance from pairs to sets of dis-
tributions. This will allow us to represent the output distribution of any local
randomizer R(x) as a mixture of the form (1 − γ)νx + γω, for some 0 < γ < 1
and probability distributions νx and ω, of which we call ω the privacy blanket
of the local randomizer R.

3.2 Privacy Analysis of Algorithm 1

Let us now formalize the above intuition, and prove privacy for our protocol for
an appropriate choice of γ. In particular, we prove the following theorem, where
the assumption ε ≤ 1 is only for technical convenience. A more general approach
to obtain privacy guarantees for shuffled mechanisms is provided in Section 5.

Theorem 1. The shuffled mechanism M = S ◦ RPHγ,k,n is (ε, δ)-DP for any

k, n ∈ N, ε ≤ 1 and δ ∈ (0, 1] such that γ = max{ 14k log(2/δ)
(n−1)ε2 , 27k

(n−1)ε} < 1.

Proof. Let ~x, ~x′ ∈ [k]n be neighboring databases of the form ~x = (x1, x2, . . . , xn)
and ~x′ = (x1, x2, . . . , x

′
n). We assume that the server knows the set B of users

who submit random values, which is equivalent to revealing to the server a
vector ~b = (b1, . . . , bn) of the bits b sampled in the execution of each of the local
randomizers. We also assume the server knows the inputs from the first n − 1
parties.

Hence, we define the view ViewM of the server on a realization of the protocol
as the tuple ViewM(~x) = (Y, ~x∩,~b) containing:

1. A multiset Y = M(~x) = {y1, . . . , yn} with the outputs yi of each local
randomizer.

2. A tuple ~x∩ = (x1, . . . , xn−1) with the inputs from the first n− 1 users.

3. The tuple ~b = (b1, . . . , bn) of binary values indicating which users submitted
their true values.

Proving that the protocol is (ε, δ)-DP when the server has access to all this
information will imply the same level of privacy for the shuffled mechanism
S ◦ RPHγ,k,n by the post-processing property of differential privacy.

To show that ViewM satisfies (ε, δ)-DP it is enough to prove

PV∼ViewM(~x)

[
P[ViewM(~x) = V]

P[ViewM(~x′) = V]
≥ eε

]
≤ δ .
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We start by fixing a value V in the range of ViewM and computing the
probability ratio above conditioned on V = V .

Consider first the case where V is such that bn = 1, i.e. party n submits a
random value independent of her input. In this case privacy holds trivially since
P[ViewM(~x) = V ] = P[ViewM(~x′) = V ]. Hence, we focus on the case where
party n submits her true value (bn = 0). For j ∈ [k], let nj be the number of
messages received by the server with value j after removing from Y any truthful
answers submitted by the first n − 1 users. With our notation above, we have
nj = Y1(j) + I[xn = j] and

∑k
j=1 nj = |B| + 1 for the execution with input ~x.

Now assume, without loss of generality, that xn = 1 and x′n = 2. As xn = 1, we
have that

P[ViewM(~x) = V ] =

(
|B|

n1 − 1, n2, ..., nk

)
γ|B|(1− γ)n−|B|

k|B|
,

corresponding to the probability of a particular pattern ~b of users sampling from
the blanket times the probability of obtaining a particular histogram Y1 when
sampling |B| elements uniformly at random from [k]. Similarly, using that x′n = 2
we have

P[ViewM(~x′) = V ] =

(
|B|

n1, n2 − 1, ..., nk

)
γ|B|(1− γ)n−|B|

k|B|
.

Therefore, taking the ratio between the last two probabilities we find that, in
the case bn = 0,

P[ViewM(~x) = V ]

P[ViewM(~x′) = V ]
=
n1
n2

.

Now note that for V ∼ ViewM(~x) the count n2 = n2(V) follows a binomial
distribution N2 with n − 1 trials and success probability γ/k, and n1(V) − 1 =
N1 − 1 follows the same distribution. Thus, we have

PV∼ViewM(~x)

[
P[ViewM(~x) = V]

P[ViewM(~x′) = V]
≥ eε

]
= P

[
N1

N2
≥ eε

]
,

where N1 ∼ Bin
(
n− 1, γk

)
+ 1 and N2 ∼ Bin

(
n− 1, γk

)
.

We now bound the probability above using a union bound and the multi-

plicative Chernoff bound. Let c = E[N2] = γ(n−1)
k . Since N1/N2 ≥ eε implies

that either N1 ≥ ceε/2 or N2 ≤ ce−ε/2, we have

P
[
N1

N2
≥ eε

]
≤ P

[
N1 ≥ ceε/2

]
+ P

[
N2 ≤ ce−ε/2

]
= P

[
N2 ≥ ceε/2 − 1

]
+ P

[
N2 ≤ ce−ε/2

]
= P

[
N2 − E[N1] ≥ c

(
eε/2 − 1− 1

c

)]
+ P

[
N2 − E[N2] ≤ c(e−ε/2 − 1)

]
.
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Applying the multiplicative Chernoff bound to each of these probabilities then
gives that

P
[
N1

N2
≥ eε

]
≤ exp

(
− c

3

(
eε/2 − 1− 1

c

)2
)

+ exp
(
− c

2
(1− e−ε/2)2

)
.

Assuming ε ≤ 1, both of the right hand summands are less than or equal to δ
2 if

c =
γ(n− 1)

k
≥ max

{
14 log

(
2
δ

)
ε2

,
27

ε

}
.

Indeed, for the second term this follows from 1 − e−ε/2 ≥ (1 − e−1/2)ε ≥ ε/
√

7
for ε ≤ 1. For the first term we use that c ≥ 27

ε implies eε/2 − 1− 1
c ≥

25
54ε and

14 ≥ 3·542
252 .

Two remarks about this result are in order. First, we should emphasize that
the assumption of ε ≤ 1 is only required for simplicity when using Chernoff’s
inequality to bound the probability that the privacy loss random variable is
large. Without any restriction on ε, a similar result can be achieved by replacing
Chernoff’s inequality with Bennett’s inequality [10, Theorem 2.9] to account
for the variance of the privacy loss random variable in the tail bound. Here we
decide not to pursue this route because the ad-hoc privacy analysis of Theorem 1
is superseded by the results in Section 5 anyway. The second observation about
this result is that, with the choice of γ made above, the local randomizer RPHγ,k,n
satisfies ε0-LDP with

ε0 = O

(
log

(
nε2

log(1/δ)
− k
))

= O

(
log

(
nε2

log(1/δ)

(
1− γ

14

)))
.

This is obtained according to the formula provided by Lemma 6 in Section 5.1.
Thus, we see that Theorem 1 can be regarded as a privacy amplification state-
ment showing that shuffling n copies of an ε0-LDP local randomized with ε0 =
Oδ(log(nε2)) yields a mechanism satisfying (ε, δ)-DP. In Section 5.1 we will show
that this is not coincidence, but rather an instance of a general privacy amplifi-
cation result.

4 Optimal Summation in the Shuffle Model

4.1 Upper Bound

In this section we present a protocol for the problem of computing the sum of
real values xi ∈ [0, 1] in the single-message shuffle model. Our protocol is pa-
rameterized by values c, k, and the number of parties n, and its local randomizer
and analyzer are shown in Algorithms 2 and 3, respectively.

The protocol uses the protocol depicted in Algorithm 1 in a black-box man-
ner. To compute a differentially private approximation of

∑
i xi, we fix a value k.
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Algorithm 2: Local Randomizer Rc,k,n
Public Parameters: c, k, and number of parties n
Input: x ∈ [0, 1]
Output: y ∈ {0, 1, . . . , k}
Let x̄← bxkc+ Ber(xk − bxkc) . x̄ is the encoding of x with precision

k

Sample b← Ber
(

c(k+1)
n

)
if b = 0 then

Let y ← x̄
else

Sample y ← Unif({0, 1, . . . , k})
return y

Algorithm 3: Analyzer Ac,k,n
Public Parameters: c, k, and number of parties n
Input: Multiset {yi}i∈[n], with yi ∈ {0, 1, . . . , k}
Output: z ∈ [0, 1]

Let ẑ ← 1
k

∑n
i=1 yi

Let z ← DeBias(ẑ), where DeBias(w) =
(
w − c(k+1)

2

)
/
(

1− c(k+1)
n

)
return z

Then we operate on the fixed-point encoding of each input xi, which is an integer
x̄i ∈ {0, . . . , k}. That is, we replace xi with its fixed-point approximation x̄i/k.
The protocol then applies the randomized response mechanism in Algorithm 1
to each x̄i to submit a value yi to compute a differentially private histogram
of the (y1, . . . , yn) as in the previous section. From these values the server can
approximate

∑
i xi by post processing, which includes a debiasing standard step.

The privacy of the protocol described in Algorithms 2 and 3 follows directly from
the privacy analysis of Algorithm 1 given in Section 3.

Regarding accuracy, a crucial point in this reduction is that the encoding x̄i
of xi is via randomized rounding and hence unbiased. In more detail, as shown
in Algorithm 2, the value x is encoded as x̄ = bxkc + Ber(xk − bxkc). This
ensures that E[x̄/k] = E[x] and that the mean squared error due to rounding
(which equals the variance) is at most 1

4k2 . The local randomizer either sends
this fixed-point encoding or a random value in {0, 1, . . . , k} with probabilities
1− γ and γ, respectively, where (following the analysis in the previous section)
we set γ = k+1

n c. Note that the mean squared error when the local randomizer
submits a random value is at most 1

2 . This observations lead to the following
accuracy bound.
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Theorem 2. For any ε ≤ 1, δ ∈ (0, 1] and n ∈ N, there exist parameters c, k
such that Pc,k,n is (ε, δ)-DP and

MSE(Pc,k,n) = O

(
n1/3 · log2/3(1/δ)

ε4/3

)
.

Proof. The following bound on MSE(Pc,k,n) follows from the observations above:
unbiasedness of the estimator computed by the analyzer and randomized round-
ing, and the bounds on the variance of our randomized response.

MSE(Pc,k,n) = sup
~x

E[(DeBias(ẑ)−
∑
i

xi)
2]

= sup
~x

E

(∑
i

(DeBias(yi/k)− xi)

)2


= sup
~x

∑
i

E
[
(DeBias(yi/k)− xi)2

]
= sup

~x

∑
i

V [DeBias(yi/k)]

=
n

(1− γ)2
sup
x1

V[y1/k]

≤ n

(1− γ)2

(
1− γ
4k2

+
γ

2

)
≤ n

(1− γ)2

(
1

4k2
+
c(k + 1)

2n

)
.

Choosing the parameter k = (n/c)1/3 minimizes the sum in the above expression
and provides a bound on the MSE of the form O(c2/3n1/3). Plugging in c =

γ n
k+1 = O

(
log(1/δ)
ε2

)
from our analysis in the previous section (Theorem 1)

yields the bound in the statement of the theorem.

Note that as our protocol corresponds to an unbiased estimator, the MSE is
equal to the variance in this case. Using this observation we immediately obtain
the following corollary for estimation of statistical queries in the single-message
shuffle model.

Corollary 1. For every statistical query q : X 7→ [0, 1], ε ≤ 1, δ ∈ (0, 1] and
n ∈ N, there is an (ε, δ)-DP n-party unbiased protocol for estimating 1

n

∑
i q(xi)

in the single-message shuffle model with standard deviation O
(

log1/3(1/δ)
n5/6ε2/3

)
.

4.2 Lower Bound

In this section we show that any differentially private protocol P for the problem
of estimating

∑
i xi in the single-message shuffle model must have MSE(P) =
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Ω(n1/3) This shows that our protocol from the previous section is optimal, and
gives a separation result for the single-message shuffle model, showing that its
accuracy lies between the curator and local models of differential privacy.

Reduction in the i.i.d. setting. We first show that when the inputs to the
protocol P are sampled i.i.d. one can assume, for the purpose of showing a lower
bound, that the protocol P for estimating

∑
i xi is of a simplified form. Namely,

we show that the local randomizer can be taken to have output values in [0, 1],
and its analyzer simply adds up all received messages.

Lemma 1. Let P = (R,A) be an n-party protocol for real summation in the
single-message shuffle model. Let X be a random variable on [0, 1] and suppose

that users sample their inputs from the distribution ~X = (X1, . . . ,Xn), where each
Xi is an independent copy of X. Then, there exists a protocol P ′ = (R′,A′) such
that:

1. A′(y1, . . . , yn) =
∑n
i=1 yi and5 Im(R′) ⊆ [0, 1].

2. MSE(P ′, ~X) ≤MSE(P, ~X).
3. If the shuffled mechanism S ◦Rn is (ε, δ)-DP, then S ◦R′n is also (ε, δ)-DP.

Proof. Consider the post-processed local randomizer R′ = f ◦ R where f(y) =
E[X|R(X) = y]. In Bayesian estimation, f is called the posterior mean estimator,
and is known to be a minimum MSE estimator [19]. Since Im(R′) ⊆ [0, 1], we
have a protocol P ′ satisfying claim 1.

Next we show that MSE(P ′, ~X) ≤ MSE(P, ~X). Note that the analyzer A in
protocol P can be seen as an estimator of Z =

∑
i Xi given observations from

~Y = (Y1, . . . ,Yn), where Yi = R(Xi). Now consider an arbitrary estimator h of

Z given the observation ~Y = ~y. We have

MSE(h, ~y) = E[(h(~y)− Z)2|~Y = ~y]

= E[Z2|~Y = ~y]− 2h(~y)E[Z|~Y = ~y] + h(~y)2 .

It follows from minimizing MSE(h, ~y) with respect to h that the minimum MSE

estimator of Z given ~Y is h(~y) = E[Z|~Y = ~y]. Hence, by linearity of expectation,
and the fact that the Yi are independent,

E[Z|~Y = ~y] =

n∑
i=1

E[Xi|~Y = ~y] =

n∑
i=1

E[Xi|Yi = yi] =

n∑
i=1

f(yi) .

Therefore, we have shown that P ′ = (R′,A′) implements a minimum MSE esti-

mator for Z given (R(X1), . . . ,R(Xn)), and in particular MSE(P ′, ~X) ≤ MSE(P, ~X).
Part 3 of the lemma follows from the standard post-processing property of

differential privacy by observing that the output of S ◦ R′n(~x) can be obtained
by applying f to each element in the output of S ◦ Rn(~x).

5 Here we use Im(R′) to denote the image of the local randomizer R′.
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Proof of the lower bound. It remains to show that, for any protocol P =
(R,A) satisfying the conditions of Lemma 1, we can find a tuple of i.i.d. random

variables ~X such that MSE(P, ~X) = Ω(n1/3). Recall that by virtue of Lemma 1
we can assume, without loss of generality, that R is a mapping from [0, 1] into

itself, A sums its inputs, and ~X = (X1, . . . ,Xn) where the Xi are i.i.d. copies of
some random variable X. We first show that under these assumptions we can
reduce the search for a lower bound on MSE(P, ~X) to consider only the expected
square error of an individual run of the local randomizer.

Lemma 2. Let P = (R,A) be an n-party protocol for real summation in the
single-message shuffle model such that R : [0, 1] → [0, 1] and A is summation.

Suppose ~X = (X1, . . . ,Xn), where the Xi are i.i.d. copies of some random variable
X. Then,

MSE(P, ~X) ≥ nE[(R(X)− X)2] .

Proof. The result follows from an elementary calculation:

MSE(P, ~X) = E


∑
i∈[n]

R(Xi)− Xi

2


=
∑
i

E[(R(Xi)− Xi)
2] +

∑
i 6=j

E[(R(Xi)− Xi)(R(Xj)− Xj)]

=
∑
i

E[(R(Xi)− Xi)
2] +

∑
i 6=j

E[R(Xi)− Xi]
2

≥ nE[(R(X)− X)2] .

Therefore, to obtain our lower bound it will suffice to find a distribution on
[0, 1] such that if R : [0, 1] → [0, 1] is a local randomizer for which the protocol
P = (R,A) is differentially private, then R has expected square error Ω(n−2/3)
under that distribution. We start by constructing such distribution and then
show that it satisfies the desired properties.

Consider the partition of the unit interval [0, 1] into k disjoint subintervals of
size 1/k, where k ∈ N is a parameter to be determined later. We will take inputs
from the set I = {m/k − 1/2k | m ∈ [k]} of midpoints of these intervals. For
any a ∈ I we denote by I(x) the subinterval of [0, 1] containing a. Given a local
randomizer R : [0, 1] → [0, 1] we define the probability pa,b = P[R(a) ∈ I(b)]
that the local randomizer maps an input a to the subinterval centered at b for
any a, b ∈ I.

Now let X ∼ Unif(I) be a random variable sampled uniformly from I. The
following observations are central to the proof of our lower bound. First observe
thatR maps X to a value outside of its interval with probability 1

k

∑
b∈I(1−pb,b).

If this event occurs, then R(X) incurs a squared error of at least 1/(2k)2, as the
absolute error will be at least half the width of an interval. Similarly, when R
maps an input a to a point inside an interval I(b) with a 6= b, the squared error
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incurred is at least (|b−a|−1/2k)2, as the error is at least the distance between
the two interval midpoints minus half the width of an interval. The next lemma
encapsulates a useful calculation related to this observation.

Lemma 3. For any b ∈ I = {m/k − 1/2k | m ∈ [k]} we have

1

k

∑
a∈I\{b}

(
|a− b| − 1

2k

)2

≥ 1

48

(
1− 1

k2

)
.

Proof. Let b = m/k − 1/2k for some m ∈ [k]. Then,

1

k

∑
a∈I\{b}

(
|a− b| − 1

2k

)2

=
1

k3

∑
i∈[k]\{m}

(
|i−m| − 1

2

)2

≥ 1

4k3

∑
i∈[k]\{m}

(i−m)2 =
1

4k3

∑
i∈[k]

(i−m)2 ,

where we used (u− 1/2)2 ≥ u2/4 for u ≥ 1. Now let U ∼ Unif([k]) and observe
that for any m ∈ [k] we have

∑
i∈[k]

(i−m)2 ≥
∑
i∈[k]

(i− E[U])2 = kV[U] =
k3 − k

12
.

Now we can combine the two observations about the error of R under X
into a lower bound for its expected square error. Subsequently we will show how
the output probabilities occurring in this bound are related under differential
privacy.

Lemma 4. Let R : [0, 1] → [0, 1] be a local randomizer and X ∼ Unif(I) with
I = {m/k − 1/2k | m ∈ [k]}. Then,

E[(R(X)− X)2] ≥
∑
b∈I

min

{
1− pb,b

4k3
,

1

48

(
1− 1

k2

)
min
a∈I

pa,b

}
.

Proof. The bound in obtained by formalizing the two observations made above
to obtain two different lower bounds for E[(R(X) − X)2] and then taking their
minimum. Our first bound follows directly from the discussion above:

E[(R(X)− X)2] =
∑
b∈I

E[(R(b)− b)2]P[X = b] =
1

k

∑
b∈I

E[(R(b)− b)2]

≥ 1

k

∑
b∈I

(1− pb,b) ·
1

(2k)2
=
∑
b∈I

1− pb,b
4k3

.
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Our second bound follows from the fact that the squared error is at least (|b −
a| − 1

2k )2 if X = a and R(a) ∈ I(b), for a, b ∈ I such that a 6= b:

E[(R(X)− X)2] =
1

k

∑
b∈I

E[(R(b)− b)2]

≥ 1

k

∑
b∈I

∑
a∈I\{b}

pa,b

(
|b− a| − 1

2k

)2

≥ 1

k

∑
b∈I

(min
a∈I

pa,b)
∑

a∈I\{b}

(
|b− a| − 1

2k

)2

≥
∑
b∈I

(min
a∈I

pa,b)
1

48

(
1− 1

k2

)
,

where the last inequality uses Lemma 3. Finally, we get

E[(R(X)− X)2] ≥ min

{∑
b∈I

1− pb,b
4k3

,
∑
b∈I

(min
a∈I

pa,b)
1

48

(
1− 1

k2

)}

≥
∑
b∈I

min

{
1− pb,b

4k3
,

1

48

(
1− 1

k2

)
min
a∈I

pa,b

}
.

Lemma 5. Let R : [0, 1] → [0, 1] be a local randomizer such that the shuffled
protocol M = S ◦ Rn is (ε, δ)-DP with δ < 1/2. Then, for any a, b ∈ I, a 6= b,
either pb,b < 1− e−ε/2 or pa,b ≥ (1/2− δ)/n.

Proof. If pb,b < 1− e−ε/2 then the proof is done. Otherwise, consider the neigh-
boring datasets ~x = (a, . . . , a) and ~x′ = (b, a, . . . , a). Recall that the output
of M(~x) is the multiset obtained from the coordinates of (R(x1), . . . ,R(xn)).
By considering the event that this multiset contains no elements from I(b), the
definition of differential privacy gives

P[M(~x) ∩ I(b) = ∅] ≤ eεP[M(~x′) ∩ I(b) = ∅] + δ . (1)

As P[M(~x) ∩ I(b) = ∅] = (1 − pa,b)n and P[M(~x′) ∩ I(b) = ∅] = (1 − pb,b)(1 −
pa,b)

n−1 ≤ (1− pb,b), we get from (1) that

(1− pa,b)n ≤ (1− pb,b)eε + δ .

As pb,b ≥ 1 − e−ε/2 we get that pa,b ≥ 1 − (1/2 + δ)1/n holds. Finally, pa,b ≥
(1/2− δ)/n follows from the fact that(

1− 1

n

(
1

2
− δ
))n

= 1−
(

1

2
− δ
)

+
n− 1

2n

(
1

2
− δ
)2

− · · ·

≥ 1−
(

1

2
− δ
)

=
1

2
+ δ ,

which uses that the terms in the binomial expansion are alternating in sign and
decreasing in magnitude.
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We can now choose k = dn1/3e and combine Lemmas 2, 4 and 5 to obtain
our lower bound.

Theorem 3. Let P be an (ε, δ)-DP n-party protocol for real summation on [0, 1]
in the one-message shuffle model with δ < 1/2. Then, MSE(P) = Ω(n1/3).

Proof. By the previous lemmas, taking ~X = (X1, . . . ,Xn) with independent Xi ∼
Unif(I) we have

MSE(P, ~X) ≥ n
∑
b∈I

min

{
1− pb,b

4k3
,

1

48

(
1− 1

k2

)
min
a∈I

pa,b

}
≥ n

∑
b∈I

min

{
e−ε

8k3
,

1

48n

(
1− 1

k2

)(
1

2
− δ
)}

= nkmin

{
e−ε

8k3
,

1

48n

(
1− 1

k2

)(
1

2
− δ
)}

.

Therefore, taking k = dn1/3e yields MSE(P, ~X) = Ω(n1/3). Finally, the result
follows from observing that a lower bound for the expected MSE implies a lower
bound for worst-case MSE:

MSE(P) = sup
~x∈[0,1]n

MSE(P, ~x) ≥ sup
~x∈In

MSE(P, ~x) ≥ MSE(P, ~X) = Ω(n1/3) .

5 Privacy Amplification by Shuffling

In this section we prove a new privacy amplification result for shuffled mech-
anisms. In particular, we will show that shuffling n copies of an ε0-LDP local
randomizer with ε0 = O(log(n/ log(1/δ))) yields an (ε, δ)-DP mechanism with
ε = O((ε0 ∧ 1)eε0

√
log(1/δ)/n), where a ∧ b = min{a, b}. For this same prob-

lem, the following privacy amplification bound was obtained by Erlingsson et
al. in [15], which we state here for the randomize-then-shuffle setting (cf. Sec-
tion 1.1).

Theorem 4 ( [15]). If R is a ε0-LDP local randomizer with ε0 < 1/2, then the
shuffled protocol S ◦ Rn is (ε, δ)-DP with

ε = 12ε0

√
log(1/δ)

n

for any n ≥ 1000 and δ < 1/100.

Note that our result recovers the same dependencies on ε0, δ and n in the
regime ε0 = O(1). However, our bound also shows that privacy amplification can
be extended to a wider range of parameters. In particular, this allows us to show
that in order to design a shuffled (ε, δ)-DP mechanism with ε = Θ(1) it suffices to
take any ε0-LDP local randomizer with ε0 = O(log(ε2n/ log(1/δ))). For shuffled
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binary randomized response, a dependence of the type ε0 = O(log(ε2n/ log(1/δ)))
between the local and central privacy parameters was obtained in [12] using an
ad-hoc privacy analysis. Our results show that this amplification phenomenon is
not intrinsic to binary randomized response, and in fact holds for any pure LDP
local randomizer. Thus, our bound captures the privacy amplification regimes
from both [15] and [12], thus providing a unified analysis of privacy amplification
by shuffling.

To prove our bound, we first generalize the key idea behind the analysis of
shuffled randomized response given in Section 3. This idea was to ignore any users
who respond truthfully, and then show that the responses of users who respond
randomly provide privacy for the response submitted by a target individual. To
generalize this approach beyond randomized response we introduce the notions of
total variation similarity γR and blanket distribution ωR of a local randomizer
R. The similarity γR measures the probability that the local randomizer will
produce an output that is independent of the input data. When this happens,
the mechanism submits a sample from the blanket probability distribution ωR.
In the case of Algorithm 1 in Section 3, the parameter γRPH is the probability
γ of ignoring the input and submitting a sample from ωRPH = Unif([k]), the
uniform distribution on [k]. We define these objects formally in Section 5.1, then
give further examples and also study the relation between γR and the privacy
guarantees of R.

The second step of the proof is to extend the argument that allows us to ignore
the users who submit truthful responses in the privacy analysis of randomized
response. In the general case, with probability 1 − γR the local randomizer’s
outcome depends on the data but is not necessarily deterministic. Analyzing
this step in full generality – where the randomizer is arbitrary and the domain
might be uncountable – is technically challenging. We address this challenge
by leveraging a characterization of differential privacy in terms of hockey-stick
divergences that originated in the formal methods community to address the
verification for differentially private programs [4–6] and has also been used to
prove tight results on privacy amplification by subsampling [1]. As a result of
this step we obtain a privacy amplification bound in terms of the expectation of
a function of a sum of i.i.d. random variables. Our final bound is obtained by
using a concentration inequality to bound this expectation.

The bound we obtain with this method provides a relation of the form
F (ε, ε0, γ, n) ≤ δ, where F is a complicated non-linear function. By simplifying
this function F further we obtain the asymptotic amplification bounds sketched
above, where a bound for γ in terms of ε0 is used. One can also obtain better
mechanism-dependent bounds by computing the exact γ for a given mechanism.
In addition, fixing all but one of the parameters of the problem we can numer-
ically solve the inequality F (ε, ε0, γ, n) ≤ δ to obtain exact relations between
the parameters without having to provide appropriate constants for the asymp-
totic bounds in closed-form. We experimentally showcase the advantages of this
approach to privacy calibration in Section 6.
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Due to space constraints, mathematical proofs from this section are omitted
from the present version of the paper. All missing proofs can be found in the
extended technical report [2].

5.1 Blanket Decomposition

The goal of this section is to provide a canonical way of decomposing any local
randomizer R : X→ Y as a mixture between an input-dependent and an input-
independent mechanism. More specifically, let µx denote the output distribution
of R(x). Given a collection of distributions {µx}x∈X we will show how to find a
probability γ, a distribution ω and a collection of distribution {νx}x∈X such that
for every x ∈ X we have the mixture decomposition µx = (1− γ)νx + γω. Since
the component ω does not depend on x, this decomposition shows that R(x) is
input oblivious with probability γ. Furthermore, our construction provides the
largest possible γ for which this decomposition can be attained.

To motivate the construction sketched above it will be useful to recall a well-
known property of the total variation distance. Given probability distributions
µ, µ′ over Y, this distance is defined as

T(µ‖µ′) = sup
E⊆Y

(µ(E)− µ′(E)) =
1

2

∫
|µ(y)− µ′(y)|dy .

Note how here we use the notation µ(y) to denote the “probability” of an in-
dividual outcome, which formally is only valid when the space Y is discrete so
that every singleton is an atom. Thus, in the case where Y is a continuous space
we take µ(y) to denote the density of µ at y, where the density is computed
with respect to some base measure on Y. We note that this abuse of notation is
introduced for convenience and does not restrict the generality of our results.

The total variation distance admits a number of alternative characterizations.
The following one is particularly useful:

T(µ‖µ′) = 1−
∫

min{µ(y), µ′(y)}dy . (2)

This shows that T(µ‖µ′) can be computed in terms of the total probability mass
that is simultaneously under µ and µ′. Equation 2 can be derived from the
interpretation of the total variation distance in terms of couplings [24]. Using
this characterization it is easy to construct mixture decompositions of the form
µ = (1 − γ)ν + γω, µ′ = (1 − γ)ν′ + γω, where γ = 1 − T(µ‖µ′) and ω(y) =
min{µ(y), µ′(y)}/γ. These decompositions are optimal in the sense that γ is
maximal and ν and ν′ have disjoint support.

Extending the ideas above to the case with more than two distributions will
provide the desired decomposition for any local randomizer. In particular, we
define the total variation similarity of a set of distributions Λ = {µx}x∈X over
Y as

γΛ =

∫
inf
x
µx(y)dy .
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Fig. 2. Illustration of the blanket distribution ω and the data-dependent distributions
νx corresponding to a 1-LDP Laplace mechanism with inputs on [0, 1].

We also define the blanket distribution of Λ as the distribution given by ωΛ(y) =
infx µx(y)/γΛ. In this way, given a set of distributions Λ = {µx}x∈X with total
variation similarity γ and blanket distribution ω, we obtain a mixture decom-
position µx = (1 − γ)νx + γω for each distribution in Λ, where it is immediate
to check that νx = (µx − γω)/(1 − γ) is indeed a probability distribution. It
follows from this construction that γ is maximal since one can show that, by the
definition of ω, for each y there exists an x such that νx(y) = 0. Thus, it is not
possible to increase γ while ensuring that νx are probability distributions.

Accordingly, we can identify a local randomizer R with the set of distribu-
tions {R(x)}x∈X and define the total variation similarity γR and the blanket
distributions ωR of the mechanism. As usual, we shall just write γ and ω when
the randomizer is clear from the context. Figure 2 plots the blanket distribu-
tion and the data-dependent distributions corresponding to the local randomizer
obtained by the Laplace mechanism with inputs on [0, 1].
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The next result provides expressions for the total variation similarity of three
important randomizers: k-ary randomized response, the Laplace mechanism on
[0, 1] and the Gaussian mechanism on [0, 1]. Note that two of these randomiz-
ers offer pure LDP while the third one only offers approximate LDP, showing
that the notion of total variation similarity and blanket distribution are widely
applicable.

Lemma 6. The following hold:

1. γ = k/(eε0 + k − 1) for ε0-LDP randomized response on [k],
2. γ = e−ε0/2 for ε0-LDP Laplace on [0, 1],
3. γ = 2P[N(0, σ2) ≤ −1/2] for a Gaussian mechanism with variance σ2 on

[0, 1].

This lemma illustrates how the privacy parameters of a local randomizer
and its total variation similarity are related in concrete instances. As expected,
the probability of sampling from the input-independent blanket grows as the
mechanisms become more private. For arbitrary ε0-LDP local randomizers we
are able to show that the probability γ of ignoring the input is at least e−ε0 .

Lemma 7. The total variation similarity of any ε0-LDP local randomizer sat-
isfies γ ≥ e−ε0 .

5.2 Privacy Amplification Bounds

Now we proceed to prove the amplification bound stated at the beginning of
Section 5. The key ingredient in this proof is to reduce the analysis of the pri-
vacy of a shuffled mechanism to the problem of bounding a function of i.i.d.
random variables. This reduction is obtained by leveraging the characterization
of differential privacy in terms of hockey-stick divergences.

Let µ, µ′ be distributions over Y. The hockey-stick divergence of order eε

between µ and µ′ is defined as

Deε(µ‖µ′) =

∫
[µ(y)− eεµ′(y)]+dy ,

where [u]+ = max{0, u}. Using these divergences one obtains the following useful
characterization of differential privacy.

Theorem 5 ( [6]). A mechanism M : Xn → Y is (ε, δ)-DP if and only if
Deε(M(~x)‖M(~x′)) ≤ δ for any ~x ' ~x′.

This result is straightforward once one observes the identity∫
[µ(y)− eεµ′(y)]+dy = sup

E⊆Y
(µ(E)− eεµ′(E)) .

An important advantage of the integral formulation is that enables one to
reason over individual outputs as opposed to sets of outputs for the case of (ε, δ)-
DP. This is also the case for the usual sufficient condition for (ε, δ)-DP in terms
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of a high probability bound for the privacy loss random variable. However, this
sufficient condition is not tight for small values of ε [3], so here we prefer to work
with the divergence-based characterization.

The first step in our proof of privacy amplification by shuffling is to provide
a bound for the divergence Deε(M(~x)‖M(~x′)) for a shuffled mechanism M =
S ◦ Rn in terms of a random variable that depends on the blanket of the local
randomizer. Let R : X → Y be a local randomizer with blanket ω. Suppose
W ∼ ω is a Y-valued random variable sampled from the blanket. For any ε ≥ 0
and x, x′ ∈ X we define the privacy amplification random variable as

Lx,x
′

ε =
µx(W)− eεµx′(W)

ω(W)
,

where µx (resp. µx′) is the output distribution of R(x) (resp. R(x′)). This defi-
nition allows us to obtain the following result.

Lemma 8. Let R : X → Y be a local randomizer and let M = S ◦ Rn be the
shuffling of R. Fix ε ≥ 0 and inputs ~x ' ~x′ with xn 6= x′n. Suppose L1, L2, . . . are
i.i.d. copies of Lx,x

′

ε and γ is the total variation similarity of R. Then we have
the following:

Deε(M(~x)‖M(~x′)) ≤ 1

γn

n∑
m=1

(
n

m

)
γm(1− γ)n−mE

[
m∑
i=1

Li

]
+

. (3)

The bound above can also be given a more probabilistic formulation as fol-
lows. Let M ∼ Bin(n, γ) be the random variable counting the number of users
who sample from the blanket of R. Then we can re-write (3) as

Deε(M(~x)‖M(~x′)) ≤ 1

γn
E

[
M∑
i=1

Li

]
+

,

where we use the convention
∑m
i=1 Li = 0 when m = 0.

Leveraging this bound to analyze the privacy of a shuffled mechanism re-
quires some information about the privacy amplification random variables of an
arbitrary local randomizer. The main observation here is that Lx,x

′

ε has negative
expectation. This means we can expect E[

∑m
i=1 Li]+ to decrease with m since

adding more variables will shift the expectation of
∑m
i=1 Li towards −∞, thus

making it less likely to be above 0. Since m represents the number of users who
sample from the blanket, this reinforces the intuition that having more users
sample from the blanket makes it easier for the data of the nth user to be hid-
den among these samples. The following lemma will help us make this precise
by providing the expectation of Lx,x

′

ε as well as its range and second moment.

Lemma 9. Let R : X → Y be an ε0-LDP local randomizer with total variation
similarity γ. For any ε ≥ 0 and x, x′ ∈ X the privacy amplification random
variable L = Lx,x

′

ε satisfies:
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1. EL = 1− eε,
2. γe−ε0(1− eε+2ε0) ≤ L ≤ γeε0(1− eε−2ε0),
3. EL2 ≤ γeε0(e2ε + 1)− 2γ2eε−2ε0 .

Now we can use the information about the privacy amplification random
variables of an ε0-LDP local randomizer provided by the previous lemma to
give upper bounds for E[

∑m
i=1 Li]+. This can be achieved by using concentration

inequalities to bound the tails of
∑m
i=1 Li. Based on the information provided

by Lemma 9 there are multiple ways to achieve this. In this section we unfold
a simple strategy based on Hoeffding’s inequality that only uses points (1) and
(2) above. In Section 5.3 we discuss how to improve these bounds. For now, the
following result will suffice to obtain a privacy amplification bound for generic
ε0-LDP local randomizers.

Lemma 10. Let L1, . . . , Lm be i.i.d. bounded random variables with ELi = −a ≤
0. Suppose b− ≤ Li ≤ b+ and let b = b+ − b−. Then the following holds:

E

[
m∑
i=1

Li

]
+

≤ b2

4a
e−

2ma2

b2 .

By combining Lemmas 8, 9 and 10 we immediately obtain the main theorem
of this section.

Theorem 6. Let R : X→ Y be an ε0-LDP local randomizer and letM = S◦Rn
be the corresponding shuffled mechanism. Then M is (ε, δ)-DP for any ε and δ
satisfying

(eε + 1)2(eε0 − e−ε0)2

4n(eε − 1)
e
−Cn

(
1

eε0
∧ (eε−1)2

(eε+1)2(eε0−e−ε0 )2

)
≤ δ , (4)

where C = 1− e−2 ≈ 0.86.

While it is easy to numerically test or solve (4), extracting manageable
asymptotics from this bound is less straightforward. The following corollary mas-
sages this expression to distill insights about privacy amplification by shuffling
for generic ε0-LDP local randomizers.

Corollary 2. Let R : X→ Y be an ε0-LDP local randomizer and letM = S◦Rn
be the corresponding shuffled mechanism. If ε0 ≤ log(n/ log(1/δ))/2, then M is
(ε, δ)-DP with ε = O((1 ∧ ε0)eε0

√
log(1/δ)/n).

5.3 Improved Amplification Bounds

There are at least two ways in which we can improve upon the privacy amplifica-
tion bound in Theorem 6. One is to leverage the moment information about the
privacy amplification random variables provided by point (3) in Lemma 9. The
other is to compute more precise information about the privacy amplification
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random variables for specific mechanisms instead of using the generic bounds
provided by Lemma 9. In this section we give the necessary tools to obtain these
improvements, which we then evaluate numerically in Section 6.

Hoeffding’s inequality provides concentration for sums of bounded random
variables. As such, it is easy to apply because it requires little information on
the behavior of the individual random variables. On the other hand, this sim-
plicity can sometimes provide sub-optimal results, especially when the random
variables being added have standard deviation which is smaller than their range.
In this case one can obtain better results by applying one of the many concen-
tration inequalities that take the variance of the summands into account. The
following lemma takes this approach by applying Bennett’s inequality to bound
the quantity E[

∑m
i=1 Li]+.

Lemma 11. Let L1, . . . , Lm be i.i.d. bounded random variables with ELi = −a ≤
0. Suppose Li ≤ b+ and EL2i ≤ c. Then the following holds:

E

[
m∑
i=1

Li

]
+

≤ b+

am log
(

1 + ab+
c

)e−mc

b2
+

φ
(

ab+
c

)
,

where φ(u) = (1 + u) log(1 + u)− u.

This results can be combined with Lemmas 7, 8 and 9 to obtain an alternative
privacy amplification bound for generic ε0-LDP local randomizers to the one
provided in Theorem 6. However, the resulting bound is cumbersome and does
not have a nice closed-form like the one in Theorem 6. Thus, instead of stating
the bound explicitly we will evaluate it numerically in the following section.

The other way in which we can provide better privacy bounds is by making
them mechanism specific. Lemma 6 already gives exact expression for the total
variation similarity γ of three local randomizers. To be able to apply Hoeffding’s
(Lemma 10) and Bennett’s (Lemma 11) inequalities to these local randomizers
we need information about the range and the second moment of the correspond-
ing privacy amplification random variables. The following results provide this
type of information for randomized response and the Laplace mechanism.

Lemma 12. Let R : [k]→ [k] be the k-ary ε0-LDP randomized response mecha-
nism. Let γ = k/(eε0 +k−1) be the total variation similarity of R (cf. Lemma 6).
For any ε ≥ 0 and x, x′ ∈ X, x 6= x′, the privacy amplification random variable
L = Lx,x

′

ε satisfies:

1. −(1− γ)keε ≤ L− γ(1− eε) ≤ (1− γ)k,
2. EL2 = γ(2− γ)(1− eε)2 + (1− γ)2k(1 + e2ε).

Lemma 13. Let R : [0, 1] → R be the ε0-LDP Laplace mechanism R(x) =
x + Lap(1/ε0). For any ε ≥ 0 and x, x′ ∈ X the privacy amplification random
variable L = Lx,x

′

ε satisfies:

1. e−ε0/2(1− eε+ε0) ≤ L ≤ eε0/2(1− eε−ε0),
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2. EL2 ≤ e2ε+1
3 (2eε0/2 + e−ε0)− 2eε(2e−ε0/2 − e−ε0).

Again, instead of deriving a closed-form expression like (4) specialized to
these two mechanisms, we will numerically evaluate the advantage of using
mechanism-specific information in the bounds in the next section. Note that
we did not provide a version of these results for the Gaussian mechanism for
which we showed how to compute γ in Section 5.1. The reason for this is that in
this case the resulting privacy amplification random variables are not bounded.
This precludes us from using the Hoeffding and Bennett bounds to analyze the
privacy amplification in this case. Approaches using concentration bounds that
do not rely on boundedness will be explored in future work.

6 Experimental Evaluation

In this section we provide a numerical evaluation of the privacy amplification
bounds derived in Section 5. We also compare the results obtained with our
techniques to the privacy amplification bound of Erlingsson et al. [15].

To obtain values of ε and ε0 from bounds on δ of the form given in Theo-
rem 6 we use a numeric procedure. In particular, we implemented the bounds
for δ in Python and then used SciPy’s numeric root finding routines to solve
for the desired parameter up to a precision of 10−12. This leads to a simple
and efficient implementation which can be employed in practical applications
for the calibration of privacy parameters of local randomizers in shuffled pro-
tocols. The resulting code is available at https://github.com/BorjaBalle/

amplification-by-shuffling.
The results of our evaluation are given in Figure 3. The bounds plotted in

this figure are obtained as follows:

1. (EFMRTT’19) is the bound in [15] (see Theorem 4).
2. (Hoeffding, Generic) is the bound from Theorem 6.
3. (Bennett, Generic) is obtained by combining Lemmas 7, 8, 9 and 11.
4. (Hoeffding, RR) is obtained by combining Lemmas 6, 8, 12 and 10.
5. (Bennett, RR) is obtained by combining Lemmas 6, 8, 12 and 11.
6. (Hoeffding, Laplace) is obtained by combining Lemmas 6, 8, 13 and 10.
7. (Bennett, Laplace) is obtained by combining Lemmas 6, 8, 13 and 11.

In panel (i) we observe that our two bounds for generic randomizers give
significantly smaller values of ε than the bound from [15] where the constants
where not optimized. Additionally, we see that for generic local randomizers,
Hoeffding is better for small values of n, while Bennet is better for large values
of n. In panel (ii) we observe the advantage of incorporating information in
the Hoeffding bound about the specific local randomizer. Additionally, this plot
allows us to see that for the same level of local DP, binary randomized response
has better amplification properties than Laplace, which in turn is better the
randomizer response over a domain of size k = 100. In panel (iii) we compare
the amplification bounds obtained for specific randomizers with the Hoeffding

https://github.com/BorjaBalle/amplification-by-shuffling
https://github.com/BorjaBalle/amplification-by-shuffling
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Fig. 3. (i) Comparison of ε(n) for fixed ε0 and δ of the bounds obtained for generic ε0-
DP local randomizers using the bound in [15] and our Hoeffding and Bennett bounds.
(ii) Comparison of ε0(n) for fixed ε and δ for generic and specific local randomizers
using the Hoeffding bounds. (iii) Comparison of ε0(n) for fixed ε and δ for specific local
randomizers using the Hoeffding and Bennett bound. (iv) Comparison of ε0(n) for fixed
ε and δ = n−2 for a randomized response mechanism with domain size k = n1/3 using
the Hoeffding and Bennett bounds.
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and Bennett bounds. We observe that for every mechanism the Bennett bound
is better than the Hoeffding bound, especially for large values of n. Additionally,
the gain of using Bennett instead of Hoeffding is greater for randomized response
with k = 100 than for other mechanisms. The reason for this is that for fixed
ε0 and large k, the total variation similarity of randomized response is close to
1 (cf. Lemma 6). Finally, in panel (iv) we compare the values of ε0 obtained for
a randomized response with domain size growing with the number of users as
k = n1/3. This is in line with our optimal protocol for real summation in the
single-message shuffle model presented in Section 4. We observe that also in this
case the Bennett bounds provides a significant advantage over Hoeffding.

To summarize, we showed that our generic bounds outperform the previous
amplification bounds developed in [15]. Additionally, we showed that incorpo-
rating both information about the variance of the privacy amplification random
variable via the use of Bennett’s bound, as well as information about the be-
havior of this random variable for specific mechanisms, leads to significant im-
provements in the privacy parameters obtained for shuffled protocols. This is
important in practice because being able to maximize the ε0 parameter for the
local randomizer – while satisfying a prescribed level of differential privacy in
the shuffled protocol – leads to more accurate protocols.

7 Conclusion

We have shown a separation result for the single-message shuffle model, showing
that it can not achieve the level of accuracy of the curator model of differential
privacy, but that it can yield protocols that are significantly more accurate than
the ones from the local model. More specifically, we provided a single message
protocol for private n-party summation of real values in [0, 1] with O(log n)-
bit communication and O(n1/6) standard deviation. We also showed that our
protocol is optimal in terms of accuracy by providing a lower bound for this
problem. In previous work, Cheu et al. [12] had shown that the selection problem
can be solved more accurately in the central model than in the shuffle model, and
that the real summation problem can be solved more accurately in the shuffle
model than in the local model. For the former, they rely on lower bounds for
selection in the local model by means of a generic reduction from the shuffle to
the local model, while our lower bound is directly in the shuffle model, offering
additional insight. On the other hand, our single-message protocol for summation
is more accurate than theirs.

Moreover, we introduced the notion of the privacy blanket of a local ran-
domizer, and show how it allows us to give a generic treatment to the problem
of obtaining privacy amplification bounds in the shuffle model that improves on
recent work by Erlingsson et al. [15] and Cheu et al. [12]. Crucially, unlike the
proofs in [12, 15], our proof does not rely on privacy amplification by subsam-
pling. We believe that the notion of the privacy blanket is of interest beyond
the shuffle model, as it leads to a canonical decomposition of local randomizers
that might be useful also in the study of the local model of differential privacy.
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For example, Joseph et al. [20] already used a generalization of our blanket
decomposition in their study of the role of interactivity in local DP protocols.
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2. Balle, B., Bell, J., Gascón, A., Nissim, K.: The privacy blanket of the shuffle model.
CoRR abs/1903.02837 (2019), http://arxiv.org/abs/1903.02837

3. Balle, B., Wang, Y.X.: Improving the gaussian mechanism for differential privacy:
Analytical calibration and optimal denoising. In: Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML (2018)
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