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Abstract. We provide new zero-knowledge argument of knowledge sys-
tems that work directly for a wide class of language, namely, ones in-
volving the satisfiability of matrix-vector relations and integer relations
commonly found in constructions of lattice-based cryptography. Prior to
this work, practical arguments for lattice-based relations either have a
constant soundness error ( 2/3 ), or consider a weaker form of soundness,
namely, extraction only guarantees that the prover is in possession of
a witness that “approximates” the actual witness. Our systems do not
suffer from these limitations.

The core of our new argument systems is an efficient zero-knowledge ar-
gument of knowledge of a solution to a system of linear equations, where
variables of this solution satisfy a set of quadratic constraints. This ar-
gument enjoys standard soundness, a small soundness error ( 1/poly ),
and a complexity linear in the size of the solution. Using our core argu-
ment system, we construct highly efficient argument systems for a variety
of statements relevant to lattices, including linear equations with short
solutions and matrix-vector relations with hidden matrices.

Based on our argument systems, we present several new constructions
of common privacy-preserving primitives in the standard lattice setting,
including a group signature, a ring signature, an electronic cash system,
and a range proof protocol. Our new constructions are one to three orders
of magnitude more efficient than the state of the art (in standard lattice).
This illustrates the efficiency and expressiveness of our argument system.

? Corresponding author.



1 Introduction

Traditional cryptographic schemes based on number theoretic assumptions are at
risk due to possible attacks from quantum computers. Among all alternatives, the
lattice-based ones appear to be the most promising. To date, we have good can-
didates to fundamental cryptographic primitives such as public key encryption
schemes (e.g., [3, 10, 11, 29]) and signature schemes (e.g., [9, 18, 21, 46]). How-
ever, lattice-based privacy-preserving primitives, such as group signatures [16],
ring signatures [56], electronic cash (E-cash) [15], etc., are still significantly less
efficient than their traditional counterparts, partially due to the lack of suitable
lattice-based zero-knowledge proofs. Specifically, current zero-knowledge proofs
for lattice-based relations either have a poor efficiency or have great restrictions
when employed in constructing advanced applications.

The study of lattice-based zero-knowledge proofs is initialized by Goldreich
and Goldwasser in [23]. Goldreich and Goldwasser’s proof system, as well as proof
systems developed in subsequent works [2, 28, 50, 54], are mainly of theoretical
interest. While one can construct applications such as verifiable encryption [25]
and group signature [14, 26] from these protocols, their lack of efficiency prevents
them from being employed in practice.

For practical lattice-based zero-knowledge proofs, there are two main ap-
proaches in current literature.

Stern-type Protocol. One approach, which follows techniques in [31, 57], is pro-
posed by Ling et al. in [40]. They construct an efficient zero-knowledge argument
of knowledge (ZKAoK) for the basic Inhomogeneous Short Integer Solution (ISIS)
relation RISIS = {(A,y),x : A · x = y ∧ ‖x‖ ≤ β} . Focusing on arguing addi-
tional relations over witnesses, ZKAoKs for a wider class of lattice-based relations
are constructed in subsequent works. This gives rise to various applications, such
as verifiable encryption [40], group signature [33, 34, 36, 41, 43], ring signature
[36], group encryption [35] and E-cash [37].

The major issue for Stern-type protocols is their inherent large soundness
error. More precisely, a single round Stern-type protocol has a soundness error of
2/3 , i.e., a cheating prover is able to convince an honest verifier with probability
2/3 even if it does not possess any valid witness. Thus, to achieve a negligible
soundness error, the protocol is required to repeat for many (e.g., 219) times,
and the final proof consists of proofs generated in all iterations. Consequently,
its proof size is usually on the order of tens of megabytes to terabytes.

Fiat-Shamir with Abort. Another line of research follows the identification
schemes from [44–46]. Early works in this direction [32, 51] consider ZKAoK pro-
tocols with binary challenges, which leads to a soundness error of 1/2 for a
single iteration. Thus, multiple (e.g., 128 ) repetitions are needed to achieve a
negligible soundness error. Subsequently, ZKAoKs with larger challenge spaces are
adopted to reduce the number of rounds required. This results in one-round pro-
tocols with inverse-polynomial/negligible soundness error. Thus, we only need
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to run them a few (e.g., 10 or even 1) time(s) to achieve a negligible soundness
error. Consequently, the proof size is usually a few megabytes or less.

We have seen some applications, such as verifiable encryption [7, 47], group
signature [12, 13, 17] and ring signature [19] from Fiat-Shamir with abort (FSwA)
protocols (with large challenge space). However, it is a complex task to design
cryptographic protocols using FSwA. This is mainly due to the so-called sound-
ness gap. For instance, for the ISIS relation RISIS , the FSwA proof only attests
the fact that the prover knows a witness for R′ISIS = {(A,y),x : A · x =
c · y ∧ ‖x‖ ≤ β′} , where β′ > β and c > 1 . Thus, to construct advanced appli-
cations from them, we have to use cryptographic primitives that are compatible
with such relaxed soundness, e.g., encryption schemes with a relaxed decryption
[7, 47], commitment schemes with a relaxed opening [6, 8] and signature schemes
with a relaxed verification [13]. Unfortunately, it is usually hard or even impos-
sible to construct primitives with such property. Meanwhile, general frameworks
in the literature for advanced applications may not work when we use relaxed
versions as building blocks. Thus, the construction and security analysis has
to be conducted from scratch. Additionally, we do not have a simple manner
to prove the relations over witnesses using Fiat-Shamir with abort protocols.
Ad-hoc techniques are used to circumvent this requirement, which introduce
additional complexity.

To summarize, we have some “user-friendly” lattice-based ZKAoKs that are
less efficient; and some efficient ZKAoKs that are very complicated for advanced
applications. The goal of this paper is, therefore, to construct ZKAoKs that are
both efficient and easy to use.

On the Difficulty of Achieving Standard Soundness and Small Soundness Error.
Before presenting our main results, we would like to discuss why previous works
cannot achieve the standard soundness and a small soundness error simultane-
ously. First, for most (if not all) lattice-based relations, we need to prove that
(parts of) the witnesses are small integers. This can be done in two approaches,

1. In a Stern-type protocol, a short integer is decomposed into a binary vector
of bounded length. Then the prover proves that the decomposition outputs
are correct via a standard Stern protocol, which asks the prover to open 2
out of 3 commitments in the challenge phase. Therefore, the soundness error
2/3 is inherent for a Stern-type protocol.

2. In a Fiat-Shamir with abort protocol, the prover and the verifier run a
Schnorr-type protocol with some tweaks for arguing shortness of the witness.
However, the standard extraction procedure for the Schnorr protocol does
not work here. This is because the extracted witnesses will be scaled by
some large number (more accurately, the inverse of the difference of two
challenges) and may be large. To circumvent this problem, the extraction
procedure avoids multiplication of inverses. Correspondingly, the definition
of soundness is relaxed in the sense that the extracted witness does not
necessarily satisfy the original relation.
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1.1 Our Results

In this work, we present a new approach for constructing efficient zero-knowledge
arguments of knowledge for a large class of lattice-based relations. The core
component of our methodology is an efficient ZKAoK for linear equations with
additional quadratic constraints over the witnesses.

More concretely, let m , n , and ` be positive integers, and q be a large
enough integer that is a power-of-prime. The ZKAoK protocol proves the following
relation R∗ in Eq.(1)1:

R∗ = {(A,y,M), (x) ∈ (Zm×nq × Zmq × ([1, n]3)`)× (Znq ) :

A · x = y ∧ ∀(h, i, j) ∈M,x[h] = x[i] · x[j]} (1)

where M is a set of ` triples that defines quadratic constraints over x . Usually,
` will be linear in n and in any case, we have ` ≤ n3 .

Building upon our main protocol, we present a variety of ZKAoKs for some
concrete lattice-based relations. The constructed ZKAoKs have standard sound-
ness, yet achieving an inverse polynomial soundness error. We summarize the
differences between our approaches and previous results in Table 1.

Table 1: Comparison of Approaches for Lattice-Based ZKAoKs.

Standard Soundness Soundness Error

Stern-Style 3 2/3

FSwA 7 1/poly or negl

This work 3 1/poly

To further demonstrate the usefulness of our methodology, we develop several
privacy-preserving primitives from these ZKAoKs. We illustrate the roadmap to
these applications in Figure 1.

In addition, we also examine the concrete efficiency (particularly, communi-
cation cost) of our applications. We highlight some of the results in Table 2. For
more details, see the full version of this work.

We remark that the applications (and the performance data thereof) are to
illustrate the usefulness of our framework. They are by no means exhaustive
nor optimal. One may extend our results to other privacy-preserving primitives
such as anonymous credential, decentralized anonymous credential, group en-
cryption, traceable signature, linkable ring signature, CryptoNote protocol (and
thus Monero), k -times anonymous authentication, blacklistable anonymous cre-
dential, Zerocoin, etc. Also, one can improve the results of this work via utilizing
structured lattices (such as ideal lattices or NTRU lattices) and application-
specific optimizations. Those extensions and optimizations are beyond the scope
of this paper.

1 In this paper, operations over group elements in Zq are modulo q unless otherwise
specified.
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Fig. 1 The Roadmap for our ZKAoKs and their Applications. The starting point is our
core ZKAoK for R∗ . It is then used to construct ZKAoKs for some elementary relations,
namely, Rshort , RSS , and RHM (we define these elementary relations and explain how
to develop ZKAoKs for them in Sec. 1.2). Based on these elementary ZKAoKs, we further
construct ZKAoKs for cryptographic schemes. Finally, we construct privacy-preserving
primitives from these ZKAoKs.

Comparisons. Next, we give a brief comparison between the communication
cost of applications in this work and that of previous results. Our examples in
this section target 80 bits security unless otherwise specified.

We summarize the results in Table 2. Generally, for applications where so-
lutions were only available through Stern-type protocols, our constructions are
(much) more efficient than the state of the art. For applications where solu-
tions were also available through Fiat-Shamir with abort protocols, our con-
structions are less efficient. Note that constructions utilizing Fiat-Shamir with
abort are designed from scratch and these state-of-the-art constructions are op-
timized through the use of structured lattices (ideal lattices); while our solutions
are built on standard lattices, which are believed to offer better security.

We stress again that the main advantage of our framework is that it pro-
vides a fairly good efficiency yet keeping its user-friendliness. Optimizing toward
individual application, as stated earlier, is beyond the scope of this paper.

Ring Signatures. Following the framework of [36], a ring signature scheme can be
obtained with our ZKAoK. The signature size of [36] is estimated by [19] at 47.3
MB, for a ring of 210 users. In contrast, the signature size of our ring signature
scheme is 4.24 MB in the same setting.

To the best of our knowledge, the most efficient ring signature scheme is from
[19], using Fiat-Shamir with abort protocols. For the same number (i.e., 210 )
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Table 2: Comparison of Communication Cost for Applications from Different ZKAoKs.

Application This paper Stern-type FSwA (ideal lattice)

Ring Signature 4.24MB 47.3MB [36] 1.41MB [19]

Group Signature 6.94MB 61.5MB [36] 0.58MB [17]

Range Proof 1.21MB 3.54MB [38] N/A

Electronic Cash 262MB ≈ 720TB [37] N/A

of users, its signature size is about 1.41 MB at 100 bits security level. Using a
similar parameter setting, the signature size of our solution is 3.05 MB.2

Group Signatures. A group signature can also be obtained following a similar
approach in [36] using our ZKAoK. The signature size of [36] is 61.5 MB for a
group of 210 users. In contrast, the signature size of our solution is 6.94 MB in
the same setting.

The most efficient group signature scheme to date is from [17], achieving a
signature size of less than 1 MB. Nonetheless, our approach can achieve addi-
tional features. For example, one can convert our group signature scheme into
a fully dynamic one via the techniques in [42], without increasing its signature
size.

Electronic Cash. To the best of our knowledge, the only lattice-based (compact)
electronic cash system is from [37], but no concrete estimation of its performance
is provided. In the full version of this work, we provide a rough estimation for
the communication cost of their spend protocol, for a wallet of 210 coins. The
estimation shows that the communication cost of their spend protocol is at least
several terabytes while our spend protocol can achieve a communication cost of
262 MB in the same setting.

There is no E-cash system from Fiat-Shamir with abort protocols in the
literature. This is due to the following technical barriers. First, in an E-cash
system, we need an argument of correct evaluation for pseudorandom function
(PRF). This requires an argument for the learning with rounding (LWR) rela-
tion, i.e., proving the (rounded) error terms lie exactly in an interval. Due to the
aforementioned soundness gap, it is not known how this proof can be done from
Fiat-Shamir with abort protocols. Moreover, we also need an adaptively secure
signature scheme and an argument of knowledge of a valid message/signature
pair for it. To date, signature schemes that admit an argument from Fiat-Shamir
with abort protocols can only achieve selective security. Complexity leveraging
trick that converts a selectively secure scheme into an adaptively secure one does
not work here either, since the message space, which contains all possible PRF
keys, are exponentially large.

2 In [19], parameters are set in a slightly mild way, so, the signature size is smaller if
we use their criterion to select parameters.
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Range Proof. Prior to our work, the most efficient lattice-based range proof is
from [38]. When arguing knowledge of a 1000-bits committed value in a given
range, its proof size is 3.54 MB. In contrast, the proof led by our solution is only
1.21 MB in the same setting.

1.2 Technical Overview

Warm-Up: An Argument for RISIS . Before explaining the idea of our approach,
we would like to give a simple intuition on how one can argue the ISIS relation,
with standard soundness and small soundness error simultaneously. Our solution
can be viewed as a somewhat mix of the Stern-type protocol and the Fiat-Shamir
with abort protocol. In particular, we will first use the bit-decomposition tech-
nique to deal with small integers. Then we prove that the decomposition outputs
are binary via proving some quadratic constraint over them (i.e., arguing x = x2

for each bit x of the output). As shown in [27] (and its lattice variant [19]), this
can be proved via arguing linear relations over commitments and thus can be
instantiated with known commitment with a relaxed opening and Fiat-Shamir
with abort protocols. Since we do not argue shortness of witnesses explicitly in
the latter argument, soundness gap is not introduced.3 Surprisingly, this simple
strategy can produce much more than merely arguing shortness of witnesses. We
elaborate this next.

Building ZKAoK for R∗ . We start with a protocol that proves

R0 = {(A,y), (x) ∈ (Zm×nq × Zmq )× (Znq ) : A · x = y} (2)

which is the linear equation part of R∗ . The protocol can be viewed as an
extension of the Schnorr protocol to the linear algebra setting. It proceeds as
follows:

1. The prover samples a vector r
$← Znq and sends t = A · r to the verifier.

2. The verifier samples a challenge α ∈ C and sends it to the prover. Here
C ⊂ Z is the challenge space of the protocol and will be specified later.

3. The prover sends z = α · x+ r to the verifier.
4. The verifier accepts the proof iff A · z = α · y + t .

Given two valid transcripts with distinct challenges, i.e., (t, α, z) and (t, α′, z′) ,
one can extract a vector x̄ = (α− α′)−1 · (z − z′) that satisfies Eq. (2). In the
meantime, a cheating prover cannot pass the verification unless it successfully
guesses the challenge α . Thus, the protocol achieves a soundness error of 1/‖C‖ .
Hence, we can obtain an inverse-polynomial soundness error if C contains poly-
nomial many distinct challenges.

In the remaining part of this section, we explain how to additionally prove
the quadratic constraints over the witnesses.

3 There exists a soundness gap in the proof, but it will not affect the proved argument
due to the commitment with a relaxed opening.
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Let (h, i, j) be an item in M , our goal is to prove that x[h] = x[i] · x[j] .
First, from the response z = α · x+ r , the verifier can compute

d = α · z[h]− z[i] · z[j]

= (x[h]− x[i] · x[j]) · α2 + (r[h]− r[i] · x[j]− r[j] · x[i]) · α− r[i] · r[j]

:= (x[h]− x[i] · x[j]) · α2 + a · α− b

where a = r[h]−r[i]·x[j]−r[j]·x[i] and b = r[i]·r[j] . Note that x[h] = x[i]·x[j]
iff d is linear in α . Therefore, the main task is reduced to proving that the
quadratic polynomial d is indeed linear in α , or alternatively d− a · α+ b is a
zero polynomial.

To prove this, we can ask the prover to additionally send a and b in Step
1. Correspondingly, in Step 4, the verifier computes d and further checks if
d = a · α − b . Since the prover does not know α in advance, a and b must be
independent from α . Therefore, if the verification is successful, d is linear in α .

However, sending a and b in plaintext may leak information about the
witness. To solve this problem, we adopt a homomorphic commitment scheme
Commit(m; r) 7→ c that commits a message m to a commitment c using ran-
domness r . More precisely, in Step 1, the prover generates Ca = Commit(a; sa)
and Cb = Commit(b; sb) for some sa and sb , and send them to the verifier. In
Step 3, the prover also computes s = α · sa − sb and send s to the verifier. The
verifier then checks if Commit(d; s) = α · Ca − Cb .

Remark 1.1. In this work, we will use the commitment scheme in [6], which
is both additive homomorphic and supports multiplication by small constants.
Therefore, we require the challenge space C to be a set of polynomially-many
small integers. The commitment scheme also requires the randomness to be
drawn from some distributions with bounded norm. Here, we instantiate it with
the Gaussian distribution.

Since new variables Ca, Cb and s are introduced in the proof, we also need
to make sure that they will not compromise the privacy of a and b . First, Cb is
determined by α , d , s and Ca , thus, we only need to consider s and Ca in the
analysis. Recall that both sa and sb are drawn from the Gaussian distributions.
According to the rejection sampling lemma [46], we can use sb to mask α · sa ,
and enforce the output s to follow a specific distribution that is independent
from sa . Then, by the hiding property of the commitment scheme, Ca reveals
nothing about a . As a result, the commitments Ca, Cb and the randomness s
do not leak additional information to the verifier.

There is an additional subtlety that we need to deal with. Note that in
the aforementioned protocol, we try to argue that the quadratic polynomial
d−a ·α−b is a zero polynomial. Thus, in the proof for soundness, we need three
valid transcripts with distinct challenges after rewinding (note that a quadratic
polynomial with three distinct roots must be a zero polynomial). So, to fix the
extracted witnesses from these transcripts, the prover should also commit the
witness x and proves that the witness is properly committed (using a Fiat-
Shamir with abort protocol).
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In summary, our ZKAoK protocol contains three parts.
1. A Schnorr-type protocol that proves possession of a witness for R0 .
2. A commitment of witness x and a Fiat-Shamir with abort protocol proving

that the committed value is actually x .
3. A proof for the quadratic constraints over the witnesses.

Building ZKAoK for More Relations. Next, we show how to develop ZKAoKs
for relations relevant to lattice-based cryptographic schemes. As we illustrated
in Figure 1, such relations can be viewed as combinations of some elementary
relations, namely, linear equations with short solutions (Rshort ), subset sum
of linear equations (RSS ), and linear equations with hidden matrices (RHM ).
Thus, here we focus on how to deal with these elementary relations.4

Linear Equation with Short Solution. This is a primary lattice-based relation and
appears in (almost) all applications. Concretely, let m , n , and k be positive
integers, q be a large enough power-of-prime, and β = 2k − 1 . The relation
Rshort is given as

Rshort = {(P ,v), (w) ∈ (Zm×nq × Zmq )× ([0, β]n) : P ·w = v}

The reduction from Rshort to R∗ takes the following steps:

• set a new witness x as the binary decomposition of the original witness w ,
i.e., each element w in w is decomposed into k bits x1, . . . , xk such that
w =

∑k
i=1 xi · 2i−1 (note that a positive integer can be decomposed into k

bits iff it is in [0, 2k − 1] );
• set A = P ·G where the gadget matrix G := In⊗ (1 2 4 . . . 2k−1) (thus,

we have G · x = w );
• set y = v ;
• set M = {(i, i, i)}i∈[1,nk] ;

In doing so, we obtain a new relation in the form of R∗ where both the length
of witness and the size of M are nk .

Note that since q is a power-of-prime, for any x ∈ Zq , x2 = x iff x = 0 or
x = 1 . Thus, the new relation is equivalent to the original relation Rshort .

There are two common variants to Rshort . First, for simplicity, we have set
β + 1 to be a power-of-2. The first variant removes this unnecessary constraint
and deals with arbitrary positive integer β . This is achieved by applying the re-
fined decomposition technique proposed in [40] and the length of the decomposed
witness is n · (blog βc+ 1) .

The second variant is to argue knowledge of a witness w ∈ [−β, β]n that
satisfies a linear equation. This can be reduced to the relation Rshort via adding
β to each element of w . Note that the linear equation will also need to be
modified accordingly.

4 Detailed constructions of ZKAoKs for elementary relations can be found in Sec. 4,
e.g, the ZKAoK for lattice-based PKE is in fact a ZKAoK for a variant of Rshort .
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Optimized arguments for Linear Equation with Short Solution. In some cases, it
is desirable to prove a relation Rshort with a large n , which makes it inefficient
to decompose all elements in x . We propose an alternative relation, given by
Eq. (3), to argue equations with short solutions more efficiently in this case, at
a cost of re-introducing some soundness gap for the argument. More precisely,
to argue a linear equation Pw = v with β -bounded solution w , the argument
can only guarantee that the prover possesses a n · β -bounded solution w′ that
satisfies Pw′ = v .

R′short = {(P ,v,H, c), (w,u, r) ∈
(Zm×nq × Zmq × [0, 1]λ×n × C)× (Znq × [0, n · β]λ × R) :

P ·w = v ∧ H ·w − u = 0 ∧ c = Commit(w; r)} (3)

where

• Commit is a commitment scheme and c = Commit(w; r) is the commitment;
• C and R are the output space and the randomness space of Commit ;
• H ← H(c) ∈ [0, 1]λ×n , where λ is the security parameter and H is modeled

as a random oracle.

To see why R′short could guarantee that all elements in w are in [0, n · β] ,
assume there exists i ∈ [n] such that | w[i] |> n · β . Let h1 and h2 be
two n -dimension binary vectors that are identical in all positions except that
h1[i] 6= h2[i] . Then we have | hᵀ

1 · w − h
ᵀ
2 · w |=| w[i] |> n · β . Thus, either

hᵀ
1 ·w or hᵀ

2 ·w must be outside the interval [0, n ·β] . Therefore, for a vector h
sampled uniformly from [0, 1]n , with a probability of at least 1/2 , hᵀ ·w > n·β .
Therefore, the probability that all elements in H ·w are in [0, n ·β] is negligible.

It remains to show how to argue the relation R′short . Our strategy is to
reduce the relation to an instance of relation R∗ and then argue the instance
via our main protocol. Looking ahead, in our main protocol, the prover also
generates a commitment of the witness in the first step and will argue that the
witness is properly committed during the proof. In addition, the commitment
scheme allows one to commit part of the witness first, and then commit the
remaining part later, where the partial commitment generated in the first stage
is also included in the complete commitment. Consequently, the commitment
and the argument for the opening of the commitment are free5. The remaining
part of relation R′short are equations with short solutions, and thus can be
straightforwardly reduced to R∗ .

In more detail, to argue R′short , the prover first generates the commitment
c = Commit(w) and computes the matrix H = H(c) and u = Hw . Then, it
commits u and appends the commitment to c . Finally, it runs the remaining
part of our main protocol, arguing that there exists a small vector u and a
vector w that satsfies u = H(c)w and v = Pw .

5 In fact, we only obtain a relaxed argument for the opening of the commitment. This
is sufficient for our purpose.
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To summarize, we can prove equations with short solutions via our main
protocol on R∗ , where the length of the witness is n+λ · (blog (n · β)c+ 1) and
the size of M is λ · (blog (n · β)c+ 1) .

Subset Sum of Linear Equations. Let m , n and l be positive integers and q
be a large power-of-prime. The relation is given as

RSS = {({P i}i∈[1,l],v), ({w}i∈[1,l], {bi}i∈[1,l]) ∈

((Zm×nq )l × Zmq )× ((Znq )l × {0, 1}l) :

l∑
i=1

bi · P i ·wi = v}

To reduce RSS to R∗ , we first compute vi = P i ·wi and v′i = bi · vi for
i ∈ [1, l] . Then we set the new witness vector x = (b1, . . . , bl,v

′
1, . . . ,v

′
l,v1, . . . ,

vl,w1, . . . ,wl) and set

A =

(
0 0 −Iml P
0 J 0 0

)
and y =

(
0
v

)
where

P =


P 1

P 2

. . .

P l

 and J =
(
Im Im . . . Im

)
.

Here, the first part of the equation Ax = y (specified by the first “row” of A )
indicates that vi = P i ·wi for i ∈ [1, l] and its second part indicates that the
sum of all v′i are v .

Finally, we set

M = {(i, i, i)}i∈[1,l] ∪ {(l+m · (i− 1) + j, l+ml+m · (i− 1) + j, i)}i∈[1,l],j∈[1,m]

where {(i, i, i)}i∈[1,l] indicates that bi is binary and the rest indicates that
v′i = bi ·vi . This gives us an R∗ statement where the length of witness becomes
(nl + 2ml + l) and the size of M is ml + l .

Linear Equation with Hidden Matrix. Let m and n be positive integers and q
be a large power-of-prime, the relation is defined as follows:

RHM = {(v), (P ,w) ∈ (Zmq )× (Zm×nq × Znq ) : P ·w = v}

To reduce RHM to R∗ , we first obtain a new witness vector x = (x0, . . . ,
x2m) as follows:

• x0 = w ;
• for i ∈ [1,m] , xi is the i -th row of P ;
• for i ∈ [1,m] , xm+i is the Hadamard product between the i -th row of P

and w (i.e., xm+i[j] = xi[j] ·w[j] ).

11



Then we set A =
(
0m×n 0m×mn M

)
and y = v where M =

Im ⊗
(
1 1 . . . 1

)
∈ Zm×mnq .

Finally, we set M = {((m+i) ·n+j, i ·n+j, j)}i∈[1,m],j∈[1,n] , which indicates
that xm+i[j] = xi[j] ·w[j] . In this way, we obtain a new relation in the form of
R∗ , where the length of witness is (2m+ 1) · n and the size of M is mn .

2 Preliminaries

Notations. In this paper, we will use bold lower-case letters (e.g., v ) to denote
vectors, and use bold upper-case letters (e.g., A ) to denote matrices. All ele-
ments in vectors and matrices are integers unless otherwise specified. For a vector
v of length n , we use v[i] to denote the i th element of v for i ∈ [1, n] and for an
m -by-n matrix A , we use A[i, j] to denote the element on the i -th row and the
j -th columon of A for i ∈ [1,m] and j ∈ [1, n] . For a vector v , we use bin(v)

to denote the binary decomposition of v , i.e., v[i] =
∑k
j=1 2j−1 · v̄[(i−1) ·k+j] ,

where v̄ = bin(v) and k = dlog(‖v‖∞)e . We use In to denote an n -by-n iden-
tity matrix. We use ⊗ to denote the Kronecker product of two matrices.

For a string a , we use ‖a‖ to denote the length of a . For a finite set S ,

we use ‖S‖ to denote the size of S and use s
$← S to denote sampling an

element s uniformly from set S . For a distribution D , we use d← D to denote
sampling d according to D .

For integers a ≤ b , we write [a, b] to denote all integers from a to b .
We write negl(·) to denote a negligible function and write poly(·) to denote a
polynomial.

2.1 Discrete Gaussian Distribution

We recall the discrete Gaussian distribution and some results from [46].

Definition 2.1 (Discrete Gaussian Distribution). The continuous Gaus-
sian distribution over Rm centered at v ∈ Rm with standard deviation σ is

defined by the function ρmv,σ(x) = ( 1√
2πσ2

)me
−‖x−v‖2

2σ2 .

The discrete Gaussian distribution over Zm centered at v ∈ Zm with stan-
dard deviation σ is defined as Dm

v,σ(x) = ρmv,σ(x)/ρmσ (Zm) , where ρmσ (Zm) =∑
x∈Zm ρ

m
σ (x) .

We write Dm
σ (x) = Dm

0,σ(x) for short.

Lemma 2.1 ([46, Full Version, Lemma 4.4]).

1. For any k > 0 , Pr[‖z‖ > kσ : z ← D1
σ] ≤ 2e

−k2
2 .

2. For any z ∈ Zm , and σ ≥ 3/
√

2π , Dm
σ (z) ≤ 2−m .

3. For any k > 1 , Pr[‖z‖ > kσ
√
m : z ← Dm

σ ] < kme
m
2 (1−k2) .

12



2.2 Rejection Sampling

In this work, we will also use the celebrated “rejection sampling lemma” from
[45, 46] to argue the zero-knowledge property of our protocol.

Lemma 2.2 ([46, Full Version, Theorem 4.6]). Let V be a subset of Zm in
which all elements have norms less than T . Let h be a probability distribution
over V . Let σ be a real number that σ = ω(T

√
logm) . Then there exists a

constant M such that the distribution of the following algorithm A and that of

the following algorithm F are within statistical distance 2−ω(logm)

M .
A :

1. v ← h
2. z ← Dm

v,σ

3. Output (v, z) with probabil-

ity min(1,
Dmσ (z)

MDmv,σ(z)
)

F :

1. v ← h
2. z ← Dm

σ

3. Output (v, z) with probabil-
ity 1

M

Moreover, the probability that A outputs something is at least 1−2−ω(logm)

M .

As a concrete example (suggested in [30]), if σ = αT for some positive α ,

then M = e13.3/α+1/(2α2) , the output of algorithm A is within statistical dis-

tance 2−128

M of the output of F , and the probability that A outputs something

is at least 1−2−128

M .

2.3 Hardness Assumptions

The security of our main protocol relies on the short integer solution (SIS) as-
sumption and the learning with errors (LWE) assumption. For both assumptions,
we will use the normal form (as defined in [53]).

Definition 2.2 (SIS n,m,q,β , Normal Form). Given a random matrix A ∈
Zn×(m−n)q , find a nonzero integer vector z ∈ Zm such that ‖z‖ ≤ β and [In |
A] · z = 0 .

As hardness of the SIS assumption usually depends only on n, q, β (assuming
m is large enough), in this work, we write SIS n,m,q,β as SIS n,q,β for short.

Lemma 2.3 ([1, 22, 48, 49, 53]). For any m = poly(n) , any β > 0 , and any
sufficiently large q ≥ β · Õ(

√
n) , solving (normal form) SIS n,m,q,β with non-

negligible probability is at least as hard as solving the decisional approximate
shortest vector problem GapSVP γ and the approximate shortest independent
vectors problems SIVP γ (among others) on arbitrary n -dimensional lattices

(i.e., in the worst case) with overwhelming probability, for some γ = β · Õ(
√
n) .

Definition 2.3 (Decision-LWE n,m,q,χ , Normal Form). Given a random

matrix A ∈ Z(m−n)×n
q , and a vector b ∈ Zm−nq , where b is generated according

to either of the following two cases:

13



1. b = A · s+ e , where s← χn and e← χm−n

2. b
$← Zm−nq

distinguish which is the case with non-negligible advantage.

If χ is a discrete Gaussian distribution with standard deviation σ , we write
the problem as LWEn,m,q,α where α = σ ·

√
2π/q . Also, as the hardness of the

LWE assumption usually depends only on n, q, α (assuming m is large enough),
in this work, we write LWEn,m,q,α as LWEn,q,α for short.

Lemma 2.4 ([4, 53, 55]). For any m = poly(n) , any modulus q ≤ 2poly(n) ,
and any (discrete) Gaussian error distribution χ with standard deviation σ
(i.e., χ = Dσ ), where σ = αq/

√
2π ≥

√
2n/π and 0 < α < 1 , solving the

(normal form) decision-LWE n,m,q,χ problem is at least as hard as (quantumly)
solving GapSVP γ and SIVP γ on arbitrary n -dimensional lattices, for some

γ = Õ(n/α) .

2.4 Zero-Knowledge Arguments of Knowledge

In a zero-knowledge argument of knowledge system [24], a prover proves to a
verifier that he possesses the witness for a statement without revealing any ad-
ditional information.

More formally, let R = {(x,w)} ∈ {0, 1}∗×{0, 1}∗ be a statements-witnesses
set for an NP relation. The ZKAoK for R is an interactive protocol 〈P,V〉 run
between a prover P and a verifier V that satisfies:

• Completeness. For any (x,w) ∈ R , Pr[〈P(x,w),V(x)〉 6= 1] ≤ δc .
• Proof of Knowledge. There exists an extractor E that for any x , for any

probabilistic polynomial time (PPT) cheating prover P̂ , if Pr[〈P̂,V(x)〉 =
1] > δs+ε for some non-negligible ε , then E can extract in polynomial time
a witness w such that (x,w) ∈ R via accessing P̂ in a black-box manner.

• (Honest-Verifier) Zero-Knowledge. There exists a simulator S that for
any (x,w) ∈ R , the two distributions are computationally indistinguishable:
1. The view of an honest verifier V in an interaction 〈P(x,w),V(x)〉 .
2. The output of S(x) .

where δc is the completeness error and δs is the soundness error.
In this work, we also consider non-interactive ZKAoKs (NIZKAoK). They can be

obtained by applying the Fiat-Shamir heuristic [20] to public coin ZKAoKs. One
advantage led by the Fiat-Shamir transform is that the transformed NIZKAoKs
additionally admit a message as input, thus it is also called signature proof of
knowledge (SPK), and is usually written as SPK{(x,w) : (x,w) ∈ R}[m] , where
m is the additional message.

2.5 Commitment with A Relaxed Opening

In our main construction, we will employ the commitment scheme presented in
[6]6, which admits a relaxed opening.

6 In fact, we will use its variant in the standard lattice setting. For completeness, we
will restate its security in the security proof of our main construction.
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Let λ be the security parameter. Let l1 and l2 be positive integers that are
polynomials in the security parameter λ . Let σ be a small positive integer that
satisfies σ ≥

√
2l2/π . Also, let n be the length of the comitted vector. The

public parameter of the commitment scheme is a matrix B ∈ Z(l1+n)×(l1+n+l2)
q

defined as follows:

B =

 I l1 B1

0n×l1 In B2


where B1 and B2 are random matrices sampled from Zl1×(l2+n)q and Zn×l2q

respectively.
To commit to a message m ∈ {0, 1}n , the commit algorithm first samples

s ∈ Dl1+n+l2
σ . Then it outputs a commitment c = B · s + (0ᵀ‖mᵀ)ᵀ and the

opening s .
The open algorithm outputs 1 on input B,m, c, s iff c = B · s+ (0ᵀ‖mᵀ)ᵀ

and s is small. Besides, it admists a relaxed opening, where the input of the
algorithm includes B,m, c, s and a small integer f , and the algorithm outputs
1 iff f · c = B · s+ f · (0ᵀ‖mᵀ)ᵀ and s, f are small.

3 Main Construction

In this section, we present our main construction, namely, an efficient zero-
knowledge argument of knowledge for linear equations with quadratic constraints
over the witness.

More concretely, let m,n, ` be positive integers, q be a large enough integer
that is a power-of-prime, i.e., q = qe0 for some prime q0 and some positive
integer e . Also, let A be a matrix in Zm×nq , x and y be vectors in Znq and
Zmq respectively, and M be a set of ` 3-tuples, each of which consists of 3
integers in [1, n] . We will construct a ZKAoK for the following relation:

R∗ = {(A,y,M), (x) : A · x = y ∧ ∀(h, i, j) ∈M,x[h] = x[i] · x[j]} (4)

Specifically, in Sec. 3.1, we give a basic version of the ZKAoK protocol for R∗ as
defined in Eq. (4). This protocol achieves an inverse polynomial soundness error
and a constant completeness error. Then, in Sec. 3.2, we transform the basic
protocol into a NIZKAoK with negligible soundness error and completeness error.

3.1 The Basic Protocol

Let aCommit be an auxiliary bit commitment scheme with randomness space
{0, 1}κ and a suitable message space. As no additional requirement is desired
for aCommit , we can safely assume it to be a random oracle G , i.e., given an
input x and a random string ρ as randomness, the commitment is G(x‖ρ) .
Nonetheless, aCommit can be instantiated by any secure commitment scheme.

Let λ be the security parameter. Let l1 and l2 be positive integers that
are polynomials in the security parameter λ . Let B1,1 , B1,2 , B2,1 and B2,2
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be random matrices sampled from Zl1×(l2+n)q , Zn×l2q , Zl1×(l2+`)q and Z`×l2q

respectively. Also let

B1 =

 I l1 B1,1

0n×l1 In B1,2

 , B2 =

 I l1 B2,1

0`×l1 I` B2,2


Here B1 and B2 are public parameters of the underlying homomorphic com-
mitment scheme, and we assume that they are honestly generated (via some
public coin) and are shared by all parties in the protocol.

Let σ1 be small positive integer that satisfies σ1 ≥
√

2l2/π . Let p be
small positive integer that is polynomial in λ . Let l = 2l1 + 2l2 + n + ` . Let
σ2 = 2p·

√
l ·log l ·σ1 . Let M = e13.3/ log l+1/(2 log2 l) . For any l -dimension vectors

v and z , let p(v, z) = min(1,
Dlσ2

(z)

MDlv,σ2
(z)

) .

The basic protocol P1 for R∗ is described in Figure 2.

Theorem 3.1. Assume the worst-case hardness of GapSVP γ (or SIVP γ ) for
some polynomial γ , if q ≥ 16p ·max(

√
l1 + l2 + n,

√
l1 + l2 + `) · (σ2 + p · σ1) ·

Õ(
√
l1) , q/σ1 is a polynomial, q0 > 2p , and aCommit is a secure bit commit-

ment scheme, then the protocol P1 , which is described in Figure 2, is a secure
zero-knowledge argument of knowledge with completeness error 1 − 1/M and
soundness error 2/(2p+ 1) .

We give the detailed proof for Theorem 3.1 in the full version.

3.2 NIZKAoK for R∗

In this section, we show how to transform our basic protocol in Sec. 3.1 into a
non-interactive zero-knowledge arguments of knowledge with negligible sound-
ness error and completeness error. Generally, this can be done via some standard
techniques such as repetition and Fiat-Shamir transform. Nonetheless, we will
employ a few tricks (developed in previous works) to reduce the efficiency loss
in the transformations. In particular, to minimize the number of repetitions, we
will employ the tweaks in [19] when repeating the basic protocol. In a nutshell, it
applies one rejection sampling on all (repeated) instances simultaneously, which
avoids completeness error increasing caused by repetition.

The Construction. Let aCommit , λ , l1 , l2 , B1,1 , B1,2 , B2,1 and B2,2 ,
σ1 , p , l and M be identical to those of P1 . We highlight the differences.

In the new scheme, a proof is generated by repeating the basic protocol
N = λ/ log p times. Then we set σ2 = 2p ·

√
N · l · log(N · l) · σ1 , and for

any N · l -dimension vectors v and z , we set p(v, z) = min(1,
DN·lσ2

(z)

MDN·lv,σ2
(z)

) . We

will additionally use a hash function H with output space [−p, p]N , which is
modelled as a random oracle. Also, let AUX be some application-dependent
auxiliary information (e.g., the signed message in a group signature) that is
specified as an input to H .
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P[A,y,M,B1,B2;x] V[A,y,M,B1,B2]

r
$← Znq ; t = A · r

s1 ← Dl2+n+l1
σ1 ; s2 ← Dl2+n+l1

σ2

s3 ← Dl2+`+l1
σ1 ; s4 ← Dl2+`+l1

σ2

c1 = B1 · s1 + (0ᵀ‖xᵀ)ᵀ

c2 = B1 · s2 + (0ᵀ‖rᵀ)ᵀ

Let a and b be two ` -dimension vectors.
For k ∈ [1, `] , let (h, i, j) be the k -th element in M :

a[k] = r[h]− r[i] · x[j]− r[j] · x[i]
b[k] = r[i] · r[j]

c3 = B2 · s3 + (0ᵀ‖aᵀ)ᵀ

c4 = B2 · s4 + (0ᵀ‖bᵀ)ᵀ

ρ
$← {0, 1}κ

Caux = aCommit(t‖c1‖c2‖c3‖c4; ρ)

Caux−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α

$← [−p, p]

α←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
z0 = α · x + r
z1 = α · s1 + s2

z2 = α · s3 − s4

Abort with probability 1− p((α · sᵀ
1‖α · s

ᵀ
3)ᵀ, (zᵀ

1‖z
ᵀ
2)ᵀ)

t,c1,c2,c3,c4,ρ,z0,z1,z2−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Let d be an ` -dimension vector.
For k ∈ [1, `] , let (h, i, j) be the k -th
element in M :

d[k] = α · z0[h]− z0[i] · z0[j]
Accept if:
1. Caux = aCommit(t‖c1‖c2‖c3‖c4; ρ)
2. ‖z1‖ ≤ 2

√
l1 + l2 + n · (σ2 + p · σ1)

3. ‖z2‖ ≤ 2
√
l1 + l2 + ` · (σ2 + p · σ1)

4. A · z0 = α · y + t
5. B1 · z1 + (0ᵀ‖zᵀ

0)ᵀ = α · c1 + c2
6. B2 · z2 + (0ᵀ‖dᵀ)ᵀ = α · c3 − c4

Fig. 2 The Basic Protocol P1 : A Zero-Knowledge Arguments of Knowledge for R∗
with Inverse Polynomial Soundness Error and Constant Completeness Error.

The prove algorithm and the verify algorithm of the NIZKAoK P2 for R∗ is
described in Figure 3 and 4 respectively.

Theorem 3.2. Assume the worst-case hardness of GapSVP γ (or SIVP γ ) for
some polynomial γ , if q ≥ 16p ·max(

√
l1 + l2 + n,

√
l1 + l2 + `) · (σ2 + p · σ1) ·

Õ(
√
l1) , q/σ1 is a polynomial, q0 > 2p , aCommit is a secure bit commitment
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Prove(A,x,y,M,B1,B2,AUX ) :
For  ∈ [1, λ] :
1. s1 ← Dl2+n+l1

σ1 , c1 = B1 · s1 + (0ᵀ‖xᵀ)ᵀ

2. For ı ∈ [1, N ] :

(a) rı
$← Znq , tı = A · rı

(b) s2,ı ← Dl2+n+l1
σ2 , s3,ı ← Dl2+`+l1

σ1 , s4,ı ← Dl2+`+l1
σ2

(c) c2,ı = B1 · s2,ı + (0ᵀ‖rᵀ
ı )

ᵀ

(d) Let aı and bı be two ` -dimension vectors and for k ∈ [1, `] , let (h, i, j)
be the k -th element in M :

i. aı[k] = rı[h]− rı[i] · x[j]− rı[j] · x[i]
ii. bı[k] = rı[i] · rı[j]

(e) c3,ı = B2 · s3,ı + (0ᵀ‖aᵀ
ı )

ᵀ , c4,ı = B2 · s4,ı + (0ᵀ‖bᵀı )ᵀ

(f) ρı
$← {0, 1}κ

(g) Caux ,ı = aCommit(tı‖c1‖c2,ı‖c3,ı‖c4,ı; ρı)
3. {αı}ı∈[1,N ] = H(A,y,M, {Caux ,ı}ı∈[1,N ],AUX )
4. For ı ∈ [1, N ] :

(a) z0,ı = αı · x + rı , z1,ı = αı · s1 + s2,ı , z2,ı = αı · s3,ı − s4,ı

5. Smaple a real number τ
$← [0, 1] (Here, we use [0, 1] to denote all real numbers

between 0 and 1)
6. If τ < p((α1 · sᵀ

1‖ . . . ‖αN · sᵀ
1‖α1 · sᵀ

3,1‖ . . . ‖αN · sᵀ
3,N )ᵀ,

(zᵀ
1,1‖ . . . ‖z

ᵀ
1,N‖z

ᵀ
2,1‖ . . . ‖z

ᵀ
2,N )ᵀ) :

(a) Abort the algorithm with output π = (c1, {αı, ρı, c3,ı,z0,ı,z1,ı,
z2,ı}ı∈[1,N ])

Output ⊥ if the algorithm does not abort in the loop above.

Fig. 3 The Prove Algorithm of P2 .

Verify(A,y,M,B1,B2,AUX , π = (c1, {αı, ρı, c3,ı,z0,ı,z1,ı,z2,ı}ı∈[1,N])) :
For ı ∈ [1, N ] :
1. Let dı be an ` -dimension vector and for k ∈ [1, `] , let (h, i, j) be the k -th

element in M :
(a) dı[k] = αı · z0,ı[h]− z0,ı[i] · z0,ı[j]

2. tı = A · z0,ı − αı · y
3. c2,ı = B1 · z1,ı + (0ᵀ‖zᵀ

0,ı)
ᵀ − αı · c1

4. c4,ı = αı · c3,ı −B2 · z2,ı − (0ᵀ‖dᵀ
ı )

ᵀ

5. Caux ,ı = aCommit(tı‖c1‖c2,ı‖c3,ı‖c4,ı; ρı)
6. If ‖z1,ı‖ > 2

√
l1 + l2 + n · (σ2 + p ·σ1) ∨ ‖z2,ı‖ > 2

√
l1 + l2 + ` · (σ2 + p ·σ1) :

(a) Abort the algorithm with output “ Reject ”
Output “ Accept ” if {αı}ı∈[1,N ] = H(A,y,M, {Caux ,ı}ı∈[1,N ],AUX ) :

Fig. 4 The Verify Algorithm of P2 .

scheme, and H is modelled as a random oracle, then the scheme P2 is a secure
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non-interactive zero-knowledge argument of knowledge with negligible complete-
ness error and soundness error.

Proof of Theorem 3.2 follows proof of Theorem 3.1 and well-known results,
we omit the details here.

Efficiency. In P2 , a proof π contains a commitment and a set of N elements,
where each element consists of a challenge, a κ -bit string, a commitment and
three vectors. Thus, we have

‖π‖ = (log (2p+ 1) + κ+ (3l1 + 2l2 + 2n+ 2`) · log q) ·N + (l1 + n) · log q

4 ZKAoKs for Various Cryptographic Schemes

In this section, we build several tools that are useful for constructing privacy-
preserving primitives. This includes an argument of knowledge of committed
value, an argument of knowledge of plaintext, an argument of knowledge of
signature, an argument for cryptogrphic accumulator and an argument for pseu-
dorandom function.

4.1 ZKAoK of Committed Value

We start with an argument of knowledge of the committed value for the com-
mitment scheme in [31].

Let l1 , l2 , L be positive integers and q be a power-of-prime. We propose a
ZKAoK for the following relation:

Rcom = {(B1,B2, c), (r,w) ∈
(Zl1×l2q × Zl1×Lq × Zl1q )× ({0, 1}l2 × {0, 1}L) : B1 · r +B2 ·w = c}

Rcom contains linear equations with binary witness. We construct the argu-
ment via reducing Rcom to an instance of R∗ through the following steps:

1. Set the new witness x = (rᵀ‖wᵀ)ᵀ ;
2. Set A = (B1‖B2) and y = c ;
3. Set M = (i, i, i)i∈[1,l2+L] .

Note that since q is a power of prime, for any x ∈ Zq , x2 = x iff x = 0
or x = 1 . Thus, the new relation R∗ over (A,y,M), (x) is equivalent to the
original relation Rcom . Also, both ‖x‖ and ‖M‖ are l2 + L for R∗ .

4.2 ZKAoK of Plaintext

Next, we give an argument of knowledge of the plaintext for the encryption
scheme proposed in [39].

More precisely, let l1 , l2 , L and β be positive integers and q be a power-
of-prime, we propose a ZKAoK for the following relation:
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Renc = {(B1,B2, c1, c2), (r, e1, e2,w) ∈
(Zl1×l2q × ZL×l2q × Zl1q × ZLq )× (Zl2q × Zl1q × ZLq × {0, 1}L) :

‖r‖∞ ≤ β ∧ ‖e1‖∞ ≤ β ∧ ‖e2‖∞ ≤ β∧

B1 · r + e1 = c1 ∧B2 · r + e2 + bq
2
e ·w = c2}

We construct the argument via reducing the relation Renc , which contains
linear equations with short solutions, to an instance of the relation R∗ .

First, we define vectors β1 = (β β . . . β)ᵀ ∈ Zl2q , β2 = (β β . . . β)ᵀ ∈ Zl1q ,

β3 = (β β . . . β)ᵀ ∈ ZLq and define r′ = r+β1 , e′1 = e1+β2 and e′2 = e2+β3 .
Then, we decompose vectors r′ , e′1 and e′2 into binary vectors r̄ , ē1

and ē2 using the decomposition technique proposed in [40]. More precisely,
let k = blog 2βc + 1 and let g = (b(2β + 1)/2c‖b(2β + 2)/4c‖ . . . ‖b(2β +
2i−1)/2ic‖ . . . ‖b(2β+2k−1)/2kc) be a row vector. It is claimed in [40] that 1) an
integer a ∈ [0, 2β] iff there exists a binary vecotr a ∈ {0, 1}k that g ·a = a ; 2)
one can decompose the integer a ∈ [0, 2β] into the k -dimension binary vector
a efficiently.

Next, we define the gadget matrix G1 = I l2⊗g , G2 = I l1⊗g , G3 = IL⊗g
and they satisfy that G1 · r̄ = r′ , G2 · ē1 = e′1 and G3 · ē2 = e′2 .

Finally, we set

A =

B1 ·G1 G2 0 0

B2 ·G1 0 G3 b q2e · IL



x = (r̄ᵀ ēᵀ1 ēᵀ2 wᵀ)
ᵀ
, y =

c1 +B1 · β1 + β2

c2 +B2 · β1 + β3


and set M = (i, i, i)i∈[1,(l1+l2+L)·k+L] . Here, both ‖x‖ and ‖M‖ are (l1 + l2 +

L) · k + L .
One common variant of the encryption scheme in [39] is to use binary secrets

and errors rather than sampling them from β bounded distributions. To generate
arguments of knowledge of plaintexts for this variant, we can use an almost
identical construction as above, except that we do not need to decompose the
vectors r , e1 and e2 . Thus, when reducing the relation to R∗ in this case,
both ‖x‖ and ‖M‖ will be l1 + l2 + 2L .

4.3 ZKAoK of Message-Signature Pair

Next, we give an argument of knowledge of a valid message/signature pair for
the signature scheme proposed in [37].

Let l1 , l2 , l3 , L , and β be positive integers and q be a power-of-prime.
Also let kq = dlog qe . We propose a ZKAoK that proves knowledge of
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{
{τi}i∈[1,l3] ∈ {0, 1}

l3 ;v1 ∈ Zl2q ;v2 ∈ Zl2q ;

w ∈ {0, 1}kql1 ; s ∈ Z2l2
q ;m ∈ {0, 1}L

that satisfies 
B · v1 + (B0 +

l3∑
i=1

τi ·Bi) · v2 = u+D ·w

H ·w = D0 · s+D1 ·m
‖v1‖∞ ≤ β; ‖v2‖∞ ≤ β; ‖s‖∞ ≤ β

for public {
B ∈ Zl1×l2q ; {Bi}i∈[0,l3] ∈ (Zl1×l2q )l3+1;u ∈ Zl1q
D ∈ Zl1×kql1q ;D0 ∈ Zl1×2l2q ;D1 ∈ Zl1×Lq

where H = I l1 ⊗ (1 2 4 . . . 2kq−1) .

Again, we construct the argument via reducing the relation, which contains
a subset sum of linear equations and linear equations with short solutions, to an
instance of the relation R∗ .

First, we define vectors β1 = (β β . . . β)ᵀ ∈ Zl2q , β2 = (β β . . . β)ᵀ ∈ Z2l2
q ,

and define v′1 = v1 + β1 , v′2 = v2 + β1 and s′ = s+ β2 .

Then, we decompose vectors v′1 , v′2 and s′ into binary vectors v̄1 , v̄2 , and
s̄ using the decomposition technique proposed in [40]. Let k = blog 2βc + 1 ,
then the vectors v̄1 , v̄2 and s̄ are of length kl2 , kl2 and 2kl2 respectively.

Also, let g = (b(2β+ 1)/2c‖ . . . ‖b(2β+ 2i−1)/2ic‖ . . . ‖b(2β+ 2k−1)/2kc) be
a row vector. Then, we define the gadget matrix G1 = I l2 ⊗ g , G2 = I2l2 ⊗ g ,
and they satisfy that G1 · v̄1 = v′1 , G1 · v̄2 = v′2 and G2 · s̄ = s′ .

Next, for i ∈ [1, l3] , let ui = Bi · v2 and let u′i = τi · ui . Also, we define
û = (uᵀ

1‖u
ᵀ
2‖ . . . ‖u

ᵀ
l3

)ᵀ and û′ = (u′ᵀ1 ‖u
′ᵀ
2 ‖ . . . ‖u

′ᵀ
l3

)ᵀ . Moreover, define τ =
(τ1 τ2 . . . τl3)ᵀ .

Finally, we set

A =


0 0 −I l1l3 B̄ ·G1 0 0 0 0

0 J 0 B0 ·G1 B ·G1 −D 0 0

0 0 0 0 0 −H D0 ·G2 D1



x =
(
τᵀ û′ᵀ ûᵀ v̄ᵀ2 v̄ᵀ1 wᵀ s̄ᵀ mᵀ

)ᵀ
, y =


B̄ · β1

u+B0 · β1 +B · β1

D0 · β2
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where

B̄ =

 B1

...
Bl3

 , J = (I l1 I l1 . . . I l1)

Besides, let N = l3 + 2l1l3 + 2kl2 + kql1 + 2kl2 + L , we define
M1 = {(i, i, i)}i∈[1,l3]
M2 = {(i, i, i)}i∈[l3+2l1l3+1,N ]

M3 = {(l3 + l1 · (i− 1) + j, i, l3 + l1l3 + l1 · (i− 1) + j)}i∈[1,l3],j∈[1,l1]

where M1 indicates that each τi is binary, M2 indicates that v̄2, v̄1,w, s̄,m
are binary vectors, and M3 indicates that u′i = τi · ui for i ∈ [1, l3] . Then we
set M =M1 ∪M2 ∪M3 . In the new relation, the length of the witness is N
and the size of M is N − l1l3 .

We can also use the fast mode (mentioned in Sec. 1.2) to argue that v1 , v2
and s are short. This will lead to an instance of R∗ , where the length of the
witness is l3 + 2l1l3 + 4l2 + kql1 +L+ λ · (blog (2 · 4l2 · β)c+ 1) , and the size of
M is l3 + l1l3 + kql1 + L+ λ · (blog (2 · 4l2 · β)c+ 1) .

4.4 ZKAoK of Accumulated Value

In this section, we give an argument of knowledge of an accumulated value for
the accumulator scheme presented in [36].

More precisely, let l1 , L be positive integers and q be a power-of-prime.
Also, let kq = dlog qe and l2 = l1kq . We propose a zero knowledge argument of
knowledge that proves knowledge of

{{τi}i∈[1,L] ∈ {0, 1}L; {vi}i∈[1,L] ∈ ([0, 1]l2)L; {wi}i∈[1,L] ∈ ([0, 1]l2)L; }

that satisfies {
B1+τ1 · v1 +B2−τ1 ·w1 = H · u
∀i ∈ [2, L],B1+τi · vi +B2−τi ·wi = H · vi−1

for public
{B1 ∈ Zl1×l2q ;B2 ∈ Zl1×l2q ;u ∈ [0, 1]l1kq}

where H = I l1 ⊗ (1 2 4 . . . 2kq−1) .
We construct the argument via reducing the relation to an instance of the

relation R∗ . Note that the relation contains L parts, each of which is a disjunc-
tion of two equations, namely, B1 ·vi+B2 ·wi = H ·vi−1 and B1 ·wi+B2 ·vi =
H · vi−1 (here, we define v0 = u ). As shown in [36], each part can be trans-
formed into a subset sum of these two equations via setting the coefficients as
(1− τi, τi) . Next, we describe the reduction in more details.

First, for i ∈ [2, L] , we define zi,0 = B1 · vi +B2 · wi −H · vi−1 , zi,1 =
B1 ·wi +B2 · vi−H · vi−1 , z′i,0 = (1− τi) · zi,0 and z′i,1 = τi · zi,1 . Moreover,
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we set z1,0 = B1 · v1 +B2 ·w1 , z1,1 = B1 ·w1 +B2 · v1 , z′1,0 = (1− τ1) · z1,0
and z′1,1 = τ1 · z1,1 .

Then, we set τ 0 = (1 − τ1 1 − τ2 . . . 1 − τL)ᵀ and τ 1 = (τ1 τ2 . . . τL)ᵀ .
Also, we define ẑ′0 = (z′ᵀ1,0‖z

′ᵀ
2,0‖ . . . ‖z

′ᵀ
L,0)ᵀ , ẑ′1 = (z′ᵀ1,1‖z

′ᵀ
2,1‖ . . . ‖z

′ᵀ
L,1)ᵀ , ẑ0 =

(zᵀ1,0‖z
ᵀ
2,0‖ . . . ‖z

ᵀ
L,0)ᵀ , ẑ1 = (zᵀ1,1‖z

ᵀ
2,1‖ . . . ‖z

ᵀ
L,1)ᵀ , v̂ = (vᵀ1‖v

ᵀ
2‖ . . . ‖v

ᵀ
L)ᵀ ,

ŵ = (wᵀ
1‖w

ᵀ
2‖ . . . ‖w

ᵀ
L)ᵀ . Besides, we define û = ((H · u)ᵀ‖01×(L−1)·l1)ᵀ .

Finally, we set

A =



IL IL 0 0 0 0 0 0

0 0 I l1L I l1L 0 0 0 0

0 0 0 0 I l1L 0 M1 N2

0 0 0 0 0 I l1L M2 N1


x =

(
τᵀ
0 τᵀ

1 ẑ′ᵀ0 ẑ′ᵀ1 ẑᵀ0 ẑᵀ1 v̄ᵀ w̄ᵀ
)ᵀ
, y =

(
1L ûᵀ 0 0

)ᵀ
where

M1 =


−B1

H −B1

. . .
. . .

H −B1

 , M2 =


−B2

H −B2

. . .
. . .

H −B2


N1 = −IL ⊗B1, N2 = −IL ⊗B2

Besides, we define
M1 = {(i, i, i)}i∈[1,L]
M2 = {(i, i, i)}i∈[2L+4l1L+1,2L+4l1L+2l2L]

M3 = {(2L+ l1 · (i− 1) + j, 2L+ 2l1L+ l1 · (i− 1) + j, i)}i∈[1,L],j∈[1,l1]
M4 = {(2L+ l1L+ l1 · (i− 1) + j, 2L+ 3l1L+ l1 · (i− 1) + j, L+ i)}i∈[1,L],j∈[1,l1]

where M1 indicates that τ 0 is a binary vector, M2 indicates that v̄ and w̄
are binary vectors, M3 and M4 indicate z′i,0 = (1−τi) ·zi,0 and z′i,1 = τi ·zi,1
for i ∈ [1, L] respectively. Then we set M =M1 ∪M2 ∪M3 ∪M4 . Note that
as in the linear equation A · x = y , it is proved that τ 0[i] + τ 1[i] = 1 for
i ∈ [1, L] , the fact that τ 0[i] is binary implies that τ 1[i] is also binary. In the
new relation, the length of the witness is 2L + 4l1L + 2l2L and the size of M
is L+ 2l1L+ 2l2L .

4.5 ZKAoK of PRF Preimage

In this section, we give an argument for the weak pseudorandom function con-
structed implicitly in [5]. In paticular, the argument claims knowledge of a
key/input pair that evaluates to a public output.
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More precisely, let l1, l2 be positive integers, q0 be a prime and p = qe10 ,
q = qe20 , where 1 ≤ e1 < e2 , we propose a ZKAoK for the following relation:

RPRF = {(c), (B,k) ∈ (Zl1p )× (Zl1×l2q × Zl2q ) : c = bB · kcp mod p}

We construct the argument via reducing the relation RPRF to an instance of
the relation R∗ . First, we rewrite the equation c = bB · kcp mod p as follows:B · k = u mod q

bp
q
· uc = c mod p

The first equation is a linear equation with hidden matrix. The second equation,
as shown in [37, 58], holds iff each element of the vector u − q

pc is in [0, qp ) ,
and thus can be transformed into a linear equation with short solution. Next, we
describe the reduction in more details. We remark that in the remaining part of
this section, all arithmetic operations are under the modulus q , so we omit the
moduli in the remaining part of this section.

First, for i ∈ [1, l1] , we define bi as the i -th row of B and define vi as the
Hadamard product between bi and k , i.e., vi[j] = bi[j] · k[j] for j ∈ [1, l2] .

Let e = u− q
pc , then we decompose the vector e into a binary vector ē using

the decomposition technique proposed in [40]. Let γ = q
p−1 and k = blog γc+1 ,

then the length of ē is k · l1 .
Also, let g = (b(γ + 1)/2c‖ . . . ‖b(γ + 2i−1)/2ic‖ . . . ‖b(γ + 2k−1)/2kc) be a

row vector. Then, we define the gadget matrix G = I l1 ⊗g , and it satisfies that
G · ē = e .

Next, we define b = (bᵀ1‖ . . . ‖b
ᵀ
l1

)ᵀ ∈ Zl1·l2q and define v = (vᵀ1‖ . . . ‖v
ᵀ
l1

)ᵀ ∈
Zl1·l2q .

Finally, we set

A =

0 0 M −I l1 0

0 0 0 I l −G


x = (kᵀ bᵀ vᵀ uᵀ ēᵀ)

ᵀ
, y =

(
0

q

p
· cᵀ
)ᵀ

where M = I l1 ⊗ (1 1 . . . 1) ∈ Zl1×l1·l2q .
Besides, we define{
M1 = {(i, i, i)}i∈[l2+2l1l2+l1+1,l2+2l1l2+l1+kl1]

M2 = {(l2 + l1l2 + (i− 1) · l2 + j, l2 + (i− 1) · l2 + j, j)}i∈[1,l1],j∈[1,l2]

where M1 indicates that ē is a binary vector and M2 indicates that vi is the
Hadamard product between bi and k . Then we set M = M1 ∪M2 . In the
new relation, the length of the witness is l2 + 2l1l2 + l1 +kl1 , and the size of M
is kl1 + l1l2 .
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Remark 4.1. We remark that besides privacy-preserving primitives, our ZKAoK

for weak PRF also implies a lattice-based verifiable random function (VRF) with
trusted uniqueness (as formally defined in [52]).

More precisely, let λ be the security parameter. Let m,n, p, q be positive
integers that are polynomial in λ , where m ≥ n(log q+1)/(log p−1) . Let A be
a random matrix in Zm×nq and serves as a public parameter. The secret key of
the VRF is a random vector s ∈ Znq and the public key is a vector b = bA · scp
mod p . The evaluation algorithm outputs y = bH(x) · scp mod p on input a
bitstring x , where H is a hash function that maps an arbitrary-length bitstrings
onto a matrix in Zm×nq and is modeled as a random oracle. The proof for the
correct evaluation of the VRF on an input x is a ZKAoK that argues knowledge
of a secret key s s.t. b = bA · scp ∧y = bB · scp , where B = H(x) (Note that,
we do not need to hide the matrices in this argument.).

First, as proved in [58], with all but negligible probability over the choise of
A , the secret key and the public key are bijective. Then the trusted uniqueness
of the VRF follows directly from the soundness of the underlying arguments.
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