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Abstract. Non-malleable codes are encoding schemes that provide pro-
tections against various classes of tampering attacks. Recently Faust et
al. (CRYPTO 2017) initiated the study of space-bounded non-malleable
codes that provide such protections against tampering within small-space
devices. They put forward a construction based on any non-interactive
proof-of-space (NIPoS). However, the scheme only protects against an a
priori bounded number of tampering attacks.
We construct non-malleable codes that are resilient to an unbounded
polynomial number of space-bounded tamperings. Towards that we intro-
duce a stronger variant of NIPoS called proof-extractable NIPoS (PExt-NIPoS),
and propose two approaches of constructing such a primitive. Using a
new proof strategy we show that the generic encoding scheme of Faust
et al. achieves unbounded tamper-resilience when instantiated with a
PExt-NIPoS. We show two methods to construct PExt-NIPoS:
1. The first method uses a special family of “memory-hard” graphs,

called challenge-hard graphs (CHG), a notion we introduce here. We
instantiate such family of graphs based on an extension of stack of
localized expanders (first used by Ren and Devadas in the context
of proof-of-space). In addition, we show that the graph construction
used as a building block for the proof-of-space by Dziembowski et
al. (CRYPTO 2015) satisfies challenge-hardness as well. These two
CHG-instantiations lead to continuous space-bounded NMC with
different features in the random oracle model.

2. Our second instantiation relies on a new measurable property, called
uniqueness of NIPoS. We show that standard extractability can be
upgraded to proof-extractability if the NIPoS also has uniqueness.
We propose a simple heuristic construction of NIPoS, that achieves
(partial) uniqueness, based on a candidate memory-hard function
in the standard model and a publicly verifiable computation with
small-space verification. Instantiating the encoding scheme of Faust
et al. with this NIPoS, we obtain a continuous space-bounded NMC
that supports the “most practical” parameters, complementing the
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provably secure but “relatively impractical” CHG-based construc-
tions. Additionally, we revisit the construction of Faust et al. and
observe that due to the lack of uniqueness of their NIPoS, the re-
sulting encoding schemes yield “highly impractical” parameters in
the continuous setting.

We conclude the paper with a comparative study of all our non-malleable
code constructions with an estimation of concrete parameters.

1 Introduction

Non-malleable codes and tamper-resilience. The notion of non-malleable codes
(NMC) was put forward by Dziembowski, Pietrzak and Wichs [20] as an abstract
tool for protecting cryptographic devices against tampering attacks (e.g. [12]).
Intuitively, an encoding scheme (Encode,Decode) is called non-malleable with
respect to a class of tampering adversaries (modeled as functions or algorithms)
A if for any adversary A ∈ A and any message x, the output Decode ◦ A ◦
Encode(x) is independent of x, unless it is equal to x. It is straightforward to see
that A can not contain all efficiently computable functions because in that case
it is always possible to just decode a codeword c to x, modify (for example add
1) and re-encode x + 1; hence one must consider a restricted class A which
excludes functions able to encode or decode. Therefore, the NMC literature
(for example [32,24,1,16,25,29,2,15]) focuses on constructing encoding schemes
that are non-malleable against a meaningful, broad class of tampering functions;
notice that non-malleability against a broader A translates to protection against
stronger tampering attacks.

Leaky NMC for space-bounded tampering. One such interesting tampering class
is space-bounded tampering, in that the only restriction on A is that any (effi-
cient) tampering algorithm in this class can only use a limited amount of memory.
Space-bounded tampering captures the essence of mauling attacks performed by
malware that infect small-space devices like mobile phones. However, as noticed
by Faust et al. [22] (henceforth FHMV), for such tampering class it is unrea-
sonable to assume that a tampering algorithm can not decode. For example,
if decoding requires more space than what is available for the attacker, then
the encoded secret becomes unusable inside the device. The encoding algorithm,
on the other hand, can be reasonably space-intense and performed outside the
device. Therefore, it is possible to assume the space-bounded adversary cannot
perform encoding, therefore avoiding the aforementioned impossibility.

Moreover, even if A includes only Decode, “full-fledged” non-malleability is
still not achievable. To see this, consider an attacker that decodes c, learns the
message x and based on the first bit of x overwrites the memory of the device with
a precomputed encoding — leaking the first bit (this can be easily extended to an
attack that leaks any log(|x|) bits by tampering once). However, Faust et al. [22]
observed that all hope may not be lost if it is possible to guarantee that the
leakage is “not too much”. Formally FHMV defines a weaker notion called leaky
non-malleability, which guarantees that an encoding scheme satisfying the notion
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would leak only a limited amount of information about x. FHMV also showed
that this is sufficient for many applications. For example, they showed how one
can use such leaky NMC by trading-off tampering with leakage when x comes
from a high-entropy distribution (see Section 7 of [23] for more details).

Continuous space-bounded tampering. Traditional NMC (as defined in [20]) guar-
antees non-malleability when the attacker tampers only once. To use such NMC
for tamper-resilience (see [20] for more details), one needs to refresh the encod-
ing after each tampering. To combat this issue, in 2014, Faust et al. [24] pro-
poses the notion of continuous non-malleable codes that tolerates an unbounded
number of tampering attempts, which consequently removes the necessity of
re-encoding in the tampering application. Though FHMV’s definition of (leaky)
non-malleability allows continuous tampering, their construction (see Theorem 3
of [23]) only allows an a priori bounded number of tampering attempts (say θ)
because their parameters are related in a way that the leakage (say, `) is directly
proportional to θ. Hence, after a few tampering attempts, the leakage becomes
as large as |x|. Coming up with a construction that tolerates an unbounded
(polynomially large) θ was left open in FHMV (see Remark 2 of [23]).

1.1 Our Work

Leaky NMC for continuous space-bounded tampering. In this work we address
the open problem by proposing various constructions of non-malleable codes,
in all of which the leakage ` is proportional to the logarithm of the number of
tamperings, i.e. log(θ).4 No prior bound is required for θ in this case. However,
we do not claim that our solutions are strictly stronger than that provided in
FHMV, because we assume a “self-destruct” mechanism similar to the prior works
on continuous non-malleability (e.g. [24]). Roughly speaking, the “self-destruct”
mechanism requires the small-space device to erase its entire state (or make it
non-functional) once a tampering is detected. As already shown by FHMV, this
is a necessary requirement for achieving unbounded continuous space-bounded
tampering.

Our approach: Stronger non-interactive proof-of-space. FHMV’s encoding scheme
relies on any extractable non-interactive proof of space (simply called NIPoS)
In contrast, we introduce a new and stronger property of NIPoS called proof-
extractability and prove that when FHMV’s encoding scheme is instantiated
with a proof-extractable NIPoS (PExt-NIPoS), then we obtain a continuous
space-bounded NMC (CSNMC). We take two different approaches to construct
PExt-NIPoS — in the following few paragraphs we choose to outline them
through the natural flow of our attempts, instead of dividing strictly into two
distinct approaches.
4 In the rest of the paper whenever we say that an encoding scheme satisfies continuous
space-bounded non-malleability or is a CSNMC, we mean that the encoding scheme
is a leaky NMC for space-bounded tampering with ` ∝ log(θ).
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Proof-extractability from any NIPoS with uniqueness. Our starting point is the
construction of FHMV [22] which is based on any NIPoS. We show that any
NIPoS can be upgraded to a PExt-NIPoS if it has a special property called
uniqueness, which we define as a quantitative measure of a NIPoS. We no-
tice that the parameters of the resulting PExt-NIPoS (and consequently the
CSNMC scheme yielded via FHMV’s generic construction) is directly related
to the uniqueness parameter of the starting NIPoS. For example, if a NIPoS
has “maximal uniqueness”, then the resulting CSNMC incurs “minimal leakage”,
which is equal to p− |c| bits, where |c| is the codeword length and p is the avail-
able (persistent) space.Unfortunately, we do not know of a provably secure NIPoS
construction with maximal, or even a “reasonably good measure” of uniqueness
(later we propose a construction that satisfies partial uniqueness based on heuris-
tic assumptions). In fact, we show that the NIPoS used in FHMV (which is in
turn based on the PoS proposed by Ren and Devadas in [38]) has poor unique-
ness parameters and thus, when adapted to our proof-extractability technique,
yields a CSNMC which suffers from a leakage that is as large as ≈ p− |x|.

Modeling space-bounded adversary with bounded description. The lack of a NIPoS
with “good uniqueness” drives us to revisit the adversarial model of FHMV, in
particular, how they formalize the notion of space. In FHMV, which in turn fol-
lows the notion introduced by Dziembowski et al. [19], the adversary is separated
into two parts: a “big adversary” which is a PPT adversary with no space-bound,
and a “small adversary” that is a space-bounded poly-time adversary. In a se-
curity game, the big adversary starts interacting with the challenger, and then
outputs small adversaries which will then have access to the target codeword (or
the proof, in case of NIPoS) and execute tampering in a space-bounded manner.

We notice that FHMV assumes that the small adversary can have arbitrary
amount of auxiliary information hardcoded in its description (see Page-5 of [23]).
In reality this seems to be an overkill, because if the small adversary (e.g. mal-
ware) has a huge description, it might not even fit into a small-space device (e.g.
a mobile device), let alone executing tampering. So, it is reasonable to assume
that such adversary has a bounded size description. In particular, we define a
class of space-bounded adversaries as As,fspace containing all poly-time adversaries
that have a description of size at most f -bit and which require at most s-bit to
execute.

PExt-NIPoS from Challenge-hard Graphs (CHG). We define a new family of
“memory-hard graphs” called challenge-hard-graphs and construct PExt-NIPoS
for the class of space-bounded adversaries As,fspace from that. We provide two
instantiations of CHG: (i) The first one extends the stack of local expanders
(SoLEG), used by Ren and Devadas [38] in the context of proof-of-space. We uses
a novel technique to connect a gadget with a standard SoLEG in order to amplify
crucial challenge-hardness parameters. This technique may be of independent
interest. (ii) The second one uses the graph designed by Paul et al. [37] and used
by Dziembowski et al. [17], who use the notion of challenge-hardness implicitly to
construct proof-of-space. Both of the constructions use standard graph-pebbling
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techniques to ensure memory-hardness (and challenge-hardness) and work in the
random oracle model. Plugging-in these PExt-NIPoS constructions into FHMV’s
encoding scheme, we obtain CSNMC schemes with “almost minimal leakage”
` ≈ p− |c|.

A NIPoS with partial uniqueness based on heuristics. The constructions men-
tioned above all come with rigorous security proofs (in the random oracle model).
However, it turns out that in order to achieve reasonable security, the concrete
parameters of these constructions are fairly impractical. For example, for a mes-
sage of size 1 MB, the size of a codeword is almost 800 MB for the CHG-based
NMC constructions. To complement this, we take a step back on our initial idea
of constructing NIPoS with “good uniqueness”, and propose a simple and prac-
tical instantiation of NIPoS based on heuristic assumptions. The construction
uses a concrete instantiation of a memory-hard-function (MHF), and applies a
(non-interactive) publicly verifiable computation where the verification requires
small space. When the MHF is instantiated with the SoLEG-based construction
of Ren and Devadas [38], the resulting NIPoS has extractability and a “good
measure of uniqueness”. This yields a PExt-NIPoS with very good parameters
and, consequently, plugging-in that to FHMV’s encoding scheme we obtain a
CSNMC with very small proof size (in kilobytes), that also allows a leakage, as
small as p− 0.99|c|, in certain settings.

While the above scheme is practical, it is not provably secure, since we can
not assume that the hash-functions within the MHF are random oracles, as the
prover needs to access the circuit of the MHF to produce a proof of computa-
tion.Note that any MHF, while used in practice with concrete hash functions
(for example SHA3) for important practical applications [39], provides provable
guarantees only in the random oracle model (see, e.g. [6]). Instead, we rely on
heuristic assumptions that intuitively state that the MHF remains memory-hard
when the random oracle is instantiated with a standard hash function like SHA3.

Roadmap. We summarize our contributions below in Section 1.2. In Section 1.3
we provide an elaborative technical overview. Then, after providing prelimi-
naries in Section 3 and basic definitions of Continuous Space-bounded Tam-
pering in Section 4, we define the new NIPoS properties (uniqueness and proof-
extractability) in Section 5 where we also discuss their relations. In Section 6, we
show that the FHMV’s encoding scheme satisfies continuous space-bounded non-
malleability when instantiated with PExt-NIPoS. Section 7 introduces the notion
of challenge-hard-graphs and shows how to use them to construct PExt-NIPoS.
We provide a heuristic construction of NIPoS with (partial) uniqueness relying
on memory-hard functions in Section 8 and finally in Section 9, we conclude
with a instantiations and comparison of the important concrete parameters of
different encoding schemes we constructed.

1.2 Summary of our Contributions

Our overall contributions can be summarized as follows:
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– We propose the first constructions of continuous space-bounded (leaky) non-
malleable codes (with a necessary “self-destruct” mechanism) and thus re-
solve an open problem posed by FHMV [22]. Overall we propose four differ-
ent constructions of different merits; we provide a comparison in Table 1:

Approach PExt-NIPoS type Assumptions Leakage Size of A

CHG SoLEG-based RO ≈ p− |c| Bounded
PTC-based RO ≈ p− |c| Bounded

Uniqueness FHMV-based RO ≈ p− |x| Unbounded poly
MHF-based Heuristic ≈ p− 0.99|c| Unbounded poly

Table 1. Among the above constructions, the MHF-based one is the most practical one
whereas the SoLEG-based one has the best concrete parameters among the provably-
secure constructions. For a detail comparison of the concrete parameters please see
Table 2 in Section 9.

– We introduce various abstract notions of NIPoS, like proof-extractability and
uniqueness, and show relations among them. The abstractions are targeted
towards constructing CSNMC as the main end goal, but may be of inde-
pendent interests. We prove that the FHMV encoding scheme is a CSNMC
when instantiated with any PExt-NIPoS.

– We propose different techniques to construct a PExt-NIPoS. We introduce
the notion of challenge-hard graphs and show how to build PExt-NIPoS from
that. We propose a novel technique to bootstrap the important challenge-
hardness parameters of a CHG by carefully connecting a gadget to a special
type of memory-hard graphs (SoLEG). Furthermore, we provide a simple
construction of partially unique NIPoS that yields “reasonably practical” pa-
rameters for the resulting PExt-NIPoS and CSNMC. It is based on heuristic
assumptions on memory-hard functions and complements the provably se-
cure but “relatively impractical” CHG-based constructions.

– Finally we provide a comparative study of the most important parameters of
all our CSNMC constructions with respect to concrete instantiations. This
helps us to understand the practical impacts of different techniques and
constructions proposed in this work.

1.3 Technical Overview

Revisiting FHMV’s construction. We start by briefly revisiting the construction
of FHMV [22]. Recall that FHMV’s generic encoding scheme is based on any
extractable (non-interactive) proof-of-space (NIPoS).

First let us briefly recall the notion of proof-of-space introduced in [7,17].
In an interactive proof-of-space (PoS) protocol, a prover P interactively proves
that she has “sufficient amount of space/memory” to a space-bounded verifier V.
One can use Fiat-Shamir transformation [27] to make it non-interactive, in that
the entire proof can be represented as one single string, say πid , with respect
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to an identity id . The verifier is able to verify the pair (id , πid) within bounded
space. Extractability of NIPoS guarantees that: given an honestly generated
pair (id , πid), if a space-bounded “small adversary” A is able to compute another
valid (i.e. correctly verified) pair (id ′, πid′) such that id 6= id ′, then id ′ can be
efficiently extracted from the RO queries made by the “big adversary” B (that
has no space-restriction and may be represented by a PPT algorithm) given a
“small hint”5.

Given a NIPoS, FHMV’s encoding scheme works as follows. On input a mes-
sage x, the space-intense encoding algorithm runs the prover of NIPoS on an
identity x to generate a proof πx. The codeword c is simply the pair (x, πx). The
space-bounded decoding algorithm, on receiving c = (x, πx), runs the (space-
bounded) verifier. If the verification passes, it returns x, otherwise it returns ⊥
denoting the invalidity of c. Intuitively, non-malleability follows from the guar-
antee provided by NIPoS; namely, whenever the small adversary tampers to a
valid codeword (x′, πx′), the new message x′ must be independent of the input
message x.

To be slightly more formal, to show that this encoding scheme is non-malleable
against space-bounded attacker, one needs to simulate the tampering experiment
with “a small leakage” on x. Given the extractability, the simulator can be con-
structed as follows: the leakage is obtained using the “small hint”. As guaranteed
by the extractability of NIPoS, since the “small hint” (of length η, say) is suffi-
cient to extract id ′, each tampering can be simulated by first obtaining the hint
as a leakage and then running the NIPoS-extractor to obtain id ′. Clearly, this
strategy runs into problem for unbounded continuous tampering as the overall
leakage ` becomes proportional to θ ·η (where θ denotes the number of tampering
queries).

Proof-extractability to the recovery. The above discussion shows that we possibly
need a stronger guarantee from the underlying NIPoS to make FHMV’s encoding
scheme a CSNMC. Towards that, we introduce a stronger property of a NIPoS
called proof-extractability (PExt-NIPoS). It guarantees that, given a “small hint”
(of length η′, say), it is possible to construct a stronger extractor that extracts
not only the changed identity, but also the changed proof: (id ′, πid′). Intuitively,
this means that if a small adversary computes a valid pair (id ′, πid′), then the “big
adversary” must have computed the entire proof πid′ (as opposed to a part of the
proof as for NIPoS) outside the small-space device; hence, enabling extracting
the entire proof from the RO queries made by B only.

Given the proof-extractor, the new NMC simulator works as follows: it uses
the hint to get a “small leakage” and then runs the proof-extractor to obtain
5 Note that we made some syntactical change to FHMV’s definition of extractability
by introducing an explicit hint-producing function. We introduce the length of the
hint as a new extractability parameter which must be small for making the definition
meaningful. For example, if the leakage function leaks the entire pair (id ′, π′id), then
the definition would be trivially satisfied. Looking ahead, in the proof of CSNMC
this hint will be used by the NMC simulator as a leakage to simulate the tampering
experiment. For more details we refer to Section 5.
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(id ′, πid′). Furthermore, the simulator also needs an extra leakage, which consists
of the “extra persistent space” (of size p− |c|)— now the simulator reconstructs
the entire persistent tampered state and can continue the rest of the tampering
experiment without having to make any further leakage query. However, to avoid
any leakage before the first tampering takes place (for example, if the first 100
tampering functions are identities), the simulator needs to know the index when
the target codeword changes for the first time in the sequence of tampering
and for that the leakage becomes proportional to log(θ). Overall, the simulator
only needs to make a constant number of leakage queries (two, to be precise)
to simulate any (polynomial) number of tampering, as opposed to making one
leakage query for each tampering. The overall leakage becomes ` ∝ log(θ) +
η′ + (p − |c|) thereby achieving CSNMC. Therefore, the main question that
remains is how to construct PExt-NIPoS, which will be described in the next
few paragraphs.

Uniqueness and Proof-extractability. We observe that, if a NIPoS has a spe-
cial property, called uniqueness, then it satisfies proof-extractability. Intuitively,
uniqueness means for a fixed identity id , there exists exactly one string πid such
that πid verifies correctly with respect to id . Unfortunately, we do not know how
to construct a NIPoS with such property (even under heuristic assumptions).
Therefore, to have a more relaxed and fine-grained notion, we define unique-
ness as a quantitative measure: a NIPoS has upos-uniqueness means that, for any
identity id , the first upos bits of any valid πid are fixed and can be computed
efficiently with overwhelming probability.

We then show (in Lemma 1) that any upos-unique NIPoS satisfies proof-
extractability, where the size η′ of the hint required for PExt-NIPoS depends on
upos as: η′ = η + npos − upos, where η denotes the size of the hint of the starting
NIPoS and npos denotes the size of the proof. This follows naturally from the
construction of the hint-producing function of PExt-NIPoS, as the hint for the
proof extractor needs to contain enough information to extract both id ′ and
πid′ . Now id ′ can be extracted from the hint produced via the starting NIPoS
(by standard extractability); given id ′ the proof-extractor can compute the first
upos bits of πid′ ; but the remaining part, which has length npos − upos, must be
separately output by the hint-producing function of PExt-NIPoS. Notice that,
maximal uniqueness means upos = npos which in turn implies η′ = η. Hence, if
FHMV’s encoding scheme is instantiated with a maximally unique NIPoS, part
of the leakage of the resulting CSNMC would be determined by only η and hence
would be minimal. We leave the task of constructing a maximally unique NIPoS
as an interesting open problem. On the other hand, we observe that the NIPoS
considered by FHMV has upos ≈ 0 and hence the leakage is largely dominated
by η + npos, resulting in much worse parameters.

Partially unique-NIPoS from memory-hard functions. We are able to construct
an NIPoS with reasonably large upos from heuristic assumptions on memory-hard
functions. The construction is very simple: letM be a concrete instantiation of a
memory-hard function, which guarantees that any space-bounded adversary can



Continuous Space-Bounded Non-Malleable Codes from Stronger POS 9

not compute the function on a randomly chosen input in polynomial time. Let
us assume a verifiable computation scheme (VC) where the verification can be
done in small-space. Then the NIPoS prover works as follows: given an identity
id , first compute a hash (that is assumed to be a random oracle) to generate
a random value x := H(id), then compute y := M(x) and finally run the VC
prover to produce a proof πvc to prove that y is indeed obtained by computing
M(x). The proof-of-space is then defined to be the pair (M(x), πvc). The NIPoS
verifier works naturally by first computing x = H(id) and then verifying the
proof πvc in small-space.

To see that the construction above yields a NIPoS with good uniqueness,
first note that the extractability follows from the fact that the function M is
memory-hard and can not be computed on a random input by a space-bounded
“small adversary”; hence, the “big adversary” must have queried on id ′ beforehand
enabling extraction of id ′ from B’s RO queries. Note that here we also need to
rely on the soundness of VC as otherwise the small adversary could just compute
a different “memory-easy” function and “fake” the proof of computation to fool
the verifier. Moreover, note that, the first part of the NIPoS proof is indeed
uniquely determined (with overwhelming probability any other string would fail
to verify as guaranteed by the soundness of the VC scheme), whereas the second
part, i.e. the proof πvc, is not. So, overall we have a NIPoS with upos = |y|.
Since the VC produces a short proof to enable small-space verification (we use
Pinocchio [36] to instantiate), we are able to have a NIPoS with fairly large upos,
which in turn leads to a CSNMC with very good parameters.

PExt-NIPoS from Challenge-hard graphs (CHG). In addition to the heuristic
construction above, we also construct a provably secure PExt-NIPoS in the ran-
dom oracle model, albeit with an additional restriction on the class of space-
bounded adversaries, namely assuming that the description size of a small-space
adversary is also bounded (as discussed in Section 1.1).

To do so, we define a new notion of memory-hard graphs, called challenge-
hard graphs (CHG). Recall that, special types of DAGs are used for memory-
hardness and for constructing proof-of-space via graph-labeling games. Usually,
labels are the output of the hash functions modeled as random oracles (therefore
are not “compressible”). In a graph-based proof of space constructions (e.g. [38]),
an honest prover computes the labeling of the entire graph ensuring the usage
of significant amount of space. Small-space verification is done by checking the
labels of a few randomly selected nodes (or challenge nodes) of the graph — this
guarantees that the “small adversary” cannot put too many fake labelings (a.k.a.
faults) without storing them and thereby ending up using less memory.

However, such verification leaves room for computing a small part of the proof
inside the small-space device — for example, consider a multi-layered DAG (e.g.
a stack of bipartite graphs), for which a “big adversary” computes the labeling
of the entire graph except for a single node in the last layer, and the “small
adversary” easily computes the label of the node inside the small-space device.
As a result the entire proof can not be extracted only from B’s RO queries,
making proof-extractability impossible.
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To remedy this issue, we replace the traditional memory hard graphs with
CHG, which contains another carefully chosen set of challenges and guarantees
that, even if a “big adversary” computes the labeling of the entire graph except for
a few nodes and send a bounded hint to the “small adversary”, it is still infeasible
to compute the labels of the new challenge nodes with a small-space device. Let
us remark that such a guarantee is only possible when the small adversary has
a small description size (i.e., the hint from the “big adversary” is small), as
otherwise the small adversary, for example, can hard-code the entire labeling
for whole graph including all possible challenges, making challenge hardness
impossible. As discussed in Section 1.1, we propose two instantiations of CHGs
with different merits with respect to their parameters.

2 Related Works

Our work can be categorized among the work on non-malleable codes against
global tampering, where the entire codeword is subject to tampering, as opposed
to granular tampering, where the codeword is split into independently tamper-
able parts. In the NMC literature, majority of work, e.g. [32,28,2,1,15,31,30,13]
falls into the the later category; among them [13] considers, a weaker notion
(non-malleability with replacement) of NMC like us (leaky-NMC). A few other
works, e.g. [26,5,9,10] consider global tampering. Moreover, most of these work
consider one-time tampering. Continuous tampering, first proposed in [24], is
addressed also in [21,3,35,4,25]. Except FHMV [22], the recent work by Ball et
al. [10] also considers space-bounded NMC, albeit in a streaming model. Our
modeling of space-bounded adversary, which is also adapted in FHMV is used
in earlier woks like [19,18] for constructing different schemes. For more detail on
different NMC-based compilers for tamper-resilience we refer to [34].

3 Preliminaries

3.1 Notation

For a string x, we denote its length by |x|; a truncated string from i-th bit
to j-th bit is denoted by x[i . . . j]; for a a ∈ N, bit(a) ∈ {0, 1}∗ is its boolean
representation and bit−1 is the corresponding inverse function; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we
write x←$ X . When A is an algorithm, we write y ← A(x) to denote a run of
A on input x and output y; if A is probabilistic, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is
probabilistic polynomial-time (PPT) if A is probabilistic and for any input x and
a randomly chosen r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most
a polynomial (in the input size) number of steps. We often consider oracle-aided
algorithms AO(·), with access to an oracle O(·).

For any string x, and any hash function H, we use the notation Hx to denote
the specialized hash function that accepts only inputs with prefix equal to x.
Often the hash function is modeled as a random oracle.
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We consider Turing Machine as our model of computation where any algo-
rithm A is formally represented as a binary string. Any string w hardwired into
A is denoted in the subscript as Aw and also becomes part of its description. An
algorithm A has a state stA ∈ {0, 1}∗ that does not include the description of A.
stA is typically initialized with the input x and (optionally) some other auxil-
iary information. At each time step stA is updated. At termination A returns an
output y also denoted as A(x). If A is a stateful algorithm then it also outputs
the state stA.

We denote with λ ∈ N the security parameter. In the rest of the paper λ
will always be an implicit security parameter and any other parameter will be a
function of λ. A function ν : N→ [0, 1] is negligible in the security parameter (or
simply negligible), denoted ν(λ) ∈ negl(λ), if it vanishes faster than the inverse
of any polynomial in λ, i.e. ν(λ) = λ−ω(1). A function µ : N→ R is a polynomial
in the security parameter, written µ(λ) ∈ poly(λ), if, for some constant c ≥ 1,
we have µ(λ) ∈ O(λc).

We defer a few basic definitions to the full version [14].

3.2 Bounded Algorithms

In this paper we will be dealing with algorithms that are restricted in terms of
different resources. In particular we consider two main types of resource: time
and space. Importantly, in contrast with [22] we split the space-usage into two
parts: (i) the space required to store the algorithm and (ii) additional space
used by it. Faust et al. [22] only assumes concrete measure of the latter one and
the former one was implicitly assumed to be an unbounded polynomial in the
security parameter. We formalize the notion of bounded algorithms below.

Definition 1 (Bounded algorithms). Let A be an algorithm such that (i) f -
bits are sufficient to describe the code of A, (ii) at any time during its execution,
the state of A can be described by at most s bits and (iii) on any input, A runs for
at most t time-steps. Then we say that A is a (s, f, t)-bounded algorithm. For such
algorithms we have fA ≤ f, sA ≤ s and tA ≤ t (with the obvious meaning). Some-
times, for simplicity, we will call an (s,poly(λ),poly(λ))-bounded algorithm just
s-space-bounded, an (s,poly(λ), t)-bounded algorithm (s, t)-space-time bounded
and an (s, f,poly(λ))-bounded algorithm (s, f)-total-space-bounded.

Note that the bound f the size of A is also an upper bound on the hardwired
auxiliary information. We stress that, similarly to previous works [18,19], in
case A is modeled as a Turing machine, we count the length of the input tape
and the position of all the tape heads within the space bound s. Given an input
x ∈ {0, 1}n, and an initial configuration σ ∈ {0, 1}s−n, we write (y, σ̃) := A(x;σ)
for the output y of A including its final configuration σ̃ ∈ {0, 1}s−n.

Intuitively, a coding scheme can be decoded in bounded space if the decoding
algorithm is space bounded. A formal definition is deferred to full version [14].
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4 Continuous Space-bounded Tampering

Space-bounded Tampering algorithms. We assume that tampering al-
gorithms are deterministic6, sequential and (s, f)-total-space-bounded, where
s, f ∈ N are tunable parameters and are usually functions of the security pa-
rameter λ. Let us denote the class of all such algorithms by As,fspace. When the
context is clear, we might just refer to As,fspace by Aspace for simplicity. Generally
any A ∈ As,fspace will be often referred to as a space-bounded tampering algorithm.

Oracles. Next we define space-bounded tampering oracle with self-destruct. In
contrast with [22] (Definition 5) our tampering oracle has the “self-destruct”
mechanism.

Definition 2 (Space-bounded Tampering Oracle with Self-destruct). A
space-bounded tampering oracle with self-destruct OΠ,x,pp,s,f,preal-sd is parametrized
by a (k, n)-code Π = (InitH,EncodeH,DecodeH), a string x ∈ {0, 1}k, public
parameters pp ∈ {0, 1}∗ and integers s, p ∈ N (with s ≥ p ≥ n). Initially,
the oracle assigns a flag sd := 0, and sets a state st := (c, σ), where c :=
EncodeH(pp, x), and σ := σ0||σ1 := 0p−n||0s−p. Given input a space-bounded
tampering algorithm A ∈ As,fspace, the oracle works as follows:

Oracle OΠ,x,pp,s,f,preal-sd (A):
Parse st = (c, σ0, σ1)
(c̃, σ̃0, σ̃1) := AH(c;σ0||σ1)
Update st := (c̃, σ̃0, 0

s−p)
x̃ := DecodeH(pp, c̃); If x̃ = ⊥ then sd := 1
If sd = 1 return ⊥
Return x̃.

We recall from [22] the definitions of the leakage O`,xleak that can be queried in
order to retrieve up-to ` bits of information about x and the simulation oracle
which would use the leakage oracle to simulate the output of the tampering
experiment.

Definition 3 (Leakage oracle). A leakage oracle O`,xleak is a stateful oracle that
maintains a counter ctr that is initially set to 0. The oracle is parametrized by
a string x ∈ {0, 1}k and a value ` ∈ N. When O`,xleak is invoked on a polynomial-
time computable leakage function L, the value L(x) is computed, its length is
added to ctr, and if ctr ≤ `, then L(x) is returned; otherwise, ⊥ is returned.

Definition 4 (Simulation oracle). A simulation oracle OS2,`,x,s,f,pp
sim is an or-

acle parametrized by a stateful PPT algorithm S2, values `, s ∈ N, some string
x ∈ {0, 1}k, and public parameters pp ∈ {0, 1}∗. Upon input a space-bounded
tampering algorithm A ∈ As,fspace, the output of the oracle is defined as follows.
6 This is without loss of generality, as in the tampering setting A is chosen by PPT
distinguisher D (“big adversary” in our case) who can just hardwires its truly random
coin to A.
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Oracle OS2,`,x,s,f,pp
sim (A):

Let x̃← S
O`,xleak(·)
2 (1λ, pp,A)

If x̃ = same? set x̃ := x.
Return x̃.

Space-bounded Continuous Non-malleability. Our definition is broadly the same
as in [22] with slight modifications: here the real tampering oracle Oreal-sd has
self-destruct in it and we consider a concrete non-malleability error-bound εnm.

Definition 5 (Space-bounded continuous non-malleability with self-
destruct). For parameters k, n, `, s, f, p, θ, d, nH ∈ N (with s ≥ p ≥ n) and
εnm ∈ [0, 1) let H : {0, 1}∗ → {0, 1}nH be a random oracle, then we say a
(k, n)-code Π = (InitH,EncodeH,DecodeH) is an `-leaky (s, f, p)-space-bounded7

(θ, εnm)-continuously non-malleable code with self-destruct with d-space-bounded
decoding (or (`, s, f, p, θ, d, εnm)-SP-NMC-SD) in the ROM if Π satisfies the fol-
lowing conditions:

– Space-bounded decoding: DecodeH is d-space-bounded.
– (`, θ, εnm)-continuous non-malleability: For any PPT distinguisher D

that makes at most θ queries to the tampering oracle Oreal-sd, there exists a
pair of PPT algorithms (also called the simulator) S = (S1,S2), such that
for all x ∈ {0, 1}k and λ ∈ N,∣∣Pr [DH(·),OΠ,x,pp,s,f,preal-sd (·)(pp) = 1 : pp← InitH(1λ)

]
− Pr

[
DS1(·),O

S2,`,x,s,f,pp
sim (·)(pp) = 1 : pp← InitS1(1λ)

] ∣∣ ≤ εnm,
the randomness coming from H, Init, D, S = (S1,S2) and encoding of Oreal-sd.

We are interested in constructing an encoding scheme which satisfies Defini-
tion 5 with any choice of θ = poly(λ). Recall from Section 3.2 of [22] that, in
this case, self-destruct is necessary in order to achieve a meaningful notion of
non-malleability as otherwise whenever θ ≥ n it is impossible to achieve space-
bounded non-malleability for any non-trivial8 leakage `.

5 Non-Interactive Proof of Space (NIPoS)

As in [22], the main building block of our NMC construction is Non-Interactive
Proof of Space (for short NIPoS). Intuitively, a NIPoS allows a prover to convince
a verifier that she has a lot of space/memory. Importantly, the verification done
on the verifier’s side is space efficient.
7 Note that the terminology “space-bounded" is slightly overloaded as we use it both
for an encoding scheme as well as for an algorithm (cf. Definition 1.)

8 Recall that for any non-trivial leakage we must have ` ≤ k − ω(log k) as otherwise
the tampering adversary learns (almost) all information about the input rendering
the notion useless.
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We start by recalling the definition of NIPoS from [22] adjusted to (s, f, t)-
bounded algorithms. We split the definitions completeness and extractability
here. Then we define property called proof-extractability. We made some syn-
tactical changes to the definition of extractability to align it with the proof-
extractability definition. Finally we define a new quantitative measure of NIPoS
called uniqueness and show that uniqueness, when combined with extractability
gives proof-extractability.

Definition 6 (Non-interactive proof of space (NIPoS)). For parameters
sP, sV, kpos, npos ∈ N with sV ≤ s < sP an (kpos, npos, sP, sV)-non-interactive
proof of space scheme (NIPoS for short) in the ROM consists of a tuple of PPT
algorithms (SetupH,PH,VH) with the following syntax.

– SetupH(1λ): This is a randomized polynomial-time (in λ) algorithm with no
space restriction. It takes as input the security parameter and outputs public
parameters pppos ∈ {0, 1}∗.

– PHpppos(id): This is a probabilistic polynomial-time (in λ) algorithm that is
sP-space-bounded. It takes as input an identity id ∈ {0, 1}kpos and hard-wired
public parameters pppos, and it returns a proof of space π ∈ {0, 1}npos .

– VHpppos(id , π): This algorithm is sV-space-bounded and deterministic. It takes
as input an identity id , hard-wired public parameters pppos, and a candidate
proof of space π, and it returns a decision bit.

We require completeness to hold:

Completeness: For all id ∈ {0, 1}kpos , we have that

Pr
[
VHpppos(id , π) = 1 : pppos ← SetupH(1λ);π ← PHpppos(id)

]
= 1,

where the probability is taken over the internal random coins of the algo-
rithms Setup and P, and over the choice of the random oracle.

We define the extractability of a NIPoS separately as follows.

Definition 7 (Extractability of NIPoS). Let NIPoS = (SetupH,PH,VH) be
an (kpos, npos, sP, sV)-non-interactive proof of space scheme. Let s, f, t, η ∈ N
and εpos ∈ [0, 1) be parameters with sV ≤ s < sP. Then we say that NIPoS is
(s, f, t, η, εpos)-extractable (Ext-NIPoS) if there exists a polynomial-time deter-
ministic algorithm K (the knowledge extractor) and a deterministic efficiently
computable function Fhint : {0, 1}∗ → {0, 1}η such that for any probabilistic po-
lynomial-time algorithm B, we have

Pr[Gext
B,id(λ) = 1] ≤ εpos,

for the game Gext
B,id(λ) defined as follows:

Game Gext
B,id(λ):

1. Sample pppos ← SetupH(1λ) and π ← PHpppos(id).
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2. Let A ← BHpppos(id , π) such that A ∈ As,fspace (if this condition fails,
then output 0 and stop).

3. Let (ĩd , π̃) := AH(id , π).
4. Let z := Fhint(pppos,QH(B), ĩd).
5. Let α := K(pppos,QH(B), z).
6. Output 1 if and only if: (i) VHpppos(ĩd , π̃) = 1; (ii) ĩd 6= id and (iii)

ĩd 6= α; otherwise output 0,

where the set QH(B) contains the sequence of queries of B to H and the cor-
responding answers, and where the probability is taken over the coin tosses of
Setup,B,P and over the choice of the random oracle.

Extractability guarantees that if the space bounded adversary A successfully
tampers to a new pair (ĩd , π̃), the identity ĩd can be extracted from the query
table of the algorithm B, i.e., the pair (ĩd , π̃) was (partially) precomputed by
B. Let us stress that knowledge of ĩd does not generally imply knowledge of the
entire pair (ĩd , π̃). This is because there might be many different π̃ for which
VHpppos(ĩd , π̃) = 1, unless, of course, there is a unique such π̃. In order guaran-
tee extraction of the entire pair (ĩd , π̃), we need NIPoS to satisfy a stronger
extractability property, which we call Proof-Extractability and define next.

Definition 8 (Proof-Extractability of NIPoS). Let NIPoS := (SetupH,PH,
VH) be a (kpos, npos, sP, sV)-non-interactive proof of space scheme. Let s, f, t, η ∈
N and εp-ext ∈ [0, 1) be parameters such that sV ≤ s < sP. Then NIPoS is called
(s, f, t, η, εp-ext)-proof extractable (PExt-NIPoS) if there exists a polynomial time
deterministic algorithm K (the proof-extractor) and an efficiently computable
deterministic function Fhint : {0, 1}∗ → {0, 1}η such that for any PPT algorithm
B and any identity id ∈ {0, 1}kpos , it holds that

Pr[Gpext
B,id(λ) = 1] ≤ εp-ext,

for the game Gpext
B,id(λ) defined as follows:

Game Gpext
B,id(λ):

1. Sample pppos ← SetupH(1λ) and π ← PHpppos(id).
2. Let A ← BHpppos(id , π) such that A ∈ As,fspace (if this condition fails,

then output 0 and stop).
3. Let (ĩd , π̃) := AH(id , π).
4. Let z := Fhint(pppos,QH(B), (ĩd , π̃))
5. Let α := K(pppos,QH(B), z)
6. Output 1 if and only if: (i) VHpppos(ĩd , π̃) = 1; (ii) ĩd 6= id and (iii)

(ĩd , π̃) 6= α; otherwise output 0,

where the set QH(B) is the random oracle query table of B.9 The probability is
over the choice of the random oracle, and the coin tosses of Setup,B.
9 Note that B does not make RO queries after outputting the small adversary A.
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Remark 1. Note that, in the above definition the hint-producing function takes
the pair (ĩd , π̃) as opposed to only ĩd as in Definition 7. Intuitively this means
that, given some small hint, the extractor does not only return the changed
identity, but the identity-proof pair. Clearly this makes the latter definition
stronger.

As mentioned above, when there is a unique valid proof corresponding to each
identity, then proof-extractability reduces to simply extractability. Nevertheless,
it may also be possible that only a part of the proof is uniquely determined. We
formalize this by the following definition.

Definition 9 (Uniqueness of NIPoS). Let NIPoS := (SetupH,PH,VH) be
a (kpos, npos, sP, sV)-NIPoS. Then NIPoS is called (upos, εunique)-unique (where
upos ≤ npos, upos ∈ N and εunique ∈ negl(λ)) if for any λ ∈ N, there is a determin-
istic function J : {0, 1}∗×{0, 1}kpos → {0, 1}upos such that for pppos ← SetupH(λ),
any identity id ∈ {0, 1}kpos and any π ∈ {0, 1}npos , if VHpp(id , π) = 1, then
J(pppos, id) = π[1 . . . upos] with probability at least 1 − εunique (where the prob-
ability is over the randomnesses of SetupH and PH).

Remark 2. Intuitively, the definition says that for a valid proof π, a part of π
(first upos bits in this case) can be uniquely and efficiently determined given the
id and the public parameters pp with overwhelming probability.

In the following lemma, we formally show that uniqueness and extractabil-
ity together imply proof-extractability. To see this, observe that, e.g., maximal
uniqueness implies that given ĩd , the corresponding πĩd is fixed and hence it
suffices to provide the PExt-NIPoS hint-producer only with ĩd .

Lemma 1. Let NIPoS := (SetupH,PH,VH) be a (kpos, npos, sP, sV)-NIPoS that
is (upos, εunique)-unique and (s, f, t, η, εpos)-extractable. Then NIPoS is (s, f, t, η′,
εp-ext)-proof-extractable where

η′ = η + npos − upos εp-ext ≤ εpos + εunique

The proof is deferred to the full version [14].

6 Space-bounded NMC from Proof-Extractable NIPoS

The following theorem, which is proven in the full version [14], states that the
above construction is a continuous non-malleable code for any θ ∈ poly(λ).

Theorem 1. Let λ be a security parameter and H : {0, 1}∗ → {0, 1}nH be a hash
function modeled as a random oracle. Let {PRFχ : {0, 1}∗ → {0, 1}nH}χ∈{0,1}nkey

be any (∗, nH, nkey, εpr)-PRF, (defined formally in full version [14]) where nkey ∈
poly(λ). Let (SetupH,PH,VH) be any (kpos, npos, sP, sV)-NIPoS that is (s, f,poly(λ),
η, εp-ext)-proof-extractable. Then for any θ ∈ poly(λ), the (k, n)-code Π = (InitH,

EncodeH,DecodeH) defined above is an (`, s, f, p, θ, sV, εnm)-SP-NMC-SD in the
ROM, where
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k = kpos n = kpos + npos kpos + npos ≤ p < n+ k −O(log(λ))

` = p− n+ dlog θe+η + 2 εnm = εpr + εp-ext

The above theorem together with Lemma 1 imply that the encoding scheme of
Faust et al. satisfies Definition 5 also when instantiated with any Ext-NIPoS
with (partial) uniqueness. This is formalized in the following corollary:

Corollary 1. Let λ be a security parameter and H : {0, 1}∗ → {0, 1}nH be a
hash function modeled as a random oracle. Let {PRFχ : {0, 1}∗ → {0, 1}nH}χ∈{0,1}nkey

be any (∗, nH, nkey, εpr)-PRF where nkey ∈ poly(λ). Let (SetupH,PH,VH) be
any (kpos, npos, sP, sV)-NIPoS that is (s,poly(λ),poly(λ), η, εpos)-extractable and
(upos, εunique)-unique. Then for any θ ∈ poly(λ), the (k, n)-code Π = (InitH,

EncodeH,DecodeH) of FHMV is an (`, s,poly(λ), p, θ, sV, εnm)-SP-NMC-SD in
the ROM, where

k = kpos n = kpos + npos kpos + npos ≤ p < n+ k −O(log(λ))

` = p− k − upos + dlog θe+ η + 2 εnm = εpr + εpos + εunique.

7 Constructing Proof-Extractable NIPoS from CHG

7.1 Challenge-Hard Graphs (CHG)

In this section we introduce the concept of challenge-hard graphs (CHG for
short) which we use it to construct proof-extractable NIPoS. We remark that
the notion of challenge hardness has similarities with a notion introduced in [17].
In particular, in Section 4 of [17], the authors informally described a pebbling
game which is similar to the game in our notion (Definition 10).

Challenge hard graphs are parameterized by the following variables: Nc, β,N,
τc, t, ε, where N is the size of the graph; τc is the number of challenge nodes,
where all the challenges are in a pre-defined target set Vc; Nc is the size of the
target set Vc; β ·Nc = Ω(Nc) is the budget on the number of pebbles available; t
is an upper bound on the running time of pebbling strategies; and ε is an upper
bound on the winning probability of the pebbling challenge game.

Definition 10 (Challenge Hard Graphs (CHG)). A family of directed acyclic
graphs {Gλ}λ∈N (with constant in-degree)10 is (β,Nc, N, τc, t, ε)-challenge-hard
10 We require the in-degree of the graph to be a constant, because for graph-labeling in

the ROM this captures the essence of the standard model. To see this assume that
H is implemented by an iteration-based scheme (e.g., Merkle-Damgård extension),
and thereby to compute the hash output, it is sufficient to store only a few labels
at each iteration step. However, while in the ROM computing a label label(v) :=
H(v, label(pred(v))) is only possible if the entire labeling label(pred(v)) is stored. If the
in-degree is high (e.g. super-constant) this distinction would affect the parameters.
We refer to Appendix B.3 in [11] for more discussions.
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(where β ∈ (0, 1) is a constant, and other parameters are functions of λ), if for
every λ ∈ N and graph G = Gλ = (V,E) (with N = N(λ) vertices), there exist τc
target sets (possibly with overlapping) V (1)

c , . . . , V
(τc)
c ⊆ V such that the union

of the target sets
Vc := V (1)

c ∪ · · · ∪ V (τc)
c ⊆ V

has Nc vertices, and the following property is satisfied:

For any pebbling strategy B = (B1,B2) it holds that

AdvpebB,β,t,τc,G
(λ) := Pr

[
Gpeb

B,β,t,τc,G
(λ) = 1

]
≤ ε ,

where the pebbling game Gpeb
B,β,t,τc,G

(λ) is defined as follows.
Game Gpeb

B,β,t,τc,G
(λ):

1. Let P0 ← B1 be a pebbling configuration, where |P0| ≤ β ·Nc.
2. Let chal ← Dτc be τc random challenge vertices (possibly with

overlapping), where Dτc is the uniform distribution over V 1
c ×

· · · × V (τc)
c .

3. Let P = (P0, . . . , Pt(P))← B2(P0, chal) be a pebbling strategy.
4. Output 1 iff

– P follows the rule of a sequential pebbling strategy.
– For every i ∈ {0, . . . , t(P)}, it holds that |Pi| ≤ β ·Nc.
– chal ⊆ P0 ∪ · · · ∪ Pt(P).
– t(P) ≤ t.

We define Nc/τc and N/Nc as the challenge sparseness and graph com-
pactness of G.

Intuitively, challenge sparseness defines what fraction of the target nodes will be
challenged. Graph compactness determines what fraction of all node in the graph
are in the target set. Looking ahead, these two metrics of CHG will play crucial
roles in determining the parameters of the NIPoS and the encoding schemes.

7.2 Construction of PExt-NIPoS from CHG

Now we present our main PExt-NIPoS construction based on challenge-hard
graphs and show that it satisfies proof-extractability. The construction is quite
similar to the one presented in [22] with only a few minor modifications.

The scheme consists of three algorithms (SetupH,PH,VH) that use the fol-
lowing ingredients:

– a DAG G = (V,E) with N = |V | vertices and maximal in-degree deg ∈ O(1),
which has τc target sets V

(1)
c , . . . , V

(τc)
c ⊆ V such that

Vc := V (1)
c ∪ · · · ∪ V (τc)

c ⊆ V

and Vc has Nc vertices.
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– a set of random oracles {Hid}id∈{0,1}kpos ∪ {Hcom} ∪ {Hchal} defined as fol-
lows: Hid : {0, 1}≤logN+deg·nH → {0, 1}nH for every id ∈ {0, 1}kpos ; Hcom :
{0, 1}2nH → {0, 1}nH ; Hchal takes as input a {0, 1}kpos+nH -bit string and
outputs a random challenge set check plus τc challenge nodes:

(check, chal := (chal1, . . . , chalτc)) ∈ V τ × V (1)
c × · · · × V (τc)

c .

For simplicity of explanation, we assume that the output length of Hchal

is exactly nH (where nH ≥ τ · log |V | + τc · log |Vc|), and we define the
corresponding challenge sets (check, chal) as the first τ · log |V |+ τc · log |Vc|
bits of the RO output.11 Note that by a typical domain separation technique
(e.g., used in [7] and [33]), we can instantiate the three random oracles using
a unified random oracle H : {0, 1}∗ → {0, 1}nH .

The construction is presented in detail in Figure 1. We provide a high-level
overview here. The prover first computes the labeling of a graph G = (V,E), and
then commits the labeling using a Merkle tree. From the merkle root value φ̃`,
the prover computes the Fiat-Shamir challenge H(φ̃`), which consists of two sets
(check, chal). The set check contains τ random nodes in V , and the set chal has
τc random nodes in a target set Vc ⊆ V . The proof is the Merkle tree opening
paths for nodes in check ∪ pred(check) ∪ chal, where pred(check) are the parents
of nodes in check.

Memory usage of the prover and the verifier. In our PExt-NIPoS construction,
the honest prover has to store the complete labeling of the graph G plus the
entire Merkle tree, thus the size of the prover’s space is

sP := N · nH + (N − 1) · nH ,

where nH is the random oracle output length. On the other hand, the verifier
only needs to store a single proof-of-space, which consists of a Merkle root value,
two challenge sets, and τ · (deg + 1) + τc tree paths. Since each tree path is of
length logN , the size of the verifier’s space is given by:

sV := nH + τ · logN + τc · logNc + (τ · (deg + 1) + τc) · logN · nH .

It is not hard to see that our PExt-NIPoS scheme satisfies completeness.

Theorem 2. Let λ be a security parameter. Suppose G := Ghard is a (β,Nc, N, τc, t,
εpeb)-challenge hard graph with indegree deg = O(1), let γsp = Nc/τc and γcp =
N/Nc denote the challenge sparseness and graph compactness of G. H : {0, 1}∗ →
{0, 1}nH is a hash function modeled as a random oracle; and ΠG is a (τc, τ, ν)-
Merkle-tree-based PExt-NIPoS scheme (defined in Figure 1) built upon G, where

ν := (τ · (deg + 1) + τc) · logN + 1 ≈ Nc logN/γsp .
11 For ease of explanation, we assume that |V | and |Vc| are powers of 2.
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PExt-NIPoS Construction

SetupH(1λ): On input the security parameter 1λ output a set of public parameters
pppos ∈ {0, 1}∗, which consist of values τ, τc, Nc, N ∈ N, the DAG G as described
above.

PHpppos(id): Given public parameters pppos ∈ {0, 1}∗ and identity id ∈ {0, 1}kpos , do as
follows:
1. For every node v ∈ V , compute a Hid -labeling of v as label(v) :=
Hid(v, label(pred(v)) , where label(pred(v)) are the Hid -labelings of v’s parents
in G. Let ` := (label(v))v∈V ∈ {0, 1}

N·nH be the Hid -labeling of the graph G.
2. Given labeling ` compute the Merkle commitment φ` := MComHcom(`), where

φ` ∈ {0, 1}nH is the Merkle root.
3. Determine the set of challenges (check, chal) := Hchal(id , φ`).
4. Output the proof-of-space π which consists of two parts:

– The Merkle-root value and the two challenge sets

(φ`, check, chal) ∈ {0, 1}nH × V τ × V (1)
c × · · · × V (τc)

c .

– Let pred(check) be the set of predecessors for nodes in check. For every
node v ∈ check ∪ pred(check) ∪ chal, output the Merkle-tree opening path
from the v-th leaf (with label label(v)) to the Merkle-root (with value φ`):
MOpenHcom(`, v) .

VHpppos(id , π): Given public parameters pppos, identity id ∈ {0, 1}kpos and a candidate
proof-of-space π ∈ {0, 1}npos , check the correctness of π with respec to id as follows:
1. Parse[

(φ`, check, chal),
{
(zv; (y

(1)
v , . . . , y(logN)

v ))
}
v∈check∪pred(check)∪chal

]
:= π

2. Check (check, chal) = Hchal(id , φ`).
3. For every node v ∈ check, denote by zv the opening for v, and zpred(v) the

openings for v’s parents in graph G. The check: zv = Hid(v, zpred(v))

4. For every node v ∈ check∪pred(check)∪chal, denote by (zv, (y
(1)
v , . . . , y

(logN)
v ))

the opening path for v, V checks that

MVerHcom(v, φ`, zv, (y
(1)
v , . . . , y(logN)

v )) = 1 .

5. Output 1 if and only if all of the above check passes; otherwise output 0.

Fig. 1: Our PExt-NIPoS construction: Denoting by ν the number of RO input-
output pairs in the proof we call this construction a (τc, τ, ν)-Merkle-tree-
based PExt-NIPoS scheme built upon the DAG G.

For any s, f ∈ N such that there exists a constant δ∗ ∈ (0, 1) where

s+ f ≤ (β − δ∗ − 0.01) ·Nc · nH ,
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it holds that ΠG is a (kpos, npos, sP, sV)-NIPoS that is (s, f, t, η, εp-ext)-proof-
extractable, as long as12

sP ≥ kpos + (2N − 1) · nH s ≥ sV ≥ kpos + ν · nH η = O(ν log λ)

npos = ν · nH εp-ext ≤ poly(λ) ·
(
2−nH + exp(−κ) + εpeb

)
,

where κ = τ · δ∗ ·Nc/N = τ · δ∗/γcp.

Remark 3. To guarantee that the verifier space sV ≈ ν · nH is smaller than the
tampering space s ≈ Nc · nH, we need the underlying CHG to be at least
Ω(logN)-challenge sparse (defined as Nc/τc).

7.3 Instantiating CHG

We propose two instantiations (details deferred to full version [14]). First, we
provide a new construction of CHG from Stack of Localized Expander Graphs
(SoLEG) (see the full version [14] for details on SoLEGs) used by Ren and De-
vadas [38] in the context of proof-of-space. We use a novel technique to construct
an extension of SoLEG by connecting a gadget in order to “boot-strap” chal-
lenge sparseness. Second, as observed by [17] (in Section 6.1 of [17]), the graph
introduced by Paul, Tarjan and Celoni [37] (in short, PTC’s graph) does satisfy
challenge hardness.

7.4 Instantiations of PExt-NIPoS from CHGs

We obtain two PExt-NIPoS constructions by plugging-in the parameters from
two CHG constructions, namely the SoLEG-extension and the PTC’s graph
respectively into Theorem 2. The details of the concrete instantiations and the
comparison of the two PExt-NIPoS constructions are deferred to full version [14].

8 PExt-NIPoS from Memory-Hard Functions

In this section we propose a simple construction of NIPoS with extractability.
Our construction is based on memory-hard functions (MHF for short) and veri-
fiable computations.

8.1 Memory-hard Functions

Here we formalize memory-hard functions. The definition of our second building
block, publicly verifiable computation, can be found in full version [14].

Definition 11 (Memory-hard Functions (MHF)). Let H : {0, 1}∗ → {0, 1}k
be a random oracle. For parameters k, n, smhf , tmhf , s, f, t ∈ N and εmhf ∈ [0, 1),
where smhf ≥ s, a function M : {0, 1}k → {0, 1}n is called a (k, n, smhf , tmhf ,
s, f, t, εmhf)-memory-hard function (or MHF for short) in the ROM if:
12 The polynomial factor in εp-ext depends on the number of RO queries made by the

adversary. We refer to full version [14] for the exact probability upper bound.
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– M is computable by a (smhf , tmhf)-space-time-bounded algorithm.
– for any (s, f, t)-bounded deterministic algorithm AH, any x ∈ {0, 1}∗ we have

that:
Pr
H
[M(H(x)) = AH(x)] ≤ εmhf

Remark 4. It is worth noting that, though our definition is in the ROM, the
function M itself does not have access to random oracles, but in the security
game the adversary A has access to the random oracle.

8.2 Partially-unique Ext-NIPoS from MHF and VC

In this section, we construct a partially-unique NIPoS with extractability based
on a MHF and a VC with space-bounded verification. At a high level, the
NIPoS scheme is designed as follows. Let M be a memory-hard function and
(Gen,Prove,Ver) a publicly verifiable scheme. The NIPoS prover on input id
first queries the random oracle to obtain x := H(id) and then runs the algo-
rithm Prove on input x and outputs whatever the algorithm outputs, i.e. the
value y := M(x) and the proof of correct computation πvc. The NIPoS verifier
on input id and the proof of space (y, πvc) first queries the random oracle to
obtain x := H(id) and the runs the algorithm Ver on input x, y, πvc and outputs
whatever the algorithm outputs.

Our Construction. LetM be a (k, n, smhf , tmhf , s, f, t, εmhf)-MHF, (Gen,Prove,Ver)
be a (smhf , tmhf , s

vc
P , t

vc
P , s

vc
V , t

vc
V , k, n, nvc, εvc)-VC scheme forM andH : {0, 1}∗ →

{0, 1}k be a hash-function modeled as random oracle such that tmhf , t
vc
P , t

vc
V ∈

poly(λ) and svcV ≤ s < svcP . Then define the following algorithms:

Setup(1λ): On input the security parameter, run (vkM , ekM ) ← GenM (1λ) and
set pppos := (vkM , ekM ).

PHpppos(id): Given public parameters pppos := (vkM , ekM ) and an identity id ∈
{0, 1}kpos , compute the proof-of-space as follows:
1. Obtain x := H(id) by querying H.
2. Compute (y, πvc) := ProveekM (x).
3. Return π := (y, πvc).

VHpppos(id , π): Given public parameters pppos := (vkM , ekM ) an identity id ∈
{0, 1}kpos and a candidate proof π ∈ {0, 1}npos , check the correctness of π
with respect to id as follows:
1. Obtain x := H(id) by querying H.
2. Parse (y, πvc) := π.
3. Return VervkM (x, y, πvc).

Lemma 2. The above construction is (kpos, npos, sP, sV)-NIPoS with (upos, εunique)-
uniqueness and (s, f, t, η, εpos)-extractability as long as:
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kpos ∈ poly(λ) npos = n+ nvc sP ≥ max(svcP , kpos)

sV ≤ svcV + k + n+ kpos + nvc η = log |QH(B)|

upos = n εunique ≤ εvc εpos ≤ εvc + εmhf +
1

2k − |QH(B)|

where |QH(B)| is the the total number of random-oracle query made by B.

8.3 Instantiating MHF

Our MHF instantiation is a slight variant of a graph-based proof of space con-
struction;13 in particular, we choose the one provided in [38] (also used in [22]).
However, similar formal arguments of space-hardness does not work in our case.
Instead, we rely on a heuristic assumption (and also Assumption 1) that our
construction, provided below, satisfies our definition of MHF (cf. Definition 11)
for useful parameters.

Our construction MG,Hash: On input x ∈ {0, 1}k, define the MHF MG,Hash as
follows: consider the SoLEG GNc,kG,γ1,γ2 ; recall that the number of nodes of
GNc,kG,γ1,γ2 is given by N = Nc(kG + 1) and the in-degree is deg ∈ O(1). Let
Hash : {0, 1}∗ → {0, 1}nhs be a standard hash function (for example SHA3) with
collision-probability εhs. On input x ∈ {0, 1}k, first compute a Hashx-labeling of
GNc,kG,γ1,γ2 . Denote the labeling by z = (z1, . . . , zN ) ∈ {0, 1}nhsN , where each
zi ∈ {0, 1}nhs . Output y where y := Hx(z) ∈ {0, 1}nhs .

For a standard instantiation of H, we assume the following facts about la-
beling a SoLEG. (For basic definitions and facts about graph labeling we refer
to full version [14].)

Assumption 1 (Efficient labeling with Hash) Let GNc,kG,γ1,γ2 be a SoLEG
and H : {0, 1}∗ → {0, 1}nH be a “standard hash function” like SHA3. There ex-
ists a polynomial time algorithm A that computes the H-labeling of the graph
GNc,kG,γ1,γ2 in at most NcnH-space.

Assumption 2 (Memory-hardness of Graph-labeling with Hash) Suppose
that Assumption 1 is true for the hash function Hash : {0, 1}∗ → {0, 1}nhs (with
collision-probability εhs). Then for any k, smhf , tmhf , s, f, t ∈ poly(λ) such that
t < 2kGγ1Nc and s ≤ δNcnhs for some δ ∈ [0, γ2 − 2γ1), the above construction
is (k, n, smhf , tmhf , s, f, t, εmhf)-MHF where:

n = nhs smhf ≥ k + nhs(Nc+ log(N) + 1) + n

εmhf ≤ exp

(
−nhsNc(β − δ)
N log(N)

)
+(s+ f)εhs + 2−γhsnhs + 2−k

for β = γ2 − 2γ1 and a constant γhs ∈ (0, 12 ].
13 Since popular memory-hard functions like SCrypt [39] are not conjectured to provide

exponential space-time trade-off, we are unable to use them here.
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We defer some important notes on the above assumptions to full version [14].
From Assumption 2 we get the following corollary about our MHF-candidate:14

Corollary 2. Suppose that Assumption 1 holds for the hash function Hash :
{0, 1}∗ → {0, 1}nhs and based on that Assumption 2 holds for our construction
based on a SoLEG GNc,kG,γ1,γ2 with N = Nc(kG + 1) nodes and deg = O(1)
in-degree such that:

nhs = λ2 β = γ2−2γ1 ∈ (0, 1) kG = λ− 1

Nc = λ3 εhs ∈ negl(λ).

Then, for any δ ∈ (0, β), any ε > 0 and any γhs ∈ (0, 12 ] our construction is a
(k, n, smhf , tmhf , s, f, t, εmhf)-MHF for t, f, tmhf ∈ poly(λ) and:

k = O(λε) n = λ2 smhf = O(λ5)

s ≤ δ · λ5 εmhf ≤ exp

(
−(β − δ)λ
log(λ)

)
+ negl(λ) ∈ negl(λ)

Furthermore, for making εmhf ≈ 2−80, we need to have λ ≈ 2300. Choosing stan-
dard values for other parameters, δ = 0.1, β = 0.9, γhs = 0.001 we get concrete
parameters for our MHF-construction as:

k ≥ 80 n ≈ 670 KB smhf ≈ 8000 TB s ≤ 800 TB εmhf ≈ 2−80

8.4 Instantiating VC

Our NIPoS construction can be instantiated with any VC for which the verifica-
tion can be done in small space (compared to computing the function itself). In
this work we concretely consider such a scheme, known as Pinocchio [36].

Space requirements of Pinocchio Verifier. Without giving formal arguments on
the space-bound, we rely on the following assumption on the Pinocchio verifica-
tion algorithm. Note that these bounds are independent of the space-bound of
the function (in this case that isMG,Hash) to be verified. We briefly provide some
justifications of that afterwards. We refer the reader for more details about the
algorithm and the time complexity to the original paper [36].

Assumption 3 (Space-bounded Verification) Let G be a (as considered in [36])
cyclic subgroup of points in E(Fp); E(Fp) denotes an elliptic curve over Fp where
p ∈ exp(λ) is a prime.15 Then for a function F : {0, 1}k → {0, 1}n, the Pinoc-
chio verification algorithm (see Protocol 2 of [36]) requires k+n+O(λ)-bit space
asymptotically and ≈ k + n+ 300 · dlog pe bits concretely.
14 We remark that this corollary is very similar to Corollary 1 of [23] as one may expect.

However the parameters here are much better in terms of efficiency.
15 To achieve 128-bits of security, as suggested by [8], we will set dlog(p)e ≈ 1536.
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We defer some important notes on the above assumption to full version [14].

Assumption 4 (Lower-bound on Prover’s space) Let G be a (as consid-
ered in [36]) cyclic subgroup of points in E(Fp), where E(Fp) denotes an elliptic
curve over a Fp where p ∈ exp(λ) is a prime. Consider a function F that is
computable by a (sF , tF )-bounded algorithm for sF , tF ∈ poly(λ) and also as-
sume that sF � d16 log(p)e. Then the Pinocchio prove algorithm (see Protocol 2
of [36]) requires at least sF -bit space.

Combining Assumption 3 and Assumption 4 we conclude:

Corollary 3. Let λ ∈ N be the security parameter and let F : {0, 1}k → {0, 1}n
be a deterministic function that is computable by an (sF ,poly(λ))-space-time
bounded algorithm. Then there exists an explicit (sF ,poly(λ), s

vc
V ,poly(λ), s

vc
P ,

poly(λ), k, n, nvc,negl(λ))-non-interactive publicly verifiable computation construc-
tion, where:

svcV = k + n+O(λ) svcP ≥ sF nvc = O(λ)

Furthermore, in concrete terms, to get εvc ≈ 2−128, choosing dlog pe ≈ 1536
(following [8]) we can have estimations of the verifier’s space svcV ≈ 58 KB+k+n
and the proof-size nvc ≈ 3 KB.

8.5 Instantiating partially unique NIPoS and PExt-NIPoS

Putting together the instantiations of MHF and VC, we can get a (partially)
unique extractable NIPoS based on four heuristic assumptions (Assumptions 1–
4). Plugging in the parameters from Corollary 2 and Corollary 3 into Lemma 2,
we obtain the following corollary:

Corollary 4 (MHF-based NIPoS with uniqueness). For any ε > 0 and a
δ ∈ (0, 1) there is an explicit construction of (kpos, npos, sP, sV)-NIPoS which has
(upos, εunique)-uniqueness and (s, f, t, η, εpos)-extractability for any f, t ∈ poly(λ)
as long as:

kpos ∈ poly(λε) npos = O(λ2) sP = Ω(λ5) s ≤ δλ5

sV = O(λ2) upos = λ2 εunique ∈ negl(λ) η = O(log(λ)) εpos ∈ negl(λ).

9 Instantiating and comparing our NMC constructions

9.1 Instantiations from different PExt-NIPoS

We obtain four constructions in total, two of them through CHG and other two
(including FHMV one) through the uniqueness. For more details we refer to the
full version [14].
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9.2 Comparing concrete parameters

We propose four constructions of space-bounded (leaky) non-malleable codes
that support unbounded tampering. All of them are based on NIPoS. Two of
them (described in Section 7) require proof-extractability whereas other two can
be based on standard extractability (described in Section 6 and Section 8). Our
constructions have different merits. While the asymptotic bounds for the param-
eters have already been provided, we believe that a comparison with respect to
the concrete values is important.

Our setting. Since our constructions are obtained from different techniques and
achieve different bounds, it is important to fix a common measure with respect to
which a comparison makes sense. We choose to fix a standard security measure.
In particular, we set εnm = 2−80 in the Definition 5 — that is how we can
estimate the values of the other parameters (namely, k, n, `, s, f, p, d) to get 80-
bit security. We also choose a reasonable values for the number of tampering
queries: θ = 216.16 Whenever there is a term that depends on the number of
RO queries made by a poly-time adversary, (for example |QH(A)|) we set that
to 264. We assume that a poly-time adversary runs for 280 time steps. Since in
our setting ` is always as big as p − n we compare the parameters considering
p ≈ n to have minimal leakage. We choose small values for k (close to `) within
the supported range, although for most of our constructions much higher k is
supported. Using concrete instantiations of PExt-NIPoS (see the full version [14]
for detail) and plugging-in them to Theorem 1 we get the concrete parameters
for the resulting CSNMCs: we provide a comparative study in Table 2.

Technique NIPoS-type k n, (≈ p) ` d s(+f)

CHG SoLEG-based 1 MB 801 MB 0.8 MB 801 MB 1.1 GB(+f)
PTC-based 257 MB 256 GB 256 MB 256 GB 256 GB(+f)

Ext FHMV-based 226 TB 415 TB 225 TB 452 TB 800 TB
MHF-based 4 KB 677 KB 3 KB 740 KB 800 TB

Table 2. This table shows approximate concrete parameters for the setting when p ≈ n.
Note that for PExt-NIPoS-based constructions the last column has bound on s + f ,
whereas for Ext-NIPoS-based constructions the bound is only on s as f can be set to
arbitrary large value.

Assumptions. The first three constructions are based on “memory-hard graphs”.
The hardness can be proven in the random oracle model via standard peb-
bling games. The main proof relies on combinatorial arguments. In contrast
Construction-4 relies on heuristic arguments for space bounds. The main as-
sumptions are (Assumption 2 and 1) that memory-hard graphs retain their
16 We stress that this value can be set much higher without affecting the main param-

eters significantly.
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space-hardness when instantiated with concrete hash functions. This is needed
because the standard pebbling arguments fall short when the hash function is not
modeled as a random oracle. We also rely on a few other assumptions (namely
Assumption 3 and 4) regarding the underlying verfiable computation. For all of
the above constructions we need a PRF with standard security as the proofs
depend on the pseudorandomness guarantee of the PRF.
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